1
|
Kim TK, Tirloni L, Bencosme-Cuevas E, Kim TH, Diedrich JK, Yates JR, Mulenga A. Borrelia burgdorferi infection modifies protein content in saliva of Ixodes scapularis nymphs. BMC Genomics 2021; 22:152. [PMID: 33663385 PMCID: PMC7930271 DOI: 10.1186/s12864-021-07429-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lyme disease (LD) caused by Borrelia burgdorferi is the most prevalent tick-borne disease. There is evidence that vaccines based on tick proteins that promote tick transmission of B. burgdorferi could prevent LD. As Ixodes scapularis nymph tick bites are responsible for most LD cases, this study sought to identify nymph tick saliva proteins associated with B. burgdorferi transmission using LC-MS/MS. Tick saliva was collected using a non-invasive method of stimulating ticks (uninfected and infected: unfed, and every 12 h during feeding through 72 h, and fully-fed) to salivate into 2% pilocarpine-PBS for protein identification using LC-MS/MS. RESULTS We identified a combined 747 tick saliva proteins of uninfected and B. burgdorferi infected ticks that were classified into 25 functional categories: housekeeping-like (48%), unknown function (18%), protease inhibitors (9%), immune-related (6%), proteases (8%), extracellular matrix (7%), and small categories that account for <5% each. Notably, B. burgdorferi infected ticks secreted high number of saliva proteins (n=645) than uninfected ticks (n=376). Counter-intuitively, antimicrobial peptides, which function to block bacterial infection at tick feeding site were suppressed 23-85 folds in B. burgdorferi infected ticks. Similar to glycolysis enzymes being enhanced in mammalian cells exposed to B. burgdorferi : eight of the 10-glycolysis pathway enzymes were secreted at high abundance by B. burgdorferi infected ticks. Of significance, rabbits exposed to B. burgdorferi infected ticks acquired potent immunity that caused 40-60% mortality of B. burgdorferi infected ticks during the second infestation compared to 15-28% for the uninfected. This might be explained by ELISA data that show that high expression levels of immunogenic proteins in B. burgdorferi infected ticks. CONCLUSION Data here suggest that B. burgdorferi infection modified protein content in tick saliva to promote its survival at the tick feeding site. For instance, enzymes; copper/zinc superoxide dismutase that led to production of H2O2 that is toxic to B. burgdorferi were suppressed, while, catalase and thioredoxin that neutralize H2O2, and pyruvate kinase which yields pyruvate that protects Bb from H2O2 killing were enhanced. We conclude data here is an important resource for discovery of effective antigens for a vaccine to prevent LD.
Collapse
Affiliation(s)
- Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- Department of Diagnostic Medicine and Veterinary Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Lucas Tirloni
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Emily Bencosme-Cuevas
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Tae Heung Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America.
| |
Collapse
|
2
|
Control of ixodid ticks and prevention of tick-borne diseases in the United States: The prospect of a new Lyme disease vaccine and the continuing problem with tick exposure on residential properties. Ticks Tick Borne Dis 2021; 12:101649. [PMID: 33549976 DOI: 10.1016/j.ttbdis.2021.101649] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/13/2020] [Accepted: 12/29/2020] [Indexed: 01/09/2023]
Abstract
In the United States, exposure to human-biting ixodid ticks can occur while spending time on residential properties or in neighborhood green spaces as well as during recreational or occupational activities on public lands. Human-biting tick species collectively transmit >15 species of pathogenic microorganisms and the national burden of tick-borne diseases is increasing. The prospect of a new Lyme disease vaccine for use in humans provides hope for substantial reduction in the >450,000 estimated annual cases of Lyme disease but this breakthrough would not reduce cases of other tick-borne diseases, such as anaplasmosis, babesiosis, ehrlichiosis, spotted fever group rickettsiosis, and Powassan encephalitis. One intriguing question is to what extent a new Lyme disease vaccine would impact the use of personal protection measures acting broadly against tick-bites. The main tick vector for Lyme disease spirochetes in the eastern United States, Ixodes scapularis, also transmits causative agents of anaplasmosis, babesiosis, and Powassan encephalitis; and this tick species co-occurs with other human-biting vectors such as Amblyomma americanum and Dermacentor variabilis. It therefore is important that a new Lyme disease vaccine does not result in reduced use of tick-bite prevention measures, such as tick repellents, permethrin-treated clothing, and frequent tick checks. Another key issue is the continuing problem with tick exposure on residential properties, which represents a heavily used outdoor environment the residents cannot reasonably avoid and where they tend to spend large amounts of time outside. As it may not be realistic to keep up daily vigilance with personal protective measures against tick-bites on residential properties during many months of every year, homeowners may also consider the option to suppress host-seeking ticks by means of deer fencing, landscaping, vegetation management, and use of products to kill host-seeking ticks or ticks infesting rodents. When considering the full range of options for actions that can be taken to suppress host-seeking ticks on residential properties, it is clear that individual homeowners face a difficult and bewildering task in deciding what to do based on very general guidance from public health agencies (developed without the benefit of a strong evidence base) and often without ready access to local public health professionals experienced in tick control. This situation is not satisfactory but cannot be corrected without first addressing knowledge gaps regarding the impact of peridomestic tick control measures on host-seeking ticks, human tick-bites, and tick-borne diseases. In parallel with this effort, there also is a need to increase the local public health workforce with knowledge of and experience with tick control to provide better access for homeowners to sound and objective advice regarding tick control on their properties based on key characteristics of the landscaping, habitat composition, and use patterns by wild animal tick hosts as well as the residents.
