1
|
Suerte ACC, Liddle LJ, Abrahart A, Khiabani E, Colbourne F. A Systematic Review and Meta-Analysis of Therapeutic Hypothermia and Pharmacological Cotherapies in Animal Models of Ischemic Stroke. Ther Hypothermia Temp Manag 2024; 14:229-242. [PMID: 38946643 PMCID: PMC11685787 DOI: 10.1089/ther.2024.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Therapeutic hypothermia (TH) lessens ischemic brain injury. Cytoprotective agents can augment protection, although it is unclear which combinations are most effective. The objective of this study is to identify which cytoprotective drug works best with delayed TH. Following PRISMA guidelines, a systematic review (PubMed, Web of Science, MEDLINE, Scopus) identified controlled experiments that used an in vivo focal ischemic stroke model and evaluated the efficacy of TH (delay of ≥1 hour) coupled with cytoprotective agents. This combination was our main intervention compared with single treatments with TH, drug, or no treatment. Endpoints were brain injury and neurological impairment. The CAMARADES checklist for study quality and the SYRCLE's risk of bias tool gauged study quality. Twenty-five studies were included. Most used young, healthy male rats, with only one using spontaneously hypertensive rats. Two studies used mice models, and six used adult animals. Study quality was moderate (median score = 6), and risk of bias was high. Pharmacological agents provided an additive effect on TH for all outcomes measured. Magnesium coupled with TH had the greatest impact compared with other agent-TH combinations on all outcomes. Longer TH durations improved both behavioral and histological outcomes and had greater cytoprotective efficacy than shorter durations. Anti-inflammatories were the most effective in reducing infarction (standardized mean difference [SMD]: -1.64, confidence interval [CI]: [-2.13, -1.15]), sulfonylureas reduced edema the most (SMD: -2.32, CI: [-3.09, -1.54]), and antiapoptotic agents improved behavioral outcomes the most (normalized mean difference: 52.38, CI: [45.29, 59.46]). Statistically significant heterogeneity was observed (I2 = 82 - 98%, all p < 0.001), indicating that studies wildly differ in their effect size estimates. Our results support the superiority of adding cytoprotective therapies with TH (vs. individual or no therapy). Additional exploratory and confirmatory studies are required to identify and thoroughly assess combination therapies owing to limited work and inconsistent translational quality.
Collapse
Affiliation(s)
| | - Lane J. Liddle
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, Canada
| | - Ashley Abrahart
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, Canada
| | - Elmira Khiabani
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, Canada
| | - Frederick Colbourne
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
2
|
Zhou C, Wang J, Shao G, Xia X, Wu L, Yu A, Yang Z. Mild Hypothermia Protects Brain Injury After Intracerebral Hemorrhage in Mice Via Enhancing the Nrdp1/MyD88 Signaling Pathway. Neurotox Res 2022; 40:1664-1672. [PMID: 36125699 DOI: 10.1007/s12640-022-00576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Mild hypothermia has been identified to reduce brain injury following intracerebral hemorrhage (ICH) by protecting neuron cells through several pathways. However, the role of hypothermia in brain function following ICH and the related mechanisms have not been well identified. Ubiquitination-mediated inflammation plays important roles in the pathogenesis of immune diseases. The experiment analyzed anti-inflammatory effects of mild hypothermia following ICH. METHODS The model of ICH was induced by injecting autologous blood. Neuregulin receptor degradation protein-1 (Nrdp1) and downstream molecule were analyzed. In addition, brain inflammatory response, brain edema, and neurological functions of ICH mice were also assessed. RESULTS We found that mild hypothermia attenuated proinflammatory factors production after ICH. Mild hypothermia significantly inhibited BBB injury, water content, and neurological damage following ICH in vivo. Moreover, mild hypothermia also increased Nrdp1/MyD88 levels and thus affect neuronal apoptosis and inflammation. CONCLUSIONS Taken together, these results suggest that mild hypothermia can attenuate the neuroinflammatory response and neuronal apoptosis after ICH through the regulation of the Nrdp1 levels.
Collapse
Affiliation(s)
- Changlong Zhou
- Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Jinping Wang
- Department of Neurology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Gaohai Shao
- Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Xiaohui Xia
- Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Lirong Wu
- Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Anyong Yu
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China.
| | - Zhao Yang
- Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China.
| |
Collapse
|
3
|
Yin H, Chen Z, Zhao H, Huang H, Liu W. Noble gas and neuroprotection: From bench to bedside. Front Pharmacol 2022; 13:1028688. [PMID: 36532733 PMCID: PMC9750501 DOI: 10.3389/fphar.2022.1028688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/03/2022] [Indexed: 07/26/2023] Open
Abstract
In recent years, inert gases such as helium, argon, and xenon have gained considerable attention for their medical value. Noble gases present an intriguing scientific paradox: although extremely chemically inert, they display a remarkable spectrum of clinically useful biological properties. Despite a relative paucity of knowledge about their mechanisms of action, some noble gases have been used successfully in clinical practice. The neuroprotection elicited by these noble gases has been investigated in experimental animal models of various types of brain injuries, such as traumatic brain injury, stroke, subarachnoid hemorrhage, cerebral ischemic/reperfusion injury, and neurodegenerative diseases. Collectively, these central nervous system injuries are a leading cause of morbidity and mortality every year worldwide. Treatment options are presently limited to thrombolytic drugs and clot removal for ischemic stroke, or therapeutic cooling for other brain injuries before the application of noble gas. Currently, there is increasing interest in noble gases as novel treatments for various brain injuries. In recent years, neuroprotection elicited by particular noble gases, xenon, for example, has been reported under different conditions. In this article, we have reviewed the latest in vitro and in vivo experimental and clinical studies of the actions of xenon, argon, and helium, and discuss their potential use as neuroprotective agents.
Collapse
Affiliation(s)
- Haiying Yin
- Department of Anesthesiology and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zijun Chen
- Department of Anesthesiology and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hailin Zhao
- Division of Anesthetics, Department of Surgery and Cancer, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Han Huang
- Department of Anesthesiology and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wenwen Liu
- Department of Anesthesia Nursing, West China Second University Hospital, Sichuan University/West China School of Nursing, Ministry of Education, Sichuan University and Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, China
| |
Collapse
|
4
|
Hong JM, Choi ES, Park SY. Selective Brain Cooling: A New Horizon of Neuroprotection. Front Neurol 2022; 13:873165. [PMID: 35795804 PMCID: PMC9251464 DOI: 10.3389/fneur.2022.873165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Therapeutic hypothermia (TH), which prevents irreversible neuronal necrosis and ischemic brain damage, has been proven effective for preventing ischemia-reperfusion injury in post-cardiac arrest syndrome and neonatal encephalopathy in both animal studies and clinical trials. However, lowering the whole-body temperature below 34°C can lead to severe systemic complications such as cardiac, hematologic, immunologic, and metabolic side effects. Although the brain accounts for only 2% of the total body weight, it consumes 20% of the body's total energy at rest and requires a continuous supply of glucose and oxygen to maintain function and structural integrity. As such, theoretically, temperature-controlled selective brain cooling (SBC) may be more beneficial for brain ischemia than systemic pan-ischemia. Various SBC methods have been introduced to selectively cool the brain while minimizing systemic TH-related complications. However, technical setbacks of conventional SBCs, such as insufficient cooling power and relatively expensive coolant and/or irritating effects on skin or mucosal interfaces, limit its application to various clinical settings. This review aimed to integrate current literature on SBC modalities with promising therapeutic potential. Further, future directions were discussed by exploring studies on interesting coping skills in response to environmental or stress-induced hyperthermia among wild animals, including mammals and birds.
