1
|
Bai Y, Osikowicz LM, Clark J, Foster E, Parise C, Maes S, Eisen RJ. Bartonella infections are rare in blood-fed Ixodes scapularis and Ixodes pacificus ticks collected from rodents in the United States. Parasit Vectors 2024; 17:442. [PMID: 39472944 PMCID: PMC11520693 DOI: 10.1186/s13071-024-06541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Ixodes scapularis and Ixodes pacificus are important vectors of multiple pathogens in the United States. However, their role in transmission of Bartonella spp., which are commonly reported in rodents and fleas, has been debated. Our previous investigation on Bartonella spp. in host-seeking I. scapularis and I. pacificus showed Bartonella spp. were absent in the ticks, suggesting the two species are unlikely to contribute to Bartonella transmission. It is unclear whether the absence of Bartonella spp. in the host-seeking ticks was attributable to ticks not being exposed to Bartonella in nature or being exposed but unable to acquire or transstadially transmit the bacterium. To assess the likelihood of exposure and acquisition, we tested Ixodes spp. ticks collected from rodents for Bartonella infections. METHODS Blood-fed I. scapularis ticks (n = 792; consisting of 645 larvae and 147 nymphs), I. pacificus ticks (n = 45, all larvae), and Ixodes angustus ticks (n = 16, consisting of 11 larvae and 5 nymphs) collected from rodents from Minnesota and Washington were tested for Bartonella spp. using a quadruplex polymerase chain reaction (PCR) amplicon next-generation sequencing approach that targets Bartonella-specific fragments on gltA, ssrA, rpoB, and groEL. In parallel, rodents and fleas collected from the same field studies were investigated to compare the differences of Bartonella distribution among the ticks, fleas, and rodents. RESULTS Bartonella spp. were commonly detected in rodents and fleas, with prevalence of 25.6% in rodents and 36.8% in fleas from Minnesota; 27.9% in rodents and 45.2% in fleas from Washington. Of all tested ticks, Bartonella DNA was detected by gltA in only one larval I. scapularis tick from Minnesota. CONCLUSIONS The high prevalence of Bartonella spp. in rodents and fleas coupled with extremely low prevalence of Bartonella spp. in blood-fed ticks suggests that although Ixodes ticks commonly encounter Bartonella in rodents, they rarely acquire the infection through blood feeding. Notably, ticks were at various stages of feeding on rodents when they were collected. Laboratory transmission studies are needed to assess acquisition rates in fully blood-fed ticks and to assess transstadial transmission efficiency if ticks acquire Bartonella infections from feeding to repletion.
Collapse
Affiliation(s)
- Ying Bai
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA.
| | - Lynn M Osikowicz
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Jacoby Clark
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Erik Foster
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Christina Parise
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Sarah Maes
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Rebecca J Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| |
Collapse
|
2
|
Dwużnik-Szarek D, Beliniak A, Malaszewicz W, Krauze-Gryz D, Gryz J, Jasińska KD, Wężyk D, Bajer A. Pathogens detected in ticks (Ixodes ricinus) feeding on red squirrels (Sciurus vulgaris) from city parks in Warsaw. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:677-699. [PMID: 39249583 PMCID: PMC11464548 DOI: 10.1007/s10493-024-00955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/30/2024] [Indexed: 09/10/2024]
Abstract
The European red squirrel (Sciurus vulgaris) is a common host for Ixodes ricinus ticks in urban and rural habitats, however, studies on ticks and tick-borne pathogens (TBPs) of squirrels have not been conducted in Poland yet. Thus, the aims of the current study were to assess and compare the prevalence and abundance of ticks on red squirrels trapped at two sites in the Warsaw area (in an urban forest reserve and an urban park) and using molecular tools, to assess the genetic diversity of three pathogens (Borrelia burgdorferi sensu lato, Rickettsia and Babesia spp.) in I. ricinus ticks collected from squirrels. For the detection of Rickettsia spp. a 750 bp long fragment of the citrate synthase gltA gene was amplified; for B. burgdorferi s.l. 132f/905r and 220f/824r primers were used to amplify the bacterial flaB gene fragments (774 and 605 bp, respectively) and for Babesia spp., a 550 bpfragment of 18S rRNA gene was amplified. In total, 91 red squirrels were examined for ticks. There were differences in tick prevalence and mean abundance of infestation in squirrels from the urban forest reserve and urban park. Three species of B. burgdorferi s.l., Rickettsia spp., and Babesia microti were detected in ticks removed from the squirrels. Our results broaden knowledge of S. vulgaris as an important host for immature I. ricinus stages and support the hypothesis that red squirrels act as a reservoir of B. burgdorferi. Moreover, we conclude that red squirrels may also play a role in facilitating the circulation of other pathogens causing serious risk of tick-borne diseases in natural and urban areas.
Collapse
Affiliation(s)
- Dorota Dwużnik-Szarek
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland.
| | - Agata Beliniak
- Department of Forest Zoology and Wildlife Management, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Wiktoria Malaszewicz
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Dagny Krauze-Gryz
- Department of Forest Zoology and Wildlife Management, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Jakub Gryz
- Department of Forest Ecology, Forest Research Institute, Sękocin Stary, Braci Leśnej 3, Raszyn, 05-090, Poland
| | - Karolina D Jasińska
- Department of Forest Zoology and Wildlife Management, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Dagmara Wężyk
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Anna Bajer
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| |
Collapse
|
3
|
Bai Y, McClung KL, Osikowicz LM, Maes S, Eisen RJ. No evidence of Bartonella infections in host-seeking Ixodes scapularis and Ixodes pacificus ticks in the United States. Parasit Vectors 2024; 17:345. [PMID: 39160635 PMCID: PMC11331610 DOI: 10.1186/s13071-024-06386-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Bartonella spp. infect a variety of vertebrates throughout the world, with generally high prevalence. Several Bartonella spp. are known to cause diverse clinical manifestations in humans and have been recognized as emerging pathogens. These bacteria are mainly transmitted by blood-sucking arthropods, such as fleas and lice. The role of ticks in the transmission of Bartonella spp. is unclear. METHODS A recently developed quadruplex polymerase chain reaction (PCR) amplicon next-generation sequencing approach that targets Bartonella-specific fragments on gltA, ssrA, rpoB, and groEL was applied to test host-seeking Ixodes scapularis ticks (n = 1641; consisting of 886 nymphs and 755 adults) collected in 23 states of the eastern half of the United States and Ixodes pacificus ticks (n = 966; all nymphs) collected in California in the western United States for the presence of Bartonella DNA. These species were selected because they are common human biters and serve as vectors of pathogens causing the greatest number of vector-borne diseases in the United States. RESULTS No Bartonella DNA was detected in any of the ticks tested by any target. CONCLUSIONS Owing to the lack of Bartonella detection in a large number of host-seeking Ixodes spp. ticks tested across a broad geographical region, our results strongly suggest that I. scapularis and I. pacificus are unlikely to contribute more than minimally, if at all, to the transmission of Bartonella spp.
Collapse
Affiliation(s)
- Ying Bai
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA.
| | - Kristin L McClung
- US Department of Agriculture, National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, Fort Collins, CO, USA
| | - Lynn M Osikowicz
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Sarah Maes
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Rebecca J Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| |
Collapse
|
4
|
Koutantou M, Drancourt M, Angelakis E. Prevalence of Lyme Disease and Relapsing Fever Borrelia spp. in Vectors, Animals, and Humans within a One Health Approach in Mediterranean Countries. Pathogens 2024; 13:512. [PMID: 38921809 PMCID: PMC11206712 DOI: 10.3390/pathogens13060512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The genus Borrelia has been divided into Borreliella spp., which can cause Lyme Disease (LD), and Borrelia spp., which can cause Relapsing Fever (RF). The distribution of genus Borrelia has broadened due to factors such as climate change, alterations in land use, and enhanced human and animal mobility. Consequently, there is an increasing necessity for a One Health strategy to identify the key components in the Borrelia transmission cycle by monitoring the human-animal-environment interactions. The aim of this study is to summarize all accessible data to increase our understanding and provide a comprehensive overview of Borrelia distribution in the Mediterranean region. Databases including PubMed, Google Scholar, and Google were searched to determine the presence of Borreliella and Borrelia spp. in vectors, animals, and humans in countries around the Mediterranean Sea. A total of 3026 were identified and screened and after exclusion of papers that did not fulfill the including criteria, 429 were used. After examination of the available literature, it was revealed that various species associated with LD and RF are prevalent in vectors, animals, and humans in Mediterranean countries and should be monitored in order to effectively manage and prevent potential infections.
Collapse
Affiliation(s)
- Myrto Koutantou
- Diagnostic Department and Public Health Laboratories, Hellenic Pasteur Institute, 11521 Athens, Greece
| | | | - Emmanouil Angelakis
- Diagnostic Department and Public Health Laboratories, Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|
5
|
Gandy S, Medlock J, Cull B, Smith R, Gibney Z, Sewgobind S, Parekh I, Harding S, Johnson N, Hansford K. Detection of Babesia species in questing Ixodes ricinus ticks in England and Wales. Ticks Tick Borne Dis 2024; 15:102291. [PMID: 38061320 DOI: 10.1016/j.ttbdis.2023.102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023]
Abstract
Babesiosis, a disease in humans and animals is caused by piroplasms from the genus Babesia and is transmitted by ixodid ticks. Bovine babesiosis, commonly called redwater fever, is reported in cattle from many regions of the British Isles. The presence of Babesia in questing ticks in the United Kingdom (UK) and its potential impact on public and animal health has not been widely studied. Therefore, this study aimed to assess the presence of Babesia spp. in England and Wales using ticks collected over a six-year period. Questing Ixodes ricinus nymphs were collected at 20 recreational areas between 2014 and 2019 and screened for Babesia. Of 3912 nymphs tested, Babesia spp. were detected in 15, giving an overall prevalence of 0.38% [95%CI: 0.21-0.63%]. A number of Babesia species were identified including B. venatorum (n = 9), B. divergens/capreoli (n = 5) and B. odocoilei-like species (n = 1). Based on the low prevalence of Babesia detected in questing I. ricinus nymphs in the recreational areas studied, the likelihood of exposure to Babesia-infected ticks is lower compared to other pathogens more widely studied in the UK (e.g. Borrelia burgdorferi s.l.). However, localized areas of elevated risk may occur in pockets in England and Wales.
Collapse
Affiliation(s)
- Sara Gandy
- Medical Entomology and Zoonoses Ecology, UK Health Security Agency, Porton Down, United Kingdom.
| | - Jolyon Medlock
- Medical Entomology and Zoonoses Ecology, UK Health Security Agency, Porton Down, United Kingdom; NIHR Health Protection Research Unit in Environmental Change and Health, United Kingdom
| | - Benjamin Cull
- Medical Entomology and Zoonoses Ecology, UK Health Security Agency, Porton Down, United Kingdom
| | - Rob Smith
- Health Protection Division, Public Health Wales, Cardiff, United Kingdom
| | - Zoë Gibney
- Emerging Infections and Zoonoses Team, UK Health Security Agency, United Kingdom
| | | | - Insiyah Parekh
- Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Sophie Harding
- Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Nicholas Johnson
- Animal and Plant Health Agency, Addlestone, United Kingdom; Faculty of Health and Medicine, University of Surrey, Guildford, United Kingdom
| | - Kayleigh Hansford
- Medical Entomology and Zoonoses Ecology, UK Health Security Agency, Porton Down, United Kingdom
| |
Collapse
|
6
|
Septfons A, Rigaud E, Bénézet L, Velay A, Zilliox L, Baldinger L, Gonzalez G, Figoni J, de Valk H, Deffontaines G, Desenclos JC, Jaulhac B. Seroprevalence for Borrelia burgdorferi sensu lato and tick-borne encephalitis virus antibodies and associated risk factors among forestry workers in northern France, 2019 to 2020. Euro Surveill 2023; 28:2200961. [PMID: 37561054 PMCID: PMC10416575 DOI: 10.2807/1560-7917.es.2023.28.32.2200961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/25/2023] [Indexed: 08/11/2023] Open
Abstract
BackgroundLyme borreliosis (LB) is the most common tick-borne disease (TBD) in France. Forestry workers are at high risk of TBD because of frequent exposure to tick bites.AimWe aimed to estimate the seroprevalence of Borrelia burgdorferi sensu lato and tick-borne encephalitis virus (TBEV) antibodies among forestry workers in northern France. We compared seroprevalence by geographical area and assessed factors associated with seropositivity.MethodsBetween 2019 and 2020, we conducted a randomised cross-sectional seroprevalence survey. Borrelia burgdorferi sl seropositivity was defined as positive ELISA and positive or equivocal result in western blot. Seropositivity for TBEV was defined as positive result from two ELISA tests, confirmed by serum neutralisation. We calculated weighted seroprevalence and adjusted prevalence ratios to determine association between potential risk factors and seropositivity.ResultsA total of 1,778 forestry workers participated. Seroprevalence for B. burgdorferi sl was 15.5% (95% confidence interval (CI): 13.9-17.3), 3.5 times higher in the eastern regions than in the western and increased with seniority and with weekly time in a forest environment. Seroprevalence was 2.5 times higher in forestry workers reporting a tick bite during past years and reporting usually not removing ticks rapidly. Seroprevalence for TBEV was 0.14% (95% CI: 0.05-0.42).ConclusionWe assessed for the first time seroprevalence of B. burgdorferi sl and TBEV antibodies among forestry workers in northern France. These results will be used, together with data on LB and tick-borne encephalitis (TBE) incidence and on exposure to tick-bites, to target prevention programmes.