Collapse
|
3
|
Lyme Disease. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
4
|
Esteve-Gassent MD, Castro-Arellano I, Feria-Arroyo TP, Patino R, Li AY, Medina RF, Pérez de León AA, Rodríguez-Vivas RI. TRANSLATING ECOLOGY, PHYSIOLOGY, BIOCHEMISTRY, AND POPULATION GENETICS RESEARCH TO MEET THE CHALLENGE OF TICK AND TICK-BORNE DISEASES IN NORTH AMERICA. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 92:38-64. [PMID: 27062414 PMCID: PMC4844827 DOI: 10.1002/arch.21327] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/20/2016] [Indexed: 06/05/2023]
Abstract
Emerging and re-emerging tick-borne diseases threaten public health and the wellbeing of domestic animals and wildlife globally. The adoption of an evolutionary ecology framework aimed to diminish the impact of tick-borne diseases needs to be part of strategies to protect human and animal populations. We present a review of current knowledge on the adaptation of ticks to their environment, and the impact that global change could have on their geographic distribution in North America. Environmental pressures will affect tick population genetics by selecting genotypes able to withstand new and changing environments and by altering the connectivity and isolation of several tick populations. Research in these areas is particularly lacking in the southern United States and most of Mexico with knowledge gaps on the ecology of these diseases, including a void in the identity of reservoir hosts for several tick-borne pathogens. Additionally, the way in which anthropogenic changes to landscapes may influence tick-borne disease ecology remains to be fully understood. Enhanced knowledge in these areas is needed in order to implement effective and sustainable integrated tick management strategies. We propose to refocus ecology studies with emphasis on metacommunity-based approaches to enable a holistic perspective addressing whole pathogen and host assemblages. Network analyses could be used to develop mechanistic models involving multihost-pathogen communities. An increase in our understanding of the ecology of tick-borne diseases across their geographic distribution will aid in the design of effective area-wide tick control strategies aimed to diminish the burden of pathogens transmitted by ticks.
Collapse
Affiliation(s)
- Maria D. Esteve-Gassent
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical sciences, Texas A&M University, College Station, TX-77843, USA
| | - Ivan Castro-Arellano
- Department of Biology, College of Science and Engineering, Texas State University, San Marcos, TX-78666, USA
| | - Teresa P. Feria-Arroyo
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX-78539, USA
| | - Ramiro Patino
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX-78539, USA
| | - Andrew Y. Li
- USDA-ARS Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, Maryland 20705, USA
| | - Raul F. Medina
- Department of Entomology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX-77843, USA
| | - Adalberto A. Pérez de León
- USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory, and Veterinary Pest Genomics Center, Kerrville, TX-78028, USA
| | - Roger Iván Rodríguez-Vivas
- Campus de Ciencias Biológicas y Agropecuarias. Facultad de Medicina Veterinaria y Zootecnia. Km 15.5 carretera Mérida-Xmatkuil. Yucatán, México
| |
Collapse
|
5
|
Abstract
Babesiosis is caused by intraerythrocytic protozoan parasites that are transmitted by ticks, or less commonly through blood transfusion or transplacentally. Human babesiosis was first recognized in a splenectomized patient in Europe but most cases have been reported from the northeastern and upper midwestern United States in people with an intact spleen and no history of immune impairment. Cases are reported in Asia, Africa, Australia, Europe, and South America. Babesiosis shares many clinical features with malaria and can be fatal, particularly in the elderly and the immunocompromised.
Collapse
Affiliation(s)
- Edouard G Vannier
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Tufts University School of Medicine, 800 Washington Street Box #041, Boston, MA 02111, USA
| | - Maria A Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, New York, NY 10027, USA
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Yale School of Medicine, 15 York Street, New Haven, CT 06520, USA
| | - Peter J Krause
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06520, USA; Departments of Internal Medicine and Pediatrics, Yale School of Medicine, 15 York Street, New Haven, CT 06520, USA.
| |
Collapse
|
6
|
Kugeler KJ, Jordan RA, Schulze TL, Griffith KS, Mead PS. Will Culling White-Tailed Deer Prevent Lyme Disease? Zoonoses Public Health 2015; 63:337-45. [PMID: 26684932 DOI: 10.1111/zph.12245] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Indexed: 11/28/2022]
Abstract
White-tailed deer play an important role in the ecology of Lyme disease. In the United States, where the incidence and geographic range of Lyme disease continue to increase, reduction of white-tailed deer populations has been proposed as a means of preventing human illness. The effectiveness of this politically sensitive prevention method is poorly understood. We summarize and evaluate available evidence regarding the effect of deer reduction on vector tick abundance and human disease incidence. Elimination of deer from islands and other isolated settings can have a substantial impact on the reproduction of blacklegged ticks, while reduction short of complete elimination has yielded mixed results. To date, most studies have been conducted in ecologic situations that are not representative to the vast majority of areas with high human Lyme disease risk. Robust evidence linking deer control to reduced human Lyme disease risk is lacking. Currently, there is insufficient evidence to recommend deer population reduction as a Lyme disease prevention measure, except in specific ecologic circumstances.
