1
|
Chen Y, Zhang L, Shi X, Han J, Chen J, Zhang X, Xie D, Li Z, Niu X, Chen L, Yang C, Sun X, Zhou T, Su P, Li N, Greenblatt MB, Ke R, Huang J, Chen Z, Xu R. Characterization of the Nucleus Pulposus Progenitor Cells via Spatial Transcriptomics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303752. [PMID: 38311573 PMCID: PMC11095158 DOI: 10.1002/advs.202303752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/11/2024] [Indexed: 02/06/2024]
Abstract
Loss of refreshment in nucleus pulposus (NP) cellularity leads to intervertebral disc (IVD) degeneration. Nevertheless, the cellular sequence of NP cell differentiation remains unclear, although an increasing body of literature has identified markers of NP progenitor cells (NPPCs). Notably, due to their fragility, the physical enrichment of NP-derived cells has limited conventional transcriptomic approaches in multiple studies. To overcome this limitation, a spatially resolved transcriptional atlas of the mouse IVD is generated via the 10x Genomics Visium platform dividing NP spots into two clusters. Based on this, most reported NPPC-markers, including Cathepsin K (Ctsk), are rare and predominantly located within the NP-outer subset. Cell lineage tracing further evidence that a small number of Ctsk-expressing cells generate the entire adult NP tissue. In contrast, Tie2, which has long suggested labeling NPPCs, is actually neither expressed in NP subsets nor labels NPPCs and their descendants in mouse models; consistent with this, an in situ sequencing (ISS) analysis validated the absence of Tie2 in NP tissue. Similarly, no Tie2-cre-mediated labeling of NPPCs is observed in an IVD degenerative mouse model. Altogether, in this study, the first spatial transcriptomic map of the IVD is established, thereby providing a public resource for bone biology.
Collapse
Affiliation(s)
- Yu Chen
- The First Affiliated Hospital of Xiamen University‐ICMRS Collaborating Center for Skeletal Stem CellsState Key Laboratory of Cellular Stress BiologyFaculty of Medicine and Life SciencesSchool of MedicineXiamen UniversityXiamen361102China
- Xiamen Key Laboratory of Regeneration MedicineFujian Provincial Key Laboratory of Organ and Tissue RegenerationSchool of MedicineXiamen UniversityXiamen361102China
| | - Long Zhang
- The First Affiliated Hospital of Xiamen University‐ICMRS Collaborating Center for Skeletal Stem CellsState Key Laboratory of Cellular Stress BiologyFaculty of Medicine and Life SciencesSchool of MedicineXiamen UniversityXiamen361102China
- Xiamen Key Laboratory of Regeneration MedicineFujian Provincial Key Laboratory of Organ and Tissue RegenerationSchool of MedicineXiamen UniversityXiamen361102China
| | - Xueqing Shi
- The First Affiliated Hospital of Xiamen University‐ICMRS Collaborating Center for Skeletal Stem CellsState Key Laboratory of Cellular Stress BiologyFaculty of Medicine and Life SciencesSchool of MedicineXiamen UniversityXiamen361102China
- Xiamen Key Laboratory of Regeneration MedicineFujian Provincial Key Laboratory of Organ and Tissue RegenerationSchool of MedicineXiamen UniversityXiamen361102China
| | - Jie Han
- The First Affiliated Hospital of Xiamen University‐ICMRS Collaborating Center for Skeletal Stem CellsState Key Laboratory of Cellular Stress BiologyFaculty of Medicine and Life SciencesSchool of MedicineXiamen UniversityXiamen361102China
- Xiamen Key Laboratory of Regeneration MedicineFujian Provincial Key Laboratory of Organ and Tissue RegenerationSchool of MedicineXiamen UniversityXiamen361102China
| | - Jingyu Chen
- Gene Denovo Biotechnology CoGuangzhou510006China
| | - Xinya Zhang
- School of Medicine and School of Biomedical SciencesHuaqiao UniversityQuanzhou362000China
| | - Danlin Xie