Collapse
Affiliation(s)
- Alexandra Septfons
- These authors contributed equally to the work and share first authorship
- Santé publique France, Saint-Maurice, France
| | - Emma Rigaud
- These authors contributed equally to the work and share first authorship
- Caisse Centrale de la Mutualité Sociale Agricole, Bobigny, France
| | | | - Aurelie Velay
- Virology Laboratory, University Hospital of Strasbourg, Strasbourg, France
| | - Laurence Zilliox
- French National Reference Center for Borrelia, University Hospital of Strasbourg, Strasbourg, France
| | - Lisa Baldinger
- French National Reference Center for Borrelia, University Hospital of Strasbourg, Strasbourg, France
| | - Gaëlle Gonzalez
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, Maisons-Alfort, France
| | | | | | | | | | - Benoit Jaulhac
- Institut de Bactériologie, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, Strasbourg, France
- French National Reference Center for Borrelia, University Hospital of Strasbourg, Strasbourg, France
| |
Collapse
|
7
|
Wodecka B, Kolomiiets V. Genetic Diversity of Borreliaceae Species Detected in Natural Populations of Ixodes ricinus Ticks in Northern Poland. Life (Basel) 2023; 13:life13040972. [PMID: 37109501 PMCID: PMC10143352 DOI: 10.3390/life13040972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
In Europe, Ixodes ricinus tick is the vector of Lyme disease spirochetes and their relatives (Borreliella genus) and Borrelia miyamotoi. However, a newly described tick I. inopinatus with similar biological features and separated from I. ricinus may act as a vector for different Borrelia species. To date, eleven Borreliella species were detected in the natural populations of I. ricinus. Recently, two North American species have been detected in ticks parasitizing bats and red foxes in Europe, i.e., B. lanei and B. californiensis pointing to the necessity for searching for them in natural tick populations. In this study, using the coxI molecular marker only I. ricinus was identified in field-collected ticks with the exception of individual specimens of Haemaphysalis concinna. Using the flaB gene and mag-trnI intergenic spacer as molecular markers 14 Borreliaceae species have been detected with various frequencies in different parts of northern Poland. Among infected ticks, the most frequent were Borreliella (Bl.) afzelii (29.4%) and Bl. garinii (20.0%), followed by Bl. spielmanii, Bl. valaisiana, Bl. lanei, Bl. californiensis, B. miyamotoi, Bl. burgdorferi, Bl. carolinensis, Bl. americana, B. turcica, Bl. lusitaniae, Bl. bissettiae and Bl. finlandensis. Three of the above-mentioned species, i.e., Bl. lanei, Bl. californiensis and B. turcica were detected in this study for the first time in the natural ixodid tick population in Europe. The existence of the newly detected spirochetes increases their total diversity in Europe and points to the necessity of careful identification and establishment of the actual distribution of all Borreliaceae species transmitted by I. ricinus.
Collapse
Affiliation(s)
- Beata Wodecka
- Department of Genetics and Genomics, Institute of Biology, Szczecin University, 71-415 Szczecin, Poland
| | - Valentyna Kolomiiets
- Department of Genetics and Genomics, Institute of Biology, Szczecin University, 71-415 Szczecin, Poland
| |
Collapse
|
8
|
Almeida H, López-Bernús A, Rodríguez-Alonso B, Alonso-Sardón M, Romero-Alegría Á, Velasco-Tirado V, Pardo-Lledías J, Muro A, Belhassen-García M. Is babesiosis a rare zoonosis in Spain? Its impact on the Spanish Health System over 23 years. PLoS One 2023; 18:e0280154. [PMID: 36730346 PMCID: PMC9894430 DOI: 10.1371/journal.pone.0280154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/21/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Babesiosis is a zoonosis caused by an intraerythrocytic protozoan of the genus Babesia and transmitted mainly by ticks of the Ixodes spp. complex. There is no comprehensive global incidence in the literature, although the United States, Europe and Asia are considered to be endemic areas. In Europe, the percentage of ticks infected with Babesia spp. ranges from 0.78% to 51.78%. The incidence of babesiosis in hospitalized patients in Spain is 2.35 cases per 10,000,000 inhabitants/year. The mortality rate is estimated to be approximately 9% in hospitalized patients but can reach 20% if the disease is transmitted by transfusion. OBJECTIVE To analyze the epidemiological impact of inpatients diagnosed with babesiosis on the National Health System (NHS) of Spain between 1997 and 2019. METHODOLOGY A retrospective longitudinal descriptive study that included inpatients diagnosed with babesiosis [ICD-9-CM code 088.82, ICD-10 code B60.0, cases ap2016-2019] in public Spanish NHS hospitals between 1 January 1997 and 31 December 2019 was developed. Data were obtained from the minimum basic dataset (CMBD in Spanish), which was provided by the Ministerio de Sanidad, Servicios Sociales e Igualdad after the receipt of a duly substantiated request and the signing of a confidentiality agreement. MAIN FINDINGS Twenty-nine inpatients diagnosed with babesiosis were identified in Spain between 1997 and 2019 (IR: 0.28 cases/10,000,000 person-years). A total of 82.8% of the cases were men from urban areas who were approximately 46 years old. The rate of primary diagnoses was 55.2% and the number of readmissions was 79.3%. The mean hospital stay was 20.3±19.2 days, with an estimated cost of €186,925.66. Two patients, both with secondary diagnoses of babesiosis, died in our study. CONCLUSIONS Human babesiosis is still a rare zoonosis in Spain, with an incidence rate that has been increasing over the years. Most cases occurred in middle-aged men from urban areas between summer and autumn. The Castilla-La-Mancha and Extremadura regions recorded the highest number of cases. Given the low rate of primary diagnoses (55.2%) and the high number of readmissions (79.3%), a low clinical suspicion is likely. There was a 6.9% mortality in our study. Both patients who died were patients with secondary diagnoses of the disease.
Collapse
Affiliation(s)
- Hugo Almeida
- Servicio de Medicina Interna, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Amparo López-Bernús
- Servicio de Medicina Interna, Hospital Universitario de Salamanca, Salamanca, Spain
| | | | | | | | | | - Javier Pardo-Lledías
- Servicio de Medicina Interna, Hospital Marques de Valdecilla, Universidad de Cantabria, IDIVAL (Instituto de Investigación Valdecilla), Santander, Spain
| | - Antonio Muro
- Grupo de Enfermedades Infecciosas y Tropicales (e-INTRO), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Moncef Belhassen-García
- Servicio de Medicina Interna, Hospital Universitario de Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
9
|
Ghafar A, Davies N, Tadepalli M, Breidahl A, Death C, Haros P, Li Y, Dann P, Cabezas-Cruz A, Moutailler S, Foucault-Simonin A, Gauci CG, Stenos J, Hufschmid J, Jabbar A. Unravelling the Diversity of Microorganisms in Ticks from Australian Wildlife. Pathogens 2023; 12:153. [PMID: 36839425 PMCID: PMC9967841 DOI: 10.3390/pathogens12020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Ticks and tick-borne pathogens pose a significant threat to the health and welfare of humans and animals. Our knowledge about pathogens carried by ticks of Australian wildlife is limited. This study aimed to characterise ticks and tick-borne microorganisms from a range of wildlife species across six sites in Victoria, Australia. Following morphological and molecular characterisation (targeting 16S rRNA and cytochrome c oxidase I), tick DNA extracts (n = 140) were subjected to microfluidic real-time PCR-based screening for the detection of microorganisms and Rickettsia-specific real-time qPCRs. Five species of ixodid ticks were identified, including Aponomma auruginans, Ixodes (I.) antechini, I. kohlsi, I. tasmani and I. trichosuri. Phylogenetic analyses of 16S rRNA sequences of I. tasmani revealed two subclades, indicating a potential cryptic species. The microfluidic real-time PCR detected seven different microorganisms as a single (in 13/45 ticks) or multiple infections (27/45). The most common microorganisms detected were Apicomplexa (84.4%, 38/45) followed by Rickettsia sp. (55.6%, 25/45), Theileria sp. (22.2% 10/45), Bartonella sp. (17.8%, 8/45), Coxiella-like sp. (6.7%, 3/45), Hepatozoon sp. (2.2%, 1/45), and Ehrlichia sp. (2.2%, 1/45). Phylogenetic analyses of four Rickettsia loci showed that the Rickettsia isolates detected herein potentially belonged to a novel species of Rickettsia. This study demonstrated that ticks of Australian wildlife carry a diverse array of microorganisms. Given the direct and indirect human-wildlife-livestock interactions, there is a need to adopt a One Health approach for continuous surveillance of tick-associated pathogens/microorganisms to minimise the associated threats to animal and human health.
Collapse
Affiliation(s)
- Abdul Ghafar
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC 3030, Australia
| | - Nick Davies
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC 3030, Australia
| | - Mythili Tadepalli
- Australian Rickettsial Reference Laboratory, Barwon Health, Geelong, VIC 3220, Australia
| | - Amanda Breidahl
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC 3030, Australia
| | - Clare Death
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC 3030, Australia
| | - Philip Haros
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC 3030, Australia
| | - Yuting Li
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC 3030, Australia
| | - Peter Dann
- Research Department, Phillip Island Nature Park, P.O. Box 97, Cowes, VIC 3922, Australia
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France
| | - Sara Moutailler
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France
| | - Angélique Foucault-Simonin
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France
| | - Charles G. Gauci
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC 3030, Australia
| | - John Stenos
- Australian Rickettsial Reference Laboratory, Barwon Health, Geelong, VIC 3220, Australia
| | - Jasmin Hufschmid
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC 3030, Australia
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC 3030, Australia
| |
Collapse
|
10
|
15-year Borrelia prevalence and species distribution monitoring in Ixodes ricinus/inopinatus populations in the city of Hanover, Germany. Ticks Tick Borne Dis 2023; 14:102074. [PMID: 36335680 DOI: 10.1016/j.ttbdis.2022.102074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/16/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Lyme borreliosis, caused by Borrelia burgdorferi sensu lato (s.l.) spirochaetes, is the most common tick-borne disease (TBD) in the Northern Hemisphere. Rising incidences indicate that its epidemiology may be affected by global changes. Therefore, the current study aimed to assess changes in tick infection rates with Borrelia spp. over a 15-year monitoring period in the city of Hanover, Germany, as a follow-up to previous prevalence studies (years 2005, 2010 and 2015). To assess the epidemiological risk, ticks of the Ixodes ricinus/inopinatus-complex were sampled from April to October 2020 by the flagging method at 10 frequently visited recreation areas in Hanover. Analysis by quantitative real-time PCR of 2100 individual ticks revealed an overall Borrelia prevalence of 25.5% (535/2100). Regarding different tick developmental stages, nymphs showed a significantly lower Borrelia prevalence (18.4% [193/1050]) than adult ticks (32.6% [342/1050]). Comparison with previous years revealed a stable total Borrelia prevalence along with consistent infection rates in the different developmental stages over the 15-year monitoring period. Borrelia species differentiation by Reverse Line Blot was successful in 67.3% of positive ticks collected in 2020, with B. afzelii being the dominating species (59.2% of the differentiated infections), besides B. burgdorferi sensu stricto (s.s.), B. garinii, B. valaisiana, B. spielmanii, B. bavariensis and B. bissettiae and the relapsing fever spirochaete B. miyamotoi. Additionally, the proportion of infections attributed to B. afzelii showed a significant increase in 2020 compared to 2005 and 2015 (59.2% vs. 37.6% and 32.0% of successfully differentiated infections, respectively). Coinfections with Anaplasma phagocytophilum and Rickettsia spp. stayed stable comparing 2020 with previous years. Therefore, although changes in the Borrelia prevalence in questing ticks were not observed throughout the 15-year monitoring period, shifts in Borrelia species distribution may alter the epidemiological risk.
Collapse
|
11
|
Wodecka B, Michalik J, Grochowalska R. Red Foxes ( Vulpes vulpes) Are Exposed to High Diversity of Borrelia burgdorferi Sensu Lato Species Infecting Fox-Derived Ixodes Ticks in West-Central Poland. Pathogens 2022; 11:pathogens11060696. [PMID: 35745549 PMCID: PMC9229790 DOI: 10.3390/pathogens11060696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
The role of red fox, Vulpes vulpes, and its associated ticks in maintaining Borrelia burgdorferi sensu lato (s.l.) was studied. A total of 1583 ticks were removed from ears of 120 infested animals and were identified as species using a nested PCR targeting the ITS2 and coxI fragments of Ixodes DNA. Ixodes kaiseri prevailed (76%), followed by I. canisuga, I. ricinus, and I. hexagonus. In total, 32.4% of 943 ticks revealed Borrelia DNA and 10 species of B. burgdorferi s.l. complex were identified. Borrelia garinii and B. afzelii comprised 70% of all infections. The other eight species included B. americana, B. bissettiae, B. burgdorferi sensu stricto (s.s.), B. californiensis, B. carolinensis, B. lanei, B. spielmanii, and B. valaisiana. Analysis of tissues from 243 foxes showed that 23.5% were infected with B. burgdorferi s.l. Borrelia garinii was detected in 91% of the infected animals, including 31% of mixed infections with B. afzelii, the second most prevalent species, followed by B. spielmanii. The predominance of B. garinii in PCR-positive animals and infected larval ticks (38.1%), suggests that this spirochete and B. afzelii are preferentially associated with foxes. Although red foxes are exposed to a high diversity of B. burgdorferi s.l. species found in engorged Ixodes ticks, their reservoir competence for most of them appears to be low.
Collapse
Affiliation(s)
- Beata Wodecka
- Department of Genetics and Genomics, Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
- Correspondence:
| | - Jerzy Michalik
- Department of Animal Morphology, Faculty of Biology, Adam Mickiewicz University, 61-712 Poznań, Poland;
| | - Renata Grochowalska
- Department of Biotechnology, Faculty of Biological Sciences, University of Zielona Góra, 65-516 Zielona Góra, Poland;
| |
Collapse
|
12
|
Sevestre J, Diarra AZ, Oumarou HA, Durant J, Delaunay P, Parola P. Detection of emerging tick-borne disease agents in the Alpes-Maritimes region, southeastern France. Ticks Tick Borne Dis 2021; 12:101800. [PMID: 34352531 DOI: 10.1016/j.ttbdis.2021.101800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 11/19/2022]
Abstract
Lyme borreliosis is a zoonotic tick-borne infection representing the most frequent vector-borne disease in the northern hemisphere. The Mediterranean rim is generally described as unsuitable for the European vector, Ixodes ricinus. We conducted an epidemiological study to assess whether I. ricinus was present and study its infection status for tick-borne bacteria. Ticks originating from southeastern France were obtained from flagging sampling and removed from animals and tick-bitten patients. Species level identification used morphological keys and MALDI-TOF MS. Quantitative PCR and sequencing assays were used to detect and identify tick-associated bacteria (Borrelia, Rickettsia, Anaplasmataceae, Bartonella, Coxiella burnetii) in each specimen. A total of 1232 ticks were collected in several localities. Among these, 863 were identified as I. ricinus (70%). Bacterial screening allowed identification of Lyme group Borrelia among I. ricinus ticks originating from various regional areas. Other emerging tick-borne pathogens like Borrelia miyamotoi and Rickettsia species were also detected. The Alpes-Maritimes region, part of the French Riviera, harbours I. ricinus ticks infected with Lyme group Borrelia and several other tick-borne bacterial agents. Clinicians and outdoor activity participants should be aware of the local Lyme borreliosis transmission risk.
