1
|
Nagpal S, Srivastava SK. Colon or semicolon: gut sampling microdevices for omics insights. NPJ Biofilms Microbiomes 2024; 10:97. [PMID: 39358351 PMCID: PMC11447266 DOI: 10.1038/s41522-024-00536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/19/2024] [Indexed: 10/04/2024] Open
Abstract
Ingestible microdevices represent a breakthrough in non-invasive sampling of the human gastrointestinal (GI) tract. By capturing the native spatiotemporal microbiome and intricate biochemical gradients, these devices allow a non-invasive multi-omic access to the unperturbed host-microbiota crosstalk, immune/nutritional landscapes and gut-organ connections. We present the current progress of GI sampling microdevices towards personalized metabolism and fostering collaboration among clinicians, engineers, and data scientists.
Collapse
Affiliation(s)
- Sunil Nagpal
- TCS Research, Tata Consultancy Services Ltd, Pune, India
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Sarvesh Kumar Srivastava
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
- Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
2
|
Lai YP, Lee T, Sieben D, Gauthier L, Nam J, Diller E. Hybrid Hydrogel-Magnet Actuated Capsule for Automatic Gut Microbiome Sampling. IEEE Trans Biomed Eng 2024; 71:2911-2922. [PMID: 38753479 DOI: 10.1109/tbme.2024.3401681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
OBJECTIVE Non-invasive, pill-sized capsules can provide intestinal fluid sampling to easily retrieve site-specific gut microbiome samples for studies in nutrition and chronic diseases. However, capsules with both automatic sampling and active locomotion are uncommon due to limited onboard space. This paper presents a novel hybrid hydrogel-magnet actuated capsule featuring: i) pH-responsive hydrogels that will automatically trigger fluid sampling at an environmental pH of 6 and ii) active locomotion by an external rotating magnetic field. METHOD Two capsule designs were fabricated (Design A: 31 μL sampling volume with dimensions 8 mm × 19 mm, Design B: 41 μL sampling volume with dimensions 8 mm × 21 mm). They were immersed in simulated gastric (pH = 1.2) and simulated intestinal fluid (pH = 6.8) to test for automatic intestinal fluid sampling. An external rotating magnetic field was applied to test for active locomotion. Finally, seal tests were performed to demonstrate sample contamination mitigation. RESULTS Preliminary experiments showed that sampling occurred quickly and automatically in simulated intestinal fluid at 6-15 hours, active locomotion via rotation, rolling, and tumbling were possible at magnetic field magnitudes 10 mT, oil piston seals were better at mitigating sample contamination than water piston seals, and minimum o-ring seal pressures limits of 1.95 and 1.69 kPa for Design A and B respectively were sufficient against intra-abdominal pressures. SIGNIFICANCE This work presents the ability to impart capsule multi-functionality in a compact manner without onboard electronics or external triggering for sampling.
Collapse
|
3
|
Žukauskaitė K, Li M, Horvath A, Jarmalaitė S, Stadlbauer V. Cellular and Microbial In Vitro Modelling of Gastrointestinal Cancer. Cancers (Basel) 2024; 16:3113. [PMID: 39272971 PMCID: PMC11394127 DOI: 10.3390/cancers16173113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Human diseases are multifaceted, starting with alterations at the cellular level, damaging organs and their functions, and disturbing interactions and immune responses. In vitro systems offer clarity and standardisation, which are crucial for effectively modelling disease. These models aim not to replicate every disease aspect but to dissect specific ones with precision. Controlled environments allow researchers to isolate key variables, eliminate confounding factors and elucidate disease mechanisms more clearly. Technological progress has rapidly advanced model systems. Initially, 2D cell culture models explored fundamental cell interactions. The transition to 3D cell cultures and organoids enabled more life-like tissue architecture and enhanced intercellular interactions. Advanced bioreactor-based devices now recreate the physicochemical environments of specific organs, simulating features like perfusion and the gastrointestinal tract's mucus layer, enhancing physiological relevance. These systems have been simplified and adapted for high-throughput research, marking significant progress. This review focuses on in vitro systems for modelling gastrointestinal tract cancer and the side effects of cancer treatment. While cell cultures and in vivo models are invaluable, our main emphasis is on bioreactor-based in vitro modelling systems that include the gut microbiome.
Collapse
Affiliation(s)
- Kristina Žukauskaitė
- Department of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria
- Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Melissa Li
- Department of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria
- Biotech Campus Tulln, Fachhochschule Wiener Neustadt, 3430 Tulln, Austria
| | - Angela Horvath
- Department of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria
- Center for Biomarker Research in Medicine (CBmed GmbH), 8010 Graz, Austria
| | - Sonata Jarmalaitė
- Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
- National Cancer Institute, 08406 Vilnius, Lithuania
| | - Vanessa Stadlbauer
- Department of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria
- Center for Biomarker Research in Medicine (CBmed GmbH), 8010 Graz, Austria
| |
Collapse
|
4
|
Thwaites PA, Yao CK, Halmos EP, Muir JG, Burgell RE, Berean KJ, Kalantar‐zadeh K, Gibson PR. Review article: Current status and future directions of ingestible electronic devices in gastroenterology. Aliment Pharmacol Ther 2024; 59:459-474. [PMID: 38168738 PMCID: PMC10952964 DOI: 10.1111/apt.17844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/15/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Advances in microelectronics have greatly expanded the capabilities and clinical potential of ingestible electronic devices. AIM To provide an overview of the structure and potential impact of ingestible devices in development that are relevant to the gastrointestinal tract. METHODS We performed a detailed literature search to inform this narrative review. RESULTS Technical success of ingestible electronic devices relies on the ability to miniaturise the microelectronic circuits, sensors and components for interventional functions while being sufficiently powered to fulfil the intended function. These devices offer the advantages of being convenient and minimally invasive, with real-time assessment often possible and with minimal interference to normal physiology. Safety has not been a limitation, but defining and controlling device location in the gastrointestinal tract remains challenging. The success of capsule endoscopy has buoyed enthusiasm for the concepts, but few ingestible devices have reached clinical practice to date, partly due to the novelty of the information they provide and also due to the challenges of adding this novel technology to established clinical paradigms. Nonetheless, with ongoing technological advancement and as understanding of their potential impact emerges, acceptance of such technology will grow. These devices have the capacity to provide unique insight into gastrointestinal physiology and pathophysiology. Interventional functions, such as sampling of tissue or luminal contents and delivery of therapies, may further enhance their ability to sharpen gastroenterological diagnoses, monitoring and treatment. CONCLUSIONS The development of miniaturised ingestible microelectronic-based devices offers exciting prospects for enhancing gastroenterological research and the delivery of personalised, point-of-care medicine.