- School of Medicine and School of Biomedical SciencesHuaqiao UniversityQuanzhou362000China
- School of Life SciencesWestlake UniversityHangzhou310030China
| | - Zan Li
- The First Affiliated Hospital of Xiamen University‐ICMRS Collaborating Center for Skeletal Stem CellsState Key Laboratory of Cellular Stress BiologyFaculty of Medicine and Life SciencesSchool of MedicineXiamen UniversityXiamen361102China
- Xiamen Key Laboratory of Regeneration MedicineFujian Provincial Key Laboratory of Organ and Tissue RegenerationSchool of MedicineXiamen UniversityXiamen361102China
| | - Xing Niu
- China Medical UniversityShenyangLiaoning110122China
| | - Lijie Chen
- China Medical UniversityShenyangLiaoning110122China
| | - Chaoyong Yang
- Department of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Xiujie Sun
- Department of Obstetrics and GynecologySchool of MedicineXiang'an Hospital of Xiamen UniversityXiamen UniversityXiamen361102China
| | - Taifeng Zhou
- Department of Spine SurgeryGuangdong Provincial Key Laboratory of Orthopedics and TraumatologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080China
| | - Peiqiang Su
- Department of Spine SurgeryGuangdong Provincial Key Laboratory of Orthopedics and TraumatologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080China
| | - Na Li
- The First Affiliated Hospital of Xiamen University‐ICMRS Collaborating Center for Skeletal Stem CellsState Key Laboratory of Cellular Stress BiologyFaculty of Medicine and Life SciencesSchool of MedicineXiamen UniversityXiamen361102China
- Xiamen Key Laboratory of Regeneration MedicineFujian Provincial Key Laboratory of Organ and Tissue RegenerationSchool of MedicineXiamen UniversityXiamen361102China
| | - Matthew B. Greenblatt
- Department of Pathology and Laboratory MedicineWeill Cornell Medical CollegeNew YorkNY10065USA
- Research DivisionHospital for Special SurgeryNew YorkNY10065USA
| | - Rongqin Ke
- School of Medicine and School of Biomedical SciencesHuaqiao UniversityQuanzhou362000China
| | - Jianming Huang
- Department of OrthopedicsChengong Hospital (the 73th Group Military Hospital of People's Liberation Army) affiliated to Xiamen UniversityXiamen361000China
| | - Zhe‐Sheng Chen
- College of Pharmacy and Health SciencesSt. John's UniversityNew YorkNY11439USA
| | - Ren Xu
- The First Affiliated Hospital of Xiamen University‐ICMRS Collaborating Center for Skeletal Stem CellsState Key Laboratory of Cellular Stress BiologyFaculty of Medicine and Life SciencesSchool of MedicineXiamen UniversityXiamen361102China
- Xiamen Key Laboratory of Regeneration MedicineFujian Provincial Key Laboratory of Organ and Tissue RegenerationSchool of MedicineXiamen UniversityXiamen361102China
| |
Collapse
|
2
|
Zhang X, Young C, Liao XH, Refetoff S, Torres M, Tomer Y, Stefan-Lifshitz M, Zhang H, Larkin D, Fang D, Qi L, Arvan P. Perturbation of endoplasmic reticulum proteostasis triggers tissue injury in the thyroid gland. JCI Insight 2023; 8:e169937. [PMID: 37345654 PMCID: PMC10371246 DOI: 10.1172/jci.insight.169937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Defects in endoplasmic reticulum (ER) proteostasis have been linked to diseases in multiple organ systems. Here we examined the impact of perturbation of ER proteostasis in mice bearing thyrocyte-specific knockout of either HRD1 (to disable ER-associated protein degradation [ERAD]) or ATG7 (to disable autophagy) in the absence or presence of heterozygous expression of misfolded mutant thyroglobulin (the most highly expressed thyroid gene product, synthesized in the ER). Misfolding-inducing thyroglobulin mutations are common in humans but are said to yield only autosomal-recessive disease - perhaps because misfolded thyroglobulin protein might undergo disposal by