1
|
Noaman K, Abuelmaali SA, Elnour MAB, Korti M, Ageep T, Baleela RMH. First detection of F1534C kdr insecticide resistance mutation in Aedes aegypti in Sudan. Parasitol Res 2024; 123:178. [PMID: 38578300 DOI: 10.1007/s00436-024-08194-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Affiliation(s)
- Kheder Noaman
- Tropical Medicine Research Institute, National Center for Research, P.O. Box 1304, Khartoum, 11111, Sudan
| | - Sara A Abuelmaali
- National Public Health Laboratory, Federal Ministry of Health, Khartoum, Sudan.
| | - Mohamed-Ahmed B Elnour
- Tropical Medicine Research Institute, National Center for Research, P.O. Box 1304, Khartoum, 11111, Sudan
| | - Mohammed Korti
- Tropical Medicine Research Institute, National Center for Research, P.O. Box 1304, Khartoum, 11111, Sudan
| | - Tellal Ageep
- Tropical Medicine Research Institute, National Center for Research, P.O. Box 1304, Khartoum, 11111, Sudan
| | - Rania M H Baleela
- Department of Zoology, Faculty of Science, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
2
|
Kadjo YMAE, Adja AM, Guindo-Coulibaly N, Zoh DD, Traoré DF, Assouho KF, Sadia-Kacou MAC, Kpan MDS, Yapi A, Chandre F. Insecticide Resistance and Metabolic Mechanisms in Aedes aegypti from Two Agrosystems (Vegetable and Cotton Crops) in Côte d'Ivoire. Vector Borne Zoonotic Dis 2023; 23:475-485. [PMID: 37615509 DOI: 10.1089/vbz.2022.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Background: The emergence of insecticide resistance in Aedes vectors mosquitoes poses a real challenge for arboviral-borne disease control. In Côte d'Ivoire, data are available on phenotypic resistance and the presence of kdr mutations in Aedes aegypti. Therefore, information on metabolic resistance in Aedes populations is very scarce. Here, we assessed the insecticide resistance status of Ae. aegypti in periurban and rural areas of Côte d'Ivoire, and we investigated the role of detoxification enzymes as possible resistance mechanisms. Materials and Methods: Aedes mosquito eggs were collected between June 2019 to April 2021 in two agricultural sites. Adults of Ae. aegypti were tested using World Health Organization tube assays, with seven insecticides belonging to pyrethroids, organochlorines, carbamates, and organophosphates classes. We determined the knockdown times (KdT50, KdT95) and resistance ratios of pyrethroids in natural populations. The synergist piperonyl butoxide (PBO) was used to investigate the role of enzymes in resistance. Biochemical assays were performed to detect potential increased activities in mixed-function oxidase levels, nonspecific esterases (NSEs), and glutathione S-transferases. Results: The results showed that Ae. aegypti populations were resistant to five insecticides with mortality of 46% and 89% for 0.75% permethrin, 68% and 92% for 0.05% deltamethrin, 57% and 89% for lambda-cyhalothrin, 41% and 47% for dichlorodiphenyltrichloroethane (DDT), 82% and 91% for chlorpyrifos-methyl in Songon-Agban and Kaforo, respectively. Susceptibility to carbamates was observed in our study sites. After exposure to PBO, the susceptibility of Ae. aegypti to pyrethroids and DDT was partially restored in Songon-Agban. Whereas in Kaforo, none increase of the mortality rates of Ae. aegypti for these four insecticides was observed after exposure to PBO. Increased activity of NSE (α-esterases) was found in Songon-Agban compared with the reference susceptible strain. Conclusion: These findings provide valuable information to support decisions for vector control strategies in Cote d'Ivoire. Also, we highlight the need for the monitoring of insecticide resistance management in Aedes vectors.
