1
|
Bellastella G, Maiorino MI, Scappaticcio L, De Bellis A, Mercadante S, Esposito K, Bellastella A. Chronothyroidology: Chronobiological Aspects in Thyroid Function and Diseases. Life (Basel) 2021; 11:life11050426. [PMID: 34068480 PMCID: PMC8151474 DOI: 10.3390/life11050426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
Chronobiology is the scientific discipline which considers biological phenomena in relation to time, which assumes itself biological identity. Many physiological processes are cyclically regulated by intrinsic clocks and many pathological events show a circadian time-related occurrence. Even the pituitary–thyroid axis is under the control of a central clock, and the hormones of the pituitary–thyroid axis exhibit circadian, ultradian and circannual rhythmicity. This review, after describing briefly the essential principles of chronobiology, will be focused on the results of personal experiences and of other studies on this issue, paying particular attention to those regarding the thyroid implications, appearing in the literature as reviews, metanalyses, original and observational studies until 28 February 2021 and acquired from two databases (Scopus and PubMed). The first input to biological rhythms is given by a central clock located in the suprachiasmatic nucleus (SCN), which dictates the timing from its hypothalamic site to satellite clocks that contribute in a hierarchical way to regulate the physiological rhythmicity. Disruption of the rhythmic organization can favor the onset of important disorders, including thyroid diseases. Several studies on the interrelationship between thyroid function and circadian rhythmicity demonstrated that thyroid dysfunctions may affect negatively circadian organization, disrupting TSH rhythm. Conversely, alterations of clock machinery may cause important perturbations at the cellular level, which may favor thyroid dysfunctions and also cancer.
Collapse
Affiliation(s)
- Giuseppe Bellastella
- Unit of Endocrinology and Metabolic Diseases, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.B.); (M.I.M.); (L.S.); (A.D.B.)
| | - Maria Ida Maiorino
- Unit of Endocrinology and Metabolic Diseases, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.B.); (M.I.M.); (L.S.); (A.D.B.)
| | - Lorenzo Scappaticcio
- Unit of Endocrinology and Metabolic Diseases, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.B.); (M.I.M.); (L.S.); (A.D.B.)
| | - Annamaria De Bellis
- Unit of Endocrinology and Metabolic Diseases, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.B.); (M.I.M.); (L.S.); (A.D.B.)
| | - Silvia Mercadante
- Diabetes Unit, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.M.); (K.E.)
| | - Katherine Esposito
- Diabetes Unit, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.M.); (K.E.)
| | - Antonio Bellastella
- Department of Cardiothoracic and Respiratory Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence:
| |
Collapse
|
2
|
Roelfsema F, Boelen A, Kalsbeek A, Fliers E. Regulatory aspects of the human hypothalamus-pituitary-thyroid axis. Best Pract Res Clin Endocrinol Metab 2017; 31:487-503. [PMID: 29223283 DOI: 10.1016/j.beem.2017.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Thyroid hormones are essential for growth, differentiation and metabolism during prenatal and postnatal life. The hypothalamus-pituitary-thyroid (HPT)-axis is optimized for these actions. Knowledge of this hormonal axis is derived from decades of experiments in animals and man, and more recently from spontaneous mutations in man and constructed mutations in mice. This review examines the HPT-axis in relation to 24 h TSH profiles in men in various physiological and pathophysiological conditions, including obesity, age, longevity, and primary as well as central hypothyroidism. Hormone rhythms can be analyzed by quantitative methods, e.g. operator-independent deconvolution, approximate entropy and fitting the 24-h component by Cosinor analysis or related procedures. These approaches have identified some of the regulatory components in (patho)physiological conditions.
Collapse
Affiliation(s)
- Ferdinand Roelfsema
- Department of Internal Medicine, Section Endocrinology and Metabolic Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Anita Boelen
- Department of Endocrinology and Metabolism, Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands.
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Netherlands Institute for Neuroscience, Hypothalamic Integration Mechanisms, 1105 BA Amsterdam, The Netherlands.
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands. e,
| |
Collapse
|
3
|
Abstract
Thyroid hormones are extremely important for metabolism, development, and growth during the lifetime. The hypothalamo-pituitary-thyroid axis is precisely regulated for these purposes. Much of our knowledge of this hormonal axis is derived from experiments in animals and mutations in man. This review examines the hypothalamo-pituitary-thyroid axis particularly in relation to the regulated 24-hour serum TSH concentration profiles in physiological and pathophysiological conditions, including obesity, primary hypothyroidism, pituitary diseases, psychiatric disorders, and selected neurological diseases. Diurnal TSH rhythms can be analyzed with novel and precise techniques, eg, operator-independent deconvolution and approximate entropy. These approaches provide indirect insight in the regulatory components in pathophysiological conditions.