Collapse
Affiliation(s)
- Ji Man Hong
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
- Department of Biomedical Science, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
- *Correspondence: Ji Man Hong
| | - Eun Sil Choi
- Department of Biomedical Science, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
| | - So Young Park
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
| |
Collapse
|
5
|
Spankovich C, Walters BJ. Mild Therapeutic Hypothermia and Putative Mechanisms of Hair Cell Survival in the Cochlea. Antioxid Redox Signal 2021; 36:1203-1214. [PMID: 34619988 PMCID: PMC9221161 DOI: 10.1089/ars.2021.0184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022]
Abstract
Significance: Sensorineural hearing loss has significant implications for quality of life and risk for comorbidities such as cognitive decline. Noise and ototoxic drugs represent two common risk factors for acquired hearing loss that are potentially preventable. Recent Advances: Numerous otoprotection strategies have been postulated over the past four decades with primary targets of upstream redox pathways. More recently, the application of mild therapeutic hypothermia (TH) has shown promise for otoprotection for multiple forms of acquired hearing loss. Critical Issues: Systemic antioxidant therapy may have limited application for certain ototoxic drugs with a therapeutic effect on redox pathways and diminished efficacy of the primary drug's therapeutic function (e.g., cisplatin for tumors). Future Directions: Mild TH likely targets multiple mechanisms, contributing to otoprotection, including slowed metabolics, reduced oxidative stress, and involvement of cold shock proteins. Further work is needed to identify the mechanisms of mild TH at play for various forms of acquired hearing loss.
Collapse
Affiliation(s)
- Christopher Spankovich
- Department of Otolaryngology-Head and Neck Surgery and University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Bradley J. Walters
- Department of Otolaryngology-Head and Neck Surgery and University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
6
|
Usmanov ES, Chubarova MA, Saidov SK. Emerging Trends in the Use of Therapeutic Hypothermia as a Method for Neuroprotection in Brain Damage (Review). Sovrem Tekhnologii Med 2021; 12:94-104. [PMID: 34796010 PMCID: PMC8596265 DOI: 10.17691/stm2020.12.5.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 11/14/2022] Open
Abstract
The review analyzes current clinical studies on the use of therapeutic hypothermia as a neuroprotective method for treatment of brain damage. This method yields good outcomes in patients with acute brain injuries and chronic critical conditions. There has been shown the interest of researchers in studying the preventive potential of therapeutic hypothermia in secondary neuronal damage. There has been described participation of new molecules producing positive effect on tissues and cells of the central nervous system - proteins and hormones of cold stress - in the mechanisms of neuroprotection in the brain. The prospects of using targeted temperature management in treatment of brain damage are considered.
Collapse
Affiliation(s)
- E Sh Usmanov
- Researcher, Laboratory of Clinical Neurophysiology; Federal Clinical Research Centre for Intensive Care Medicine and Rehabilitology, 777 Lytkino Village, Solnechnogorsk District, Moscow Region, 141534, Russia
| | - M A Chubarova
- Junior Researcher, Laboratory of Clinical Neurophysiology; Federal Clinical Research Centre for Intensive Care Medicine and Rehabilitology, 777 Lytkino Village, Solnechnogorsk District, Moscow Region, 141534, Russia
| | - Sh Kh Saidov
- Senior Researcher, Laboratory of Clinical Neurophysiology Federal Clinical Research Centre for Intensive Care Medicine and Rehabilitology, 777 Lytkino Village, Solnechnogorsk District, Moscow Region, 141534, Russia
| |
Collapse
|
7
|
Mizuma A, Yenari MA. Clinical perspectives on ischemic stroke. Exp Neurol 2021; 338:113599. [PMID: 33440204 PMCID: PMC7904589 DOI: 10.1016/j.expneurol.2021.113599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/13/2020] [Accepted: 01/07/2021] [Indexed: 01/01/2023]
Abstract
Treatments for acute stroke have improved over the past years, but have largely been limited to revascularization strategies. The topic of neuroprotection, or strategies to limit brain tissue damage or even reverse it, has remained elusive. Thus, the clinical mainstays for stroke management have focused on prevention. The lack of clinical translation of neuroprotective therapies which have shown promise in the laboratory may, in part, be due to a historic inattention to comorbidities suffered by a majority of stroke patients. With the advent of more stroke models that include one or more relevant comorbidities, it may be possible to identify effective treatments that may translate into new treatments at the clinical level. In the meantime, we review comorbidities in stroke patients, modification of stroke risk factors and available acute stroke treatments in the clinic.
Collapse
Affiliation(s)
- Atsushi Mizuma
- Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Midori A Yenari
- Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA.
| |
Collapse
|
8
|
Yu H, Wu Z, Wang X, Gao C, Liu R, Kang F, Dai M. Protective effects of combined treatment with mild hypothermia and edaravone against cerebral ischemia/reperfusion injury via oxidative stress and Nrf2 pathway regulation. Int J Oncol 2020; 57:500-508. [PMID: 32626935 PMCID: PMC7307586 DOI: 10.3892/ijo.2020.5077] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Mild hypothermia (MH) and edaravone (EDA) exert neuroprotective effects against cerebral ischemia/reperfusion (I/R) injury through activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. However, whether MH and EDA exert synergistic effects against cerebral I/R injury remains unknown. The aim of the present study was to investigate the effects and mechanism of action of MH in combination with EDA in cerebral I/R injury. A rat cerebral I/R injury model was constructed by middle cerebral artery occlusion (MCAO) followed by reperfusion, and the mice were treated by MH, EDA or the inhibitor of the Nrf2 signaling pathway brusatol (Bru). It was observed that mice treated by MCAO had higher neurological deficit scores and oxidative stress levels, and low spatial learning and memory capacity; moreover, the CA1 region of the hippocampi of the mice exhibited reduced neuronal density and viability, and reduced mitochondrial dysfunction. However, MH in combination with EDA reversed the effects of MCAO, which were blocked by Bru injection. The levels of glutathione (GSH), GSH peroxidase, catalase and superoxide dismutase in rat ischemic hemisphere tissues were reduced by Bru. Western blotting demonstrated that the combined treatment with MH and EDA promoted the nuclear localization of Nrf2, and increased the levels of NAD(P)H quinone oxidoreductase and heme oxygenase (HO)-1. In conclusion, MH combined with EDA exerted synergistic neuroprotective effects against cerebral I/R injury involving changes in the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Hang Yu
- Department of Critical Care Medicine, Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Zhidian Wu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Xiaozhi Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Chang Gao
- Department of Pathophysiology, Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Run Liu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Fuxin Kang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Mingming Dai
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| |
Collapse
|
9
|
Welcome MO, Mastorakis NE. Stress-induced blood brain barrier disruption: Molecular mechanisms and signaling pathways. Pharmacol Res 2020; 157:104769. [PMID: 32275963 DOI: 10.1016/j.phrs.2020.104769] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/09/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023]
Abstract
Stress is a nonspecific response to a threat or noxious stimuli with resultant damaging consequences. Stress is believed to be an underlying process that can trigger central nervous system disorders such as depression, anxiety, and post-traumatic stress disorder. Though the pathophysiological basis is not completely understood, data have consistently shown a pivotal role of inflammatory mediators and hypothalamo-pituitary-adrenal (HPA) axis activation in stress induced disorders. Indeed emerging experimental evidences indicate a concurrent activation of inflammatory signaling pathways and not only the HPA axis, but also, peripheral and central renin-angiotensin system (RAS). Furthermore, recent experimental data indicate that the HPA and RAS are coupled to the signaling of a range of central neuro-transmitter, -mediator and -peptide molecules that are also regulated, at least in part, by inflammatory signaling cascades and vice versa. More recently, experimental evidences suggest a critical role of stress in disruption of the blood brain barrier (BBB), a neurovascular unit that regulates the movement of substances and blood-borne immune cells into the brain parenchyma, and prevents peripheral injury to the brain substance. However, the mechanisms underlying stress-induced BBB disruption are not exactly known. In this review, we summarize studies conducted on the effects of stress on the BBB and integrate recent data that suggest possible molecular mechanisms and signaling pathways underlying stress-induced BBB disruption. Key molecular targets and pharmacological candidates for treatment of stress and related illnesses are also summarized.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria.