Collapse
Affiliation(s)
- K J Kugeler
- National Center for Emerging and Zoonotic Infectious Diseases, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - R A Jordan
- Tick-borne Diseases Program, Monmouth County Mosquito Control Division, Tinton Falls, NJ, USA
| | | | - K S Griffith
- National Center for Emerging and Zoonotic Infectious Diseases, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - P S Mead
- National Center for Emerging and Zoonotic Infectious Diseases, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| |
Collapse
|
7
|
Analyzing the Correlation between Deer Habitat and the Component of the Risk for Lyme Disease in Eastern Ontario, Canada: A GIS-Based Approach. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2015. [DOI: 10.3390/ijgi4010105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Pfäffle M, Littwin N, Muders SV, Petney TN. The ecology of tick-borne diseases. Int J Parasitol 2013; 43:1059-77. [DOI: 10.1016/j.ijpara.2013.06.009] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 12/30/2022]
|
9
|
Mulenga A, Kim T, Ibelli AMG. Amblyomma americanum tick saliva serine protease inhibitor 6 is a cross-class inhibitor of serine proteases and papain-like cysteine proteases that delays plasma clotting and inhibits platelet aggregation. INSECT MOLECULAR BIOLOGY 2013; 22:306-19. [PMID: 23521000 PMCID: PMC4058330 DOI: 10.1111/imb.12024] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We previously demonstrated that Amblyomma americanum tick serine protease inhibitor 6 (AamS6) was secreted into the host during tick feeding and that both its mRNA and protein were ubiquitously and highly expressed during the first 3 days of tick feeding. This study demonstrates that AamS6 is a cross-class inhibitor of both serine- and papain-like cysteine proteases that has apparent antihaemostatic functions. Consistent with the typical inhibitory serpin characteristics, enzyme kinetics analyses revealed that Pichia pastoris-expressed recombinant (r) AamS6 reduced initial velocities of substrate hydrolysis (V₀) and/or maximum enzyme velocity (V(max)) of trypsin, chymotrypsin, elastase, chymase, and papain in a dose-response manner. We speculate that rAamS6 inhibited plasmin in a temporary fashion in that while rAamS6 reduced V₀ of plasmin by up to ∼53%, it had no effect on V(max). Our data also suggest that rAmS6 has minimal or no apparent effect on V₀ or V(max) of thrombin, factor Xa, and kallikrein. We speculate that AamS6 is apparently involved in facilitating blood meal feeding in that various amounts of rAamS6 reduced platelet aggregation by up to ∼47% and delayed plasma clotting time in the recalcification time assay by up to ∼210 s. AamS6 is most likely not involved with the tick's evasion of the host's complement defense mechanism, in that rAamS6 did not interfere with the complement activation pathway. Findings in this study are discussed in the context of expanding our understanding of tick proteins that control bloodmeal feeding and hence tick-borne disease transmission by ticks.
Collapse
Affiliation(s)
- A Mulenga
- Department of Entomology, Texas A & M University AgriLife Research, College Station, TX, USA.
| | | | | |
Collapse
|
10
|
Ibelli AMG, Hermance MM, Kim TK, Gonzalez CL, Mulenga A. Bioinformatics and expression analyses of the Ixodes scapularis tick cystatin family. EXPERIMENTAL & APPLIED ACAROLOGY 2013; 60:41-53. [PMID: 23053911 PMCID: PMC4058331 DOI: 10.1007/s10493-012-9613-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/13/2012] [Indexed: 06/01/2023]
Abstract
The cystatins are inhibitors of papain- and legumain-like cysteine proteinases, classified in MEROPS subfamilies I25A-I25C. This study shows that 84 % (42/50) of tick cystatins are putatively extracellular in subfamily I25B and the rest are putatively intracellular in subfamily I25A. On the neighbor joining phylogeny guide tree, subfamily I25A members cluster together, while subfamily I25B cystatins segregate among prostriata or metastriata ticks. Two Ixodes scapularis cystatins, AAY66864 and ISCW011771 that show 50-71 % amino acid identity to metastriata tick cystatins may be linked to pathways that are common to all ticks, while ISCW000447 100 % conserved in I. ricinus is important among prostriata ticks. Likewise metastriata tick cystatins, Dermacentor variabilis-ACF35512, Rhipicephalus microplus-ACX53850, A. americanum-AEO36092, R. sanguineus-ACX53922, D. variabilis-ACF35514, R. sanguineus-ACX54033 and A. maculatum-AEO35155 that show 73-86 % amino acid identity may be essential to metastriata tick physiology. RT-PCR expression analyses revealed that I. scapularis cystatins were constitutively expressed in the salivary glands, midguts and other tissues of unfed ticks and ticks that were fed for 24-120 h, except for ISCW017861 that are restricted to the 24 h feeding time point. On the basis of mRNA expression patterns, I. scapularis cystatins, ISCW017861, ISCW011771, ISCW002215 and ISCW0024528 that are highly expressed at 24 h are likely involved in regulating early stage tick feeding events such as tick attachment onto host skin and creation of the feeding lesion. Similarly, ISCW018602, ISCW018603 and ISCW000447 that show 2-3 fold transcript increase by 120 h of feeding are likely associated with blood meal up take, while those that maintain steady state expression levels (ISCW018600, ISCW018601 and ISCW018604) during feeding may not be associated with tick feeding regulation. We discuss our findings in the context of advancing our knowledge of tick molecular biology.