Collapse
Affiliation(s)
- Phoebe A. Thwaites
- Department of Gastroenterology, Central Clinical SchoolMonash University and Alfred HealthMelbourneVictoriaAustralia
| | - Chu K. Yao
- Department of Gastroenterology, Central Clinical SchoolMonash University and Alfred HealthMelbourneVictoriaAustralia
| | - Emma P. Halmos
- Department of Gastroenterology, Central Clinical SchoolMonash University and Alfred HealthMelbourneVictoriaAustralia
| | - Jane G. Muir
- Department of Gastroenterology, Central Clinical SchoolMonash University and Alfred HealthMelbourneVictoriaAustralia
| | - Rebecca E. Burgell
- Department of Gastroenterology, Central Clinical SchoolMonash University and Alfred HealthMelbourneVictoriaAustralia
| | - Kyle J. Berean
- Atmo BiosciencesMelbourneVictoriaAustralia
- School of Engineering, RMIT UniversityMelbourneVictoriaAustralia
| | - Kourosh Kalantar‐zadeh
- Faculty of Engineering, School of Chemical and Biomolecular EngineeringThe University of SydneyCamperdownNew South WalesAustralia
| | - Peter R. Gibson
- Department of Gastroenterology, Central Clinical SchoolMonash University and Alfred HealthMelbourneVictoriaAustralia
| |
Collapse
|
5
|
Rehan M, Al-Bahadly I, Thomas DG, Young W, Cheng LK, Avci E. Smart capsules for sensing and sampling the gut: status, challenges and prospects. Gut 2023; 73:186-202. [PMID: 37734912 PMCID: PMC10715516 DOI: 10.1136/gutjnl-2023-329614] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023]
Abstract
Smart capsules are developing at a tremendous pace with a promise to become effective clinical tools for the diagnosis and monitoring of gut health. This field emerged in the early 2000s with a successful translation of an endoscopic capsule from laboratory prototype to a commercially viable clinical device. Recently, this field has accelerated and expanded into various domains beyond imaging, including the measurement of gut physiological parameters such as temperature, pH, pressure and gas sensing, and the development of sampling devices for better insight into gut health. In this review, the status of smart capsules for sensing gut parameters is presented to provide a broad picture of these state-of-the-art devices while focusing on the technical and clinical challenges the devices need to overcome to realise their value in clinical settings. Smart capsules are developed to perform sensing operations throughout the length of the gut to better understand the body's response under various conditions. Furthermore, the prospects of such sensing devices are discussed that might help readers, especially health practitioners, to adapt to this inevitable transformation in healthcare. As a compliment to gut sensing smart capsules, significant amount of effort has been put into the development of robotic capsules to collect tissue biopsy and gut microbiota samples to perform in-depth analysis after capsule retrieval which will be a game changer for gut health diagnosis, and this advancement is also covered in this review. The expansion of smart capsules to robotic capsules for gut microbiota collection has opened new avenues for research with a great promise to revolutionise human health diagnosis, monitoring and intervention.
Collapse
Affiliation(s)
- Muhammad Rehan
- Department of Electronic Engineering, Sir Syed University of Engineering & Technology, Karachi, Pakistan
| | - Ibrahim Al-Bahadly
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North, New Zealand
| | - David G Thomas
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Wayne Young
- AgResearch Ltd, Palmerston North, New Zealand
| | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Ebubekir Avci
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| |
Collapse
|
6
|
Kirundi J, Moghadamrad S, Urbaniak C. Microbiome-liver crosstalk: A multihit therapeutic target for liver disease. World J Gastroenterol 2023; 29:1651-1668. [PMID: 37077519 PMCID: PMC10107210 DOI: 10.3748/wjg.v29.i11.1651] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/05/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Liver disease has become a leading cause of death, particularly in the West, where it is attributed to more than two million deaths annually. The correlation between gut microbiota and liver disease is still not fully understood. However, it is well known that gut dysbiosis accompanied by a leaky gut causes an increase in lipopolysaccharides in circulation, which in turn evoke massive hepatic inflammation promoting liver cirrhosis. Microbial dysbiosis also leads to poor bile acid metabolism and low short-chain fatty acids, all of which exacerbate the inflammatory response of liver cells. Gut microbial homeostasis is maintained through intricate processes that ensure that commensal microbes adapt to the low oxygen potential of the gut and that they rapidly occupy all the intestinal niches, thus outcompeting any potential pathogens for available nutrients. The crosstalk between the gut microbiota and its metabolites also guarantee an intact gut barrier. These processes that protect against destabilization of gut microbes by potential entry of pathogenic bacteria are collectively called colonization resistance and are equally essential for liver health. In this review, we shall investigate how the mechanisms of colonization resistance influence the liver in health and disease and the microbial-liver crosstalk potential as therapeutic target areas.