Collapse
Affiliation(s)
- Jacques Sevestre
- Service de Parasitologie, Centre Hospitalier Universitaire de Nice, Nice, France; Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13385 Cedex 05, France; Aix-Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Adama Zan Diarra
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13385 Cedex 05, France; Aix-Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | | | - Jacques Durant
- Service d'Infectiologie, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Pascal Delaunay
- Service de Parasitologie, Centre Hospitalier Universitaire de Nice, Nice, France; MIVEGEC, Université de Montpellier, Montpellier, France
| | - Philippe Parola
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13385 Cedex 05, France; Aix-Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.
| |
Collapse
|
13
|
Onyiche TE, Răileanu C, Fischer S, Silaghi C. Global Distribution of Babesia Species in Questing Ticks: A Systematic Review and Meta-Analysis Based on Published Literature. Pathogens 2021; 10:230. [PMID: 33669591 PMCID: PMC7926846 DOI: 10.3390/pathogens10020230] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 01/30/2023] Open
Abstract
Babesiosis caused by the Babesia species is a parasitic tick-borne disease. It threatens many mammalian species and is transmitted through infected ixodid ticks. To date, the global occurrence and distribution are poorly understood in questing ticks. Therefore, we performed a meta-analysis to estimate the distribution of the pathogen. A deep search for four electronic databases of the published literature investigating the prevalence of Babesia spp. in questing ticks was undertaken and obtained data analyzed. Our results indicate that in 104 eligible studies dating from 1985 to 2020, altogether 137,364 ticks were screened with 3069 positives with an estimated global pooled prevalence estimates (PPE) of 2.10%. In total, 19 different Babesia species of both human and veterinary importance were detected in 23 tick species, with Babesia microti and Ixodesricinus being the most widely reported Babesia and tick species, respectively. Regardless of species, adult ticks with 2.60% had the highest infection rates, while larvae had the least with 0.60%. Similarly, female ticks with 4.90% were infected compared to males with 3.80%. Nested-polymerase chain reaction (PCR) 2.80% had the highest prevalence among the molecular techniques employed. In conclusion, results obtained indicate that Babesia species are present in diverse questing tick species at a low prevalence, of which some are competent vectors.
Collapse
Affiliation(s)
- ThankGod E. Onyiche
- Department of Veterinary Parasitology and Entomology, University of Maiduguri, P. M. B. 1069, Maiduguri 600230, Nigeria;
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (C.R.); (S.F.)
| | - Cristian Răileanu
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (C.R.); (S.F.)
| | - Susanne Fischer
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (C.R.); (S.F.)
| | - Cornelia Silaghi
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (C.R.); (S.F.)
- Department of Biology, University of Greifswald, Domstrasse 11, 17489 Greifswald, Germany
| |
Collapse
|
14
|
Sacristán C, das Neves CG, Suhel F, Sacristán I, Tengs T, Hamnes IS, Madslien K. Bartonella spp. detection in ticks, Culicoides biting midges and wild cervids from Norway. Transbound Emerg Dis 2020; 68:941-951. [PMID: 32757355 DOI: 10.1111/tbed.13762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/02/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
Bartonella spp. are fastidious, gram-negative, aerobic, facultative intracellular bacteria that infect humans, and domestic and wild animals. In Norway, Bartonella spp. have been detected in cervids, mainly within the distribution area of the arthropod vector deer ked (Lipoptena cervi). We used PCR to survey the prevalence of Bartonella spp. in blood samples from 141 cervids living outside the deer ked distribution area (moose [Alces alces, n = 65], red deer [Cervus elaphus, n = 41] and reindeer [Rangifer tarandus, n = 35]), in 44 pool samples of sheep tick (Ixodes ricinus, 27 pools collected from 74 red deer and 17 from 45 moose) and in biting midges of the genus Culicoides (Diptera: Ceratopogonidae, 120 pools of 6,710 specimens). Bartonella DNA was amplified in moose (75.4%, 49/65) and in red deer (4.9%, 2/41) blood samples. All reindeer were negative. There were significant differences in Bartonella prevalence among the cervid species. Additionally, Bartonella was amplified in two of 17 tick pools collected from moose and in 3 of 120 biting midge pool samples. The Bartonella sequences amplified in moose, red deer and ticks were highly similar to B. bovis, previously identified in cervids. The sequence obtained from biting midges was only 81.7% similar to the closest Bartonella spp. We demonstrate that Bartonella is present in moose across Norway and present the first data on northern Norway specimens. The high prevalence of Bartonella infection suggests that moose could be the reservoir for this bacterium. This is the first report of bacteria from the Bartonella genus in ticks from Fennoscandia and in Culicoides biting midges worldwide.
Collapse
Affiliation(s)
| | | | | | - Irene Sacristán
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Torstein Tengs
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | | | |
Collapse
|
15
|
Monitoring of ticks and tick-borne pathogens through a nationwide research station network in Finland. Ticks Tick Borne Dis 2020; 11:101449. [PMID: 32723639 DOI: 10.1016/j.ttbdis.2020.101449] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 12/30/2022]
Abstract
In 2015 a long-term, nationwide tick and tick-borne pathogen (TBP) monitoring project was started by the Finnish Tick Project and the Finnish Research Station network (RESTAT), with the goal of producing temporally and geographically extensive data regarding exophilic ticks in Finland. In the current study, we present results from the first four years of this collaboration. Ticks were collected by cloth dragging from 11 research stations across Finland in May-September 2015-2018 (2012-2018 in Seili). Collected ticks were screened for twelve different pathogens by qPCR: Borrelia afzelii, Borrelia garinii, Borrelia valaisiana, Borrelia burgdorferi sensu stricto, Borrelia miyamotoi, Babesia spp., Anaplasma phagocytophilum, Rickettsia spp., Candidatus Neoehrlichia mikurensis, Francisella tularensis, Bartonella spp. and tick-borne encephalitis virus (TBEV). Altogether 15 067 Ixodes ricinus and 46 Ixodes persulcatus were collected during 68 km of dragging. Field collections revealed different seasonal activity patterns for the two species. The activity of I. persulcatus adults (only one nymph detected) was unimodal, with activity only in May-July, whereas Ixodes ricinus was active from May to September, with activity peaks in September (nymphs) or July-August (adults). Overall, tick densities were higher during the latter years of the study. Borrelia burgdorferi sensu lato were the most common pathogens detected, with 48.9 ± 8.4% (95% Cl) of adults and 25.3 ± 4.4% of nymphs carrying the bacteria. No samples positive for F. tularensis, Bartonella or TBEV were detected. This collaboration project involving the extensive Finnish Research Station network has ensured enduring and spatially extensive, long-term tick data collection to the foreseeable future.
Collapse
|
16
|
Borrelia prevalence and species distribution in ticks removed from humans in Germany, 2013-2017. Ticks Tick Borne Dis 2019; 11:101363. [PMID: 31987819 DOI: 10.1016/j.ttbdis.2019.101363] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/11/2019] [Accepted: 12/21/2019] [Indexed: 12/15/2022]
Abstract
Lyme borreliosis caused by spirochaetes of the Borrelia burgdorferi sensu lato (s.l.) complex is the most common tick-borne disease in Europe. In addition, the relapsing-fever spirochaete Borrelia miyamotoi, which has been associated with febrile illness and meningoencephalitis in immunocompromised persons, is present in Europe. This study investigated Borrelia prevalence and species distribution in ticks removed from humans and sent as diagnostic material to the Institute for Parasitology, University of Veterinary Medicine Hannover, in 2013-2017. A probe-based real-time PCR was carried out and Borrelia-positive samples were subjected to species determination by reverse line blot (RLB), including a B. miyamotoi-specific probe. The overall Borrelia-infection rate as determined by real-time PCR was 20.02 % (510/2547, 95 % CI: 18.48-21.63 %), with annual prevalences ranging from 17.17 % (90/524, 95 % CI: 14.04-20.68 %) in 2014 to 24.12 % (96/398, 95 % CI: 19.99-28.63 %) in 2015. In total, 271/475 (57.1 %) positive samples available for RLB were successfully differentiated. Borrelia afzelii was detected in 30.53 % of cases (145/475, 95 % CI: 26.41-34.89), followed by B. garinii/B. bavariensis (13.26 % [63/475], 95 % CI: 10.34-16.65). Borrelia valaisiana occurred in 5.89 % (28/475, 95 % CI: 3.95-8.41), B. spielmanii in 4.63 % (22/475, 95 % CI: 2.93-6.93), B. burgdorferi sensu stricto (s.s.)/B. carolinensis in 2.32 % (11/475, 95 % CI: 1.16-4.11), B. lusitaniae in 0.63 % (3/475, 95 % CI: 0.13-1.83) and B. bisettiae in 0.42 % (2/475, 95 % CI: 0.05-1.51) of positive ticks. Borrelia kurtenbachii was not detected, while B. miyamotoi was identified in 7.37 % (35/475, 95 % CI: 5.19-10.10) of real-time PCR-positive samples. Sanger sequencing of B. garinii/B. bavariensis-positive ticks revealed that the majority were B. garinii-infections (50/52 successfully amplified samples), while only 2 ticks were infected with B. bavariensis. Furthermore, 6/12 B. burgdorferi s.s./B. carolinensis-positive samples could be differentiated; all of them were identified as B. burgdorferi sensu stricto. Thirty-nine ticks (8.21 %, 95 % CI: 5.90-11.05) were coinfected with two different species. Comparison of the species distribution between ticks removed from humans in 2015 and questing ticks collected in the same year and the same area revealed a significantly higher B. afzelii-prevalence in diagnostic tick samples than in questing ticks, confirming previous observations. The obtained data indicate that Borrelia prevalence fluctuated in the same range as observed in a previous study, analysing the period from 2006 to 2012. Detection of B. miyamotoi in 7.37 % of Borrelia-positive samples points to the fact that clinicians should be aware of this pathogen as a differential diagnosis in cases of febrile illness.
Collapse
|
17
|
Michalik J, Wodecka B, Liberska J, Dabert M, Postawa T, Piksa K, Stańczak J. Diversity of Borrelia burgdorferi sensu lato species in Ixodes ticks (Acari: Ixodidae) associated with cave-dwelling bats from Poland and Romania. Ticks Tick Borne Dis 2019; 11:101300. [PMID: 31631051 DOI: 10.1016/j.ttbdis.2019.101300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/26/2019] [Accepted: 09/18/2019] [Indexed: 10/26/2022]
Abstract
Bats comprise one quarter of the world's mammal species. In Europe, three nidicolous Ixodes tick species, I. vespertilionis, I. simplex and I. ariadnae are specifically associated with cave-dwelling bats, but their role as potential vectors of zoonotic agents is unknown. In this study, we used PCR-based methods to provide the first evidence of Borrelia burgdorferi sensu lato (s.l.) infections in the three bat-associated tick species collected from ten bat species sampled in Poland and Romania. B. burgdorferi s.l. was detected in 24% (64/266) of tick samples, and 40.3% (60/149) of the bats carried infected chiropterophilic ticks. In Poland, the B. burgdorferi s.l. infection prevelance of I. ariadnae ticks parasitizing Myotis species was four times higher compared to the I. vespertilionis ticks derived from Rhinolophus hipposideros bats (44.4% vs.10%, respectively). The observed differences in infection prevalence could be explained by differences in reservoir potential between bat species. Bats from the genus Myotis and Miniopterus schreibersii carried more infected ticks than R. hipposideros regardless of the tick species. Analysis of the flaB gene sequences revealed seven species from the B. burgdorferi s.l. complex (B. afzelii, B. carolinensis, B. garinii, B. lanei, B. spielmanii, B. burgdorferi s.s., and B. valaisiana), of which five are considered as human pathogens. This large diversity of Borrelia species may reflect differences in susceptibility of chiropteran hosts and/or the tick vectors. Generally, mammal-associated B. burgdorferi s.l. species were more common than bird-associated species. Our study provides evidence for new enzootic transmission cycles of B. burgdorferi s.l. spirochetes involving nidicolous Ixodes tick species and cave-dwelling bats.
Collapse
Affiliation(s)
- Jerzy Michalik
- Department of Animal Morphology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.
| | - Beata Wodecka
- Department of General and Molecular Genetics, Faculty of Biology, Szczecin University, Szczecin, Poland
| | - Justyna Liberska
- Molecular Biology Techniques Lab., Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Mirosława Dabert
- Molecular Biology Techniques Lab., Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Tomasz Postawa
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Krzysztof Piksa
- Department of Vertebrate Zoology and Human Biology, Institute of Biology, Cracow Pedagogical University, Kraków, Poland
| | - Joanna Stańczak
- Department of Tropical Parasitology, Medical University of Gdańsk, Gdynia, Poland
| |
Collapse
|
18
|
Sormunen JJ, Klemola T, Hänninen J, Mäkelä S, Vuorinen I, Penttinen R, Sääksjärvi IE, Vesterinen EJ. The importance of study duration and spatial scale in pathogen detection-evidence from a tick-infested island. Emerg Microbes Infect 2018; 7:189. [PMID: 30482899 PMCID: PMC6258729 DOI: 10.1038/s41426-018-0188-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/24/2018] [Accepted: 10/21/2018] [Indexed: 12/11/2022]
Abstract
Ticks (Acari: Ixodoidea) are among the most common vectors of zoonotic pathogens worldwide. While research on tick-borne pathogens is abundant, few studies have thoroughly investigated small-scale spatial differences in their occurrence. Here, we used long-term cloth-dragging data of Ixodes ricinus and its associated, known and putative pathogens (Borrelia burgdorferi s.l., Borrelia miyamotoi, Anaplasma phagocytophilum, Rickettsia spp., Candidatus Neoehrlichia mikurensis, Bartonella spp., Babesia spp., and tick-borne encephalitis virus, TBEV) from a small, well-studied island in southwestern Finland to analyze potential temporal and spatial differences in pathogen prevalence and diversity between and within different biotopes. We found robust evidence indicating significant dissimilarities in B. burgdorferi s.l., A. phagocytophilum, Rickettsia, and Ca. N. mikurensis prevalence, even between proximal study areas on the island. Moreover, during the 6 years of the ongoing study, we witnessed the possible emergence of TBEV and Ca. N. mikurensis on the island. Finally, the stable occurrence of a protozoan pathogen that has not been previously reported in Finland, Babesia venatorum, was observed on the island. Our study underlines the importance of detailed, long-term tick surveys for public health. We propose that by more precisely identifying different environmental factors associated with the emergence and upkeep of enzootic pathogen populations through rigorous longitudinal surveys, we may be able to create more accurate models for both current and future pathogen distributions.