Collapse
Affiliation(s)
- Adriana Mércia Guaratini Ibelli
- Department of Entomology, Texas A & M University AgriLife Research, 2475 TAMU, College Station, TX 77843, USA; Graduate Program in Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Meghan M. Hermance
- Department of Entomology, Texas A & M University AgriLife Research, 2475 TAMU, College Station, TX 77843, USA
| | - Tae Kwon Kim
- Department of Entomology, Texas A & M University AgriLife Research, 2475 TAMU, College Station, TX 77843, USA
| | - Cassandra Lee Gonzalez
- Department of Entomology, Texas A & M University AgriLife Research, 2475 TAMU, College Station, TX 77843, USA
| | - Albert Mulenga
- Department of Entomology, Texas A & M University AgriLife Research, 2475 TAMU, College Station, TX 77843, USA
| |
Collapse
|
11
|
Affiliation(s)
- Edouard Vannier
- Department of Medicine, Tufts Medical Center and Tufts University School of Medicine, Boston, USA
| | | |
Collapse
|
12
|
|
13
|
Dolan MC, Schulze TL, Jordan RA, Dietrich G, Schulze CJ, Hojgaard A, Ullmann AJ, Sackal C, Zeidner NS, Piesman J. Elimination of Borrelia burgdorferi and Anaplasma phagocytophilum in rodent reservoirs and Ixodes scapularis ticks using a doxycycline hyclate-laden bait. Am J Trop Med Hyg 2012; 85:1114-20. [PMID: 22144454 DOI: 10.4269/ajtmh.2011.11-0292] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A field trial was conducted in a Lyme disease-endemic area of New Jersey to determine the efficacy of a doxycyline hyclate rodent bait to prophylactically protect and cure small-mammal reservoirs and reduce infection rates in questing Ixodes scapularis ticks for Borrelia burgdorferi and Anaplasma phagocytophilum. The doxycycline-laden bait was formulated at a concentration of 500 mg/kg and delivered during the immature tick feeding season in rodent-targeted bait boxes. The percentage of infected small mammals recovered from treated areas after 2 years of treatment was reduced by 86.9% for B. burgdorferi and 74% for A. phagocytophilum. Infection rates in questing nymphal ticks for both B. burgdorferi and A. phagocytophilum were reduced by 94.3% and 92%, respectively. Results from this study indicate that doxycycline-impregnated bait is an effective means of reducing infection rates for B. burgdorferi and A. phagocytophilum in both rodent reservoirs and questing I. scapularis ticks.
Collapse
Affiliation(s)
- Marc C Dolan
- Division of Vector-Borne Diseases, Bacterial Disease Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado 80521, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Jaenson TGT, Jaenson DGE, Eisen L, Petersson E, Lindgren E. Changes in the geographical distribution and abundance of the tick Ixodes ricinus during the past 30 years in Sweden. Parasit Vectors 2012; 5:8. [PMID: 22233771 PMCID: PMC3311093 DOI: 10.1186/1756-3305-5-8] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 01/10/2012] [Indexed: 11/10/2022] Open
Abstract
Background Ixodes ricinus is the main vector in Europe of human-pathogenic Lyme borreliosis (LB) spirochaetes, the tick-borne encephalitis virus (TBEV) and other pathogens of humans and domesticated mammals. The results of a previous 1994 questionnaire, directed at people living in Central and North Sweden (Svealand and Norrland) and aiming to gather information about tick exposure for humans and domestic animals, suggested that Ixodes ricinus ticks had become more widespread in Central Sweden and the southern part of North Sweden from the early 1980s to the early 1990s. To investigate whether the expansion of the tick's northern geographical range and the increasing abundance of ticks in Sweden were still occurring, in 2009 we performed a follow-up survey 16 years after the initial study. Methods A questionnaire similar to the one used in the 1994 study was published in Swedish magazines aimed at dog owners, home owners, and hunters. The questionnaire was published together with a popular science article about the tick's biology and role as a pathogen vector in Sweden. The magazines were selected to get information from people familiar with ticks and who spend time in areas where ticks might be present. Results Analyses of data from both surveys revealed that during the near 30-year period from the early 1980s to 2008, I. ricinus has expanded its distribution range northwards. In the early 1990s ticks were found in new areas along the northern coastline of the Baltic Sea, while in the 2009 study, ticks were reported for the first time from many locations in North Sweden. This included locations as far north as 66°N and places in the interior part of North Sweden. During this 16-year period the tick's range in Sweden was estimated to have increased by 9.9%. Most of the range expansion occurred in North Sweden (north of 60°N) where the tick's coverage area doubled from 12.5% in the early 1990s to 26.8% in 2008. Moreover, according to the respondents, the abundance of ticks had increased markedly in LB- and TBE-endemic areas in South (Götaland) and Central Sweden. Conclusions The results suggest that I. ricinus has expanded its range in North Sweden and has become distinctly more abundant in Central and South Sweden during the last three decades. However, in the northern mountain region I. ricinus is still absent. The increased abundance of the tick can be explained by two main factors: First, the high availability of large numbers of important tick maintenance hosts, i.e., cervids, particularly roe deer (Capreolus capreolus) during the last three decades. Second, a warmer climate with milder winters and a prolonged growing season that permits greater survival and proliferation over a larger geographical area of both the tick itself and deer. High reproductive potential of roe deer, high tick infestation rate and the tendency of roe deer to disperse great distances may explain the range expansion of I. ricinus and particularly the appearance of new TBEV foci far away from old TBEV-endemic localities. The geographical presence of LB in Sweden corresponds to the distribution of I. ricinus. Thus, LB is now an emerging disease risk in many parts of North Sweden. Unless countermeasures are undertaken to keep the deer populations, particularly C. capreolus and Dama dama, at the relatively low levels that prevailed before the late 1970s - especially in and around urban areas where human population density is high - by e.g. reduced hunting of red fox (Vulpes vulpes) and lynx (Lynx lynx), the incidences of human LB and TBE are expected to continue to be high or even to increase in Sweden in coming decades.