| | | |
Collapse
|
10
|
Whole body hypothermia extends tissue plasminogen activator treatment window in the rat model of embolic stroke. Life Sci 2020; 256:117450. [PMID: 32087233 DOI: 10.1016/j.lfs.2020.117450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022]
Abstract
Late treatment with tissue plasminogen activator (tPA) leads to reperfusion injury and poor outcome in ischemic stroke. We have recently shown the beneficial effects of local brain hypothermia after late thrombolysis. Herein, we investigated whether transient whole-body hypothermia was neuroprotective and could prevent the side effects of late tPA therapy at 5.5 h after embolic stroke. After induction of stroke, male rats were randomly assigned into four groups: Control, Hypothermia, tPA and Hypothermia+tPA. Hypothermia started at 5 h after embolic stroke and continued for 1 h. Thirty min after hypothermia, tPA was administrated. Infarct volume, brain edema, blood-brain barrier (BBB) and matrix metalloproteinase-9 (MMP-9) were assessed 48 h and neurological functions were assessed 24 and 48 hour post-stroke. Compared with the control or tPA groups, whole-body hypothermia decreased infarct volume (P < 0.01), BBB disruption (P < 0.05) and MMP-9 level (P < 0.05). However, compared with hypothermia alone a combination of hypothermia and tPA was more effective in reducing infarct volume. While hypothermia alone did not show any effect, its combination with tPA reduced brain edema (P < 0.05). Hypothermia alone or when combined with tPA decreased MMP-9 compared with control or tPA groups (P < 0.01). Although delayed tPA therapy exacerbated BBB integrity, general cooling hampered its leakage after late thrombolysis (P < 0.05). Moreover, only combination therapy significantly improved sensorimotor function as well as forelimb muscle strength at 24 or 48 h after stroke (P < 0.01). Transient whole-body hypothermia in combination with delayed thrombolysis therapy shows more neuroprotection and extends therapeutic time window of tPA up to 5.5 h.
Collapse
|
11
|
Tang YN, Zhang GF, Chen HL, Sun XP, Qin WW, Shi F, Sun LX, Xu XN, Wang MS. Selective brain hypothermia-induced neuroprotection against focal cerebral ischemia/reperfusion injury is associated with Fis1 inhibition. Neural Regen Res 2020; 15:903-911. [PMID: 31719256 PMCID: PMC6990783 DOI: 10.4103/1673-5374.268973] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Selective brain hypothermia is considered an effective treatment for neuronal injury after stroke, and avoids the complications of general hypothermia. However, the mechanisms by which selective brain hypothermia affects mitochondrial fission remain unknown. In this study, we investigated the effect of selective brain hypothermia on the expression of fission 1 (Fis1) protein, a key factor in the mitochondrial fission system, during focal cerebral ischemia/reperfusion injury. Sprague-Dawley rats were divided into four groups. In the sham group, the carotid arteries were exposed only. In the other three groups, middle cerebral artery occlusion was performed using the intraluminal filament technique. After 2 hours of occlusion, the filament was slowly removed to allow blood reperfusion in the ischemia/reperfusion group. Saline, at 4°C and 37°C, were perfused through the carotid artery in the hypothermia and normothermia groups, respectively, followed by restoration of blood flow. Neurological function was assessed with the Zea Longa 5-point scoring method. Cerebral infarct volume was assessed by 2,3,5-triphenyltetrazolium chloride staining, and apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining. Fis1 and cytosolic cytochrome c levels were assessed by western blot assay. Fis1 mRNA expression was assessed by quantitative reverse transcription-polymerase chain reaction. Mitochondrial ultrastructure was evaluated by transmission electron microscopy. Compared with the sham group, apoptosis, Fis1 protein and mRNA expression and cytosolic cytochrome c levels in the cortical ischemic penumbra and cerebral infarct volume were increased after reperfusion in the other three groups. These changes caused by cerebral ischemia/reperfusion were inhibited in the hypothermia group compared with the normothermia group. These findings show that selective brain hypothermia inhibits Fis1 expression and reduces apoptosis, thereby ameliorating focal cerebral ischemia/reperfusion injury in rats. Experiments were authorized by the Ethics Committee of Qingdao Municipal Hospital of China (approval No. 2019008).
Collapse
Affiliation(s)
- Ya-Nan Tang
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Gao-Feng Zhang
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Huai-Long Chen
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiao-Peng Sun
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Wei-Wei Qin
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Fei Shi
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Li-Xin Sun
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiao-Na Xu
- Department of Central Laboratory, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Ming-Shan Wang
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
12
|
Zhang Y, Song L, Zhao J. Role of scalp hypothermia in patients undergoing minimally invasive evacuation of hypertensive cerebral hemorrhage. Pak J Med Sci 2019; 35:1451-1455. [PMID: 31489024 PMCID: PMC6717447 DOI: 10.12669/pjms.35.5.593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective Hypertensive intracerebral hemorrhage (HICH) is one of the common multiple diseases in neurology. Patients with severe HICH have high risk of disability and poor prognosis. Methods In order to explore the clinical effect of mild hypothermia combined with micro-traumatic evacuation of cerebral hemorrhage in the treatment of severe HICH, 136 patients with severe HICH were selected and divided into control group and study group using random number table method, 68 each group. The control group was treated with micro-traumatic evacuation of cerebral hemorrhage on the basis of conventional symptomatic treatment, while the study group was treated with mild hypothermia combined with micro-traumatic evacuation of cerebral hemorrhage on the basis of conventional symptomatic treatment. After treatment, the two groups were followed up for eight weeks. Results The overall effective rate, residual hematoma volume, rebleeding rate, National Institute of Health stroke scale (NIHSS) score, Barthel index score and incidence of adverse reactions after treatment were observed and compared. The overall effective rate of the study group was 89.7%, which was significantly higher than that of the control group (67.6%). The mortality rate of the study group was 3.0%, which was significantly lower than that of the control group (14.7%, P<0.05). The residual hematoma volume and rebleeding rate of the study group were significantly lower than those of the control group (P<0.05). Before treatment, the NIHSS score and Barthel index score of the two groups had no significant differences (P>0.05). After treatment, they were improved, and the improvement of the study group was more significant (P<0.05). The incidence of adverse reactions in the study group was 10.0%, which was significantly lower than that in the control group (36.0%, P<0.05). Conclusion Mild hypothermia in combination with micro-traumatic evacuation of cerebral hemorrhage has significant clinical effect in the treatment of severe HICH. It can significantly improve neurological function and quality of life, causing few adverse reactions. Its clinical application value is high.