ERAD or ER macroautophagy. We find that as single defects, neither ERAD, nor autophagy, nor heterozygous thyroglobulin misfolding altered circulating thyroxine levels, and neither defective ERAD nor defective autophagy caused any gross morphological change in an otherwise WT thyroid gland. However, heterozygous expression of misfolded thyroglobulin itself triggered significant ER stress and individual thyrocyte death while maintaining integrity of the surrounding thyroid epithelium. In this context, deficiency of ERAD (but not autophagy) resulted in patchy whole-follicle death with follicular collapse and degeneration, accompanied by infiltration of bone marrow-derived macrophages. Perturbation of thyrocyte ER proteostasis is thus a risk factor for both cell death and follicular demise.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Division of Metabolism, Endocrinology & Diabetes and
| | - Crystal Young
- Division of Metabolism, Endocrinology & Diabetes and
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Samuel Refetoff
- Department of Medicine
- Department of Pediatrics, and Committee on Genetics, Genomics, and Systems Biology, The University of Chicago, Chicago, Illinois, USA
| | - Mauricio Torres
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yaron Tomer
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, New York, USA
| | - Mihaela Stefan-Lifshitz
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, New York, USA
| | - Hao Zhang
- Division of Metabolism, Endocrinology & Diabetes and
| | - Dennis Larkin
- Division of Metabolism, Endocrinology & Diabetes and
| | - Deyu Fang
- Department of Pathology, Feinberg School of Medicine, Northwestern Medicine, Chicago, Illinois, USA
| | - Ling Qi
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes and
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Schoultz E, Johansson E, Moccia C, Jakubikova I, Ravi N, Liang S, Carlsson T, Montelius M, Patyra K, Kero J, Paulsson K, Fagman H, Bergo MO, Nilsson M. Tissue architecture delineates field cancerization in BRAFV600E-induced tumor development. Dis Model Mech 2022; 15:dmm048887. [PMID: 34379110 PMCID: PMC8380047 DOI: 10.1242/dmm.048887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/24/2021] [Indexed: 12/29/2022] Open
Abstract
Cancer cells hijack developmental growth mechanisms but whether tissue morphogenesis and architecture modify tumorigenesis is unknown. Here, we characterized a new mouse model of sporadic thyroid carcinogenesis based on inducible expression of BRAF carrying a Val600 Glu (V600E) point mutation (BRAFV600E) from the thyroglobulin promoter (TgCreERT2). Spontaneous activation of this Braf-mutant allele due to leaky activity of the Cre recombinase revealed that intrinsic properties of thyroid follicles determined BRAF-mutant cell fate. Papillary thyroid carcinomas developed multicentrically within a normal microenvironment. Each tumor originated from a single follicle that provided a confined space for growth of a distinct tumor phenotype. Lineage tracing revealed oligoclonal tumor development in infancy and early selection of BRAFV600E kinase inhibitor-resistant clones. Somatic mutations were few, non-recurrent and limited to advanced tumors. Female mice developed larger tumors than males, reproducing the gender difference of human thyroid cancer. These data indicate that BRAFV600E-induced tumorigenesis is spatiotemporally regulated depending on the maturity and heterogeneity of follicles. Moreover, thyroid tissue organization seems to determine whether a BRAF-mutant lineage becomes a cancerized lineage. The TgCreERT2;BrafCA/+ sporadic thyroid cancer mouse model provides a new tool to evaluate drug therapy at different stages of tumor evolution.