Collapse
Affiliation(s)
- Jani Jukka Sormunen
- Department of Biology, University of Turku, FI-20014, Turku, Finland. .,Biodiversity Unit, University of Turku, FI-20014, Turku, Finland.
| | - Tero Klemola
- Department of Biology, University of Turku, FI-20014, Turku, Finland
| | - Jari Hänninen
- Biodiversity Unit, University of Turku, FI-20014, Turku, Finland
| | - Satu Mäkelä
- Department of Biology, University of Turku, FI-20014, Turku, Finland
| | - Ilppo Vuorinen
- Biodiversity Unit, University of Turku, FI-20014, Turku, Finland
| | - Ritva Penttinen
- Biodiversity Unit, University of Turku, FI-20014, Turku, Finland
| | | | - Eero Juhani Vesterinen
- Biodiversity Unit, University of Turku, FI-20014, Turku, Finland.,Deparment of Agricultural Sciences, University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
19
|
Regional prevalences of Borrelia burgdorferi, Borrelia bissettiae, and Bartonella henselae in Ixodes affinis, Ixodes pacificus and Ixodes scapularis in the USA. Ticks Tick Borne Dis 2018; 10:360-364. [PMID: 30503356 DOI: 10.1016/j.ttbdis.2018.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 11/22/2022]
Abstract
The objective of this work was to determine the prevalence of Borrelia and Bartonella species in Ixodes spp. ticks collected from 16 USA states. Genus PCR amplification and sequence analysis of Bartonella and Borrelia 16SsRNA-23SsRNA intergenic regions were performed on DNA extracted from 929 questing adult ticks (671 Ixodes scapularis, 155 Ixodes affinis, and 103 Ixodes pacificus). Overall, 129/929 (13.9%) Ixodes ticks were PCR positive for Borrelia burgdorferi sensu stricto, 48/929 for B. bissettiae whereas 23/929 (2.5%) were PCR positive for a Bartonella henselae. Borrelia bissettiae or B. burgdorferi s.s. and B. henselae co-infections were found in I. affinis from North Carolina at a rate of 4.5%; in a single I. scapularis from Minnesota, but not in I. pacificus. For both bacterial genera, PCR positive rates were highly variable depending on geographic location and tick species, with Ixodes affinis (n = 155) collected from North Carolina, being the tick species with the highest prevalence's for both Borrelia spp. (63.2%) and B. henselae (10.3%). Based on the results of this and other published studies, improved understanding of the enzootic cycle, transmission dynamics, and vector competence of Ixodes species (especially I. affinis) for transmission of Borrelia spp. and B. henselae should be a public health research priority.
Collapse
|
20
|
Cafiso A, Sassera D, Romeo C, Serra V, Hervet C, Bandi C, Plantard O, Bazzocchi C. Midichloria mitochondrii, endosymbiont of Ixodes ricinus: evidence for the transmission to the vertebrate host during the tick blood meal. Ticks Tick Borne Dis 2018; 10:5-12. [PMID: 30154059 DOI: 10.1016/j.ttbdis.2018.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/16/2018] [Accepted: 08/08/2018] [Indexed: 01/16/2023]
Abstract
Ticks are important vectors of a variety of pathogens affecting humans and other animals, but they also harbor numerous microorganisms whose role is still limitedly investigated. Ixodes ricinus harbors the endosymbiont Midichloria mitochondrii, which is localized in ovaries and in salivary glands. The bacterium is vertically transmitted and is present in 100% of wild adult females, while prevalence values drop after some generations under laboratory conditions. Molecular and serological evidences showed that M. mitochondrii molecules are transmitted to the vertebrate hosts by I. ricinus during the blood meal. Our work was focused on monitoring M. mitochondrii antigens and DNA in a vertebrate model after infestation with I. ricinus for a time-span of four months. Two groups of rabbits were infested with I. ricinus females, respectively from the wild (naturally infected with the symbiont) and laboratory strain (lab; considered devoid of M. mitochondrii after quantitative PCR investigations) and screened using molecular and serological assays at nine time points. M. mitochondrii presence was detected in rabbits infested with wild I. ricinus ticks, but surprisingly also in those infested with lab ticks, albeit at later time points. This result prompted a more sensitive molecular screening of lab ticks, which were found to harbor very low symbiont loads. Our results indicate that transmission of the bacterium occurs even at low bacterial loads, and that antibody response against M. mitochondrii antigens begins within one week post-infestation with wild I. ricinus. Circulating DNA was detected in the blood of rabbits belonging to both groups up to the end of the experiment, suggesting a replication of the symbiont inside the vertebrate host.
Collapse
Affiliation(s)
- Alessandra Cafiso
- Department of Veterinary Medicine, University of Milan, Via Celoria 10, 20133 Milan, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Claudia Romeo
- Department of Veterinary Medicine, University of Milan, Via Celoria 10, 20133 Milan, Italy
| | - Valentina Serra
- Department of Veterinary Medicine, University of Milan, Via Celoria 10, 20133 Milan, Italy
| | - Caroline Hervet
- BIOEPAR, INRA, Oniris, Université Bretagne Loire, 44307 Nantes, France
| | - Claudio Bandi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, 20133 Milan, Italy
| | - Olivier Plantard
- BIOEPAR, INRA, Oniris, Université Bretagne Loire, 44307 Nantes, France
| | - Chiara Bazzocchi
- Department of Veterinary Medicine, University of Milan, Via Celoria 10, 20133 Milan, Italy; Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, 20133 Milan, Italy; Coordinated Research Center "EpiSoMI", University of Milan, 20133 Milan, Italy.
| |
Collapse
|
21
|
Blazejak K, Janecek E, Strube C. A 10-year surveillance of Rickettsiales (Rickettsia spp. and Anaplasma phagocytophilum) in the city of Hanover, Germany, reveals Rickettsia spp. as emerging pathogens in ticks. Parasit Vectors 2017; 10:588. [PMID: 29179774 PMCID: PMC5704456 DOI: 10.1186/s13071-017-2537-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/14/2017] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Rickettsiales (Rickettsia spp. and Anaplasma phagocytophilum) transmitted by ticks are considered (re-)emerging pathogens posing a risk to public health. Nevertheless, year-long monitoring studies on prevalences of these pathogens in questing ticks to contribute to public health risk assessment are rare. METHODS The current study extends previous prevalence surveillances (2005 and 2010) by 2015 to a 10-year monitoring. Therefore, 2100 questing Ixodes ricinus were collected from April to October 2015 at ten different recreation sites in the city of Hanover, Germany, to determine potential changes in tick infection rates with Rickettsiales. RESULTS Of the collected ticks, 288 were adult females, 285 adult males and 1527 nymphs. Overall, 3.8% (79/2100) of ticks were infected with A. phagocytophilum, 50.8% (1066/2100) with Rickettsia spp. and 2.2% (46/2100) with both pathogens. Statistical analyses revealed stagnating A. phagocytophilum infection rates over the 10-year monitoring period, whereas Rickettsia infections increased significantly (33.3% in 2005 and 26.2% in 2010 vs 50.8% in 2015). This increase was also characterized by prominent seasonality with higher prevalences from July to October. CONCLUSIONS As increased tick infection rates result in an increased risk for public health, the long-term data reported here provide significant implications for the understanding of progressing Rickettsiales distribution in ticks and essentially contribute to reliable public health risk assessments.
Collapse
Affiliation(s)
- Katrin Blazejak
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Elisabeth Janecek
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| |
Collapse
|
22
|
Raulf MK, Jordan D, Fingerle V, Strube C. Association of Borrelia and Rickettsia spp. and bacterial loads in Ixodes ricinus ticks. Ticks Tick Borne Dis 2017; 9:18-24. [PMID: 29103949 DOI: 10.1016/j.ttbdis.2017.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 11/26/2022]
Abstract
In recent years, awareness of coinfections has increased as synergistic or antagonistic effects on interacting bacteria have been observed. To date, several reports on coinfections of ticks with Rickettsia and Borrelia spp. are available. However, associations are rarely described and studies are based on rather low sample sizes. In the present study, coinfections of Ixodes ricinus with these pathogens were investigated by determining their association in a meta-analysis. A total of 5079 tick samples examined for Rickettsia and Borrelia spp. via probe-based quantitative real-time PCR in previous prevalence studies or as submitted diagnostic material were included. In Borrelia-positive ticks, genospecies were determined by Reverse Line Blot. Determination of bacterial loads resulted in an increase between developmental tick stages with highest mean bacterial loads in female ticks (7.96×104 in Borrelia single-infected, 4.87×105 in Rickettsia single-infected and 3.22×105 in Borrelia-Rickettsia coinfected females). The determined Borrelia-Rickettsia tick coinfection rate was 12.3% (626/5079) with a significant difference to the expected coinfection rate of 9.0% (457/5079). A significant slight association as well as correlation between Borrelia and Rickettsia were determined. In addition, a significant interrelation of the bacterial load in coinfected ticks was shown. At the level of Borrelia genospecies, significant weak associations with Rickettsia spp. were detected for B. afzelii, B. garinii/bavariensis, B. valaisiana and B. lusitaniae. The positive association provides evidence for interactions between Borrelia and Rickettsia spp. in the tick vector, presumably resulting in higher bacterial replication rates in the tick vector and possibly the reservoir host. However, coinfection may impact the vector negatively as indicated by an absent increase in coinfection rates from nymphs to adults. Future studies are needed to investigate the underlying mechanisms of the positive association in ticks and possible associations in the vertebrate host as well as the potential influence of environmental factors.
Collapse
Affiliation(s)
- Marie-Kristin Raulf
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany; Immunology Unit & Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Daniela Jordan
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Volker Fingerle
- German National Reference Centre for Borrelia, Veterinaerstraße 2, 85764 Oberschleissheim, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany.
| |
Collapse
|
23
|
Europe-Wide Meta-Analysis of Borrelia burgdorferi Sensu Lato Prevalence in Questing Ixodes ricinus Ticks. Appl Environ Microbiol 2017; 83:AEM.00609-17. [PMID: 28550059 DOI: 10.1128/aem.00609-17] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/16/2017] [Indexed: 02/07/2023] Open
Abstract
Lyme borreliosis is the most common zoonotic disease transmitted by ticks in Europe and North America. Despite having multiple tick vectors, the causative agent, Borrelia burgdorferisensu lato, is vectored mainly by Ixodes ricinus in Europe. In the present study, we aimed to review and summarize the existing data published from 2010 to 2016 concerning the prevalence of B. burgdorferi sensu lato spirochetes in questing I. ricinus ticks. The primary focus was to evaluate the infection rate of these bacteria in ticks, accounting for tick stage, adult tick gender, region, and detection method, as well as to investigate any changes in prevalence over time. The data obtained were compared to the findings of a previous metastudy. The literature search identified data from 23 countries, with 115,028 ticks, in total, inspected for infection with B. burgdorferi sensu lato We showed that the infection rate was significantly higher in adults than in nymphs and in females than in males. We found significant differences between European regions, with the highest infection rates in Central Europe. The most common genospecies were B. afzelii and B. garinii, despite a negative correlation of their prevalence rates. No statistically significant differences were found among the prevalence rates determined by conventional PCR, nested PCR, and real-time PCR.IMPORTANCEBorrelia burgdorferisensu lato is a pathogenic bacterium whose clinical manifestations are associated with Lyme borreliosis. This vector-borne disease is a major public health concern in Europe and North America and may lead to severe arthritic, cardiovascular, and neurological complications if left untreated. Although pathogen prevalence is considered an important predictor of infection risk, solitary isolated data have only limited value. Here we provide summarized information about the prevalence of B. burgdorferi sensu lato spirochetes among host-seeking Ixodes ricinus ticks, the principal tick vector of borreliae in Europe. We compare the new results with previously published data in order to evaluate any changing trends in tick infection.
Collapse
|
24
|
Waindok P, Schicht S, Fingerle V, Strube C. Lyme borreliae prevalence and genospecies distribution in ticks removed from humans. Ticks Tick Borne Dis 2017; 8:709-714. [PMID: 28528880 DOI: 10.1016/j.ttbdis.2017.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/01/2017] [Accepted: 05/08/2017] [Indexed: 11/17/2022]
Abstract
Lyme borreliosis (LB) is the most important human tick-borne disease, but Borrelia genospecies cause different clinical manifestations. Ticks of the genus Ixodes removed from humans between 2006 and 2012 were analysed for Borrelia burgdorferi sensu lato (sl) infections. The majority of ticks originated from the Greater Hanover region in Northern Germany. The engorgement status varied over the entire spectrum from unengorged (no evidence of started blood feeding) to fully engorged. In the present study, prevalence data for B. burgdorferi sl 2011 and 2012 were obtained by quantitative real-time PCR and compared to those from a former study including years 2006-2010 (Strube et al., 2011) to evaluate B. burgdorferi sl infections in ticks affecting humans over a 7-year period. In 2011, 34.2% (70/205) of adult ticks, 22.2% (94/423) of nymphs, 8.3% of larvae (1/12) as well 3 of 6 not differentiated ticks were Borrelia positive. In 2012, 31.8% (41/129) of adult ticks, 20.4% of nymphs (69/337) as well as 1 of 4 of the not differentiated ticks were determined positive. Total Borrelia infection rates decreased significantly from 23.1% in 2006 to 17.1% in 2010, followed by a significant increase to 26.0% in 2011 and 23.4% in 2012. Furthermore, B. burgdorferi sl genospecies distribution in 2006-2012 was determined in the present study by applying Reverse Line Blot technique. Borrelia genospecies differentiation was successful in 641 (67.3%) out of 953 positive tick samples. The most frequently occurring genospecies was B. afzelii (40.5% of infected ticks), followed by B. garinii/B. bavariensis (12.4%). Amongst the 641 ticks analysed for their genospecies, 74 (11.5%) carried more than one genospecies, of which 69 (10.7%) were double-infected and five (0.8%) were triple-infected. Comparison of genospecies distribution in ticks removed from humans with those from questing ticks flagged in the same geographical area revealed that ticks removed from humans were significantly more frequently infected with B. afzelii (p=0.0004), but significantly less infected with B. burgdorferi sensu stricto (p=0.0001).
Collapse
Affiliation(s)
- Patrick Waindok
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany.
| | - Sabine Schicht
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany.
| | - Volker Fingerle
- German National Reference Centre for Borrelia, Veterinaerstraße 2, 85764 Oberschleissheim, Germany.