Collapse
Affiliation(s)
- Ferdinand Roelfsema
- Leiden University Medical Center, Department of Endocrinology and Metabolic Diseases, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | | |
Collapse
|
4
|
Lee JE, Zamdborg L, Southey BR, Atkins N, Mitchell JW, Li M, Gillette MU, Kelleher NL, Sweedler JV. Quantitative peptidomics for discovery of circadian-related peptides from the rat suprachiasmatic nucleus. J Proteome Res 2013; 12:585-93. [PMID: 23256577 DOI: 10.1021/pr300605p] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In mammals the suprachiasmatic nucleus (SCN), the master circadian clock, is sensitive to light input via the optic chiasm and synchronizes many daily biological rhythms. Here we explore variations in the expression levels of neuropeptides present in the SCN of rats using a label-free quantification approach that is based on integrating peak intensities between daytime, Zeitgeber time (ZT) 6, and nighttime, ZT 18. From nine analyses comparing the levels between these two time points, 10 endogenous peptides derived from eight prohormones exhibited significant differences in their expression levels (adjusted p-value <0.05). Of these, seven peptides derived from six prohormones, including GRP, PACAP, and CART, exhibited ≥ 30% increases at ZT 18, and the VGRPEWWMDYQ peptide derived from proenkephalin A showed a >50% increase at nighttime. Several endogenous peptides showing statistically significant changes in this study have not been previously reported to alter their levels as a function of time of day, nor have they been implicated in prior functional SCN studies. This information on peptide expression changes serves as a resource for discovering unknown peptide regulators that affect circadian rhythms in the SCN.
Collapse
Affiliation(s)
- Ji Eun Lee
- Department of Chemistry, Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Duntas LH, Emerson CH. On the fortieth anniversary of thyrotropin-releasing hormone: the hormone that launched a new era. Thyroid 2009; 19:1299-301. [PMID: 20001713 DOI: 10.1089/thy.2009.1610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
6
|
Galas L, Raoult E, Tonon MC, Okada R, Jenks BG, Castaño JP, Kikuyama S, Malagon M, Roubos EW, Vaudry H. TRH acts as a multifunctional hypophysiotropic factor in vertebrates. Gen Comp Endocrinol 2009; 164:40-50. [PMID: 19435597 DOI: 10.1016/j.ygcen.2009.05.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 04/28/2009] [Accepted: 05/05/2009] [Indexed: 11/17/2022]
Abstract
Thyrotropin-releasing hormone (TRH) is the first hypothalamic hypophysiotropic neuropeptide whose sequence has been chemically characterized. The primary structure of TRH (pGlu-His-Pro-NH(2)) has been fully conserved across the vertebrate phylum. TRH is generated from a large precursor protein that contains multiple repeats of the TRH progenitor tetrapeptide Gln-His-Pro-Gly. In all tetrapods, TRH-expressing neurons located in the hypothalamus project towards the external zone of the median eminence while in teleosts they directly innervate the pars distalis of the pituitary. In addition, in frogs and teleosts, a bundle of TRH-containing fibers terminate in the neurointermediate lobe of the pituitary gland. Although TRH was originally named for its ability to trigger the release of thyroid-stimulating hormone (TSH) in mammals, it later became apparent that it exerts multiple, species-dependent hypophysiotropic activities. Thus, in fish TRH stimulates growth hormone (GH) and prolactin (PRL) release but does not affect TSH secretion. In amphibians, TRH is a marginal stimulator of TSH release in adult frogs, not in tadpoles, and a major releasing factor for GH and PRL. In birds, TRH triggers TSH and GH secretion. In mammals, TRH stimulates TSH, GH and PRL release. In fish and amphibians, TRH is also a very potent stimulator of alpha-melanocyte-stimulating hormone release. Because the intermediate lobe of the pituitary of amphibians is composed by a single type of hormone-producing cells, the melanotrope cells, it is a suitable model in which to investigate the mechanism of action of TRH at the cellular and molecular level. The occurrence of large amounts of TRH in the frog skin and high concentrations of TRH in frog plasma suggests that, in amphibians, skin-derived TRH may exert hypophysiotropic functions.
Collapse
Affiliation(s)
- Ludovic Galas
- Regional Platform for Cell Imaging (PRIMACEN), European Institute for Peptide Research (IFRMP 23), University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Weekers F, Van den Berghe G. Endocrine modifications and interventions during critical illness. Proc Nutr Soc 2007; 63:443-50. [PMID: 15373956 DOI: 10.1079/pns2004373] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ongoing hypermetabolic response in patients with prolonged critical illness leads to the loss of lean tissue mass. Since the cachexia of prolonged illness is usually associated with low concentrations of anabolic hormones, hormonal intervention has been thought to be beneficial. However, most interventions have been shown to be ineffective and their indiscriminate use even causes harm. Before considering endocrine intervention in these frail patients, a detailed understanding of the neuroendocrinology of the stress response is warranted. It is now clear that the acute phase and the later phase of critical illness behave differently from an endocrinological point of view. The acute stress reponse consists primarily of an actively-secreting pituitary in the presence of low circulating peripheral anabolic hormones, suggesting resistance of the peripheral tissues to the effects of anterior pituitary hormones. However, when the disease process becomes prolonged, there is a uniformly-reduced pulsatile secretion of anterior pituitary hormones with proportionally reduced concentrations of peripheral anabolic hormones. The origin of this suppressed pituitary secretion is located in the hypothalamus, as hypothalamic secretagogues can reactivate the anterior pituitary and restore pulsatile secretion. The reactivated pituitary secretion is accompanied by an increase in peripheral target hormones, indicating at least partial sensitivity of these tissues to anterior pituitary hormones in this chronic phase of illness. Thus, endocrine intervention with a combination of hypothalamic secretagogues that more completely reactivate the anterior pituitary could be a more physiological and effective strategy for inducing anabolism in patients with prolonged critical illness.