Collapse
Affiliation(s)
- Yapo Marie-Ange Edwige Kadjo
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
- Institut Pierre Richet, Institut National de la Santé Publique, Bouaké, Côte d'Ivoire
| | - Akré M Adja
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
- Institut Pierre Richet, Institut National de la Santé Publique, Bouaké, Côte d'Ivoire
| | - Négnorogo Guindo-Coulibaly
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
| | - Dounin Danielle Zoh
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
- Institut Pierre Richet, Institut National de la Santé Publique, Bouaké, Côte d'Ivoire
| | | | - Konan Fabrice Assouho
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
| | | | | | - Ahoua Yapi
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
| | - Fabrice Chandre
- MIVEGEC, UMR IRD-CNRS-Université de Montpellier, Montpellier, France
- Institut de Recherche pour le Développement, Montpellier, France
| |
Collapse
|
3
|
Zahouli JZB, Dibo JD, Diakaridia F, Yao LVA, Souza SD, Horstmann S, Koudou BG. Semi-field evaluation of the space spray efficacy of Fludora Co-Max EW against wild insecticide-resistant Aedes aegypti and Culex quinquefasciatus mosquito populations from Abidjan, Côte d'Ivoire. Parasit Vectors 2023; 16:47. [PMID: 36732832 PMCID: PMC9893543 DOI: 10.1186/s13071-022-05572-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/02/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Space spraying of insecticides is still an important means of controlling Aedes and Culex mosquitoes and arboviral diseases. This study evaluated the space spray efficacy of Fludora Co-Max EW, (water-based insecticide space spray combining flupyradifurone and transfluthrin with film forming aqueous spray technology (FFAST)), against wild insecticide-resistant Aedes aegypti and Culex quinquefasciatus mosquitoes from Abidjan, Côte d'Ivoire, compared with K-Othrine EC (deltamethrin-only product), in small-scale field trials. METHODS Wild Ae. aegypti and Cx. quinquefasciatus mosquito larvae were collected in Abidjan, Côte d'Ivoire from August to December 2020. Mosquito larvae were reared in the laboratory until the adult stage. Fludora Co-Max EW and K-Othrine EC were tested against emerged adult females (F0 generation) using ultra-low volume cold fogging (ULV) and thermal fogging (TF) delivery technology, both outdoors and indoors in Agboville, Côte d'Ivoire. Specifically, cages containing 20 mosquitoes each were placed at distances of 10, 25, 50, 75 and 100 m from the spraying line for outdoor spraying, and at ceiling, mid-height and floor levels for indoor house spraying. Knockdown and mortality were recorded at each checkpoint and compared by treatments. RESULTS Overall, Fludora Co-Max EW induced significantly higher knockdown and mortality effects in the wild insecticide-resistant Ae. aegypti and Cx. quinquefasciatus compared with K-Othrine EC. In both species, mortality rates with Fludora Co-Max EW were > 80% (up to 100%) with the ULV spray outdoors at each distance checkpoint (i.e. 10-100 m), and 100% with the ULV and TF sprays indoors at all checkpoints (i.e. ceiling, mid-height and floor). K-Othrine EC induced high mortality indoors (97.9-100%), whereas mortality outdoors rapidly declined in Ae. aegypti from 96.7% (10 m) to 36.7% (100 m) with the ULV spray, and from 85.0% (10 m) to 38.3% (100 m) with the TF spray. Fludora Co-Max EW spray applied as ULV spray outdoors had higher knockdown and higher killing effects on Ae. aegypti and Cx. quinquefasciatus than when applied as TF spray. Fludora Co-Max EW performed better against Cx. quinquefasciatus than against Ae. aegypti. CONCLUSIONS Fludora Co-Max EW induced high mortality and knockdown effects against wild insecticide-resistant Ae. aegypti and Cx. quinquefasciatus Abidjan strains and performed better than K-Othrine EC. The presence of flupyradifurone and transfluthrin (with new and independent modes of action) and FFAST technology in the current Fludora Co-Max EW formulation appears to have broadened its killing capacity. Fludora Co-Max EW is thus an effective adulticide and may be a useful tool for Aedes and Culex mosquito and arbovirus control in endemic areas.