Collapse
Affiliation(s)
- Jorum Kirundi
- Department of Biomedical Research, University of Bern, Bern 3014, Switzerland
| | - Sheida Moghadamrad
- Department of Gastroenterology/Hepatology, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona and Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano 6900, Switzerland
| | | |
Collapse
|
7
|
Nejati S, Wang J, Sedaghat S, Balog NK, Long AM, Rivera UH, Kasi V, Park K, Johnson JS, Verma MS, Rahimi R. Smart capsule for targeted proximal colon microbiome sampling. Acta Biomater 2022; 154:83-96. [PMID: 36162763 PMCID: PMC9986838 DOI: 10.1016/j.actbio.2022.09.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/03/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
The gastrointestinal (GI) tract, particularly the colon region, holds a highly diverse microbial community that plays an important role in the metabolism, physiology, nutrition, and immune function of the host body. Accumulating evidence has revealed that alteration in these microbial communities is the pivotal step in developing various metabolic diseases, including obesity, inflammatory bowel disease (IBD), and colorectal cancer. However, there is still a lack of clear understanding of the interrelationship between microbiota and diet as well as the effectiveness of chemoprevention strategies, including pre and probiotic agents in modifying the colonic microbiota and preventing digestive diseases. Existing methods for assessing these microbiota-diet interactions are often based on samples collected from the feces or endoscopy techniques which are incapable of providing information on spatial variations of the gut microbiota or are considered invasive procedures. To address this need, here we have developed an electronic-free smart capsule that enables site-specific sampling of the gut microbiome within the proximal colon region of the GI tract. The 3D printed device houses a superabsorbent hydrogel bonded onto a flexible polydimethylsiloxane (PDMS) disk that serves as a milieu to collect the fluid in the gut lumen and its microbiome by rapid swelling and providing the necessary mechanical actuation to close the capsule after the sampling is completed. The targeted colonic sampling is achieved by coating the sampling aperture on the capsule with a double-layer pH-sensitive enteric coating, which delays fluid in the lumen from entering the capsule until it reaches the proximal colon of the GI tract. To identify the appropriate pH-responsive double-layer coating and processing condition, a series of systematic dissolution characterizations in different pH conditions that mimicked the GI tract was conducted. The effective targeted microbial sampling performance and preservation of the smart capsule with the optimized design were validated using both realistic in vitro GI tract models with mixed bacteria cultures and in vivo with pigs as an animal model. The results from 16s rRNA and WideSeq analysis in both in vitro and in vivo studies showed that the bacterial population sampled within the retrieved capsule closely matched the bacterial population within the targeted sampling region (proximal colon). Herein, it is envisioned that such smart sampling capsule technology will provide new avenues for gastroenterological research and clinical applications, including diet-host-microbiome relationships, focused on human GI function and health. STATEMENT OF SIGNIFICANCE: The colonic microbiota plays a major role in the etiology of numerous diseases. Extensive efforts have been conducted to monitor the gut microbiome using sequencing technologies based on samples collected from feces or mucosal biopsies that are typically obtained by colonoscopy. Despite the simplicity of fecal sampling procedures, they are incapable of preserving spatial and temporal information about the bacteria through the gastrointestinal (GI) tract. In contrast, colonoscopy is an invasive and impractical approach to frequently assess the effect of dietary and therapeutic intake on the microbiome and their impact on the health of the patient. Here, we developed a non-invasive capsule that enables targeted sampling from the ascending colon, thereby providing crucial information for disease prediction and monitoring.
Collapse
Affiliation(s)
- Sina Nejati
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, United States; Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, United States
| | - Jiangshan Wang
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, United States; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Sotoudeh Sedaghat
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, United States; Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, United States
| | - Nicole K Balog
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, United States; Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, United States
| | - Amanda M Long
- USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN 47907, United States
| | - Ulisses Heredia Rivera
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, United States; Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, United States
| | - Venkat Kasi
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, United States; Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, United States
| | - Kinam Park
- Departments of Biomedical Engineering and Pharmaceutics, Purdue University, West Lafayette, IN 47907, United States
| | - Jay S Johnson
- USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN 47907, United States
| | - Mohit S Verma
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, United States; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, United States; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Rahim Rahimi
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, United States; Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
8
|
Zhou P, Yang D, Sun D, Zhou Y. Gut microbiome: New biomarkers in early screening of colorectal cancer. J Clin Lab Anal 2022; 36:e24359. [PMID: 35312122 PMCID: PMC9102648 DOI: 10.1002/jcla.24359] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/07/2022] Open
Affiliation(s)
- Peng Zhou
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology School of Medicine Ningbo University Ningbo China
- Department of Gastroenterology The Affiliated Hospital of Medical School Ningbo University Ningbo China
| | - Dongxue Yang
- Department of Gastroenterology The Affiliated Hospital of Medical School Ningbo University Ningbo China
- Institute of Digestive Disease of Ningbo University Ningbo China
| | - Desen Sun
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology School of Medicine Ningbo University Ningbo China
- Department of Gastroenterology The Affiliated Hospital of Medical School Ningbo University Ningbo China
- Institute of Digestive Disease of Ningbo University Ningbo China