Collapse
Affiliation(s)
- Elin Schoultz
- Sahlgrenska Center for Cancer Research, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Göteborg, Sweden
| | - Ellen Johansson
- Sahlgrenska Center for Cancer Research, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Göteborg, Sweden
| | - Carmen Moccia
- Sahlgrenska Center for Cancer Research, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Göteborg, Sweden
| | - Iva Jakubikova
- Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| | - Naveen Ravi
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund SE-22184, Sweden
| | - Shawn Liang
- Sahlgrenska Center for Cancer Research, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Göteborg, Sweden
| | - Therese Carlsson
- Sahlgrenska Center for Cancer Research, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Göteborg, Sweden
| | - Mikael Montelius
- Department of Radiology, Institute of Clinical Sciences, University of Gothenburg, SE-41345 Göteborg, Sweden
| | - Konrad Patyra
- Department of Endocrinology, University of Turku, Åbo FI-20521, Finland
| | - Jukka Kero
- Department of Endocrinology, University of Turku, Åbo FI-20521, Finland
| | - Kajsa Paulsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund SE-22184, Sweden
| | - Henrik Fagman
- Sahlgrenska Center for Cancer Research, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Göteborg, Sweden
- Department of Clinical Pathology, Sahlgrenska University Hospital, Göteborg SE-41345, Sweden
| | - Martin O. Bergo
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge SE-14183, Sweden
| | - Mikael Nilsson
- Sahlgrenska Center for Cancer Research, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Göteborg, Sweden
| |
Collapse
|
4
|
Pierreux CE. Shaping the thyroid: From peninsula to de novo lumen formation. Mol Cell Endocrinol 2021; 531:111313. [PMID: 33961919 DOI: 10.1016/j.mce.2021.111313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/06/2023]
Abstract
A challenging and stimulating question in biology deals with the formation of organs from groups of undifferentiated progenitor cells. Most epithelial organs indeed derive from the endodermal monolayer and evolve into various shape and tridimensional organization adapted to their specialized adult function. Thyroid organogenesis is no exception. In most mammals, it follows a complex and sequential process initiated from the endoderm and leading to the development of a multitude of independent closed spheres equipped and optimized for the synthesis, storage and production of thyroid hormones. The first sign of thyroid organogenesis is visible as a thickening of the anterior foregut endoderm. This group of thyroid progenitors then buds and detaches from the foregut to migrate caudally and then laterally. Upon reaching their final destination in the upper neck region on both sides of the trachea, thyroid progenitors mix with C cell progenitors and finally organize into hormone-producing thyroid follicles. Intrinsic and extrinsic factors controlling thyroid organogenesis have been identified in several species, but the fundamental cellular processes are not sufficiently considered. This review focuses on the cellular aspects of the key morphogenetic steps during thyroid organogenesis and highlights similarities and common mechanisms with developmental steps elucidated in other endoderm-derived organs, despite different final architecture and functions.
Collapse
|
5
|
Zhang X, Kellogg AP, Citterio CE, Zhang H, Larkin D, Morishita Y, Targovnik HM, Balbi VA, Arvan P. Thyroid hormone synthesis continues despite biallelic thyroglobulin mutation with cell death. JCI Insight 2021; 6:148496. [PMID: 33914707 PMCID: PMC8262357 DOI: 10.1172/jci.insight.148496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