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany.
| |
Collapse
|
25
|
Obiegala A, Król N, Oltersdorf C, Nader J, Pfeffer M. The enzootic life-cycle of Borrelia burgdorferi (sensu lato) and tick-borne rickettsiae: an epidemiological study on wild-living small mammals and their ticks from Saxony, Germany. Parasit Vectors 2017; 10:115. [PMID: 28285593 PMCID: PMC5346851 DOI: 10.1186/s13071-017-2053-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/22/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Borrelia burgdorferi (sensu lato) and rickettsiae of the spotted fever group are zoonotic tick-borne pathogens. While small mammals are confirmed reservoirs for certain Borrelia spp., little is known about the reservoirs for tick-borne rickettsiae. Between 2012 and 2014, ticks were collected from the vegetation and small mammals which were trapped in Saxony, Germany. DNA extracted from ticks and the small mammals' skin was analyzed for the presence of Rickettsia spp. and B. burgdorferi (s.l.) by qPCR targeting the gltA and p41 genes, respectively. Partial sequencing of the rickettsial ompB gene and an MLST of B. burgdorferi (s.l.) were conducted for species determination. RESULTS In total, 673 small mammals belonging to eight species (Apodemus agrarius, n = 7; A. flavicollis, n = 214; Microtus arvalis, n = 8; Microtus agrestis, n = 1; Mustela nivalis, n = 2; Myodes glareolus, n = 435; Sorex araneus, n = 5; and Talpa europaea, n = 1) were collected and examined. In total, 916 questing ticks belonging to three species (Ixodes ricinus, n = 741; Dermacentor reticulatus, n = 174; and I. trianguliceps, n = 1) were collected. Of these, 474 ticks were further investigated. The prevalence for Rickettsia spp. and B. burgdorferi (s.l.) in the investigated small mammals was 25.3 and 31.2%, respectively. The chance of encountering Rickettsia spp. in M. glareolus was seven times higher for specimens infested with D. reticulatus than for those which were free of D. reticulatus (OR: 7.0; 95% CI: 3.3-14.7; P < 0.001). In total, 11.4% of questing I. ricinus and 70.5% of D. reticulatus were positive for Rickettsia spp. DNA of B. burgdorferi (s.l.) was detected only in I. ricinus (5.5%). Sequence analysis revealed 9 R. helvetica, 5 R. raoultii, and 1 R. felis obtained from 15 small mammal samples. CONCLUSION Small mammals may serve as reservoirs for Rickettsia spp. and B. burgdorferi (s.l.). While the prevalence for Rickettsia spp. in M. glareolus is most likely depending on the abundance of attached D. reticulatus, the prevalence for B. burgdorferi (s.l.) in small mammals is independent of tick abundance. Dermacentor reticulatus may be the main vector of certain Rickettsia spp. but not for Borrelia spp.
Collapse
Affiliation(s)
- Anna Obiegala
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Nina Król
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
- Department of Microbial Ecology and Environmental Protection, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Carolin Oltersdorf
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Julian Nader
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| |
Collapse
|
26
|
Bonnet SI, Paul REL, Bischoff E, Cote M, Le Naour E. First identification of Rickettsia helvetica in questing ticks from a French Northern Brittany Forest. PLoS Negl Trop Dis 2017; 11:e0005416. [PMID: 28248955 PMCID: PMC5348082 DOI: 10.1371/journal.pntd.0005416] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/13/2017] [Accepted: 02/16/2017] [Indexed: 01/19/2023] Open
Abstract
Tick-borne rickettsiae are considered to be emerging, but data about their presence in western Europe are scarce. Ixodes ricinus ticks, the most abundant and widespread tick species in western Europe, were collected and tested for the presence of several tick-borne pathogens in western France, a region never previously explored in this context. There was a high tick abundance with a mean of 4 females, 4.5 males, and 23.3 nymphs collected per hour per collector. Out of 622 tested ticks, specific PCR amplification showed the presence of tick symbionts as well as low prevalence of Borrelia burgdorferi (0.8%), Bartonella spp. (0.17%), and Anaplasma phagocytophilum (0.09%). The most prevalent pathogen was Rickettsia helvetica (4.17%). This is the first time that this bacteria has been detected in ticks in this region, and this result raises the possibility that bacteria other than those classically implicated may be involved in rickettsial diseases in western France.
Collapse
Affiliation(s)
| | - Richard E. L. Paul
- Institut Pasteur, Unité de Génétique Fonctionnelle des Maladies Infectieuses, Paris, France
- CNRS URA3012, Paris, France
| | - Emmanuel Bischoff
- Institut Pasteur, Unité de Génétique et génomique des insectes vecteurs, Paris, France
| | - Martine Cote
- UMR BIPAR INRA-ANSES-ENVA, Maisons-Alfort cedex, France
| | | |
Collapse
|
27
|
Michelet L, Joncour G, Devillers E, Torina A, Vayssier-Taussat M, Bonnet SI, Moutailler S. Tick species, tick-borne pathogens and symbionts in an insular environment off the coast of Western France. Ticks Tick Borne Dis 2016; 7:1109-1115. [PMID: 27622976 DOI: 10.1016/j.ttbdis.2016.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 08/03/2016] [Accepted: 08/28/2016] [Indexed: 10/21/2022]
Abstract
Insular environments provide ideal natural conditions to study disease ecology, especially emerging diseases, due to clear differentiation between local and long-distance transmission. Such environments are of particular interest regarding tick-borne pathogens (TBP), since animal exchange with the mainland (along with any ticks they carry) is limited, and because such locations could lie on migratory routes for birds carrying ticks. Therefore both tick species and TBP may display different prevalence than those observed on the continent. As such, an epidemiological survey was performed on Belle-Ile-en-Mer, an island off the coast of Western France, in order to estimate the prevalence of tick species and the microorganisms they carried. Three tick species, Dermacentor marginatus, D. reticulatus, and Haemaphysalis punctata were collected at five different sites in 2010 and 2011. All ticks were tested for pathogen's and symbiont's DNA by (i) PCR for Anaplasma spp., Borrelia spp., Rickettsia spp.; (ii) real-time PCR for Francisella tularensis, Francisella-like endosymbionts (FLE) and Coxiella spp. and (iii) PCR-RLB for Babesia-Theileria spp. Pathogen DNA detected in D. marginatus including Borrelia spp. (18%), Rickettsia spp. (13%) which was identified as R. slovaca, Babesia spp. (8%), and Theileria spp. (1%). Pathogens detected in D. reticulatus including Rickettsia spp. (31%) identified as R. raoulti, Francisella-like endosymbiont (86%), and Babesia spp (21%). Pathogens detected in H. punctata including Rickettsia spp. (1%) identified as R. aeschlimannii, FLE (0.4%), Babesia spp. (18%), and Theileria spp. (7%). Anaplasma spp., F. tularensis, or Coxiella spp. were not detected in any of the collected ticks. This study represents the first epidemiological survey of the insular Belle-Ile-en-Mer environment. It demonstrated the presence of expected pathogens, consistent with reports from island veterinarians or physicians, as well as unexpected pathogens, raising questions about their potential introduction through infected animals and/or their dispersion by migratory birds.
Collapse
Affiliation(s)
- Lorraine Michelet
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, ENVA, 14 Rue Pierre et Marie Curie, 94706 Maisons Alfort cedex, France
| | - Guy Joncour
- Technical Veterinary Groups National Society (SNGTV), 2, Kervellan, Callac, France
| | - Elodie Devillers
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, ENVA, 14 Rue Pierre et Marie Curie, 94706 Maisons Alfort cedex, France
| | - Alessandra Torina
- Dipartimento Sanità Interprovinciale, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi, 90129 Palermo, Italy
| | - Muriel Vayssier-Taussat
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, ENVA, 14 Rue Pierre et Marie Curie, 94706 Maisons Alfort cedex, France
| | - Sarah I Bonnet
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, ENVA, 14 Rue Pierre et Marie Curie, 94706 Maisons Alfort cedex, France
| | - Sara Moutailler
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, ENVA, 14 Rue Pierre et Marie Curie, 94706 Maisons Alfort cedex, France.
| |
Collapse
|
28
|
Paul REL, Cote M, Le Naour E, Bonnet SI. Environmental factors influencing tick densities over seven years in a French suburban forest. Parasit Vectors 2016; 9:309. [PMID: 27234215 PMCID: PMC4884405 DOI: 10.1186/s13071-016-1591-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/12/2016] [Indexed: 12/25/2022] Open
Abstract
Background Worldwide changes in socio-economic and environmental factors and the global climate are recognised causes of variation in tick distribution and density. Thus it is of great importance that new studies address the changing risk of infection for exposed populations. In Europe, Ixodes ricinus ticks are the most common vectors of several pathogens impacting veterinary and public health that have colonised suburban habitats. Methods This study aimed to evaluate longitudinal I. ricinus questing densities and infection rates over 7 years in a French suburban forested area with high human population density. Ticks were collected in spring yearly between 2008 and 2014 and, out of a total of 8594 collected I. ricinus, a representative subset of adult females (n = 259) were individually examined for the presence of several pathogens via PCR. Results Nymph densities peaked in 2009–2011, and then declined in 2012–2014. Changes in monthly temperature only had a modest impact on this variation. In contrast, analysis revealed a complex intra-annual relationship between mean nymph density and both concurrent and lagged mean monthly temperatures. The following pathogens were detected in the studied area: Anaplasma phagocytophilum, Rickettsia helvetica, Babesia venatorum and B. divergens, Francisella tularensis, Borrelia miyamotoi, B. afzelii/valaisiana, B. garinii/lusitaniae and Bartonella spp. Conclusion Our findings reinforce the conclusion that ticks are important vectors of pathogenic microorganisms in suburban forests and suggest that despite complex intra-annual relationships between tick densities and temperature, there is no evidence for a climate-associated increase in infection risk over the 7-year period. Rather, tick densities are likely to be strongly influenced by population density fluctuations in vertebrate host species and wildlife management. Further detailed studies on the impact of climate change on tick population densities are required. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1591-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Richard E L Paul
- Department of Genome and Genetics, Institut Pasteur, Unité de Génétique Fonctionnelle des Maladies Infectieuses, 28 rue du docteur Roux, 75724, Paris, France.,Centre National de la Recherche Scientifique, URA3012, 28 rue du docteur Roux, 75724, Paris, France
| | - Martine Cote
- UMR BIPAR INRA-ANSES-ENVA, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort cedex, France
| | - Evelyne Le Naour
- UMR BIPAR INRA-ANSES-ENVA, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort cedex, France
| | - Sarah I Bonnet
- UMR BIPAR INRA-ANSES-ENVA, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort cedex, France.
| |
Collapse
|
29
|
Rigaud E, Jaulhac B, Garcia-Bonnet N, Hunfeld KP, Féménia F, Huet D, Goulvestre C, Vaillant V, Deffontaines G, Abadia-Benoist G. Seroprevalence of seven pathogens transmitted by the Ixodes ricinus tick in forestry workers in France. Clin Microbiol Infect 2016; 22:735.e1-9. [PMID: 27237545 DOI: 10.1016/j.cmi.2016.05.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/13/2016] [Accepted: 05/14/2016] [Indexed: 12/30/2022]
Abstract
In order to assess the level of occupational exposure to the main pathogens transmitted by the Ixodes ricinus tick, a seroprevalence study was performed on serum samples collected in 2003 from 2975 forestry workers of northeastern France. The global seroprevalence estimated for the seven pathogens studied was 14.1% (419/2975) for Borrelia burgdorferi sl, 5.7% (164/2908) for Francisella tularensis, 2.3% (68/2941) for tick-borne encephalitis virus, 1.7% (50/2908) for Anaplasma phagocytophilum and 1.7% (48/2908) for Bartonella henselae. The seroprevalences of Babesia divergens and Babesia microti studied in a subgroup of participants seropositive for at least one of these latter pathogens were 0.1% (1/810) and 2.5% (20/810), respectively. Borrelia burgdorferi sl seroprevalence was significantly higher in Alsace and Lorraine and F. tularensis seroprevalence was significantly higher in Champagne-Ardenne and Franche-Comté. The results of this survey also suggest low rates of transmission of Bartonella henselae and F. tularensis by ticks and a different west/east distribution of Babesia species in France. The frequency and potential severity of these diseases justify continued promotion of methods of prevention of I. ricinus bites.
Collapse
Affiliation(s)
- E Rigaud
- Caisse Centrale de la Mutualité Sociale Agricole, Direction santé sécurité au travail, Bagnolet, France.
| | - B Jaulhac
- EA7290 Virulence Bactérienne Précoce, Centre National de Référence des Borrelia, Groupe d'Etude de la Borréliose de Lyme (GEBLY), Fédération de Médecine Translationnelle de Strasbourg, Institut de Bactériologie, Université de Strasbourg, CHRU Strasbourg, France
| | - N Garcia-Bonnet
- Hôpital Avicenne, Maladies Infectieuses et Tropicales, formerly Caisse Centrale de la Mutualité Sociale Agricole, Bobigny, France
| | - K-P Hunfeld
- Institute for Laboratory Medicine, Northwest Medical Center, Academic Teaching Hospital, School of Medicine, The Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - F Féménia
- INRA, UMR BIPAR, INRA, Anses, ENVA, Maisons-Alfort, France
| | - D Huet
- INRA, UMR BIPAR, INRA, Anses, ENVA, Maisons-Alfort, France
| | - C Goulvestre
- INRA, UMR BIPAR, INRA, Anses, ENVA, Maisons-Alfort, France
| | - V Vaillant
- Institut de Veille Sanitaire, Saint-Maurice, France
| | - G Deffontaines
- Caisse Centrale de la Mutualité Sociale Agricole, Direction santé sécurité au travail, Bagnolet, France
| | - G Abadia-Benoist
- AFOMETRA, formerly Caisse Centrale de la Mutualité Sociale Agricole, Paris, France
| |
Collapse
|
30
|
Moniuszko-Malinowska A, Swiecicka I, Dunaj J, Zajkowska J, Czupryna P, Zambrowski G, Chmielewska-Badora J, Żukiewicz-Sobczak W, Swierzbinska R, Rutkowski K, Garkowski A, Pancewicz S. Infection with Babesia microti in humans with non-specific symptoms in North East Poland. Infect Dis (Lond) 2016; 48:537-43. [PMID: 27118086 DOI: 10.3109/23744235.2016.1164339] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIM The aim of the study was to evaluate the clinical course and effectiveness of diagnostics tools for Babesia spp. infection in patients bitten by ticks. MATERIALS AND METHODS Five hundred and forty-eight patients hospitalised or seen in outpatients department because of various symptoms after a tick bite were included in the study. PCR, nucleotide sequencing of Babesia 18S rRNA gene fragment, blood smears and serological tests for Babesia spp., TBEV, A. phagocytophilum and B. burgdorferi were performed in all patients. Six patients infected with Babesia were included in the final analysis. They had PCR, Babesia 18S rRNA gene fragment nucleotide sequencing, blood smears and serological tests for Babesia spp., TBEV, A. phagocytophilum and B. burgdorferi performed twice. RESULTS Tick-borne infection with Babesia microti in six immunocompetent patients with non-specific symptoms was confirmed for the first time in Poland. No severe course of the disease was seen. No piroplasm forms were noticed within erythrocytes on blood smear. Three patients developed a serological response. CONCLUSIONS Immunocompetent patients may be unaware of infection with Babesia microti after a tick bite. It must be included in the differential diagnosis after the tick bite. In patients with low parasitaemia PCR and serology seem useful when blood smear is negative. Self-elimination of Babesia spp. is possible, especially in cases with low parasitaemia.