| | - Yuping Zhou
- Department of Gastroenterology The Affiliated Hospital of Medical School Ningbo University Ningbo China
- Institute of Digestive Disease of Ningbo University Ningbo China
| |
Collapse
|
9
|
Nejati S, Wang J, Heredia-Rivera U, Sedaghat S, Woodhouse I, Johnson JS, Verma M, Rahimi R. Small intestinal sampling capsule for inflammatory bowel disease type detection and management. LAB ON A CHIP 2021; 22:57-70. [PMID: 34826326 DOI: 10.1039/d1lc00451d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although serum and fecal biomarkers (e.g., lactoferrin, and calprotectin) have been used in management and distinction between inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS), none are proven to be a differential diagnostic tool between Crohn's disease (CD) and ulcerative colitis (UC). The main challenge with laboratory-based biomarkers in the stool test is the inability to indicate the location of the disease/inflammation in the gastrointestinal (GI) tract due to the homogenous nature of the collected fecal sample. For the first time, we have designed and developed a battery-free smart capsule that will allow targeted sampling of inflammatory biomarkers inside the gut lumen of the small intestine. The capsule is designed to provide a simple and non-invasive complementary tool to fecal biomarker analysis to differentiate the type of IBD by pinpointing the site of inflammatory biomarkers secretion (e.g., small or large bowel) throughout the GI tract. The capsule takes advantage of the rapid change from an acidic environment in the stomach to higher pH levels in the small intestine to dissolve a pH-sensitive polymeric coating as a means to activate the sampling process of the capsule within the small intestine. A swelling polyacrylamide hydrogel is placed inside the capsule as a milieu to collect the sampled GI fluid while also providing the required mechanical actuation to close the capsule once the sampling is completed. The hydrogel component along with the collected GI fluid can be easily obtained from the capsule through the screw-cap design for further extraction and analysis. As a proof of concept, the capsule's performance in sampling and extraction of bovine serum albumin (BSA) and calprotectin - a key biomarker of inflammation - was assessed within the physiologically relevant ranges. The ratio of extracted biomarkers relative to that in the initial sampling environment remained constant (∼3%) and independent of the sampling matrix in both in vitro and ex vivo studies. It is believed that the demonstrated technology will provide immediate impact in more effective IBD type differential diagnostic and treatment strategies by providing a non-invasive assessment of inflammation biomarkers profile throughout the digestive tract.
Collapse
Affiliation(s)
- Sina Nejati
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Jiangshan Wang
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Ulisses Heredia-Rivera
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Sotoudeh Sedaghat
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Ian Woodhouse
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Jay S Johnson
- USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN 47907, USA
| | - Mohit Verma
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Rahim Rahimi
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
10
|
Byrne J, Huang HW, McRae JC, Babaee S, Soltani A, Becker SL, Traverso G. Devices for drug delivery in the gastrointestinal tract: A review of systems physically interacting with the mucosa for enhanced delivery. Adv Drug Deliv Rev 2021; 177:113926. [PMID: 34403749 DOI: 10.1016/j.addr.2021.113926] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/14/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
The delivery of macromolecules via the gastrointestinal (GI) tract remains a significant challenge. A variety of technologies using physical modes of drug delivery have been developed and investigated to overcome the epithelial cell layer of the GI tract for local and systemic delivery. These technologies include direct injection, jetting, ultrasound, and iontophoresis, which have been largely adapted from transdermal drug delivery. Direct injection of agents using needles through endoscopy has been used clinically for over a century. Jetting, a needle-less method of drug delivery where a high-speed stream of fluid medication penetrates tissue, has been evaluated pre-clinically for delivery of agents into the buccal mucosa. Ultrasound has been shown to be beneficial in enhancing delivery of macromolecules, including nucleic acids, in pre-clinical animal models. The application of an electric field gradient to drive drugs into tissues through the technique of iontophoresis has been shown to deliver highly toxic chemotherapies into GI tissues. Here in, we provide an in-depth overview of these physical modes of drug delivery in the GI tract and their clinical and preclinical uses.
Collapse
Affiliation(s)
- James Byrne
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Harvard Radiation Oncology Program, Boston, MA 02114, USA; Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA; Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52240, USA
| | - Hen-Wei Huang
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - James C McRae
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sahab Babaee
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Amin Soltani
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sarah L Becker
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Giovanni Traverso
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
11
|
Weitschies W, Müller L, Grimm M, Koziolek M. Ingestible devices for studying the gastrointestinal physiology and their application in oral biopharmaceutics. Adv Drug Deliv Rev 2021; 176:113853. [PMID: 34192551 DOI: 10.1016/j.addr.2021.113853] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/17/2022]
Abstract
Ingestible sensor systems are unique tools for obtaining physiological data from an undisturbed gastrointestinal tract. Since their dimensions correspond to monolithic oral dosage forms, such as enteric coated tablets or hydrogel matrix tablets, they also allow insights into the physiological conditions experienced by non-disintegrating dosage forms on their way through the gastrointestinal tract. In this work, the different ingestible sensor systems which can be used for this purpose are described and their potential applications as well as difficulties and pitfalls with respect to their use are presented. It is also highlighted how the data on transit times, pH, temperature and pressure as well as the data from different animal models commonly used in drug product development such as dogs and pigs have contributed to a deeper mechanistic understanding of oral drug delivery.