Collapse
Affiliation(s)
- Yueling Zhang
- Yueling Zhang, Department of Operating Theatre Binzhou People's Hospital, Shandong, 256610, China
| | - Ling Song
- Ling Song, Department of Cardiothoracic Surgery, Binzhou People's Hospital, Shandong, 256610, China
| | - Jianfen Zhao
- Jianfen Zhao, Department of Cardiovascular, Binzhou People's Hospital, Shandong, 256610, China
| |
Collapse
|
13
|
Jackson TC, Kochanek PM. A New Vision for Therapeutic Hypothermia in the Era of Targeted Temperature Management: A Speculative Synthesis. Ther Hypothermia Temp Manag 2019; 9:13-47. [PMID: 30802174 PMCID: PMC6434603 DOI: 10.1089/ther.2019.0001] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Three decades of animal studies have reproducibly shown that hypothermia is profoundly cerebroprotective during or after a central nervous system (CNS) insult. The success of hypothermia in preclinical acute brain injury has not only fostered continued interest in research on the classic secondary injury mechanisms that are prevented or blunted by hypothermia but has also sparked a surge of new interest in elucidating beneficial signaling molecules that are increased by cooling. Ironically, while research into cold-induced neuroprotection is enjoying newfound interest in chronic neurodegenerative disease, conversely, the scope of the utility of therapeutic hypothermia (TH) across the field of acute brain injury is somewhat controversial and remains to be fully defined. This has led to the era of Targeted Temperature Management, which emphasizes a wider range of temperatures (33–36°C) showing benefit in acute brain injury. In this comprehensive review, we focus on our current understandings of the novel neuroprotective mechanisms activated by TH, and discuss the critical importance of developmental age germane to its clinical efficacy. We review emerging data on four cold stress hormones and three cold shock proteins that have generated new interest in hypothermia in the field of CNS injury, to create a framework for new frontiers in TH research. We make the case that further elucidation of novel cold responsive pathways might lead to major breakthroughs in the treatment of acute brain injury, chronic neurological diseases, and have broad potential implications for medicines of the distant future, including scenarios such as the prevention of adverse effects of long-duration spaceflight, among others. Finally, we introduce several new phrases that readily summarize the essence of the major concepts outlined by this review—namely, Ultramild Hypothermia, the “Responsivity of Cold Stress Pathways,” and “Hypothermia in a Syringe.”
Collapse
Affiliation(s)
- Travis C Jackson
- 1 John G. Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania.,2 Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Patrick M Kochanek
- 1 John G. Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania.,2 Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
New progress in the approaches for blood–brain barrier protection in acute ischemic stroke. Brain Res Bull 2019; 144:46-57. [DOI: 10.1016/j.brainresbull.2018.11.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023]
|
15
|
Zhang Z, Zhang L, Ding Y, Han Z, Ji X. Effects of Therapeutic Hypothermia Combined with Other Neuroprotective Strategies on Ischemic Stroke: Review of Evidence. Aging Dis 2018; 9:507-522. [PMID: 29896438 PMCID: PMC5988605 DOI: 10.14336/ad.2017.0628] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022] Open
Abstract
Ischemic stroke is a major cause of death and disability globally, and its incidence is increasing. The only treatment approved by the US Food and Drug Administration for acute ischemic stroke is thrombolytic treatment with recombinant tissue plasminogen activator. As an alternative, therapeutic hypothermia has shown excellent potential in preclinical and small clinical studies, but it has largely failed in large clinical studies. This has led clinicians to explore the combination of therapeutic hypothermia with other neuroprotective strategies. This review examines preclinical and clinical progress towards developing highly effective combination therapy involving hypothermia for stroke patients.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Linlei Zhang
- Department of Neurology, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuchuan Ding
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhao Han
- Department of Neurology, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Mizuma A, You JS, Yenari MA. Targeting Reperfusion Injury in the Age of Mechanical Thrombectomy. Stroke 2018; 49:1796-1802. [PMID: 29760275 DOI: 10.1161/strokeaha.117.017286] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Atsushi Mizuma
- From the Department of Neurology, University of California, San Francisco (A.M., J.S.Y., M.A.Y.).,San Francisco Veterans Affairs Medical Center, CA (A.M., J.S.Y., M.A.Y.).,Department of Neurology, Tokai University School of Medicine, Isehara, Japan (A.M.)
| | - Je Sung You
- From the Department of Neurology, University of California, San Francisco (A.M., J.S.Y., M.A.Y.).,San Francisco Veterans Affairs Medical Center, CA (A.M., J.S.Y., M.A.Y.).,Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, South Korea (J.S.Y.)
| | - Midori A Yenari
- From the Department of Neurology, University of California, San Francisco (A.M., J.S.Y., M.A.Y.) .,San Francisco Veterans Affairs Medical Center, CA (A.M., J.S.Y., M.A.Y.)
| |
Collapse
|
17
|
Influence of Thrombolysis on the Safety and Efficacy of Blocking Platelet Adhesion or Secretory Activity in Acute Ischemic Stroke in Mice. Transl Stroke Res 2018; 9:493-498. [PMID: 29322481 DOI: 10.1007/s12975-017-0606-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 01/05/2023]
Abstract
In acute ischemic stroke (AIS), there is an alarming discrepancy between recanalization rates of up to 70% by combined recombinant tissue-type plasminogen activator (rt-PA) therapy and mechanical thrombectomy, and no clinical benefit in at least every second stroke patient. This is partly due to ischemia/reperfusion (I/R) injury. In a translational approach, we used mice lacking dense- (Unc13d-/-) or α-granules (Nbeal2-/-) and mice after blocking of platelet glycoprotein receptor (GP) Ib conferring protection from I/R injury. These mice underwent transient middle cerebral artery occlusion (tMCAO) and, as in the clinic, were treated with rt-PA. Our data show that rt-PA treatment is still safe in conjunction with selected anti-platelet therapies and pave the way for eagerly awaited additive treatment options in acute human stroke.