Complete absence of thyroid hormone is incompatible with life in vertebrates. Thyroxine is synthesized within thyroid follicles upon iodination of thyroglobulin conveyed from the endoplasmic reticulum (ER), via the Golgi complex, to the extracellular follicular lumen. In congenital hypothyroidism from biallelic thyroglobulin mutation, thyroglobulin is misfolded and cannot advance from the ER, eliminating its secretion and triggering ER stress. Nevertheless, untreated patients somehow continue to synthesize sufficient thyroxine to yield measurable serum levels that sustain life. Here, we demonstrate that TGW2346R/W2346R humans, TGcog/cog mice, and TGrdw/rdw rats exhibited no detectable ER export of thyroglobulin, accompanied by severe thyroidal ER stress and thyroid cell death. Nevertheless, thyroxine was synthesized, and brief treatment of TGrdw/rdw rats with antithyroid drug was lethal to the animals. When untreated, remarkably, thyroxine was synthesized on the mutant thyroglobulin protein, delivered via dead thyrocytes that decompose within the follicle lumen, where they were iodinated and cannibalized by surrounding live thyrocytes. As the animals continued to grow goiters, circulating thyroxine increased. However, when TGrdw/rdw rats age, they cannot sustain goiter growth that provided the dying cells needed for ongoing thyroxine synthesis, resulting in profound hypothyroidism. These results establish a disease mechanism wherein dead thyrocytes support organismal survival.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron P Kellogg
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Cintia E Citterio
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo, Buenos Aires, Argentina
| | - Hao Zhang
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Dennis Larkin
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Yoshiaki Morishita
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA.,Division of Diabetes, Department of Internal Medicine, Aichi Medical University, Nagakute, Japan
| | - Héctor M Targovnik
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo, Buenos Aires, Argentina
| | - Viviana A Balbi
- Department of Endocrinology and Growth, Hospital de Niños Sor María Ludovica, La Plata, Argentina
| | - Peter Arvan
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Lopez-Campistrous A, Adewuyi EE, Williams DC, McMullen TPW. Gene expression profile of epithelial-mesenchymal transition mediators in papillary thyroid cancer. Endocrine 2021; 72:452-461. [PMID: 32914379 DOI: 10.1007/s12020-020-02466-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 08/19/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE Platelet derived growth receptor alpha (PDGFRA) promotes the epithelial-mesenchymal transition (EMT) in thyroid follicular cells and is linked to lymphatic metastases in papillary thyroid cancer (PTC). We probed the regulatory network of genes linked to PDGFRA and EMT, comparing matched patient primary tumor and metastatic specimens, as well as engineered cell lines and ex vivo primary cultures with and without PDGFRA. METHODS Freshly isolated thyroid tumors with or without metastases, with matching neighboring benign or normal tissue, was isolated for comparative transcriptional analysis using a TaqMan Low Density array (TLDA) assay with genes representing important markers of EMT, cellular adhesion, apoptosis, differentiation, senescence, and signal transduction pathways in thyroid cancer. Transfected primary cultures and immortalized cell lines were also analyzed with respect to PDGFRA expression and cell phenotype. RESULTS We reveal the consistent upregulation of serine protease DPP4 and structural protein SPP1 with the progression of PTC to metastatic disease, as well as with PDGFRA expression. Conversely, epithelial integrity gene TFF3 and transcription factor SOX10 were strongly down-regulated. This gene network also includes important mediators of EMT including DSG1, MMP3, MMP9, and BECN. We observed similar genomic changes in ex vivo normal thyroid cells transfected with PDGFRA that also exhibited a partially dedifferentiated phenotype. In particular, we observed lamellopodia with induction of PDGFRA and illustrate that DPP4 and SPP1 were upregulated in this process, with decreased TFF3 and SOX10 as seen in tissue specimens. PDGFRA did decrease nuclear protein levels of differentiation factor TTF1, but not the transcription of TTF1 and PAX8. CONCLUSIONS We demonstrate that PDGFRA activates EMT pathways and decreases expression of genes favoring epithelial integrity, pushing follicular cells toward a dedifferentiated phenotype. SPP1 and DPP4, previously linked with adverse outcomes in thyroid cancer, appear to be regulated by PDGFRA. PDGFRA expression promotes metastatic disease through multiple EMT levers that favor formation of an invasive phenotype and increased metalloproteinase expression.
Collapse
Affiliation(s)
| | | | | | - Todd P W McMullen
- Department of Surgery, University of Alberta, Edmonton, Canada.