Collapse
Affiliation(s)
| | - Izabela Swiecicka
- b Department of Microbiology, Faculty of Biology and Chemistry , University of Białystok , Bialystok , Poland
| | - Justyna Dunaj
- a Department of Infectious Diseases and Neuroinfections , Medical University of Bialystok , Poland
| | - Joanna Zajkowska
- a Department of Infectious Diseases and Neuroinfections , Medical University of Bialystok , Poland
| | - Piotr Czupryna
- a Department of Infectious Diseases and Neuroinfections , Medical University of Bialystok , Poland
| | - Grzegorz Zambrowski
- b Department of Microbiology, Faculty of Biology and Chemistry , University of Białystok , Bialystok , Poland
| | | | | | - Renata Swierzbinska
- a Department of Infectious Diseases and Neuroinfections , Medical University of Bialystok , Poland
| | - Krzysztof Rutkowski
- d Department of Allergy , Guy's and St Thomas' NHS Foundation Trust , London , UK
| | - Adam Garkowski
- a Department of Infectious Diseases and Neuroinfections , Medical University of Bialystok , Poland
| | - Sławomir Pancewicz
- a Department of Infectious Diseases and Neuroinfections , Medical University of Bialystok , Poland
| |
Collapse
|
31
|
Sormunen JJ, Penttinen R, Klemola T, Hänninen J, Vuorinen I, Laaksonen M, Sääksjärvi IE, Ruohomäki K, Vesterinen EJ. Tick-borne bacterial pathogens in southwestern Finland. Parasit Vectors 2016; 9:168. [PMID: 27004834 PMCID: PMC4802833 DOI: 10.1186/s13071-016-1449-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/12/2016] [Indexed: 12/24/2022] Open
Abstract
Background Ixodes ricinus and Ixodes persulcatus are the main vectors of Lyme borreliosis spirochetes and several other zoonotic bacteria in northern Europe and Russia. However, few studies screening bacterial pathogens in Finnish ticks have been conducted. Therefore, reports on the occurrence and prevalence of several bacterial pathogens detected from ticks elsewhere in Europe and Russia are altogether missing from Finland. The main aim of the current study was to produce novel data on the occurrence and prevalence of several tick-borne bacterial pathogens in ticks collected from southwestern Finland. Methods Ticks were collected in 2013–2014 by blanket dragging from 25 localities around southwestern Finland, and additionally from a dog in Lempäälä. Collected ticks were molecularly identified and screened for Borrelia burgdorferi s.l., Borrelia miyamotoi, Rickettsia, Bartonella and Candidatus Neoehrlichia mikurensis using quantitative PCR. Furthermore, detected Rickettsia spp. were sequenced using conventional PCR to determine species. Results A total of 3169 ticks in 1174 DNA samples were screened for the listed pathogens. The most common bacteria detected was B. burgdorferi (s.l.) (18.5 % nymphal and 23.5 % adult ticks), followed by Rickettsia spp. (1.1 %; 5.1 %) and B. miyamotoi (0.51 %; 1.02 %). B. miyamotoi and Rickettsia spp. were also detected in larval samples (minimum infection rates 0.31 % and 0.21 %, respectively). Detected Rickettsia spp. were identified by sequencing as R. helvetica and R. monacensis. All screened samples were negative for Bartonella spp. and Ca. N. mikurensis. Conclusions In the current study we report for the first time the presence of Rickettsia in Finnish ticks. Furthermore, Rickettsia spp. and B. miyamotoi were found from larval tick samples, emphasizing the importance they may have as vectors of these pathogens. Comparisons of tick density estimates and B. burgdorferi (s.l.) prevalence made between the current study and a previous study conducted in 2000 in ten out of the 25 study localities suggest that an increase in tick abundance and B. burgdorferi (s.l.) prevalence has occurred in at least some of the study localities.
Collapse
Affiliation(s)
- Jani J Sormunen
- Department of Biology, University of Turku, FI-20014, Turku, Finland.,Archipelago Research Institute, University of Turku, FI-20014, Turku, Finland
| | - Ritva Penttinen
- Zoological Museum, Department of Biology, University of Turku, FI-20014, Turku, Finland
| | - Tero Klemola
- Department of Biology, University of Turku, FI-20014, Turku, Finland
| | - Jari Hänninen
- Archipelago Research Institute, University of Turku, FI-20014, Turku, Finland
| | - Ilppo Vuorinen
- Archipelago Research Institute, University of Turku, FI-20014, Turku, Finland
| | - Maija Laaksonen
- Department of Biology, University of Turku, FI-20014, Turku, Finland
| | - Ilari E Sääksjärvi
- Zoological Museum, Department of Biology, University of Turku, FI-20014, Turku, Finland
| | - Kai Ruohomäki
- Department of Biology, University of Turku, FI-20014, Turku, Finland
| | - Eero J Vesterinen
- Department of Biology, University of Turku, FI-20014, Turku, Finland. .,Department of Agricultural Sciences, University of Helsinki, FI-00014, Helsinki, Finland.
| |
Collapse
|
32
|
Neglected tick-borne pathogens in the Czech Republic, 2011–2014. Ticks Tick Borne Dis 2016; 7:107-112. [DOI: 10.1016/j.ttbdis.2015.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/02/2015] [Accepted: 09/16/2015] [Indexed: 11/19/2022]
|
33
|
Mehlhorn H, Mehlhorn T, Müller M, Vogt M, Rissland J. Tick survey for prevalent pathogens in peri-urban recreation sites in Saarland and Rhineland-Palatinate (Germany). Parasitol Res 2015; 115:1167-72. [PMID: 26646396 DOI: 10.1007/s00436-015-4852-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/24/2015] [Indexed: 02/02/2023]
Abstract
Ixodid ticks are important vectors of human pathogens in Central Europe. Despite this fact, prevalence studies are scarce, especially with regard to much-frequented peri-urban recreation sites. In this pilot study, 4.014 larvae, nymphs and adult ticks sampled monthly during the active seasons in 2011 and 2012 from 14 distinct collection sites in two German states (Saarland and Rhineland-Palatinate) were screened for Borrelia spp., Anaplasma spp. and tick-borne encephalitis virus. Mean prevalence rates were 19.8 % for Borrelia spp., 1.9 % for Anaplasma spp. and 0.1 % for tick-borne encephalitis virus (TBEV), which are in accordance with those reported from other regions in Germany and neighbouring countries. Nevertheless, the detection of TBEV-infected ticks is the first positive result after several unsuccessful efforts over the previous years in official "TBE-risk" zones of Saarland and Rhineland-Palatinate which supports the presumption of the origin of observed local infection. Besides ixodid ticks a non-engorged adult female tick of the invading species Dermacentor reticulatus has been found reflecting the appearance of another vector eventually jeopardising the health of host animals as well as humans.
Collapse
Affiliation(s)
- Heinz Mehlhorn
- Institute for Parasitology, Heinrich Heine University, D-40225, Düsseldorf, Germany.
| | - Tim Mehlhorn
- Institute for Clinical Microbiology and Hospital Hygiene, Heinrich Heine University, D-40225, Düsseldorf, Germany
| | - Melanie Müller
- Institute of Virology, Saarland University Medical Centre, Homburg, Germany
| | - Manfred Vogt
- Landesuntersuchungsamt Rheinland-Pfalz, Abteilung Humanmedizin, Koblenz, Germany
| | - Jürgen Rissland
- Institute of Virology, Saarland University Medical Centre, Homburg, Germany
| |
Collapse
|
34
|
Léger E, Liu X, Masseglia S, Noël V, Vourc'h G, Bonnet S, McCoy KD. Reliability of molecular host-identification methods for ticks: an experimental in vitro study with Ixodes ricinus. Parasit Vectors 2015; 8:433. [PMID: 26296344 PMCID: PMC4546307 DOI: 10.1186/s13071-015-1043-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reliable information on host use by arthropod vectors is required to study pathogen transmission ecology and to predict disease risk. Direct observation of host use is often difficult or impossible and indirect methods are therefore necessary. However, the reliability of currently available methods to identify the last host of blood-feeding arthropods has not been evaluated, and may be particularly problematic for ticks because host blood has been digested at capture. Biases in host detection may lead to erroneous conclusions on both vector ecology and pathogen circulation. METHODS Here, we experimentally tested for biases in host detection using the generalist three-host tick Ixodes ricinus as a model system. We fed ticks using an artificial feeding system and amplified blood meal traces post-moult (i.e., in the succeeding unfed life stage) via both a quantitative real-time polymerase chain reaction assay and a reverse line blotting method. We then experimentally tested for three types of biases in host detection: 1) time post-moult, 2) tick life stage and 3) host type (non-nucleated mammal blood versus nucleated avian blood), and compared these biases between the two molecular methods. RESULTS Our results show that all three factors can influence host detection in ticks but not necessarily in the expected way. Although host detection rates decreased with time post-moult, mammal blood tended to be more readily detected than bird blood. Tick life stage was also an important factor; detection was higher in nymphs than in adults and, in some cases, remnants from both larval and nymphal blood meals could be detected in the adult stage. These biases were similar for the two detection techniques. CONCLUSIONS We show that different factors associated with questing ticks may influence our ability to correctly infer previous host use and that these factors may bias inferences from field-based studies. As these biases may be common to other vector-borne disease systems, their implications for our understanding of vector ecology and disease transmission require more explicit consideration.
Collapse
Affiliation(s)
- Elsa Léger
- MIVEGEC (UMR UM2-UM1-CNRS 5290, UR IRD 224), Centre IRD, 911 avenue Agropolis, BP 64501, 34394, Montpellier, Cedex 5, France.
| | - Xiangye Liu
- USC INRA Bartonella-tiques, UMR BIPAR ENVA-ANSES, 94706, Maisons-Alfort, France. .,Laboratory of Infection and Immunity, Xu Zhou Medical College, 221004, Xu Zhou, P.R. China.
| | - Sébastien Masseglia
- Unité Epidémiologie Animale (UR INRA 346), Centre de recherche INRA de Clermont-Ferrand / Theix, 63122, Saint Genès Champanelle, France.
| | - Valérie Noël
- MIVEGEC (UMR UM2-UM1-CNRS 5290, UR IRD 224), Centre IRD, 911 avenue Agropolis, BP 64501, 34394, Montpellier, Cedex 5, France.
| | - Gwenaël Vourc'h
- Unité Epidémiologie Animale (UR INRA 346), Centre de recherche INRA de Clermont-Ferrand / Theix, 63122, Saint Genès Champanelle, France.
| | - Sarah Bonnet
- USC INRA Bartonella-tiques, UMR BIPAR ENVA-ANSES, 94706, Maisons-Alfort, France.
| | - Karen D McCoy
- MIVEGEC (UMR UM2-UM1-CNRS 5290, UR IRD 224), Centre IRD, 911 avenue Agropolis, BP 64501, 34394, Montpellier, Cedex 5, France.
| |
Collapse
|
35
|
Babesia spp. in questing ticks from eastern Poland: prevalence and species diversity. Parasitol Res 2015; 114:3111-6. [PMID: 25976982 PMCID: PMC4513193 DOI: 10.1007/s00436-015-4529-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/06/2015] [Indexed: 11/26/2022]
Abstract
A total of 853 questing Ixodes ricinus males, females, and nymphs and of 582 questing Dermacentor reticulatus males and females were collected from vegetation on the territory of the Lublin province (eastern Poland). The ticks were examined for the presence of Babesia by PCR detecting part of 18S ribosomal RNA (rRNA) gene and nuclear small subunit rRNA (SS-rDNA) for determining of Babesia spp. and Babesia microti, respectively. The overall incidence of Babesia strains in I. ricinus ticks was 4.6 %. Three species of Babesia were identified. The prevalent species was B. microti which occurred in 2.8 % of ticks, while Babesia venatorum, Babesia divergens, and unidentified Babesia species were found at the frequency of 1.2, 0.2, and 0.3 %, respectively. Altogether, B. microti constituted 61.5 % of the total strains detected in I. ricinus, B. venatorum—25.7 %, B. divergens—5.1 %, and unidentified Babesia species—7.7 %. The prevalence of Babesia species in I. ricinus did not depend significantly on locality (χ2 = 1.885, P = 0.390) nor on the tick stage (χ2 = 4.874, P = 0.087). The incidence of Babesia strains in D. reticulatus ticks was 2.7 %. Two species of Babesia were identified. Again, the prevalent species was B. microti which occurred in 2.1 % of ticks, while B. canis was found in 0.7 % of ticks. In one D. reticulatus female, B. canis and B. microti co-infection was found. Altogether, B. microti constituted 75 % of the total strains detected in D. reticulatus while B. canis formed 25 % of the total strains. The frequency of the occurrence of Babesia species in D. reticulatus did not depend significantly on locality (χ2 = 0.463, P = 0.793). The difference between the prevalence of Babesia in males and females of D. reticulatus was insignificant (P = 0.0954); nymphs were not found. The dominance of B. microti in the species composition of tick-borne Babesia found in this study was typical for eastern Europe. In conclusion, the results revealed that the population inhabiting the forested area of eastern Poland could be exposed to Babesia parasites, especially to those from the species B. microti, by a bite of I. ricinus, a competent vector of human babesiosis, and probably also by a bite of D. reticulatus whose role in the transmission of human babesiosis needs to be clarified.