Collapse
Affiliation(s)
- Julien Z. B. Zahouli
- grid.462846.a0000 0001 0697 1172Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire ,grid.449926.40000 0001 0118 0881Centre d’Entomologie Médicale et Vétérinaire, Université Alassane Ouattara, Bouaké, Côte d’Ivoire
| | - Jean-Denis Dibo
- grid.462846.a0000 0001 0697 1172Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire ,grid.452889.a0000 0004 0450 4820Unité de Formation et de Recherche Sciences de la Nature, Université Nangui-Abrogoua, Abidjan, Côte d’Ivoire
| | - Fofana Diakaridia
- grid.512166.70000 0004 0382 3934Institut National d’Hygiène Publique, Ministère de la Santé et de l’Hygiène Publique, Abidjan, Côte d’Ivoire
| | - Laurence V. A. Yao
- grid.462846.a0000 0001 0697 1172Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Sarah D. Souza
- Envu, 2022 Environmental Science FR S.A.S., France, Lyon, France
| | | | - Benjamin G. Koudou
- grid.462846.a0000 0001 0697 1172Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire ,grid.452889.a0000 0004 0450 4820Unité de Formation et de Recherche Sciences de la Nature, Université Nangui-Abrogoua, Abidjan, Côte d’Ivoire
| |
Collapse
|
4
|
Kwame Amlalo G, Akorli J, Etornam Akyea-Bobi N, Sowa Akporh S, Aqua-Baidoo D, Opoku M, Frempong K, Pi-Bansa S, Boakye HA, Joannides J, Nyarko Osei JH, Pwalia R, Abla Akorli E, Manu A, Dadzie SK. Evidence of High Frequencies of Insecticide Resistance Mutations in Aedes aegypti (Culicidae) Mosquitoes in Urban Accra, Ghana: Implications for Insecticide-based Vector Control of Aedes-borne Arboviral Diseases. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:2090-2101. [PMID: 36066455 DOI: 10.1093/jme/tjac120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 06/15/2023]
Abstract
The most widespread arboviral diseases such as Dengue, Chikungunya, and Zika are transmitted mainly by Aedes mosquitoes. Due to the lack of effective therapeutics for most of these diseases, vector control remains the most effective preventative and control measure. This study investigated and compared the species composition, insecticide susceptibility, and resistance mechanisms in Aedes mosquito populations from a forest reserve converted to an eco-park and a peri-domestic sites in urban Accra, Ghana. Immature Aedes were sampled from the study sites, raised to adults, and exposed to deltamethrin, permethrin, DDT, fenitrothion, bendiocarb, permethrin + PBO, and deltamethrin + PBO using WHO tube assays. Melting curve analyses were performed for F1536C, V1016I, and V410L genetic mutations in surviving and dead mosquitoes following exposure to deltamethrin and permethrin. Microplate assay was used to access enzyme activity levels in adult mosquitoes from both populations. Aedes aegypti was found to be the dominant species from both study populations. The susceptibility test results revealed a high frequency of resistance to all the insecticides except fenitrothion. F1534C mutations were observed in 100% and 97% of mosquitoes from the peri-domestic and forest population, respectively but were associated with pyrethroid resistance only in the forest population (P < 0.0001). For the first time in Aedes mosquitoes in Ghana, we report the existence V410L mutations, mostly under selection only in the forest population (HWE P < 0.0001) and conclude that Aedes vectors in urban Accra have developed resistance to many commonly used insecticides. This information is important for the formulation of vector control strategies for Aedes control in Ghana.