Collapse
Affiliation(s)
- Thomas G T Jaenson
- Medical Entomology Unit, Department of Systematic Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18d, SE-752 36 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
16
|
Reservoir targeted vaccine for lyme borreliosis induces a yearlong, neutralizing antibody response to OspA in white-footed mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1809-16. [PMID: 21918116 PMCID: PMC3209012 DOI: 10.1128/cvi.05226-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Lyme disease is caused by the spirochete Borrelia burgdorferi. The enzootic cycle of this pathogen requires that Ixodes spp. acquire B. burgdorferi from infected wildlife reservoirs and transmit it to other uninfected wildlife. At present, there are no effective measures to control B. burgdorferi; there is no human vaccine available, and existing vector control measures are generally not acceptable to the public. However, if B. burgdorferi could be eliminated from its reservoir hosts or from the ticks that feed on them, the enzootic cycle would be broken, and the incidence of Lyme disease would decrease. We developed OspA-RTV, a reservoir targeted bait vaccine (RTV) based on the immunogenic outer surface protein A (OspA) of B. burgdorferi aimed at breaking the natural cycle of this spirochete. White-footed mice, the major reservoir species for this spirochete in nature developed a systemic OspA-specific IgG response as a result of ingestion of the bait formulation. This immune response protected white-footed mice against B. burgdorferi infection upon tick challenge and cleared B. burgdorferi from the tick vector. In performing extensive studies to optimize the OspA-RTV for field deployment, we determined that mice that consumed the vaccine over periods of 1 or 4 months developed a yearlong, neutralizing anti-OspA systemic IgG response. Furthermore, we defined the minimum number of OspA-RTV units needed to induce a protective immune response.
Collapse
|
17
|
Mulenga A, Erikson K. A snapshot of the Ixodes scapularis degradome. Gene 2011; 482:78-93. [PMID: 21596113 DOI: 10.1016/j.gene.2011.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/04/2011] [Accepted: 04/15/2011] [Indexed: 01/19/2023]
Abstract
Parasitic encoded proteases are essential to regulating interactions between parasites and their hosts and thus they represent attractive anti-parasitic druggable and/or vaccine target. We have utilized annotations of Ixodes scapularis proteases in gene bank and version 9.3 MEROPS database to compile an index of at least 233 putatively active and 150 putatively inactive protease enzymes that are encoded by the I. scapularis genome. The 233 putatively active protease homologs hereafter referred to as the degradome (the full repertoire of proteases encoded by the I. scapularis genome) represent ~1.14% of the 20485 putative I. scapularis protein content. Consistent with observations in other animals, the content of the I. scapularis degradome is ~6.0% (14/233) aspartic, ~19% (44/233) cysteine, ~40% (93/233) metallo, ~28.3% (66/233) serine and ~6.4% (15/233) threonine proteases. When scanned against other tick sequences, ~11% (25/233) of I. scapularis putatively active proteases are conserved in other tick species with ≥ 60% amino acid identity levels. The I. scapularis genome does not apparently encode for putatively inactive aspartic proteases. Of the 150 putative inactive protease homologs none are from the aspartic protease class, ~8% (12/150) are cysteine, ~58.7% (88/150) metallo, 30% (45/150) serine and ~3.3% (5/150) are threonine proteases. The I. scapularis tick genome appears to have evolutionarily lost proteolytic activity of at least 6 protease families, C56 and C64 (cysteine), M20 and M23 (metallo), S24 and S28 (serine) as revealed by a lack of the putatively active proteases in these families. The overall protease content is comparable to other organisms. However, the paucity of the S1 chymotrypsin/trypsin-like serine protease family in the I. scapularis genome where it is ~12.7% (28/233) of the degradome as opposed to ~22-48% content in other blood feeding arthropods, Pediculus humanus humanus, Anopheles gambiae, Aedes Aegypti and Culex pipiens quinquefasciatus is notable. The data is presented as a one-stop index of proteases encoded by the I. scapularis genome.
Collapse
Affiliation(s)
- Albert Mulenga
- Texas A & M University AgriLife Research, Department of Entomology, College Station, TX 77843, USA.
| | | |
Collapse
|
18
|
Kiffner C, Lödige C, Alings M, Vor T, Rühe F. Attachment site selection of ticks on roe deer, Capreolus capreolus. EXPERIMENTAL & APPLIED ACAROLOGY 2011; 53:79-94. [PMID: 20585837 PMCID: PMC2992130 DOI: 10.1007/s10493-010-9378-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 06/10/2010] [Indexed: 05/28/2023]
Abstract
The spatio-temporal attachment site patterns of ticks feeding on their hosts can be of significance if co-feeding transmission (i.e. from tick to tick without a systemic infection of the host) of pathogens affects the persistence of a given disease. Using tick infestation data on roe deer, we analysed preferred attachment sites and niche width of Ixodes ticks (larvae, nymphs, males, females) and investigated the degree of inter- and intrastadial aggregation. The different development stages showed rather consistent attachment site patterns and relative narrow feeding site niches. Larvae were mostly found on the head and on the front legs of roe deer, nymphs reached highest densities on the head and highest adult densities were found on the neck of roe deer. The tick stages feeding (larvae, nymphs, females) on roe deer showed high degrees of intrastadial spatial aggregation, whereas males did not. Male ticks showed large feeding site overlap with female ticks. Feeding site overlap between larval-female and larval-nymphal ticks did occur especially during the months May-August on the head and front legs of roe deer and might allow pathogen transmission via co-feeding. Tick density, niche width and niche overlap on roe deer are mainly affected by seasonality, reflecting seasonal activity and abundance patterns of ticks. Since different tick development stages occur spatially and temporally clustered on roe deer, transmission experiments of tick-borne pathogens are urgently needed.