Collapse
Affiliation(s)
- Werner Weitschies
- Institute of Pharmacy, Center of Drug Absorption and Transport, University of Greifswald, Greifswald, Germany.
| | - Laura Müller
- Institute of Pharmacy, Center of Drug Absorption and Transport, University of Greifswald, Greifswald, Germany
| | - Michael Grimm
- Institute of Pharmacy, Center of Drug Absorption and Transport, University of Greifswald, Greifswald, Germany
| | - Mirko Koziolek
- NCE Formulation Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany
| |
Collapse
|
12
|
Sardelli L, Perottoni S, Tunesi M, Boeri L, Fusco F, Petrini P, Albani D, Giordano C. Technological tools and strategies for culturing human gut microbiota in engineered in vitro models. Biotechnol Bioeng 2021; 118:2886-2905. [PMID: 33990954 PMCID: PMC8361989 DOI: 10.1002/bit.27816] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/29/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
The gut microbiota directly impacts the pathophysiology of different human body districts. Consequently, microbiota investigation is an hot topic of research and its in vitro culture has gained extreme interest in different fields. However, the high sensitivity of microbiota to external stimuli, such as sampling procedure, and the physicochemical complexity of the gut environment make its in vitro culture a challenging task. New engineered microfluidic gut-on-a-chip devices have the potential to model some important features of the intestinal structure, but they are usually unable to sustain culture of microbiota over an extended period of time. The integration of gut-on-a-chip devices with bioreactors for continuous bacterial culture would lead to fast advances in the study of microbiota-host crosstalk. In this review, we summarize the main technologies for the continuous culture of microbiota as upstream systems to be coupled with microfluidic devices to study bacteria-host cells communication. The engineering of integrated microfluidic platforms, capable of sustaining both anaerobic and aerobic cultures, would be the starting point to unveil complex biological phenomena proper of the microbiota-host crosstalks, paving to way to multiple research and technological applications.
Collapse
Affiliation(s)
- Lorenzo Sardelli
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta,” Politecnico di MilanoMilanItaly
| | - Simone Perottoni
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta,” Politecnico di MilanoMilanItaly
| | - Marta Tunesi
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta,” Politecnico di MilanoMilanItaly
| | - Lucia Boeri
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta,” Politecnico di MilanoMilanItaly
| | - Federica Fusco
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta,” Politecnico di MilanoMilanItaly
| | - Paola Petrini
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta,” Politecnico di MilanoMilanItaly
| | - Diego Albani
- Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Carmen Giordano
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta,” Politecnico di MilanoMilanItaly
| |
Collapse
|
13
|
PH van Trijp M, Wilms E, Ríos-Morales M, Masclee AA, Brummer RJ, Witteman BJ, Troost FJ, Hooiveld GJ. Using naso- and oro-intestinal catheters in physiological research for intestinal delivery and sampling in vivo: practical and technical aspects to be considered. Am J Clin Nutr 2021; 114:843-861. [PMID: 34036315 PMCID: PMC8408849 DOI: 10.1093/ajcn/nqab149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/09/2021] [Indexed: 01/19/2023] Open
Abstract
Intestinal catheters have been used for decades in human nutrition, physiology, pharmacokinetics, and gut microbiome research, facilitating the delivery of compounds directly into the intestinal lumen or the aspiration of intestinal fluids in human subjects. Such research provides insights about (local) dynamic metabolic and other intestinal luminal processes, but working with catheters might pose challenges to biomedical researchers and clinicians. Here, we provide an overview of practical and technical aspects of applying naso- and oro-intestinal catheters for delivery of compounds and sampling luminal fluids from the jejunum, ileum, and colon in vivo. The recent literature was extensively reviewed, and combined with experiences and insights we gained through our own clinical trials. We included 60 studies that involved a total of 720 healthy subjects and 42 patients. Most of the studies investigated multiple intestinal regions (24 studies), followed by studies investigating only the jejunum (21 studies), ileum (13 studies), or colon (2 studies). The ileum and colon used to be relatively inaccessible regions in vivo. Custom-made state-of-the-art catheters are available with numerous options for the design, such as multiple lumina, side holes, and inflatable balloons for catheter progression or isolation of intestinal segments. These allow for multiple controlled sampling and compound delivery options in different intestinal regions. Intestinal catheters were often used for delivery (23 studies), sampling (10 studies), or both (27 studies). Sampling speed decreased with increasing distance from the sampling syringe to the specific intestinal segment (i.e., speed highest in duodenum, lowest in ileum/colon). No serious adverse events were reported in the literature, and a dropout rate of around 10% was found for these types of studies. This review is highly relevant for researchers who are active in various research areas and want to expand their research with the use of intestinal catheters in humans in vivo.
Collapse
Affiliation(s)
- Mara PH van Trijp
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Ellen Wilms
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Melany Ríos-Morales
- Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ad Am Masclee
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Robert Jan Brummer
- Nutrition-Gut-Brain Interactions Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ben Jm Witteman
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands,Hospital Gelderse Vallei, Department of Gastroenterology and Hepatology, Ede, The Netherlands
| | - Freddy J Troost
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands,Food Innovation and Health, Centre for Healthy Eating and Food Innovation, Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
14
|
Rehan M, Al-Bahadly I, Thomas DG, Avci E. Capsule robot for gut microbiota sampling using shape memory alloy spring. Int J Med Robot 2021; 16:1-14. [PMID: 33460261 DOI: 10.1002/rcs.2140] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/18/2020] [Accepted: 07/02/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Human gut microbiota can provide lifelong health information and even influence mood and behaviour. We currently lack the tools to obtain a microbial sample, directly from the small intestine, without contamination. METHODS Shape memory alloy springs are used in concentric configuration to develop an axial actuator. A novel design of sampling mechanism is fabricated for collecting the sample from the gut. Storage chamber (500 µl) is used to protect the sample from downstream contamination. RESULTS The developed actuator occupies a small space (5 × Ø5.75 mm) and produces sufficient output force (1.75 N) to operate the sampling mechanism. A non-invasive capsule robot was tested ex vivo on the animal intestine, and it captured an average of 134 µl content which was sufficient for microbiome assessment. CONCLUSIONS Laboratory testing revealed that the collected sample had an amino acid signature indicative of microbiota, mucus and digesta, which provided a proof of concept for the proposed design.