Collapse
Affiliation(s)
- Godwin Kwame Amlalo
- Vestergaard NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
- Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, P.O. Box LG 13, Legon, Accra, Ghana
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Nukunu Etornam Akyea-Bobi
- Vestergaard NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Samuel Sowa Akporh
- Vestergaard NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Dominic Aqua-Baidoo
- Vestergaard NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Millicent Opoku
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Kwadwo Frempong
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Sellase Pi-Bansa
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Helena A Boakye
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Joannitta Joannides
- Vestergaard NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Joseph Harold Nyarko Osei
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Rebecca Pwalia
- Vestergaard NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Esinam Abla Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Alexander Manu
- Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, P.O. Box LG 13, Legon, Accra, Ghana
| | - Samuel K Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| |
Collapse
|
5
|
Konan LY, Oumbouke WA, Silué UG, Coulibaly IZ, Ziogba JCT, N'Guessan RK, Coulibaly D, Bénié JBV, Lenhart A. Insecticide Resistance Patterns and Mechanisms in Aedes aegypti (Diptera: Culicidae) Populations Across Abidjan, Côte d'Ivoire Reveal Emergent Pyrethroid Resistance. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1808-1816. [PMID: 33876233 DOI: 10.1093/jme/tjab045] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Indexed: 05/02/2023]
Abstract
From 2008 to 2017, the city of Abidjan, Côte d'Ivoire experienced several Aedes-borne disease epidemics which required control of the vector mosquito population based on the reduction of larval habitats and insecticidal sprays for adult mosquitoes. This study was undertaken to assess the insecticide susceptibility status of Aedes aegypti (Linnaeus) in the city of Abidjan. Immature Ae. aegypti were sampled from several larval habitats within seven communes of Abidjan and reared to adults. Three to five days old F1 emerged adults were tested for susceptibility using insecticide-impregnated papers and the synergist piperonyl butoxide (PBO) following WHO bioassay guidelines. The results showed that Ae. aegypti populations from Abidjan were resistant to 0.1% propoxur, and 1% fenitrothion, with mortality rates ranging from 0% to 54.2%. Reduced susceptibility (93.4-97.5% mortality) was observed to 0.05% deltamethrin, 0.75% permethrin, 0.05% lambda-cyhalothrin, 5% malathion, and 0.8% chlorpyrifos-methyl. This reduced susceptibility varied depending on the insecticide and the collection site. The restoration of mortality when the mosquitoes were pre-exposed to the synergist PBO suggests that increased activity of oxidases could be contributing to resistance. Three kdr mutations (V410L, V1016I, and F1534C) were present in populations tested, with low frequencies for the Leu410 (0.28) and Ile1016 (0.32) alleles and high frequencies for the Cys1534 allele (0.96). These findings will be used to inform future arbovirus vector control activities in Abidjan.
Collapse
Affiliation(s)
| | | | - Urbain Garhapié Silué
- National Institute of Public Hygiene, Abidjan, Côte d'Ivoire
- Laboratory of Zoology and Animal Biology, UFR Biosciences, Felix Houphouet-Boigny University, Abidjan, Côte d'Ivoire
| | | | | | | | | | | | - Audrey Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
6
|
Sene NM, Mavridis K, Ndiaye EH, Diagne CT, Gaye A, Ngom EHM, Ba Y, Diallo D, Vontas J, Dia I, Diallo M. Insecticide resistance status and mechanisms in Aedes aegypti populations from Senegal. PLoS Negl Trop Dis 2021; 15:e0009393. [PMID: 33970904 PMCID: PMC8136859 DOI: 10.1371/journal.pntd.0009393] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 05/20/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Aedes aegypti is the main epidemic vector of arboviruses in Africa. In Senegal, control activities are mainly limited to mitigation of epidemics, with limited information available for Ae. aegypti populations. A better understanding of the current Ae. aegypti susceptibility status to various insecticides and relevant resistance mechanisms involved is needed for the implementation of effective vector control strategies. The