Collapse
|
18
|
Mizuma A, Yenari MA. Anti-Inflammatory Targets for the Treatment of Reperfusion Injury in Stroke. Front Neurol 2017; 8:467. [PMID: 28936196 PMCID: PMC5594066 DOI: 10.3389/fneur.2017.00467] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022] Open
Abstract
While the mainstay of acute stroke treatment includes revascularization via recombinant tissue plasminogen activator or mechanical thrombectomy, only a minority of stroke patients are eligible for treatment, as delayed treatment can lead to worsened outcome. This worsened outcome at the experimental level has been attributed to an entity known as reperfusion injury (R/I). R/I is occurred when revascularization is delayed after critical brain and vascular injury has occurred, so that when oxygenated blood is restored, ischemic damage is increased, rather than decreased. R/I can increase lesion size and also worsen blood barrier breakdown and lead to brain edema and hemorrhage. A major mechanism underlying R/I is that of poststroke inflammation. The poststroke immune response consists of the aberrant activation of glial cell, infiltration of peripheral leukocytes, and the release of damage-associated molecular pattern (DAMP) molecules elaborated by ischemic cells of the brain. Inflammatory mediators involved in this response include cytokines, chemokines, adhesion molecules, and several immune molecule effectors such as matrix metalloproteinases-9, inducible nitric oxide synthase, nitric oxide, and reactive oxygen species. Several experimental studies over the years have characterized these molecules and have shown that their inhibition improves neurological outcome. Yet, numerous clinical studies failed to demonstrate any positive outcomes in stroke patients. However, many of these clinical trials were carried out before the routine use of revascularization therapies. In this review, we cover mechanisms of inflammation involved in R/I, therapeutic targets, and relevant experimental and clinical studies, which might stimulate renewed interest in designing clinical trials to specifically target R/I. We propose that by targeting anti-inflammatory targets in R/I as a combined therapy, it may be possible to further improve outcomes from pharmacological thrombolysis or mechanical thrombectomy.
Collapse
Affiliation(s)
- Atsushi Mizuma
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Midori A Yenari
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA, United States
| |
Collapse
|
19
|
Transient brain hypothermia reduces the reperfusion injury of delayed tissue plasminogen activator and extends its therapeutic time window in a focal embolic stroke model. Brain Res Bull 2017; 134:85-90. [DOI: 10.1016/j.brainresbull.2017.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/02/2017] [Accepted: 07/07/2017] [Indexed: 11/18/2022]
|
20
|
Kurisu K, Yenari MA. Therapeutic hypothermia for ischemic stroke; pathophysiology and future promise. Neuropharmacology 2017; 134:302-309. [PMID: 28830757 DOI: 10.1016/j.neuropharm.2017.08.025] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/12/2017] [Accepted: 08/17/2017] [Indexed: 01/08/2023]
Abstract
Therapeutic hypothermia, or cooling of the body or brain for the purposes of preserving organ viability, is one of the most robust neuroprotectants at both the preclinical and clinical levels. Although therapeutic hypothermia has been shown to improve outcome from related clinical conditions, the significance in ischemic stroke is still under investigation. Numerous pre-clinical studies of therapeutic hypothermia has suggested optimal cooling conditions, such as depth, duration, and temporal therapeutic window for effective neuroprotection. Several studies have also explored mechanisms underlying the mechanisms of neuroprotection by therapeutic hypothermia. As such, it appears that cooling affects multiple aspects of brain pathophysiology, and regulates almost every pathway involved in the evolution of ischemic stroke. This multifaceted mechanism is thought to contribute to its strong neuroprotective effect. In order to carry out this therapy in optimal clinical settings, methodological and pathophysiological understanding is crucial. However, more investigation is still needed to better understand the underlying mechanisms of this intervention, and to overcome clinical barriers which seem to preclude the routine use therapeutic hypothermia in stroke. This article is part of the Special Issue entitled 'Cerebral Ischemia'.
Collapse
Affiliation(s)
- Kota Kurisu
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Midori A Yenari
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA.
| |
Collapse
|
21
|
Trąbka-Zawicki A, Tomala M, Zeliaś A, Paszek E, Zajdel W, Stępień E, Żmudka K. Adaptation of global hemostasis to therapeutic hypothermia in patients with out-of-hospital cardiac arrest: Thromboelastography study. Cardiol J 2017; 26:77-86. [PMID: 28695976 DOI: 10.5603/cj.a2017.0080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/11/2017] [Accepted: 05/21/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The use of mild therapeutic hypothermia (MTH) in patients after out-of-hospital cardiac arrest (OHCA) who are undergoing primary percutaneous coronary intervention (pPCI) can protect patients from thromboembolic complications. The aim of the study was to evaluate the adaptive mecha- nisms of the coagulation system in MTH-treated comatose OHCA survivors. METHODS Twenty one comatose OHCA survivors with acute coronary syndrome undergoing imme- diate pPCI were treated with MTH. Quantitative and qualitative analyses of physical clot properties were performed using thromboelastography (TEG). Two analysis time points were proposed: 1) during MTH with in vitro rewarming conditions (37°C) and 2) after restoration of normothermia (NT) under normal (37°C) and in vitro cooling conditions (32°C). RESULTS During MTH compared to NT, reaction time (R) was lengthened, clot kinetic parameter (a) was significantly reduced, but no effect on clot strength (MA) was observed. Finally, the coagulation index (CI) was significantly reduced with clot fibrinolysis attenuated during MTH. The clot lysis time (CLT) was shortened, and clot stability (LY60) was lower compared with those values during NT. In vitro cooling generally influenced clot kinetics and reduced clot stability after treatment. CONCLUSIONS Thromboelastography is a useful method for evaluation of coagulation system dysfunc- tion in OHCA survivors undergoing MTH. Coagulation impairment in hypothermia was associated with a reduced rate of clot formation, increased weakness of clot strength, and disturbances of fibrinoly- sis. Blood sample analyses performed at 32°C during MTH, instead of the standard 37°C, seems to enhance the accuracy of the evaluation of coagulation impairment in hypothermia.
Collapse
Affiliation(s)
- Aleksander Trąbka-Zawicki
- Department of Interventional Cardiology, Jagiellonian University, John Paul II Hospital, Krakow, Poland.
| | - Marek Tomala
- Department of Interventional Cardiology, Jagiellonian University, John Paul II Hospital, Krakow, Poland
| | - Aleksander Zeliaś
- Department of Interventional Cardiology, Jagiellonian University, John Paul II Hospital, Krakow, Poland
| | - Elżbieta Paszek
- Department of Interventional Cardiology, Jagiellonian University, John Paul II Hospital, Krakow, Poland
| | - Wojciech Zajdel
- Department of Interventional Cardiology, Jagiellonian University, John Paul II Hospital, Krakow, Poland
| | - Ewa Stępień
- Department of Medical Physics, Marian Smoluchowski Institute of Physiscs, Faculty of Physics, Astronomy, and Applied Computer, Jagiellonian University, Krakow, Poland
| | - Krzysztof Żmudka
- Department of Interventional Cardiology, Jagiellonian University, John Paul II Hospital, Krakow, Poland
| |
Collapse
|
22
|
Kim JY, Kim N, Lee JE, Yenari MA. Hypothermia Identifies Dynamin as a Potential Therapeutic Target in Experimental Stroke. Ther Hypothermia Temp Manag 2017; 7:171-177. [PMID: 28665255 DOI: 10.1089/ther.2017.0005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Apoptosis is a cell death pathway that is activated in ischemic stroke. The interaction between Fas and its ligand (FasL) initiates a complex pattern of intracellular events involving the recruitment of specific adaptor proteins and the development of apoptosis. We recently reported that dynamin is increased after experimental stroke, and its inhibition improves neurological outcome. Dynamin has been shown to transport Fas from the endoplasmic reticulum to the cell surface where it can be bound by its ligand, FasL. Hypothermia has been shown to improve outcome in numerous stroke models, and this protection is associated with reduced apoptosis and Fas expression. To explore the contribution of dynamin to hypothermic neuroprotection, we subjected mice to distal middle cerebral artery occlusion (dMCAO) and applied one of two cooling paradigms: one where cooling began at the onset of dMCAO (early hypothermia) and another where cooling began 1 hour later (delayed hypothermia), compared with normothermia (Norm). Both cooling paradigms reduced numbers of apoptotic cells, as well as Fas and dynamin compared with Norm. Fas and dynamin were co-expressed in neurons. Neuronal cultures were exposed to oxygen glucose deprivation. Hypothermia decreased dynamin as well as surface expression of Fas, and this correlated to reduced cell death. The results of this study suggest that dynamin may participate in the Fas-mediated apoptotic pathway, and its reduction may be linked to hypothermic neuroprotection.