Collapse
Affiliation(s)
- Frank Weekers
- Department of Intensive Care Medicine, University Hospital Leuven, Herestraat 49, 3000, Belgium
| | | |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW The inflammatory or stress response to injury has evolved to ensure survival. This review will examine this response in otherwise healthy patients. Additionally, the impact of several common comorbid conditions on the inflammatory response will be considered. What will become evident is that the stress response may be exaggerated in some conditions and suppressed in others. Rapid identification of both an abnormal response and its cause will allow clinicians to maximize a patient's healing potential. RECENT FINDINGS Recent work has shown that an altered inflammatory response has marked effects on both immune competence and the endocrine system. Investigations are ongoing to delineate the mechanism of lymphocyte dysfunction. With regard to critical care endocrinopathies, the effects of insulin and hyperglycemia on inflammation and wound healing are being investigated. SUMMARY An understanding of the stress response will aid the clinician in preparing for expected responses, recognizing and perhaps correcting deviations from the norm and accounting for potential complications that arise in the face of preexisting disease. Deviations from the normal time course may represent the effects of preexisting medical illness, treatment or postoperative/injury complications.
Collapse
Affiliation(s)
- Benjamin A Kohl
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
9
|
Mulcahy LR, Barker AJ, Nillni EA. Disruption of disulfide bond formation alters the trafficking of prothyrotropin releasing hormone (proTRH)-derived peptides. ACTA ACUST UNITED AC 2005; 133:123-33. [PMID: 16257458 DOI: 10.1016/j.regpep.2005.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 09/23/2005] [Accepted: 09/23/2005] [Indexed: 11/16/2022]
Abstract
Rat prothyrotropin releasing hormone (proTRH) is processed in the regulated secretory pathway (RSP) of neuroendocrine cells yielding five TRH peptides and several non-TRH peptides. It is not understood how these peptides are targeted to the RSP. We show here that a disulfide bond in the carboxy-terminus of proTRH plays an important role in the trafficking of this prohormone. Recombinant proTRH was observed to migrate faster on a native gel when treated with dithiothreitol (DTT) suggesting the presence of a disulfide bond. In vitro disulfide bond formation was prevented either by DTT treatment or by mutating cysteines 213 and 219 to glycines. In both cases the peptides derived from these mutants exhibited increased constitutive release and processing defects when expressed in AtT20 cells, a neuroendocrine cell line used in our prior studies on proTRH processing. Immunocytochemistry revealed that wild-type proTRH and mutant proTRH localized in a punctate pattern typical of proteins sorted to the regulated secretory pathway. These data suggest that the proposed disulfide bond of proTRH is involved in sorting of proTRH-derived peptides and in their retention within maturing secretory granules. This is the first evidence of structural motifs being important for the sorting of proTRH.
Collapse
Affiliation(s)
- Lawrence R Mulcahy
- Department of Molecular and Cellular Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
10
|
Abstract
The present review deals with important new chronobiological results especially in the field of chronoendocrinology, shedding new light on the circadian organisation of mammals including man. In vitro studies have shown that the concept of the existence of a single circadian oscillator located in the suprachiasmatic nucleus has to be extended. Circadian oscillators have also been found to exist in the retina, islets of Langerhans, liver, lung, and fibroblasts. Another major result is the detection of a new photopigment, melanopsin, present in a subpopulation of retinal ganglion cells which are lightsensitive and project to the suprachiasmatic nucleus, acting as zeitgeber for the photic entrainment of the circadian rhythm. We are only beginning to understand how the circadian oscillator transmits the circadian message to the endocrine system. The generation of circadian and seasonal rhythms of hormone synthesis is best understood in the pineal gland and its hormone melatonin. Seasonal changes of melatonin synthesis are transduced in the pars tuberalis of the adenohypophysis which is now entering the limelight of chronoendocrinological research. Currently, the elucidation of the genetic basis and the molecular organisation of the circadian oscillator within individual cells is a major thrust in chronobiological research.
Collapse
Affiliation(s)
- Lutz Vollrath
- Anatomisches Institut der Johannes Gutenberg-Universität, Becherweg 13, D-55099 Mainz, Deutschland.
| |
Collapse
|