Collapse
Affiliation(s)
- C. Kiffner
- Department of Forest Zoology and Forest Conservation incl. Wildlife Biology and Game Management, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 3, 37077 Göttingen, Germany
| | - C. Lödige
- Department of Forest Zoology and Forest Conservation incl. Wildlife Biology and Game Management, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 3, 37077 Göttingen, Germany
| | - M. Alings
- Department of Forest Zoology and Forest Conservation incl. Wildlife Biology and Game Management, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 3, 37077 Göttingen, Germany
| | - T. Vor
- Department of Forest Zoology and Forest Conservation incl. Wildlife Biology and Game Management, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 3, 37077 Göttingen, Germany
| | - F. Rühe
- Department of Forest Zoology and Forest Conservation incl. Wildlife Biology and Game Management, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 3, 37077 Göttingen, Germany
| |
Collapse
|
19
|
Kiffner C, Lödige C, Alings M, Vor T, Rühe F. Abundance estimation of Ixodes ticks (Acari: Ixodidae) on roe deer (Capreolus capreolus). EXPERIMENTAL & APPLIED ACAROLOGY 2010; 52:73-84. [PMID: 20204470 PMCID: PMC2914293 DOI: 10.1007/s10493-010-9341-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 01/30/2010] [Indexed: 05/16/2023]
Abstract
Despite the importance of roe deer as a host for Ixodes ticks in central Europe, estimates of total tick burden on roe deer are not available to date. We aimed at providing (1) estimates of life stage and sex specific (larvae, nymphs, males and females, hereafter referred to as tick life stages) total Ixodes burden and (2) equations which can be used to predict the total life stage burden by counting the life stage on a selected body area. Within a period of 1(1/2) years, we conducted whole body counts of ticks from 80 hunter-killed roe deer originating from a beech dominated forest area in central Germany. Averaged over the entire study period (winter 2007-summer 2009), the mean tick burden per roe deer was 64.5 (SE +/- 10.6). Nymphs were the most numerous tick life stage per roe deer (23.9 +/- 3.2), followed by females (21.4 +/- 3.5), larvae (10.8 +/- 4.2) and males (8.4 +/- 1.5). The individual tick burden was highly aggregated (k = 0.46); levels of aggregation were highest in larvae (k = 0.08), followed by males (k = 0.40), females (k = 0.49) and nymphs (k = 0.71). To predict total life stage specific burdens based on counts on selected body parts, we provide linear equations. For estimating larvae abundance on the entire roe deer, counts can be restricted to the front legs. Tick counts restricted to the head are sufficient to estimate total nymph burden and counts on the neck are appropriate for estimating adult ticks (females and males). In order to estimate the combined tick burden, tick counts on the head can be used for extrapolation. The presented linear models are highly significant and explain 84.1, 77.3, 90.5, 91.3, and 65.3% (adjusted R (2)) of the observed variance, respectively. Thus, these models offer a robust basis for rapid tick abundance assessment. This can be useful for studies aiming at estimating effects of abiotic and biotic factors on tick abundance, modelling tick population dynamics, modelling tick-borne pathogen transmission dynamics or assessing the efficacy of acaricides.
Collapse
Affiliation(s)
- Christian Kiffner
- Department of Forest Zoology and Forest Conservation incl. Wildlife Biology and Game Management, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 3, 37077 Göttingen, Germany
| | - Christina Lödige
- Department of Forest Zoology and Forest Conservation incl. Wildlife Biology and Game Management, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 3, 37077 Göttingen, Germany
| | - Matthias Alings
- Department of Forest Zoology and Forest Conservation incl. Wildlife Biology and Game Management, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 3, 37077 Göttingen, Germany
| | - Torsten Vor
- Department of Forest Zoology and Forest Conservation incl. Wildlife Biology and Game Management, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 3, 37077 Göttingen, Germany
| | - Ferdinand Rühe
- Department of Forest Zoology and Forest Conservation incl. Wildlife Biology and Game Management, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 3, 37077 Göttingen, Germany
| |
Collapse
|
20
|
Carroll JF, Paluch G, Coats J, Kramer M. Elemol and amyris oil repel the ticks Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) in laboratory bioassays. EXPERIMENTAL & APPLIED ACAROLOGY 2010; 51:383-392. [PMID: 20016930 DOI: 10.1007/s10493-009-9329-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 11/24/2009] [Indexed: 05/28/2023]
Abstract
The essential oil from Amyris balsamifera (Rutaceae) and elemol, a principal constituent of the essential oil of Osage orange, Maclura pomifera (Moraceae) were evaluated in in vitro and in vivo laboratory bioassays for repellent activity against host-seeking nymphs of the blacklegged tick, Ixodes scapularis, and the lone star tick, Amblyomma americanum. Both bioassays took advantage of the tendency of these host-seeking ticks to climb slender vertical surfaces. In one bioassay, the central portion of a vertical strip of filter paper was treated with test solution and ticks placed or allowed to crawl onto the untreated lower portion. In the other bioassay, a strip of organdy cloth treated with test solution was doubly wrapped (treatment on outer layer) around the middle phalanx of a forefinger and ticks released on the fingertip. Both amyris oil and elemol were repellent to both species of ticks. Elemol did not differ significantly in effectiveness against A. americanum from the widely used repellent deet. At 2 and 4 h after application to filter paper, 827 microg amyris oil/cm(2) paper repelled 80 and 55%, respectively, of A. americanum nymphs. Ixodes scapularis was repelled by lower concentrations of amyris oil and elemol than A. americanum.