present study focuses on the detection of insecticide resistance and reveals the related mechanisms in Ae. aegypti populations from Senegal. Bioassays were performed on Ae. aegypti adults from nine Senegalese localities (Matam, Louga, Barkedji, Ziguinchor, Mbour, Fatick, Dakar, Kédougou and Touba). Mosquitoes were exposed to four classes of insecticides using the standard WHO protocols. Resistance mechanisms were investigated by genotyping for pyrethroid target site resistance mutations (V1016G, V1016I, F1534C and S989P) and measuring gene expression levels of key detoxification genes (CYP6BB2, CYP9J26, CYP9J28, CYP9J32, CYP9M6, CCEae3a and GSTD4). All collected populations were resistant to DDT and carbamates except for the ones in Matam (Northern region). Resistance to permethrin was uniformly detected in mosquitoes from all areas. Except for Barkédji and Touba, all populations were characterized by a susceptibility to 0.75% Permethrin. Susceptibility to type II pyrethroids was detected only in the Southern regions (Kédougou and Ziguinchor). All mosquito populations were susceptible to 5% Malathion, but only Kédougou and Matam mosquitoes were susceptible to 0.8% Malathion. All populations were resistant to 0.05% Pirimiphos-methyl, whereas those from Louga, Mbour and Barkédji, also exhibited resistance to 1% Fenitrothion. None of the known target site pyrethroid resistance mutations was present in the mosquito samples included in the genotyping analysis (performed in > 1500 samples). In contrast, a remarkably high (20-70-fold) overexpression of major detoxification genes was observed, suggesting that insecticide resistance is mostly mediated through metabolic mechanisms. These data provide important evidence to support dengue vector control in Senegal. In Senegal, as in most African countries, the arbovirus epidemics control policy relies on the control of the main vector Ae. aegypti though insecticide applications. Vector control strategies have been largely adopted without information on the vector populations’ insecticide resistance mechanisms. We profiled here the resistance status of nine Ae. aegypti populations from Senegal to four classes of insecticides and their related mechanisms. Our findings revealed high resistance to carbamates, a relative susceptibility of southern populations to pyrethroids and a variable efficacy of organophosphates. Resistance to pyrethroids was driven by a significant overexpression of detoxification genes linked to insecticide metabolism. Our results contribute towards a more targeted and efficient control of Ae. aegypti populations and thus of arbovirus epidemics in Senegal.
Collapse
Affiliation(s)
| | - Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Crete, Greece
| | - El Hadji Ndiaye
- Medical Zoology Pole, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Cheikh Tidiane Diagne
- Medical Zoology Pole, Institut Pasteur de Dakar, Dakar, Sénégal
- MIVEGEC (Infectious Diseases and Vector: Ecology, Genetics, Evolution and Control), IRD (Institut de recherché pour le Développement), Montpellier, France
| | - Alioune Gaye
- Medical Zoology Pole, Institut Pasteur de Dakar, Dakar, Sénégal
| | | | - Yamar Ba
- Medical Zoology Pole, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Diawo Diallo
- Medical Zoology Pole, Institut Pasteur de Dakar, Dakar, Sénégal
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Crete, Greece
- Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Ibrahima Dia
- Medical Zoology Pole, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Mawlouth Diallo
- Medical Zoology Pole, Institut Pasteur de Dakar, Dakar, Sénégal
- * E-mail:
| |
Collapse
|
7
|
Ouattara LPE, Sangaré I, Namountougou M, Hien A, Ouari A, Soma DD, Kassié D, Diabaté A, Gnankiné O, Bonnet E, Ridde V, Akré MA, Fournet F, Dabiré KR. Surveys of Arboviruses Vectors in Four Cities Stretching Along a Railway Transect of Burkina Faso: Risk Transmission and Insecticide Susceptibility Status of Potential Vectors. Front Vet Sci 2019; 6:140. [PMID: 31192232 PMCID: PMC6546915 DOI: 10.3389/fvets.2019.00140] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/16/2019] [Indexed: 12/31/2022] Open
Abstract