Collapse
|
36
|
Tappe J, Jordan D, Janecek E, Fingerle V, Strube C. Revisited: Borrelia burgdorferi sensu lato infections in hard ticks (Ixodes ricinus) in the city of Hanover (Germany). Parasit Vectors 2014; 7:441. [PMID: 25233844 PMCID: PMC4262061 DOI: 10.1186/1756-3305-7-441] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/25/2014] [Indexed: 11/14/2022] Open
Abstract
Background The present study investigated the prevalence of Borrelia burgdorferi sensu lato (s.l.) genospecies in Ixodes ricinus ticks collected in Hanover, Northern Germany, in 2010. At the same time the study served as fifth-year-follow-up study for data comparison with 2005. Methods A total of 2100 questing ticks were collected and analysed by quantitative real-time PCR (qPCR) with subsequent species differentiation via Reverse Line Blot and Sanger sequencing. Simultaneously, results obtained in 2010 were compared to infection rates from 2005 to evaluate the development of B. burgdorferi s.l. infection rates in Hanoverian ticks. Results Overall, 22.7% (476/2,100) of collected ticks were tested positive for B. burgdorferi s.l. infections. Adult ticks showed an infection rate of 33.3% (124/372), subdivided into 29.6% (58/196) positive males and 37.5% (66/176) positive females. Nymph and larvae infection rates were found to be 20.3% (344/1,697) and 25.8% (8/31), respectively. Species identification was successful for 59.2% (282/476) of positive ticks with B. afzelii as the most frequently detected genospecies, followed by B. garinii (including B. bavariensis) and B. spielmanii. B. burgdorferi sensu stricto (s.s.), B. bissettii, B. valaisiana and B. lusitaniae were also identified. Significant differences concerning seasonal fluctuations as well as local differences were observed. Comparing infection rates of Hanoverian ticks between years, a significant increase (P = 0.002) could be observed for larvae with 1.7% positives (2/60) in 2005 and 25.8% positives (8/31) in 2010. In the latter year, coinfections with Borrelia and Rickettsiales were detected in a total of 7.8% (163/2,100) of collected ticks. Of these, 7.3% (153/2,100) were coinfected with Rickettsia spp., 0.3% (7/2,100) with A. phagocytophilum and 0.1% (3/2,100) were coinfected with all three pathogens. Between years 2005 and 2010, no statistically significant differences in coinfection rates were found. Conclusions Comparing B. burgdorferi s.l. infections in Hanoverian I. ricinus ticks in 2010 with data from 2005, a statistically significant increase of infected larvae was noted, whereas the other stages revealed no statistically significant differences. Whether the increased larvae infection rate is an isolated event or results from factual circumstances, e.g. increasing effectiveness of transovarial transmission due to unknown factors, has to be evaluated in further studies.
Collapse
Affiliation(s)
| | | | | | | | - Christina Strube
- Institute for Parasitology, University of Veterinary Medicine, Buenteweg 17, 30559 Hannover, Germany.
| |
Collapse
|
37
|
Hai VV, Almeras L, Socolovschi C, Raoult D, Parola P, Pagès F. Monitoring human tick-borne disease risk and tick bite exposure in Europe: available tools and promising future methods. Ticks Tick Borne Dis 2014; 5:607-19. [PMID: 25178542 DOI: 10.1016/j.ttbdis.2014.07.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 07/28/2014] [Accepted: 07/28/2014] [Indexed: 12/30/2022]
Abstract
Ticks are the main vector for infectious disease pathogens in both humans and animals, and tick-borne diseases are currently spreading throughout Europe. Various surveillance methods have been developed to estimate the burden and risk of tick-borne diseases and host exposure to tick bites. The ultimate aims of these approaches are to determine the risk level of a tick-borne disease in a given area, determine its health priority, identify the at-risk population and propose specific countermeasures or complementary studies as needed. The purpose of this review is to present the current methods for monitoring the circulation of tick-borne diseases and to highlight the use of salivary antigens as original and recently developed serological tools that could be useful for tick bite risk assessment and could improve the current surveillance methods.
Collapse
Affiliation(s)
- Vinh Vu Hai
- Aix-Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM 63, CNRS 7278, IRD 198, Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France; Institut de Recherche Biomédicale des Armées (IRBA), Antenne Marseille, Unité de Parasitologie, URMITE UMR 6236, GSBdD de Marseille Aubagne, 111 Avenue de la Corse BP 40026, 13568 Marseille Cedex 02, France
| | - Lionel Almeras
- Aix-Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM 63, CNRS 7278, IRD 198, Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France; Institut de Recherche Biomédicale des Armées (IRBA), Antenne Marseille, Unité de Parasitologie, URMITE UMR 6236, GSBdD de Marseille Aubagne, 111 Avenue de la Corse BP 40026, 13568 Marseille Cedex 02, France
| | - Cristina Socolovschi
- Aix-Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM 63, CNRS 7278, IRD 198, Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Didier Raoult
- Aix-Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM 63, CNRS 7278, IRD 198, Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Philippe Parola
- Aix-Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM 63, CNRS 7278, IRD 198, Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France.
| | - Frédéric Pagès
- Aix-Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM 63, CNRS 7278, IRD 198, Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France; CIRE/ARS Océan Indien, 2 bis Avenue Georges Brassens CS 60050, 97408 Saint Denis Cedex 9, Reunion.
| |
Collapse
|
38
|
Michelet L, Delannoy S, Devillers E, Umhang G, Aspan A, Juremalm M, Chirico J, van der Wal FJ, Sprong H, Boye Pihl TP, Klitgaard K, Bødker R, Fach P, Moutailler S. High-throughput screening of tick-borne pathogens in Europe. Front Cell Infect Microbiol 2014; 4:103. [PMID: 25120960 PMCID: PMC4114295 DOI: 10.3389/fcimb.2014.00103] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/10/2014] [Indexed: 12/02/2022] Open
Abstract
Due to increased travel, climatic, and environmental changes, the incidence of tick-borne disease in both humans and animals is increasing throughout Europe. Therefore, extended surveillance tools are desirable. To accurately screen tick-borne pathogens (TBPs), a large scale epidemiological study was conducted on 7050 Ixodes ricinus nymphs collected from France, Denmark, and the Netherlands using a powerful new high-throughput approach. This advanced methodology permitted the simultaneous detection of 25 bacterial, and 12 parasitic species (including; Borrelia, Anaplasma, Ehrlichia, Rickettsia, Bartonella, Candidatus Neoehrlichia, Coxiella, Francisella, Babesia, and Theileria genus) across 94 samples. We successfully determined the prevalence of expected (Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Rickettsia helvetica, Candidatus Neoehrlichia mikurensis, Babesia divergens, Babesia venatorum), unexpected (Borrelia miyamotoi), and rare (Bartonella henselae) pathogens in the three European countries. Moreover we detected Borrelia spielmanii, Borrelia miyamotoi, Babesia divergens, and Babesia venatorum for the first time in Danish ticks. This surveillance method represents a major improvement in epidemiological studies, able to facilitate comprehensive testing of TBPs, and which can also be customized to monitor emerging diseases.
Collapse
Affiliation(s)
| | - Sabine Delannoy
- IdentyPath Platform, Food Safety Laboratory, ANSES Maisons-Alfort, France
| | - Elodie Devillers
- UMR BIPAR, Animal Health Laboratory, ANSES Maisons-Alfort, France
| | - Gérald Umhang
- Nancy Laboratory for Rabies and Wildlife, Wildlife EcoEPIdemiology and Surveillance Unit, ANSES Malzéville, France
| | - Anna Aspan
- Department of Bacteriology, National Veterinary Institute (SVA) Uppsala, Sweden
| | - Mikael Juremalm
- Department of Virology, Immunobiology and Parasitology, National Veterinary Institute (SVA) Uppsala, Sweden
| | - Jan Chirico
- Department of Virology, Immunobiology and Parasitology, National Veterinary Institute (SVA) Uppsala, Sweden
| | - Fimme J van der Wal
- Department of Infection Biology, Central Veterinary Institute, Wageningen UR Lelystad, Netherlands
| | - Hein Sprong
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment (RIVM) Bilthoven, Netherlands
| | | | | | - Rene Bødker
- National Veterinary Institute, DTU Copenhagen, Denmark
| | - Patrick Fach
- IdentyPath Platform, Food Safety Laboratory, ANSES Maisons-Alfort, France
| | - Sara Moutailler
- UMR BIPAR, Animal Health Laboratory, ANSES Maisons-Alfort, France
| |
Collapse
|
39
|
May K, Strube C. Prevalence of Rickettsiales (Anaplasma phagocytophilum and Rickettsia spp.) in hard ticks (Ixodes ricinus) in the city of Hamburg, Germany. Parasitol Res 2014; 113:2169-75. [PMID: 24728556 DOI: 10.1007/s00436-014-3869-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 03/21/2014] [Indexed: 10/25/2022]
Abstract
To narrow the gap of missing knowledge on Rickettsia spp. and Anaplasma phagocytophilum infections in ticks in northwestern Germany and, at the same time, to provide first prevalence data on these pathogens in the city of Hamburg, a total of 1,400 questing Ixodes ricinus ticks were collected at ten different public green areas from April until October 2011. Ticks were examined using probe-based quantitative real-time PCR. A percentage of 3.6% (51/1,400) ticks were tested positive for A. phagocytophilum infections divided into 2.1% (3/141) adults [1.7% (1/60) females and 2.5% (2/81) males] and 3.8% (48/1,259) nymphs. The percentage of infected ticks per sampling site varied statistically significantly from 0.7% (1/140) to 12.1% (17/140), whereas between sampling months, no statistically significant differences were observed (2.0-6.5%, 4-13/140). The overall Rickettsia spp. infection rate was 52.5% (735/1,400). In adult ticks, Rickettsia spp. infection rate was 56% (79/141) divided into 61.7% (37/60) infected females and 51.9% (42/81) infected males. Nymphs showed an infection rate of 52.1% (656/1,259). In contrast to A. phagocytophilum infections, no statistically significant differences in Rickettsia spp. infection rates among sampling sites (44.3-63.6%, 62-89/140) were observed, whereas seasonal variations were obvious: the percentage of Rickettsia-positive ticks was significantly lower in April (36.5%, 73/200) and May (29.5%, 59/200) compared to the summer and fall months (55.0-64.5%, 110-129/200). Rickettsia species differentiation via real-time pyrosequencing revealed Rickettsia helvetica as the only occurring species. Co-infections with both Rickettsia spp. and A. phagocytophilum were detected in 2.0% (28/1,400) of the ticks. The present study revealed that in the city of Hamburg, the tick infection rate with A. phagocytophilum is comparable with other German data, whereas the Rickettsia spp. infection rate of 52.5% is by far the highest prevalence detected in Germany so far. As the city of Hamburg has 1.8 million inhabitants and attracts millions of tourists every year, the potential health risk should not be underestimated.
Collapse
Affiliation(s)
- Kathrin May
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany
| | | |
Collapse
|
40
|
Bonnet S, Michelet L, Moutailler S, Cheval J, Hébert C, Vayssier-Taussat M, Eloit M. Identification of parasitic communities within European ticks using next-generation sequencing. PLoS Negl Trop Dis 2014; 8:e2753. [PMID: 24675738 PMCID: PMC3967966 DOI: 10.1371/journal.pntd.0002753] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 02/11/2014] [Indexed: 11/21/2022] Open
Abstract
Background Risk assessment of tick-borne and zoonotic disease emergence necessitates sound knowledge of the particular microorganisms circulating within the communities of these major vectors. Assessment of pathogens carried by wild ticks must be performed without a priori, to allow for the detection of new or unexpected agents. Methodology/Principal Findings We evaluated the potential of Next-Generation Sequencing techniques (NGS) to produce an inventory of parasites carried by questing ticks. Sequences corresponding to parasites from two distinct genera were recovered in Ixodes ricinus ticks collected in Eastern France: Babesia spp. and Theileria spp. Four Babesia species were identified, three of which were zoonotic: B. divergens, Babesia sp. EU1 and B. microti; and one which infects cattle, B. major. This is the first time that these last two species have been identified in France. This approach also identified new sequences corresponding to as-yet unknown organisms similar to tropical Theileria species. Conclusions/Significance Our findings demonstrate the capability of NGS to produce an inventory of live tick-borne parasites, which could potentially be transmitted by the ticks, and uncovers unexpected parasites in Western Europe. Diseases transmitted by ticks have diverse etiology (viral, bacterial, parasitic) and are responsible for high morbidity and mortality rates around the world, both in humans and animals. The emergence or re-emergence of tick-borne diseases is increasingly becoming a problem as the geographical distribution of several tick species is expanding, as well as the numbers of potential or known tick-borne pathogens are constantly evolving. It is thus necessary to know which microorganisms circulate within communities of this major vector to ensure adequate epidemiological surveillance. In this study, we evaluated the potential of Next-Generation Sequencing techniques (NGS) to produce, without a priori, an inventory of both predicted and non-expected parasites carried by Ixodes ricinus, the most prevalent human biting tick in France. Our findings suggest that NGS strategies could be used to produce an inventory of live parasites residing in ticks from a selected area, thereby expanding our knowledge base of tick-associated parasites.
Collapse
Affiliation(s)
- Sarah Bonnet
- USC INRA Bartonella-tiques, UMR BIPAR ENVA-ANSES, Maisons-Alfort, France
- * E-mail:
| | - Lorraine Michelet
- USC INRA Bartonella-tiques, UMR BIPAR ENVA-ANSES, Maisons-Alfort, France
| | - Sara Moutailler
- USC INRA Bartonella-tiques, UMR BIPAR ENVA-ANSES, Maisons-Alfort, France
| | | | | | | | - Marc Eloit
- PathoQuest SAS, Paris, France
- Ecole Nationale Vétérinaire d'Alfort, UMR 1161 Virologie ENVA, INRA, ANSES, Maisons-Alfort, France
- Institut Pasteur, Laboratory of Pathogen Discovery, Paris, France
| |
Collapse
|
41
|
Welc-Falęciak R, Kowalec M, Karbowiak G, Bajer A, Behnke JM, Siński E. Rickettsiaceae and Anaplasmataceae infections in Ixodes ricinus ticks from urban and natural forested areas of Poland. Parasit Vectors 2014; 7:121. [PMID: 24661311 PMCID: PMC3994390 DOI: 10.1186/1756-3305-7-121] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 03/05/2014] [Indexed: 01/13/2023] Open
Abstract
Background Ixodes ricinus is a major vector for a range of microbial pathogens and the most prevalent and widely distributed tick species on the European continent, occurring in both natural and urban habitats. Nevertheless, little is known about the relative density of ticks in these two ecologically distinct habitats and the diversity of tick-borne pathogens that they carry. Methods We compared densities of questing I. ricinus nymphs and adults in urban and natural habitats in Central and Northeastern Poland, assessed the prevalence and rate of co-infection with A. phagocytophilum, Rickettsia, Ehrlichia and ‘Ca. Neoehrlichia spp.’ in ticks, and compared the diversity of tick-borne pathogens using molecular assays (PCR). Results Of the 1325 adults and nymphs, 6.2% were infected with at least one pathogen, with 4.4%, 1.7% and less than 0.5% being positive for the DNA of Rickettsia spp., A. phagocytophilum, Ehrlichia spp. and Ca. N. mikurensis, respectively. Although tick abundance was higher in natural habitats, the prevalence of the majority of pathogens was higher in urban forested areas. Conclusion We conclude that: (i) zoonotic genetic variants of A. phagocytophilum are widely distributed in the Polish tick population, (ii) although the diversity of tick borne pathogens was higher in natural habitats, zoonotic species/strains were detected only in urban forests, (iii) and we provide the first description of Ca. N. mikurensis infections in ticks in Poland.