Collapse
Affiliation(s)
- J F Carroll
- USDA, ARS, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA.
| | | | | | | |
Collapse
|
21
|
Pérez de León AA, Strickman DA, Knowles DP, Fish D, Thacker E, de la Fuente J, Krause PJ, Wikel SK, Miller RS, Wagner GG, Almazán C, Hillman R, Messenger MT, Ugstad PO, Duhaime RA, Teel PD, Ortega-Santos A, Hewitt DG, Bowers EJ, Bent SJ, Cochran MH, McElwain TF, Scoles GA, Suarez CE, Davey R, Howell Freeman JM, Lohmeyer K, Li AY, Guerrero FD, Kammlah DM, Phillips P, Pound JM. One Health approach to identify research needs in bovine and human babesioses: workshop report. Parasit Vectors 2010; 3:36. [PMID: 20377902 PMCID: PMC2859369 DOI: 10.1186/1756-3305-3-36] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 04/08/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Babesia are emerging health threats to humans and animals in the United States. A collaborative effort of multiple disciplines to attain optimal health for people, animals and our environment, otherwise known as the One Health concept, was taken during a research workshop held in April 2009 to identify gaps in scientific knowledge regarding babesioses. The impetus for this analysis was the increased risk for outbreaks of bovine babesiosis, also known as Texas cattle fever, associated with the re-infestation of the U.S. by cattle fever ticks. RESULTS The involvement of wildlife in the ecology of cattle fever ticks jeopardizes the ability of state and federal agencies to keep the national herd free of Texas cattle fever. Similarly, there has been a progressive increase in the number of cases of human babesiosis over the past 25 years due to an increase in the white-tailed deer population. Human babesiosis due to cattle-associated Babesia divergens and Babesia divergens-like organisms have begun to appear in residents of the United States. Research needs for human and bovine babesioses were identified and are presented herein. CONCLUSIONS The translation of this research is expected to provide veterinary and public health systems with the tools to mitigate the impact of bovine and human babesioses. However, economic, political, and social commitments are urgently required, including increased national funding for animal and human Babesia research, to prevent the re-establishment of cattle fever ticks and the increasing problem of human babesiosis in the United States.
Collapse
|
22
|
Pound JM, Miller JA, George JE, Fish D, Carroll JF, Schulze TL, Daniels TJ, Falco RC, Stafford KC, Mather TN. The United States Department of Agriculture's Northeast Area-wide Tick Control Project: summary and conclusions. Vector Borne Zoonotic Dis 2010; 9:439-48. [PMID: 19650739 DOI: 10.1089/vbz.2008.0200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
From 1997 to 2002, the U.S. Department of Agriculture's Northeast Area-wide Tick Control Project used acaricide-treated 4-Poster Deer Treatment Bait Stations in five eastern states to control ticks feeding on white-tailed deer. The objectives of this host-targeted technology were to reduce free-living blacklegged (Ixodes scapularis Say) and lone star (Amblyomma americanum [L.]) tick populations and thereby to reduce the risk of tick-borne disease. During 2002 to 2004, treatments were suspended, and tick population recovery rates were assayed. Subsequently, the major factors that influenced variations in efficacy were extrapolated to better understand and improve this technology. Treatments resulted in significant reductions in free-living populations of nymphal blacklegged ticks at six of the seven sites, and lone star ticks were significantly reduced at all three sites where they were present. During the study, maximal significant (p < or = 0.05) efficacies against nymphal blacklegged and lone star ticks at individual sites ranged from 60.0 to 81.7 and 90.9 to 99.5%, respectively. The major environmental factor that reduced efficacy was the occurrence of heavy acorn masts, which provided an alternative food resource for deer. Although the 4-Poster technology requires 1 or more years to show efficacy, this host-targeted intervention was demonstrated to be an efficacious, economical, safe, and environment-friendly alternative to area-wide spraying of acaricide to control free-living populations of these tick species.