Collapse
Affiliation(s)
- Muhammad Rehan
- Department of Mechanical and Electrical Engineering, School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
- Department of Electronic Engineering, Sir Syed University of Engineering & Technology, Karachi, Pakistan
| | - Ibrahim Al-Bahadly
- Department of Mechanical and Electrical Engineering, School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - David G Thomas
- Monogastric Research Centre, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Ebubekir Avci
- Department of Mechanical and Electrical Engineering, School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| |
Collapse
|
15
|
Tang Q, Jin G, Wang G, Liu T, Liu X, Wang B, Cao H. Current Sampling Methods for Gut Microbiota: A Call for More Precise Devices. Front Cell Infect Microbiol 2020; 10:151. [PMID: 32328469 PMCID: PMC7161087 DOI: 10.3389/fcimb.2020.00151] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
The development of next-generation sequencing technology has enabled researchers to explore and understand the gut microbiome from a broader and deeper perspective. However, the results of different studies on gut microbiota are highly variable even in the same disease, which makes it difficult to guide clinical diagnosis and treatment. The ideal sampling method should be non-invasive, involve little cross-contamination or bowel preparation, and collect gut microbiota at different sites. Currently, sequencing technologies are usually based on samples collected from feces, mucosal biopsy, intestinal fluid, etc. However, different parts of the gastrointestinal tract possess various physiological characteristics that are essential for particular species of living microbiota. Moreover, current sampling methods are somewhat defective. For example, fecal samples are just a proxy for intestinal microbiota, while biopsies are invasive for patients and not suitable for healthy controls. In this review, we summarize the current sampling methods and their advantages and shortcomings. New sampling technologies, such as the Brisbane Aseptic Biopsy Device and the intelligent capsule, are also mentioned to inspire the development of future precise description methods of the gut microbiome.
Collapse
Affiliation(s)
- Qiang Tang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China.,Tianjin Institute of Digestive Disease, General Hospital, Tianjin Medical University, Tianjin, China
| | - Ge Jin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China.,Tianjin Institute of Digestive Disease, General Hospital, Tianjin Medical University, Tianjin, China
| | - Gang Wang
- Tianjin Institute of Digestive Disease, General Hospital, Tianjin Medical University, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China.,Tianjin Institute of Digestive Disease, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xiang Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China.,Tianjin Institute of Digestive Disease, General Hospital, Tianjin Medical University, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China.,Tianjin Institute of Digestive Disease, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
16
|
Waimin JF, Nejati S, Jiang H, Qiu J, Wang J, Verma MS, Rahimi R. Smart capsule for non-invasive sampling and studying of the gastrointestinal microbiome. RSC Adv 2020; 10:16313-16322. [PMID: 35498852 PMCID: PMC9052936 DOI: 10.1039/c9ra10986b] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Microbes in regions within the gut, which have been inaccessible so far, can now be retrieved and analyzed through a passive sampling mechanism in the form of a 3D printed capsule equipped with a superabsorbent hydrogel.
Collapse
Affiliation(s)
- Jose Fernando Waimin
- School of Materials Engineering
- Purdue University
- West Lafayette
- USA
- Birck Nanotechnology Center
| | - Sina Nejati
- School of Materials Engineering
- Purdue University
- West Lafayette
- USA
- Birck Nanotechnology Center
| | - Hongjie Jiang
- Birck Nanotechnology Center
- Purdue University
- West Lafayette
- USA
- School of Electrical Engineering
| | - Jake Qiu
- Birck Nanotechnology Center
- Purdue University
- West Lafayette
- USA
- Department of Agricultural and Biological Engineering
| | - Jianghsan Wang
- Birck Nanotechnology Center
- Purdue University
- West Lafayette
- USA
- Department of Agricultural and Biological Engineering
| | - Mohit S. Verma
- Birck Nanotechnology Center
- Purdue University
- West Lafayette
- USA
- Department of Agricultural and Biological Engineering
| | - Rahim Rahimi
- School of Materials Engineering
- Purdue University
- West Lafayette
- USA
- Birck Nanotechnology Center
| |
Collapse
|
17
|
Lee HJ, Choi N, Yoon ES, Cho IJ. MEMS devices for drug delivery. Adv Drug Deliv Rev 2018; 128:132-147. [PMID: 29117510 DOI: 10.1016/j.addr.2017.11.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/06/2017] [Accepted: 11/02/2017] [Indexed: 01/27/2023]
Abstract
Novel drug delivery systems based on microtechnology have advanced tremendously, but yet face some technological and societal hurdles to fully achieve their potential. The novel drug delivery systems aim to deliver drugs in a spatiotemporal- and dosage-controlled manner with a goal to address the unmet medical needs from oral delivery and hypodermic injection. The unmet needs include effective delivery of new types of drug candidates that are otherwise insoluble and unstable, targeted delivery to areas protected by barriers (e.g. brain and posterior eye segment), localized delivery of potent drugs, and improved patient compliance. After scrutinizing the design considerations and challenges associated with delivery to areas that cannot be efficiently targeted through standard drug delivery (e.g. brain, posterior eye segment, and gastrointestinal tract), this review provides a summary of recent advances that addressed these challenges and summarizes yet unresolved problems in each target area. The opportunities for innovation in devising the novel drug delivery systems are still high; with integration of advanced microtechnology, advanced fabrication of biomaterials, and biotechnology, the novel drug delivery is poised to be a promising alternative to the oral administration and hypodermic injection for a large spectrum of drug candidates.