- Department of Oncology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
7
|
Gonay L, Spourquet C, Baudoin M, Lepers L, Lemoine P, Fletcher AG, Hanert E, Pierreux CE. Modelling of Epithelial Growth, Fission and Lumen Formation During Embryonic Thyroid Development: A Combination of Computational and Experimental Approaches. Front Endocrinol (Lausanne) 2021; 12:655862. [PMID: 34163435 PMCID: PMC8216395 DOI: 10.3389/fendo.2021.655862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/22/2021] [Indexed: 12/18/2022] Open
Abstract
Organogenesis is the phase of embryonic development leading to the formation of fully functional organs. In the case of the thyroid, organogenesis starts from the endoderm and generates a multitude of closely packed independent spherical follicular units surrounded by a dense network of capillaries. Follicular organisation is unique and essential for thyroid function, i.e. thyroid hormone production. Previous in vivo studies showed that, besides their nutritive function, endothelial cells play a central role during thyroid gland morphogenesis. However, the precise mechanisms and biological parameters controlling the transformation of the multi-layered thyroid epithelial primordium into a multitude of single-layered follicles are mostly unknown. Animal studies used to improve understanding of organogenesis are costly and time-consuming, with recognised limitations. Here, we developed and used a 2-D vertex model of thyroid growth, angiogenesis and folliculogenesis, within the open-source Chaste framework. Our in silico model, based on in vivo images, correctly simulates the differential growth and proliferation of central and peripheral epithelial cells, as well as the morphogen-driven migration of endothelial cells, consistently with our experimental data. Our simulations further showed that reduced epithelial cell adhesion was critical to allow endothelial invasion and fission of the multi-layered epithelial mass. Finally, our model also allowed epithelial cell polarisation and follicular lumen formation by endothelial cell abundance and proximity. Our study illustrates how constant discussion between theoretical and experimental approaches can help us to better understand the roles of cellular movement, adhesion and polarisation during thyroid embryonic development. We anticipate that the use of in silico models like the one we describe can push forward the fields of developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Leolo Gonay
- Earth and Life Institute, UCLouvain, Louvain-La-Neuve, Belgium
- de Duve Institute, UCLouvain, Woluwé-Saint-Lambert, Belgium
| | | | - Matthieu Baudoin
- Earth and Life Institute, UCLouvain, Louvain-La-Neuve, Belgium
- de Duve Institute, UCLouvain, Woluwé-Saint-Lambert, Belgium
| | - Ludovic Lepers
- Earth and Life Institute, UCLouvain, Louvain-La-Neuve, Belgium
- de Duve Institute, UCLouvain, Woluwé-Saint-Lambert, Belgium
| | | | - Alexander G. Fletcher
- School of Mathematics and Statistics, University of Sheffield, Sheffield, United Kingdom
| | - Emmanuel Hanert
- Earth and Life Institute, UCLouvain, Louvain-La-Neuve, Belgium
| | - Christophe E. Pierreux
- de Duve Institute, UCLouvain, Woluwé-Saint-Lambert, Belgium
- *Correspondence: Christophe E. Pierreux,
| |
Collapse
|
8
|
Stoupa A, Adam F, Kariyawasam D, Strassel C, Gawade S, Szinnai G, Kauskot A, Lasne D, Janke C, Natarajan K, Schmitt A, Bole-Feysot C, Nitschke P, Léger J, Jabot-Hanin F, Tores F, Michel A, Munnich A, Besmond C, Scharfmann R, Lanza F, Borgel D, Polak M, Carré A. TUBB1 mutations cause thyroid dysgenesis associated with abnormal platelet physiology. EMBO Mol Med 2019; 10:emmm.201809569. [PMID: 30446499 PMCID: PMC6284387 DOI: 10.15252/emmm.201809569] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The genetic causes of congenital hypothyroidism due to thyroid dysgenesis (TD) remain largely unknown. We identified three novel TUBB1 gene mutations that co‐segregated with TD in three distinct families leading to 1.1% of TUBB1 mutations in TD study cohort. TUBB1 (Tubulin, Beta 1 Class VI) encodes for a member of the β‐tubulin protein family. TUBB1 gene is expressed in the developing and adult thyroid in humans and mice. All three TUBB1 mutations lead to non‐functional α/β‐tubulin dimers that cannot be incorporated into microtubules. In mice, Tubb1 knock‐out disrupted microtubule integrity by preventing β1‐tubulin incorporation and impaired thyroid migration and thyroid hormone secretion. In addition, TUBB1 mutations caused the formation of macroplatelets and hyperaggregation of human platelets after stimulation by low doses of agonists. Our data highlight unexpected roles for β1‐tubulin in thyroid development and in platelet physiology. Finally, these findings expand the spectrum of the rare paediatric diseases related to mutations in tubulin‐coding genes and provide new insights into the genetic background and mechanisms involved in congenital hypothyroidism and thyroid dysgenesis.