Collapse
Affiliation(s)
- Jong Youl Kim
- 1 Department of Neurology, San Francisco Veterans Affairs Medical Center, University of California , San Francisco, San Francisco, California.,2 Department of Anatomy, Yonsei University College of Medicine , Seoul, Republic of Korea
| | - Nuri Kim
- 1 Department of Neurology, San Francisco Veterans Affairs Medical Center, University of California , San Francisco, San Francisco, California
| | - Jong Eun Lee
- 2 Department of Anatomy, Yonsei University College of Medicine , Seoul, Republic of Korea.,3 BK21 Plus Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine , Seoul, Republic of Korea
| | - Midori A Yenari
- 1 Department of Neurology, San Francisco Veterans Affairs Medical Center, University of California , San Francisco, San Francisco, California
| |
Collapse
|
23
|
Modulation by the Noble Gas Helium of Tissue Plasminogen Activator: Effects in a Rat Model of Thromboembolic Stroke. Crit Care Med 2017; 44:e383-9. [PMID: 26646461 DOI: 10.1097/ccm.0000000000001424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTERVENTIONS Helium has been shown to provide neuroprotection in mechanical model of acute ischemic stroke by inducing hypothermia, a condition shown by itself to reduce the thrombolytic and proteolytic properties of tissue plasminogen activator. However, whether or not helium interacts with the thrombolytic drug tissue plasminogen activator, the only approved therapy of acute ischemic stroke still remains unknown. This point is not trivial since previous data have shown the critical importance of the time at which the neuroprotective noble gases xenon and argon should be administered, during or after ischemia, in order not to block tissue plasminogen activator-induced thrombolysis and to obtain neuroprotection and inhibition of tissue plasminogen activator-induced brain hemorrhages. MEASUREMENTS AND MAIN RESULTS We show that helium of 25-75 vol% inhibits in a concentration-dependent fashion the catalytic and thrombolytic activity of tissue plasminogen activator in vitro and ex vivo. In vivo, in rats subjected to thromboembolic brain ischemia, we found that intraischemic helium at 75 vol% inhibits tissue plasminogen activator-induced thrombolysis and subsequent reduction of ischemic brain damage and that postischemic helium at 75 vol% reduces ischemic brain damage and brain hemorrhages. CONCLUSIONS In a clinical perspective for the treatment of acute ischemic stroke, these data suggest that helium 1) should not be administered before or together with tissue plasminogen activator therapy due to the risk of inhibiting the benefit of tissue plasminogen activator-induced thrombolysis; and 2) could be an efficient neuroprotective agent if given after tissue plasminogen activator-induced reperfusion.
Collapse
|
24
|
Abstract
The presence of a salvageable penumbra, a region of ischemic brain tissue with sufficient energy for short-term survival, has been widely agreed as the premise for thrombolytic therapy with tissue plasminogen activator (tPA), which remains the only United States Food and Drug Administration (FDA) approved treatment for acute ischemia stroke. However, the use of tPA has been profoundly constrained due to its narrow therapeutic time window and the increased risk of potentially deadly hemorrhagic transformation (HT). Blood brain barrier (BBB) damage within the thrombolytic time window is an indicator for tPA-induced HT and both normobaric hyperoxia (NBO) and hypothermia have been shown to protect the BBB from ischemia/reperfusion injury. Therefore, providing the O2 as soon as possible (NBO treatment), freezing the brain (hypothermia treatment) to slow down ischemia-induced BBB damage or their combined use may extend the time window for the treatment of tPA. In this review, we summarize the protective effects of NBO, hypothermia or their use combined with tPA on ischemia stroke, based on which, the combination of NBO and hypothermia may be an ideal early stroke treatment to preserve the ischemic penumbra. Given this, there is an urge for large randomized controlled trials to address the effect.
Collapse
Affiliation(s)
- Wen-Cao Liu
- Department of Emergency, Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
| | - Xin-Chun Jin
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
25
|
Zhou H, Huang S, Sunnassee G, Guo W, Chen J, Guo Y, Tan S. Neuroprotective effects of adjunctive treatments for acute stroke thrombolysis: a review of clinical evidence. Int J Neurosci 2017; 127:1036-1046. [PMID: 28110588 DOI: 10.1080/00207454.2017.1286338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The narrow therapeutic time window and risk of intracranial hemorrhage largely restrict the clinical application of thrombolysis in acute ischemic stroke. Adjunctive treatments added to rt-PA may be beneficial to improve the capacity of neural cell to withstand ischemia, and to reduce the hemorrhage risk as well. This review aims to evaluate the neuroprotective effects of adjunctive treatments in combination with thrombolytic therapy for acute ischemic stroke. Relevant studies were searched in the PubMed, Web of Science and EMBASE database. In this review, we first interpret the potential role of adjunctive treatments to thrombolytic therapy in acute ischemic stroke. Furthermore, we summarize the current clinical evidence for the combination of intravenous recombinant tissue plasminogen activator and various adjunctive therapies in acute ischemic stroke, either pharmacological or non-pharmacological therapy, and discuss the mechanisms of some promising treatments, including uric acid, fingolimod, minocycline, remote ischemic conditioning, hypothermia and transcranial laser therapy. Even though fingolimod, minocycline, hypothermia and remote ischemic conditioning have yielded promising results, they still need to be rigorously investigated in further clinical trials. Further trials should also focus on neuroprotective approach with pleiotropic effects or combined agents with multiple protective mechanisms.