Collapse
Affiliation(s)
- Joe Mathews Pound
- Knipling-Bushland U.S. Livestock Insects Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Kerrville, Texas 78028-9184, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Stafford KC, Denicola AJ, Pound JM, Miller JA, George JE. Topical treatment of white-tailed deer with an acaricide for the control of Ixodes scapularis (Acari: Ixodidae) in a Connecticut Lyme borreliosis hyperendemic Community. Vector Borne Zoonotic Dis 2010; 9:371-9. [PMID: 19650731 DOI: 10.1089/vbz.2008.0161] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The 4-Poster device for the topical treatment of white-tailed deer, Odocoileus virginianus (Zimmermann), against ticks using the acaricide amitraz, was evaluated in a Lyme borreliosis endemic community in Connecticut. As part of a 5-year project from 1997 to 2002, 21-24 of the 4-Posters were distributed at residential sites in Old Lyme, CT, in a core treatment area of approximately 5.2 km(2) in fall 1997. The 4-Posters were active October to mid-December and March into May, corresponding to the peak periods of activity for adult Ixodes scapularis in this particular area. Corn consumption ranged from 361 to 4789 kg/month for October and November and 696-3130 kg/month during April. Usage of 4-Posters by deer generally was high (>90%), except during acorn masts in fall 1998 and 2001. Amitraz was applied by rollers at the estimated rate of 1.3 g active ingredient/ha/year. The abundance of host-seeking I. scapularis nymphs declined significantly (p < 0.001) in the core treatment area, as compared to a control community in Old Saybrook, CT, through 2004, over the project period from 1998 to 2003, from 9.3/100m(2) to 0.97/100m(2), rising to 1.90/100m(2) in 2004. From 1999 through 2003, there were 46.1%, 49.6%, 63.4%, 64.6%, and 70.2% reductions, respectively, in the nymphal tick population in comparison with the untreated community and initial tick abundance in 1998. Control of I. scapularis adults declined to only 19.1% in 2004; 2 years after the treatment of deer was discontinued. Differences in nymphal tick abundance between the control and core treatment area were significant in 1999 (p = 0.042) and highly significant in 2001 (p < 0.001) and 2002 (p = 0.002). The passive topical application to deer of the acaricide amitraz resulted in a significant decrease in the population of free-living I. scapularis nymphs in the treated core in Connecticut.
Collapse
Affiliation(s)
- Kirby C Stafford
- Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, USA.
| | | | | | | | | |
Collapse
|
24
|
Carroll JF, Pound JM, Miller JA, Kramer M. Sustained control of Gibson Island, Maryland, populations of Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) by community-administered 4-Poster deer self-treatment bait stations. Vector Borne Zoonotic Dis 2010; 9:417-21. [PMID: 19650736 DOI: 10.1089/vbz.2008.0166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In 1998, twenty-five 4-Poster deer treatment bait stations were deployed on Gibson Island (GI), Maryland, as part of the U.S. Department of Agriculture (USDA) Northeast Area-Wide Tick Control Project. Treatments concluded in June 2002, having achieved 80% and 99.5% control of blacklegged ticks, Ixodes scapularis, and lone star ticks, Amblyomma americanum, respectively. No area-wide tick control was attempted again on the island until 2003, when 15 Dandux-manufactured 4-Posters were purchased by the GI Corporation and operated until the present. Annual flagging at sites on the island and a similar untreated area on the nearby mainland in May and June from 1998 to 2007 has demonstrated that populations of host-seeking nymphs of both tick species have remained at consistently low levels on the island during GI Corporation administration of the 4-Posters, in spite of 40% fewer 4-Posters and increased deer density during 2003-2007.
Collapse
Affiliation(s)
- John F Carroll
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, USA.
| | | | | | | |
Collapse
|
25
|
Miller NJ, Thomas WA, Mather TN. Evaluating a deer-targeted acaricide applicator for area-wide suppression of blacklegged ticks, Ixodes scapularis (Acari: Ixodidae), in Rhode Island. Vector Borne Zoonotic Dis 2010; 9:401-6. [PMID: 19650734 DOI: 10.1089/vbz.2008.0164] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Over a 5-year period, September 1997 through May 2002, as many as 25 U.S. Department of Agriculture-Agricultural Research Service "4-Poster" acaricide applicators were distributed in areas of high deer activity throughout a 518-hectare area in a rural Rhode Island community. Corn consumption and acaricide levels for each device were monitored weekly during each treatment season to assess the degree of deer use. The efficacy of acaricide treatment was determined by comparing relative blacklegged tick (Ixodes scapularis) densities in the 4-Poster treatment site to a separate, similar-sized nontreatment area. The tendency of white-tailed deer to use the 4-Poster was variable temporally, and appeared to be largely dependent on the availability of alternative food sources. Total corn consumption was nearly fourfold lower during large oak masting years when compared with no/low mast years. Moreover, habitat characteristics, such as the presence of maintained hay lands consisting of alfalfa and clover, also appeared to influence the frequency and amount of 4-Poster use. After 2 years of adequate treatment (nearly 12,000 kg of corn consumed), we achieved nearly 50% control of nymphal blacklegged ticks within the treatment site compared with tick abundance levels in the nontreated area. Moreover, that level of tick control was maintained for 1 year after removal of the 4-Poster devices but began to wane 2 years after treatment ended.
Collapse
Affiliation(s)
- Nathan J Miller
- Center for Vector-Borne Disease, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | | | |
Collapse
|
26
|
Abstract
Human babesiosis is an emerging tick-borne infectious disease caused by intraerythrocytic protozoan species of the genus Babesia with many clinical features similar to those of malaria. Over the last 50 years, the epidemiology of human babesiosis has changed from a few isolated cases to the establishment of endemic areas in the northeastern and midwestern United States. Episodic cases are reported in Europe, Asia, Africa, and South America. The severity of infection ranges from asymptomatic infection to fulminant disease resulting in death, although the majority of healthy adults experience a mild-to-moderate illness. People over the age of 50 years and immunocompromised individuals are at the highest risk of severe disease, including those with malignancy, HIV, lacking a spleen, or receiving immunosuppressive drugs. Asymptomatic carriers present a blood safety risk when they donate blood. Definitive diagnosis of babesial infection generally is made by microscopic identification of the organism on thin blood smear, amplification of Babesia DNA using PCR, and detection of Babesia antibody in acute and convalescent sera. Specific antimicrobial therapy consists of atovaquone and azithromycin or clindamycin and quinine. Exchange transfusion is used in severe cases. The use of multiple prevention strategies is recommended and consists of personal, residential, and community approaches.
Collapse
|