Collapse
Affiliation(s)
- Athanasia Stoupa
- INSERM U1016, Faculté de Médecine, Cochin Institute, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,IMAGINE Institute Affiliate, Paris, France.,RARE Disorder Center: Centre des Maladies Endocriniennes Rares de la Croissance et du Développement, Paris, France.,Pediatric Endocrinology, Gynecology and Diabetology Unit, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
| | - Frédéric Adam
- INSERM UMR_S1176, Paris-Sud University, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Dulanjalee Kariyawasam
- RARE Disorder Center: Centre des Maladies Endocriniennes Rares de la Croissance et du Développement, Paris, France.,Pediatric Endocrinology, Gynecology and Diabetology Unit, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
| | - Catherine Strassel
- INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Université de Strasbourg, Strasbourg, France
| | - Sanjay Gawade
- Department of Biomedicine, Pediatric Immunology, University of Basel, Basel, Switzerland
| | - Gabor Szinnai
- Department of Biomedicine, Pediatric Immunology, University of Basel, Basel, Switzerland.,Pediatric Endocrinology, University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Alexandre Kauskot
- INSERM UMR_S1176, Paris-Sud University, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Dominique Lasne
- INSERM UMR_S1176, Paris-Sud University, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Necker Children's Hospital, Biological Hematology Service, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Carsten Janke
- Institut Curie, CNRS UMR3348, PSL Research University, Orsay, France.,Institut Curie, CNRS UMR3348, Université Paris Sud, Université Paris-Saclay, Orsay, France
| | - Kathiresan Natarajan
- Institut Curie, CNRS UMR3348, PSL Research University, Orsay, France.,Institut Curie, CNRS UMR3348, Université Paris Sud, Université Paris-Saclay, Orsay, France
| | - Alain Schmitt
- INSERM U1016, Faculté de Médecine, Cochin Institute, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Christine Bole-Feysot
- Genomic Platform, INSERM UMR 1163, IMAGINE Institute, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Patrick Nitschke
- Bioinformatics Platform, IMAGINE Institute, Paris Descartes University, Paris, France
| | - Juliane Léger
- RARE Disorder Center: Centre des Maladies Endocriniennes Rares de la Croissance et du Développement, Paris, France.,Pediatric Endocrinology Unit, Hôpital Universitaire Robert Debré, AP-HP, Paris, France.,Paris Diderot University, Sorbonne Paris Cité, Paris, France.,INSERM UMR 1141, DHU Protect, Paris, France
| | - Fabienne Jabot-Hanin
- Bioinformatics Platform, IMAGINE Institute, Paris Descartes University, Paris, France
| | - Frédéric Tores
- Bioinformatics Platform, IMAGINE Institute, Paris Descartes University, Paris, France
| | - Anita Michel
- INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Université de Strasbourg, Strasbourg, France
| | - Arnold Munnich
- INSERM U1163, IMAGINE Institute, Translational Genetics, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Department of Genetics, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
| | - Claude Besmond
- INSERM U1163, IMAGINE Institute, Translational Genetics, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Raphaël Scharfmann
- INSERM U1016, Faculté de Médecine, Cochin Institute, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - François Lanza
- INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Université de Strasbourg, Strasbourg, France
| | - Delphine Borgel
- INSERM UMR_S1176, Paris-Sud University, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Necker Children's Hospital, Biological Hematology Service, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Michel Polak
- INSERM U1016, Faculté de Médecine, Cochin Institute, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,IMAGINE Institute Affiliate, Paris, France.,RARE Disorder Center: Centre des Maladies Endocriniennes Rares de la Croissance et du Développement, Paris, France.,Pediatric Endocrinology, Gynecology and Diabetology Unit, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France.,Fédération Parisienne pour le Dépistage et la Prévention des Handicaps de l'Enfant (FPDPHE), Paris, France
| | - Aurore Carré
- INSERM U1016, Faculté de Médecine, Cochin Institute, Université Paris Descartes, Sorbonne Paris Cité, Paris, France .,IMAGINE Institute Affiliate, Paris, France.,RARE Disorder Center: Centre des Maladies Endocriniennes Rares de la Croissance et du Développement, Paris, France
| |
Collapse
|
9
|
Abstract
Medullary thyroid cancer (MTC) is a relatively uncommon yet prognostically significant thyroid cancer. Several recent advances in the biology and current or potential treatment of MTC are notable. These include a new understanding of the developmental biology of the thyroid C cell, which heretofore was thought to develop from the neural crest. RET, encoded by the most common driver gene in MTC, has been shown to be a dual function kinase, thus expanding its potential substrate repertoire. Promising new therapeutic developments are occurring; many have recently progressed to clinical development. There are new insights into RET inhibitor therapy for MTC. New strategies are being developed to inhibit the RAS proteins, which are potential therapeutic targets in MTC. Potential emerging immunotherapies for MTC are discussed. However, gaps in our knowledge of the basic biology of the C cell, its transformation to MTC, and the mechanisms of resistance to therapy impede progress; further research in these areas would have a substantial impact on the field.