Collapse
Affiliation(s)
- Renata Welc-Falęciak
- Department of Parasitology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
42
|
Species co-occurrence patterns among Lyme borreliosis pathogens in the tick vector Ixodes ricinus. Appl Environ Microbiol 2013; 79:7273-80. [PMID: 24038700 DOI: 10.1128/aem.02158-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mixed infections have important consequences for the ecology and evolution of host-parasite interactions. In vector-borne diseases, interactions between pathogens occur in both the vertebrate host and the arthropod vector. Spirochete bacteria belonging to the Borrelia burgdorferi sensu lato genospecies complex are transmitted by Ixodes ticks and cause Lyme borreliosis in humans. In Europe, there is a high diversity of Borrelia pathogens, and the main tick vector, Ixodes ricinus, is often infected with multiple Borrelia genospecies. In the present study, we characterized the pairwise interactions between five B. burgdorferi sensu lato genospecies in a large data set of I. ricinus ticks collected from the same field site in Switzerland. We measured two types of pairwise interactions: (i) co-occurrence, whether double infections occurred more or less often than expected, and (ii) spirochete load additivity, whether the total spirochete load in double infections was greater or less than the sum of the single infections. Mixed infections of Borrelia genospecies specialized on different vertebrate reservoir hosts occurred less frequently than expected (negative co-occurrence) and had joint spirochete loads that were lower than the additive expectation (inhibition). In contrast, mixed infections of genospecies that share the same reservoir hosts were more common than expected (positive co-occurrence) and had joint spirochete loads that were similar to or greater than the additive expectation (facilitation). Our study suggests that the vertebrate host plays an important role in structuring the community of B. burgdorferi sensu lato genospecies inside the tick vector.
Collapse
|
43
|
Stuen S, Granquist EG, Silaghi C. Anaplasma phagocytophilum--a widespread multi-host pathogen with highly adaptive strategies. Front Cell Infect Microbiol 2013; 3:31. [PMID: 23885337 PMCID: PMC3717505 DOI: 10.3389/fcimb.2013.00031] [Citation(s) in RCA: 391] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/30/2013] [Indexed: 11/21/2022] Open
Abstract
The bacterium Anaplasma phagocytophilum has for decades been known to cause the disease tick-borne fever (TBF) in domestic ruminants in Ixodes ricinus-infested areas in northern Europe. In recent years, the bacterium has been found associated with Ixodes-tick species more or less worldwide on the northern hemisphere. A. phagocytophilum has a broad host range and may cause severe disease in several mammalian species, including humans. However, the clinical symptoms vary from subclinical to fatal conditions, and considerable underreporting of clinical incidents is suspected in both human and veterinary medicine. Several variants of A. phagocytophilum have been genetically characterized. Identification and stratification into phylogenetic subfamilies has been based on cell culturing, experimental infections, PCR, and sequencing techniques. However, few genome sequences have been completed so far, thus observations on biological, ecological, and pathological differences between genotypes of the bacterium, have yet to be elucidated by molecular and experimental infection studies. The natural transmission cycles of various A. phagocytophilum variants, the involvement of their respective hosts and vectors involved, in particular the zoonotic potential, have to be unraveled. A. phagocytophilum is able to persist between seasons of tick activity in several mammalian species and movement of hosts and infected ticks on migrating animals or birds may spread the bacterium. In the present review, we focus on the ecology and epidemiology of A. phagocytophilum, especially the role of wildlife in contribution to the spread and sustainability of the infection in domestic livestock and humans.
Collapse
Affiliation(s)
- Snorre Stuen
- Department of Production Animal Clinical Sciences, Norwegian School of Veterinary Science Sandnes, Norway.
| | | | | |
Collapse
|
44
|
Tappe J, Strube C. Anaplasma phagocytophilum and Rickettsia spp. infections in hard ticks (Ixodes ricinus) in the city of Hanover (Germany): revisited. Ticks Tick Borne Dis 2013; 4:432-8. [PMID: 23838023 DOI: 10.1016/j.ttbdis.2013.04.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/19/2013] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
Abstract
The present study aimed to determine the prevalence of Rickettsiales (A. phagocytophilum and Rickettsia spp.) in 2100 I. ricinus ticks collected at 10 different sampling sites every month during the tick season 2010 in the city of Hanover, northern Germany. At the same time, the results served as a fifth-year-follow-up study to monitor whether changes or stagnation of tick infection rates - possibly due to climate change--were obvious or not. To detect infections with A. phagocytophilum and/or Rickettsia spp., tick samples were analysed by quantitative real-time PCR. Differentiation of Rickettsia species was accomplished using real-time pyrosequencing technology. Overall, 4.5% (94/2100) of the collected ticks were tested positive for A. phagocytophilum and 26.2% (551/2100) were positive for Rickettsia spp. infections. Species differentiation of Rickettsia-positive ticks via real-time pyrosequencing was possible in 48.6% (268/551) of samples, which were all identified as R. helvetica. Coinfections with both pathogens were found in 1.0% (20/2100) of ticks. Statistically significant seasonal fluctuations between sampling months as well as local differences between sampling sites were detected for Rickettsia spp. infection rates. For A. phagocytophilum infections, only significant seasonal variations were found. When comparing infection rates of Hanoverian ticks in 2010 to those in 2005, infection rates of A. phagocytophilum-infected nymphs increased statistically significant (P=0.008, power: 0.762) from 2.3% in 2005 (Schicht et al., 2011) to 4.5% in 2010. Rickettsia spp. infections in female ticks decreased significantly (P=0.049, power: 0.491) from 41.8% in 2005 (Schicht et al., 2012) to 32.4% in 2010. Comparison of the remaining tick stages showed no statistically significant differences.
Collapse
Affiliation(s)
- Julia Tappe
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
| | | |
Collapse
|
45
|
Maggi RG, Ericson M, Mascarelli PE, Bradley JM, Breitschwerdt EB. Bartonella henselae bacteremia in a mother and son potentially associated with tick exposure. Parasit Vectors 2013; 6:101. [PMID: 23587194 PMCID: PMC3637281 DOI: 10.1186/1756-3305-6-101] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 03/21/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bartonella henselae is a zoonotic, alpha Proteobacterium, historically associated with cat scratch disease (CSD), but more recently associated with persistent bacteremia, fever of unknown origin, arthritic and neurological disorders, and bacillary angiomatosis, and peliosis hepatis in immunocompromised patients. A family from the Netherlands contacted our laboratory requesting to be included in a research study (NCSU-IRB#1960), designed to characterize Bartonella spp. bacteremia in people with extensive arthropod or animal exposure. All four family members had been exposed to tick bites in Zeeland, southwestern Netherlands. The mother and son were exhibiting symptoms including fatigue, headaches, memory loss, disorientation, peripheral neuropathic pain, striae (son only), and loss of coordination, whereas the father and daughter were healthy. METHODS Each family member was tested for serological evidence of Bartonella exposure using B. vinsonii subsp. berkhoffii genotypes I-III, B. henselae and B. koehlerae indirect fluorescent antibody assays and for bacteremia using the BAPGM enrichment blood culture platform. RESULTS The mother was seroreactive to multiple Bartonella spp. antigens and bacteremia was confirmed by PCR amplification of B. henselae DNA from blood, and from a BAPGM blood agar plate subculture isolate. The son was not seroreactive to any Bartonella sp. antigen, but B. henselae DNA was amplified from several blood and serum samples, from BAPGM enrichment blood culture, and from a cutaneous striae biopsy. The father and daughter were seronegative to all Bartonella spp. antigens, and negative for Bartonella DNA amplification. CONCLUSIONS Historically, persistent B. henselae bacteremia was not thought to occur in immunocompetent humans. To our knowledge, this study provides preliminary evidence supporting the possibility of persistent B. henselae bacteremia in immunocompetent persons from Europe. Cat or flea contact was considered an unlikely source of transmission and the mother, a physician, reported that clinical symptoms developed following tick exposure. To our knowledge, this is the first time that a B. henselae organism has been visualized in and amplified from a striae lesion. As the tick bites occurred three years prior to documentation of B. henselae bacteremia, the mode of transmission could not be determined.
Collapse
Affiliation(s)
- Ricardo G Maggi
- Intracellular Pathogens Research Laboratory, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| | | | | | | | | |
Collapse
|
46
|
Bonnet S, de la Fuente J, Nicollet P, Liu X, Madani N, Blanchard B, Maingourd C, Alongi A, Torina A, Fernández de Mera IG, Vicente J, George JC, Vayssier-Taussat M, Joncour G. Prevalence of tick-borne pathogens in adult Dermacentor spp. ticks from nine collection sites in France. Vector Borne Zoonotic Dis 2013; 13:226-36. [PMID: 23421886 DOI: 10.1089/vbz.2011.0933] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The importance of Dermacentor spp. in the transmission of tick-borne pathogens is not well recognized in Europe. To investigate the role of Dermacentor spp. in the transmission of tick-borne pathogens, questing ticks were collected in 9 sites from southern to northwestern France (Camargue Delta to Eastern Brittany) where Dermacentor spp. exist and tick-borne diseases had occurred previously. Three tick species were collected during the spring and autumn of 2009. Collected ticks (both males and females) included D. marginatus (n=377), D. reticulatus (n=74), and I. ricinus (n=45). All ticks were analyzed by PCR or reverse line blot for the presence of pathogens' DNA. Pathogens analyzed were based on veterinarian reports and included Anaplasma phagocytophilum, Coxiella burnetii, Anaplasma marginale, Borrelia burgdorferi, Bartonella spp., Babesia spp., Theileria spp., and Francisella sp. Francisella tularensis was not detected in any of the analyzed ticks. In D. marginatus, infection prevalence for A. phagocytophilum (3%) was similar to that found in I. ricinus in Europe. Other pathogens present in D. marginatus included A. marginale (0.5%), Bartonella spp. (9%), C. burnetii (12%), F. philomiragia (1.3%), and Theileria annulata/Babesia bovis (0.3%), which were detected for the first time in France. Pathogens detected in D. reticulatus included A. marginale (1%), Bartonella spp. (12%), C. burnetii (16%), Borrelia spp. (1.5%), and F. philomiragia (19%). Pathogens detected in I. ricinus included A. phagocytophilum (41%), Bartonella spp. (9%), C. burnetii (18%), A. marginale (1%), Borrelia spp. (4.5%), and Babesia sp. (7%). This study represents the first epidemiological approach to characterize tick-borne pathogens infecting Dermacentor spp. in France and that may be transmitted by ticks from this genus. Further experiments using experimental infections and transmission may be now conducted to analyze vector competency of Dermacentor spp. for these pathogens and to validate such hypothesis.
Collapse
Affiliation(s)
- S Bonnet
- USC INRA Bartonella et Tiques, ANSES, 94706 Maisons-Alfort cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Herrmann C, Voordouw MJ, Gern L. Ixodes ricinus ticks infected with the causative agent of Lyme disease, Borrelia burgdorferi sensu lato, have higher energy reserves. Int J Parasitol 2013; 43:477-83. [PMID: 23416154 DOI: 10.1016/j.ijpara.2012.12.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/19/2012] [Accepted: 12/22/2012] [Indexed: 10/27/2022]
Abstract
Ticks use their energy reserves to maintain their water balance, search for hosts and transmit tick-borne pathogens. However, the influence of tick-borne pathogens on the energy reserves of the tick vector has not been well studied. The relationship between Borrelia burgdorferi sensu lato (s.l.) infection status and fat content in questing Ixodes ricinus nymphs was examined. Nymphs were sampled from the field. Their body mass and fat content were measured, and their Borrelia genospecies infection status (using reverse line blot analysis), and spirochete load (using quantitative PCR) were analysed. Of the 900 nymphs tested, 21.2% were infected with a variety of Borrelia genospecies. Borrelia-infected nymphs had 12.1% higher fat content than uninfected ticks after correcting for body size. For the subset of Borrelia-infected nymphs, no relationship was found between spirochete load and fat content and bioenergetics calculations suggest that Borrelia spirochetes consume a negligible fraction of the tick energy reserves. While the mechanism that causes the association between Borrelia infection and higher fat content in I. ricinus nymphs remains unknown, the present study complements our previous findings that Borrelia-infected nymphs had higher survival times under desiccating conditions and walked less within a humidity gradient.
Collapse
Affiliation(s)
- C Herrmann
- Institute of Biology, Laboratory of Eco-Epidemiology of Parasites, University of Neuchâtel, Emile Argand 11, 2000 Neuchâtel, Switzerland.
| | | | | |
Collapse
|
48
|
Hard ticks and their bacterial endosymbionts (or would be pathogens). Folia Microbiol (Praha) 2013; 58:419-28. [DOI: 10.1007/s12223-013-0222-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
|
49
|
Davoust B, Socolovschi C, Revelli P, Gibert P, Marié JL, Raoult D, Parola P. Detection of Rickettsia helvetica in Ixodes ricinus ticks collected from Pyrenean chamois in France. Ticks Tick Borne Dis 2012; 3:387-8. [DOI: 10.1016/j.ttbdis.2012.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Exploring gaps in our knowledge on Lyme borreliosis spirochaetes--updates on complex heterogeneity, ecology, and pathogenicity. Ticks Tick Borne Dis 2012; 4:11-25. [PMID: 23246041 DOI: 10.1016/j.ttbdis.2012.06.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/11/2012] [Accepted: 06/15/2012] [Indexed: 11/20/2022]
Abstract
The Lyme borreliosis complex is a heterogeneous group of tick-borne spirochaetes of the genus Borrelia (Spirochaetales: Spirochaetaceae) that are distributed all over the temperate zone of the northern hemisphere. Due to the usage of new methods for phylogenetic analysis, this group has expanded rapidly during the past 5 years. Along with this development, the number of Borrelia spp. regarded as pathogenic to humans also increased. Distribution areas as well as host and vector ranges of Lyme borreliosis agents turned out to be much wider than previously thought. Furthermore, there is evidence that ticks, reservoir hosts, and patients can be coinfected with multiple Borrelia spp. or other tick-borne pathogens, which indicates a need to establish new and well-defined diagnostic and therapeutic standards for Lyme borreliosis. This review gives a broad overview on the occurrence of Lyme borreliosis spirochaetes worldwide with particular emphasis on their vectors and vertebrate hosts as well as their pathogenic potential and resultant problems in diagnosis and treatment. Against the background that many issues regarding distribution, species identity, ecology, pathogenicity, and coinfections are still unsolved, the purpose of this article is to reveal directions for future research on the Lyme borreliosis complex.
Collapse
|