Collapse
Affiliation(s)
- Hongxing Zhou
- a Department of Neurology , Zhujiang Hospital of Southern Medical University , Guangzhou , China
| | - Suyun Huang
- a Department of Neurology , Zhujiang Hospital of Southern Medical University , Guangzhou , China
| | - Gavin Sunnassee
- a Department of Neurology , Zhujiang Hospital of Southern Medical University , Guangzhou , China
| | - Weiyu Guo
- b Department of Ultrasound , Zhujiang Hospital of Southern Medical University , Guangzhou , China
| | - Jian Chen
- a Department of Neurology , Zhujiang Hospital of Southern Medical University , Guangzhou , China
| | - Yang Guo
- a Department of Neurology , Zhujiang Hospital of Southern Medical University , Guangzhou , China
| | - Sheng Tan
- a Department of Neurology , Zhujiang Hospital of Southern Medical University , Guangzhou , China
| |
Collapse
|
26
|
Plasma kallikrein mediates brain hemorrhage and edema caused by tissue plasminogen activator therapy in mice after stroke. Blood 2017; 129:2280-2290. [PMID: 28130211 DOI: 10.1182/blood-2016-09-740670] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/09/2017] [Indexed: 12/29/2022] Open
Abstract
Thrombolytic therapy using tissue plasminogen activator (tPA) in acute stroke is associated with increased risks of cerebral hemorrhagic transformation and angioedema. Although plasma kallikrein (PKal) has been implicated in contributing to both hematoma expansion and thrombosis in stroke, its role in the complications associated with the therapeutic use of tPA in stroke is not yet available. We investigated the effects of tPA on plasma prekallikrein (PPK) activation and the role of PKal on cerebral outcomes in a murine thrombotic stroke model treated with tPA. We show that tPA increases PKal activity in vitro in both murine and human plasma, via a factor XII (FXII)-dependent mechanism. Intravenous administration of tPA increased circulating PKal activity in mice. In mice with thrombotic occlusion of the middle cerebral artery, tPA administration increased brain hemorrhage transformation, infarct volume, and edema. These adverse effects of tPA were ameliorated in PPK (Klkb1)-deficient and FXII-deficient mice and in wild-type (WT) mice pretreated with a PKal inhibitor prior to tPA. tPA-induced brain hemisphere reperfusion after photothrombolic middle cerebral artery occlusion was increased in Klkb1-/- mice compared with WT mice. In addition, PKal inhibition reduced matrix metalloproteinase-9 activity in brain following stroke and tPA therapy. These data demonstrate that tPA activates PPK in plasma and PKal inhibition reduces cerebral complications associated with tPA-mediated thrombolysis in stroke.
Collapse
|
27
|
Dong MX, Hu QC, Shen P, Pan JX, Wei YD, Liu YY, Ren YF, Liang ZH, Wang HY, Zhao LB, Xie P. Recombinant Tissue Plasminogen Activator Induces Neurological Side Effects Independent on Thrombolysis in Mechanical Animal Models of Focal Cerebral Infarction: A Systematic Review and Meta-Analysis. PLoS One 2016; 11:e0158848. [PMID: 27387385 PMCID: PMC4936748 DOI: 10.1371/journal.pone.0158848] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 06/22/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Recombinant tissue plasminogen activator (rtPA) is the only effective drug approved by US FDA to treat ischemic stroke, and it contains pleiotropic effects besides thrombolysis. We performed a meta-analysis to clarify effect of tissue plasminogen activator (tPA) on cerebral infarction besides its thrombolysis property in mechanical animal stroke. METHODS Relevant studies were identified by two reviewers after searching online databases, including Pubmed, Embase, and ScienceDirect, from 1979 to 2016. We identified 6, 65, 17, 12, 16, 12 and 13 comparisons reporting effect of endogenous tPA on infarction volume and effects of rtPA on infarction volume, blood-brain barrier, brain edema, intracerebral hemorrhage, neurological function and mortality rate in all 47 included studies. Standardized mean differences for continuous measures and risk ratio for dichotomous measures were calculated to assess the effects of endogenous tPA and rtPA on cerebral infarction in animals. The quality of included studies was assessed using the Stroke Therapy Academic Industry Roundtable score. Subgroup analysis, meta-regression and sensitivity analysis were performed to explore sources of heterogeneity. Funnel plot, Trim and Fill method and Egger's test were obtained to detect publication bias. RESULTS We found that both endogenous tPA and rtPA had not enlarged infarction volume, or deteriorated neurological function. However, rtPA would disrupt blood-brain barrier, aggravate brain edema, induce intracerebral hemorrhage and increase mortality rate. CONCLUSIONS This meta-analysis reveals rtPA can lead to neurological side effects besides thrombolysis in mechanical animal stroke, which may account for clinical exacerbation for stroke patients that do not achieve vascular recanalization with rtPA.
Collapse
Affiliation(s)
- Mei-Xue Dong
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Qing-Chuan Hu
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Peng Shen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun-Xi Pan
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - You-Dong Wei
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi-Yun Liu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi-Fei Ren
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zi-Hong Liang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hai-Yang Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Li-Bo Zhao
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| |
Collapse
|
28
|
Hu J, Yu Q, Xie L, Zhu H. Targeting the blood-spinal cord barrier: A therapeutic approach to spinal cord protection against ischemia-reperfusion injury. Life Sci 2016; 158:1-6. [PMID: 27329433 DOI: 10.1016/j.lfs.2016.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 12/15/2022]
Abstract
One of the principal functions of physical barriers between the blood and central nervous system protects system (i.e., blood brain barrier and blood-spinal cord barrier) is the protection from toxic and pathogenic agents in the blood. Disruption of blood-spinal cord barrier (BSCB) plays a key role in spinal cord ischemia-reperfusion injury (SCIRI). Following SCIRI, the permeability of the BSCB increases. Maintaining the integrity of the BSCB alleviates the spinal cord injury after spinal cord ischemia. This review summarizes current knowledge of the structure and function of the BSCB and its changes following SCIRI, as well as the prevention and cure of SCIRI and the role of the BSCB.
Collapse
Affiliation(s)
- Ji Hu
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430077, Hubei Province, China.
| | - Qijing Yu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| | - Lijie Xie
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430077, Hubei Province, China
| | - Hongfei Zhu
- Department of Anesthesiology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei Province, China
| |
Collapse
|
29
|
Tissue Plasminogen Activator Neurotoxicity is Neutralized by Recombinant ADAMTS 13. Sci Rep 2016; 6:25971. [PMID: 27181025 PMCID: PMC4867598 DOI: 10.1038/srep25971] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/22/2016] [Indexed: 12/29/2022] Open
Abstract
Tissue plasminogen activator (tPA) is an effective treatment for ischemic stroke, but its neurotoxicity is a significant problem. Here we tested the hypothesis that recombinant ADAMTS 13 (rADAMTS 13) would reduce tPA neurotoxicity in a mouse model of stroke. We show that treatment with rADAMTS 13 in combination with tPA significantly reduced infarct volume compared with mice treated with tPA alone 48 hours after stroke. The combination treatment significantly improved neurological deficits compared with mice treated with tPA or vehicle alone. These neuroprotective effects were associated with significant reductions in fibrin deposits in ischemic vessels and less severe cell death in ischemic brain. The effect of rADAMTS13 on tPA neurotoxicity was mimicked by the N-methyl-D-aspartate (NMDA) receptor antagonist M-801, and was abolished by injection of NMDA. Moreover, rADAMTS 13 prevents the neurotoxicity effect of tPA, by blocking its interaction with the NMDA receptor NR2B and the attendant phosphorylation of NR2B and activation of ERK1/2. Finally, the NR2B-specific NMDA receptor antagonist ifenprodil abolished tPA neurotoxicity and rADAMTS 13 treatment had no further beneficial effect. Our data suggest that the combination of rADAMTS 13 and tPA may provide a novel treatment of ischemic stroke by diminishing the neurotoxic effects of exogenous tPA.