Collapse
Affiliation(s)
- Hyunjoo J Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology (Biomedical Engineering), KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Eui-Sung Yoon
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Il-Joo Cho
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology (Biomedical Engineering), KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
18
|
Caffarel-Salvador E, Abramson A, Langer R, Traverso G. Oral delivery of biologics using drug-device combinations. Curr Opin Pharmacol 2017; 36:8-13. [PMID: 28779684 DOI: 10.1016/j.coph.2017.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/06/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022]
Abstract
Orally administered devices could enable the systemic uptake of biologic therapeutics by engineering around the physiological barriers present in the gastrointestinal (GI) tract. Such devices aim to shield cargo from degradative enzymes and increase the diffusion rate of medication through the GI mucosa. In order to achieve clinical relevance, these designs must significantly increase systemic drug bioavailability, deliver a clinically relevant dose and remain safe when taken frequently. Such an achievement stands to reduce our dependence on needle injections, potentially increasing patient adherence and reducing needle-associated complications. Here we discuss the physical and chemical constraints imposed by the GI organs and use these to develop a set of boundary conditions on oral device designs for the delivery of macromolecules. We critically examine how device size affects the rate of intestinal obstruction and hinders the loading capacity of poorly soluble protein drugs. We then discuss how current orally administered devices could solve the problem of tissue permeation and conclude that these physical methods stand to provide an efficacious set of alternatives to the classic hypodermic needle.
Collapse
Affiliation(s)
- Ester Caffarel-Salvador
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alex Abramson
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Giovanni Traverso
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Slawinski PR, Obstein KL, Valdastri P. Capsule endoscopy of the future: What's on the horizon? World J Gastroenterol 2015; 21:10528-41. [PMID: 26457013 PMCID: PMC4588075 DOI: 10.3748/wjg.v21.i37.10528] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/22/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Capsule endoscopes have evolved from passively moving diagnostic devices to actively moving systems with potential therapeutic capability. In this review, we will discuss the state of the art, define the current shortcomings of capsule endoscopy, and address research areas that aim to overcome said shortcomings. Developments in capsule mobility schemes are emphasized in this text, with magnetic actuation being the most promising endeavor. Research groups are working to integrate sensor data and fuse it with robotic control to outperform today's standard invasive procedures, but in a less intrusive manner. With recent advances in areas such as mobility, drug delivery, and therapeutics, we foresee a translation of interventional capsule technology from the bench-top to the clinical setting within the next 10 years.
Collapse
|
20
|
Fox CB, Kim J, Le LV, Nemeth CL, Chirra HD, Desai TA. Micro/nanofabricated platforms for oral drug delivery. J Control Release 2015; 219:431-444. [PMID: 26244713 DOI: 10.1016/j.jconrel.2015.07.033] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 12/18/2022]
Abstract
The oral route of drug administration is most preferred due to its ease of use, low cost, and high patient compliance. However, the oral uptake of many small molecule drugs and biotherapeutics is limited by various physiological barriers, and, as a result, drugs suffer from issues with low solubility, low permeability, and degradation following oral administration. The flexibility of micro- and nanofabrication techniques has been used to create drug delivery platforms designed to address these barriers to oral drug uptake. Specifically, micro/nanofabricated devices have been designed with planar, asymmetric geometries to promote device adhesion and unidirectional drug release toward epithelial tissue, thereby prolonging drug exposure and increasing drug permeation. Furthermore, surface functionalization, nanotopography, responsive drug release, motion-based responses, and permeation enhancers have been incorporated into such platforms to further enhance drug uptake. This review will outline the application of micro/nanotechnology to specifically address the physiological barriers to oral drug delivery and highlight technologies that may be incorporated into these oral drug delivery systems to further enhance drug uptake.
Collapse
Affiliation(s)
- Cade B Fox
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Jean Kim
- UC Berkeley & UCSF Graduate Program in Bioengineering, UCSF Mission Bay Campus, San Francisco, CA 94158, USA
| | - Long V Le
- UC Berkeley & UCSF Graduate Program in Bioengineering, UCSF Mission Bay Campus, San Francisco, CA 94158, USA
| | - Cameron L Nemeth
- UC Berkeley & UCSF Graduate Program in Bioengineering, UCSF Mission Bay Campus, San Francisco, CA 94158, USA
| | - Hariharasudhan D Chirra
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA; UC Berkeley & UCSF Graduate Program in Bioengineering, UCSF Mission Bay Campus, San Francisco, CA 94158, USA.
| |
Collapse
|
21
|
Sitti M, Ceylan H, Hu W, Giltinan J, Turan M, Yim S, Diller E. Biomedical Applications of Untethered Mobile Milli/Microrobots. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2015; 103:205-224. [PMID: 27746484 PMCID: PMC5063027 DOI: 10.1109/jproc.2014.2385105] [Citation(s) in RCA: 308] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Untethered robots miniaturized to the length scale of millimeter and below attract growing attention for the prospect of transforming many aspects of health care and bioengineering. As the robot size goes down to the order of a single cell, previously inaccessible body sites would become available for high-resolution in situ and in vivo manipulations. This unprecedented direct access would enable an extensive range of minimally invasive medical operations. Here, we provide a comprehensive review of the current advances in biome dical untethered mobile milli/microrobots. We put a special emphasis on the potential impacts of biomedical microrobots in the near future. Finally, we discuss the existing challenges and emerging concepts associated with designing such a miniaturized robot for operation inside a biological environment for biomedical applications.