Collapse
Affiliation(s)
- Barry Nelkin
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA
| |
Collapse
|
10
|
Ahmed R. Maternal bisphenol A alters fetal endocrine system: Thyroid adipokine dysfunction. Food Chem Toxicol 2016; 95:168-74. [DOI: 10.1016/j.fct.2016.06.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 11/29/2022]
|
11
|
Alamri AM, Kang K, Groeneveld S, Wang W, Zhong X, Kallakury B, Hennighausen L, Liu X, Furth PA. Primary cancer cell culture: mammary-optimized vs conditional reprogramming. Endocr Relat Cancer 2016; 23:535-54. [PMID: 27267121 PMCID: PMC4962879 DOI: 10.1530/erc-16-0071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/06/2016] [Indexed: 12/22/2022]
Abstract
The impact of different culture conditions on biology of primary cancer cells is not always addressed. Here, conditional reprogramming (CRC) was compared with mammary-optimized EpiCult-B (EpiC) for primary mammary epithelial cell isolation and propagation, allograft generation, and genome-wide transcriptional consequences using cancer and non-cancer mammary tissue from mice with different dosages of Brca1 and p53 Selective comparison to DMEM was included. Primary cultures were established with all three media, but CRC was most efficient for initial isolation (P<0.05). Allograft development was faster using cells grown in EpiC compared with CRC (P<0.05). Transcriptome comparison of paired CRC and EpiC cultures revealed 1700 differentially expressed genes by passage 20. CRC promoted Trp53 gene family upregulation and increased expression of epithelial differentiation genes, whereas EpiC elevated expression of epithelial-mesenchymal transition genes. Differences did not persist in allografts where both methods yielded allografts with relatively similar transcriptomes. Restricting passage (<7) reduced numbers of differentially expressed genes below 50. In conclusion, CRC was most efficient for initial cell isolation but EpiC was quicker for allograft generation. The extensive culture-specific gene expression patterns that emerged with longer passage could be limited by reducing passage number when both culture transcriptomes were equally similar to that of the primary tissue. Defining impact of culture condition and passage on the transcriptome of primary cells could assist experimental design and interpretation. For example, differences that appear with passage and culture condition are potentially exploitable for comparative studies targeting specific biological networks in different transcriptional environments.
Collapse
Affiliation(s)
- Ahmad M Alamri
- Department of OncologyLombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA Department of Clinical Laboratory SciencesCollege of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Keunsoo Kang
- Laboratory of Genetics and PhysiologyNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, Maryland, USA Department of MicrobiologyDankook University, Cheonan, Republic of Korea
| | - Svenja Groeneveld
- Department of OncologyLombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA Department PharmazieLudwig-Maximilians-Universität München, Munich, Germany
| | - Weisheng Wang
- Department of OncologyLombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Xiaogang Zhong
- Department of BiostatisticsBioinformatics and Biomathematics, Georgetown University, Washington, District of Columbia, USA
| | - Bhaskar Kallakury
- Department of PathologyLombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Lothar Hennighausen
- Laboratory of Genetics and PhysiologyNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, Maryland, USA
| | - Xuefeng Liu
- Department of PathologyLombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Priscilla A Furth
- Department of OncologyLombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA Department of MedicineLombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|