Collapse
|
30
|
Cechmanek BK, Tuor UI, Rushforth D, Barber PA. Very Mild Hypothermia (35°C) Postischemia Reduces Infarct Volume and Blood/Brain Barrier Breakdown Following tPA Treatment in the Mouse. Ther Hypothermia Temp Manag 2015; 5:203-8. [PMID: 26075540 DOI: 10.1089/ther.2015.0010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Reperfusion therapies for stroke diminish in effectiveness and safety as time to treatment increases. Hypothermia neuroprotection for stroke is established, but its clinical translation has been hampered by uncertainties regarding optimal temperature and complications associated with moderate hypothermia. Also, hypothermia targeting temperatures of 32-33°C is associated with clinical and logistical problems related to induction and adverse side effects. We hypothesized that ischemic damage and tPA-exacerbated blood/brain barrier (BBB) breakdown produced following 30 minutes of middle cerebral artery occlusion and either 1 hour of saline or tPA infusion would be reduced by treatment with very mild cooling of 1.5°C for 48 hours followed by 24 hours of gradual rewarming. Infarct volume was reduced by 29.6% (p<0.001) and 41.9% (p<0.001) in hypothermic-tPA (Hypo_tPA)-treated and hypothermic-saline (Hypo_Sal)-treated animals compared to normothermic-tPA (Norm_tPA) and saline (Norm_Sal)-treated animals, respectively. Hypothermia also reduced IgG extravasation in tPA-treated, but not saline-treated groups compared to their normothermic controls (p<0.001). The ipsilateral-contralateral changes in optical density for IgG extravasation were 18.4% greater in the Norm_tPA than Norm_Sal (p<0.001) group. The ipsilateral-contralateral changes in optical density for IgG extravasation were reduced by 17.8% (p<0.001) in the Hypo_tPA compared to Norm_tPA group. No significant mean difference in IgG extravasation was seen between Hypo_tPA and Hypo_Sal groups (p>0.05). Very modest hypothermia to reduce the BBB breakdown could improve the availability and safety of reperfusion treatments for stroke.
Collapse
Affiliation(s)
- Brian K Cechmanek
- Department of Clinical Neurosciences, Faculty of Medicine, Experimental Imaging Centre and Hotchkiss Brain Institute, University of Calgary , Calgary, Canada
| | - Ursula I Tuor
- Department of Clinical Neurosciences, Faculty of Medicine, Experimental Imaging Centre and Hotchkiss Brain Institute, University of Calgary , Calgary, Canada
| | - David Rushforth
- Department of Clinical Neurosciences, Faculty of Medicine, Experimental Imaging Centre and Hotchkiss Brain Institute, University of Calgary , Calgary, Canada
| | - Philip A Barber
- Department of Clinical Neurosciences, Faculty of Medicine, Experimental Imaging Centre and Hotchkiss Brain Institute, University of Calgary , Calgary, Canada
| |
Collapse
|
31
|
Gonzales-Portillo GS, Reyes S, Aguirre D, Pabon MM, Borlongan CV. Stem cell therapy for neonatal hypoxic-ischemic encephalopathy. Front Neurol 2014; 5:147. [PMID: 25161645 PMCID: PMC4130306 DOI: 10.3389/fneur.2014.00147] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 07/22/2014] [Indexed: 11/27/2022] Open
Abstract
Treatments for neonatal hypoxic-ischemic encephalopathy (HIE) have been limited. The aim of this paper is to offer translational research guidance on stem cell therapy for neonatal HIE by examining clinically relevant animal models, practical stem cell sources, safety and efficacy of endpoint assays, as well as a general understanding of modes of action of this cellular therapy. In order to do so, we discuss the clinical manifestations of HIE, highlighting its overlapping pathologies with stroke and providing insights on the potential of cell therapy currently investigated in stroke, for HIE. To this end, we draw guidance from recommendations outlined in stem cell therapeutics as an emerging paradigm for stroke or STEPS, which have been recently modified to Baby STEPS to cater for the “neonatal” symptoms of HIE. These guidelines recognized that neonatal HIE exhibit distinct disease symptoms from adult stroke in need of an innovative translational approach that facilitates the entry of cell therapy in the clinic. Finally, new information about recent clinical trials and insights into combination therapy are provided with the vision that stem cell therapy may benefit from available treatments, such as hypothermia, already being tested in children diagnosed with HIE.
Collapse
Affiliation(s)
| | - Stephanny Reyes
- Department of Neurosurgery and Brain Repair, University of South Florida , Tampa, FL , USA
| | - Daniela Aguirre
- Department of Neurosurgery and Brain Repair, University of South Florida , Tampa, FL , USA
| | - Mibel M Pabon
- Department of Neurosurgery and Brain Repair, University of South Florida , Tampa, FL , USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida , Tampa, FL , USA
| |
Collapse
|
32
|
Mild Hypothermia Reduces Tissue Plasminogen Activator–Related Hemorrhage and Blood Brain Barrier Disruption After Experimental Stroke: Editorial Commentary on Tang et al., 2013. Ther Hypothermia Temp Manag 2013; 3:171-2. [DOI: 10.1089/ther.2013.0014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
33
|
Nathaniel TI, Otukonyong EE, Okon M, Chaves J, Cochran T, Nathaniel AI. Metabolic regulatory clues from the naked mole rat: toward brain regulatory functions during stroke. Brain Res Bull 2013; 98:44-52. [PMID: 23886571 DOI: 10.1016/j.brainresbull.2013.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/03/2013] [Accepted: 07/15/2013] [Indexed: 12/30/2022]
Abstract
Resistance to tissue hypoxia is a robust fundamental adaptation to low oxygen supply, and represents a novel neuroscience problem with significance to mammalian physiology as well as human health. With the underlying mechanisms strongly conserved in evolution, the ability to resist tissue hypoxia in natural systems has recently emerged as an interesting model in mammalian physiology research to understand mechanisms that can be manipulated for the clinical management of stroke. The extraordinary ability to resist tissue hypoxia by the naked mole rat (NMR) indicates the presence of a unique mechanism that underlies the remarkable healthy life span and exceptional hypoxia resistance. This opens an interesting line of research into understanding the mechanisms employed by the naked mole rat (Heterocephalus glaber) to protect the brain during hypoxia. In a series of studies, we first examined the presence of neuroprotection in the brain cells of naked mole rats (NMRs) subjected to hypoxic insults, and then characterized the expression of such neuroprotection in a wide range of time intervals. We used oxygen nutrient deprivation (OND), an in vitro model of resistance to tissue hypoxia to determine whether there is evidence of neuronal survival in the hippocampal (CA1) slices of NMRs that are subjected to chronic hypoxia. Hippocampus neurons of NMRs that were kept in hypoxic condition consistently tolerated OND right from the onset time of 5h. This tolerance was maintained for 24h. This finding indicates that there is evidence of resistance to tissue hypoxia by CA1 neurons of NMRs. We further examined the effect of hypoxia on metabolic rate in the NMR. Repeated measurement of metabolic rates during exposure of naked mole rats to hypoxia over a constant ambient temperature indicates that hypoxia significantly decreased metabolic rates in the NMR, suggesting that the observed decline in metabolic rate during hypoxia may contribute to the adaptive mechanism used by the NMR to resist tissue hypoxia. This work is aimed to contribute to the understanding of mechanisms of resistance to tissue hypoxia in the NMR as an important life-sustaining process, which can be translated into therapeutic interventions during stroke.
Collapse
Affiliation(s)
- Thomas I Nathaniel
- University of South Carolina School of Medicine, HSEB, 607 Grove Road, Greenville, SC 29605, United States.
| | | | | | | | | | | |
Collapse
|