Collapse
Affiliation(s)
- Metin Sitti
- Max-Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany, and also are with Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15238 USA
| | - Hakan Ceylan
- Max-Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Wenqi Hu
- Max-Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Joshua Giltinan
- Max-Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany, and also are with Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15238 USA
| | - Mehmet Turan
- Max-Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Sehyuk Yim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Eric Diller
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S3G8, Canada
| |
Collapse
|
22
|
Munoz F, Alici G, Li W, Tan Z, Xiong K, Li Y, Ye Y, Luo ZP, He F, Gong Y. A review of drug delivery systems for capsule endoscopy. Adv Drug Deliv Rev 2014; 71:77-85. [PMID: 24384373 DOI: 10.1016/j.addr.2013.12.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/10/2013] [Accepted: 12/19/2013] [Indexed: 12/12/2022]
Abstract
The development of a highly controllable drug delivery system (DDS) for capsule endoscopy has become an important field of research due to its promising applications in therapeutic treatment of diseases in the gastrointestinal (GI) tract and drug absorption studies. Several factors need to be considered to establish the minimum requirements for a functional DDS. Environmental factors of the GI tract and also pharmaceutical factors can help determine the requirements to be met by a DDS in an endoscopic capsule. In order to minimize the influence of such factors on the performance of an effective DDS, at least two mechanisms should be incorporated into a capsule endoscope: an anchoring mechanism to control the capsule position and a drug release mechanism to control variables such as the drug release rate, number of doses and amount of drug released. The implementation of such remotely actuated mechanisms is challenging due to several constraints, including the limited space available in a swallowable capsule endoscope and the delicate and complex environment within the GI tract. This paper presents a comprehensive overview of existing DDS. A comparison of such DDS for capsule endoscopy based on the minimum DDS requirements is presented and future work is also discussed.
Collapse
Affiliation(s)
| | | | | | - Zifang Tan
- School of Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Ke Xiong
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yan Li
- School of Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments, Sun Yat-sen University, Guangzhou 510006, China
| | - Yun Ye
- School of Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments, Sun Yat-sen University, Guangzhou 510006, China
| | - Zong-Ping Luo
- Orthopaedic Institute, Soochow University, Suzhou 215006, China; Department of Orthopaedics, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Fan He
- School of Engineering, Sun Yat-sen University, Guangzhou 510006, China; Orthopaedic Institute, Soochow University, Suzhou 215006, China; Department of Orthopaedics, First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Yihong Gong
- School of Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
23
|
Chirra HD, Desai TA. Emerging microtechnologies for the development of oral drug delivery devices. Adv Drug Deliv Rev 2012; 64:1569-78. [PMID: 22981755 PMCID: PMC3488155 DOI: 10.1016/j.addr.2012.08.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 08/06/2012] [Accepted: 08/12/2012] [Indexed: 10/27/2022]
Abstract
The development of oral drug delivery platforms for administering therapeutics in a safe and effective manner across the gastrointestinal epithelium is of much importance. A variety of delivery systems such as enterically coated tablets, capsules, particles, and liposomes have been developed to improve oral bioavailability of drugs. However, orally administered drugs suffer from poor localization and therapeutic efficacy due to various physiological conditions such as low pH, and high shear intestinal fluid flow. Novel platforms combining controlled release, improved adhesion, tissue penetration, and selective intestinal targeting may overcome these issues and potentially diminish the toxicity and high frequency of administration associated with conventional oral delivery. Microfabrication along with appropriate surface chemistry, provide a means to fabricate these platforms en masse with flexibility in tailoring the shape, size, reservoir volume, and surface characteristics of microdevices. Moreover, the same technology can be used to include integrated circuit technology and sensors for designing sophisticated autonomous drug delivery devices that promise to significantly improve point of care diagnostic and therapeutic medical applications. This review sheds light on some of the fabrication techniques and addresses a few of the microfabricated devices that can be effectively used for controlled oral drug delivery applications.
Collapse
Affiliation(s)
- Hariharasudhan D. Chirra
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, U.S.A
| | - Tejal A. Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, U.S.A
| |
Collapse
|
24
|
Chan M, Campo E, Estève D, Fourniols JY. Smart homes - current features and future perspectives. Maturitas 2009; 64:90-7. [PMID: 19729255 DOI: 10.1016/j.maturitas.2009.07.014] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/03/2009] [Accepted: 07/03/2009] [Indexed: 10/20/2022]
Abstract
In an ageing world, maintaining good health and independence for as long as possible is essential. Instead of hospitalization or institutionalization, the elderly and disabled can be assisted in their own environment 24h a day with numerous 'smart' devices. The concept of the smart home is a promising and cost-effective way of improving home care for the elderly and the disabled in a non-obtrusive way, allowing greater independence, maintaining good health and preventing social isolation. Smart homes are equipped with sensors, actuators, and/or biomedical monitors. The devices operate in a network connected to a remote centre for data collection and processing. The remote centre diagnoses the ongoing situation and initiates assistance procedures as required. The technology can be extended to wearable and in vivo implantable devices to monitor people 24h a day both inside and outside the house. This review describes a selection of projects in developed countries on smart homes examining the various technologies available. Advantages and disadvantages, as well as the impact on modern society, are discussed. Finally, future perspectives on smart homes as part of a home-based health care network are presented.
Collapse
Affiliation(s)
- Marie Chan
- CNRS; LAAS; 7 avenue du colonel Roche, F-31077 Toulouse, France.
| | | | | | | |
Collapse
|