Background: A severe outbreak of dengue occurred in Burkina Faso in 2016, with the most cases reported in Ouagadougou, that highlights the necessity to implement vector surveillance system. This study aims to estimate the risk of arboviruses transmission and the insecticide susceptibility status of potential vectors in four sites in Burkina Faso. Methods: From June to September 2016, house-to-house cross sectional entomological surveys were performed in four cities stretching along a southwest-to-northeast railway transect. The household surveys analyzed the presence of Aedes spp. larvae in containers holding water and the World Health Organization (WHO) larval abundance indices were estimated. WHO tube assays was used to evaluate the insecticide susceptibility within Aedes populations from these localities. Results: A total of 31,378 mosquitoes' larvae were collected from 1,330 containers holding water. Aedes spp. was the most abundant (95.19%) followed by Culex spp. (4.75%). Aedes aegypti a key vector of arboviruses (ARBOV) in West Africa was the major Aedes species found (98.60%). The relative larval indices, house index, container and Breteau indexes were high, up to 70, 35, and 10, respectively. Aedes aegypti tended to breed mainly in discarded tires and terracotta jars. Except in Banfora the western city, Ae. aegypti populations were resistant to deltamethrin 0.05% in the other localities with low mortality rate under 20% in Ouagadougou whereas they were fully susceptible to malathion 5% whatever the site. Intermediate resistance was observed in the four sites with mortality rates varying between 78 and 94% with bendiocarb 0.1%. Conclusions: This study provided basic information on entomological indices that can help to monitor the risks of ARBOV epidemics in the main cities along the railway in Burkina Faso. In these cities, all larval indices exceeded the risk level of ARBOV outbreak. Aedes aegypti the main species collected was resistant to deltamethrin 0.05% and bendiocarb 0.1% whereas they were fully susceptible to malathion 5%. The monitoring of insecticide resistance is also important to be integrated to the vector surveillance system in Burkina Faso.
Collapse
Affiliation(s)
- Lissy Parfait Eric Ouattara
- Unité de Recherche-Paludisme et maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.,Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Ibrahim Sangaré
- Unité de Recherche-Paludisme et maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.,Institut Supérieur des Sciences de la Santé, Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | - Moussa Namountougou
- Unité de Recherche-Paludisme et maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.,Institut Supérieur des Sciences de la Santé, Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | - Aristide Hien
- Unité de Recherche-Paludisme et maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Ali Ouari
- Unité de Recherche-Paludisme et maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.,Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Dieudonné Diloma Soma
- Unité de Recherche-Paludisme et maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | | | - Abdoulaye Diabaté
- Unité de Recherche-Paludisme et maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Olivier Gnankiné
- UFR-Sciences de la Vie et de la Terre, Université Joseph-Ki Zerbo-Ouaga 1, Ouagadougou, Burkina Faso
| | | | - Valéry Ridde
- Department of Social and Preventive Medicine, School of Public Health (ESPUM), University of Montreal, Montreal, QC, Canada
| | - Maurice Adja Akré
- Département D'Entomologie Médicale, Institut Pierre Richet, Bouaké, Côte d'Ivoire
| | | | - Kounbobr Roch Dabiré
- Unité de Recherche-Paludisme et maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
8
|
Weetman D, Kamgang B, Badolo A, Moyes CL, Shearer FM, Coulibaly M, Pinto J, Lambrechts L, McCall PJ. Aedes Mosquitoes and Aedes-Borne Arboviruses in Africa: Current and Future Threats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020220. [PMID: 29382107 PMCID: PMC5858289 DOI: 10.3390/ijerph15020220] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 12/21/2022]
Abstract
The Zika crisis drew attention to the long-overlooked problem of arboviruses transmitted by Aedes mosquitoes in Africa. Yellow fever, dengue, chikungunya and Zika are poorly controlled in Africa and often go unrecognized. However, to combat these diseases, both in Africa and worldwide, it is crucial that this situation changes. Here, we review available data on the distribution of each disease in Africa, their Aedes vectors, transmission potential, and challenges and opportunities for Aedes control. Data on disease and vector ranges are sparse, and consequently maps of risk are uncertain. Issues such as genetic and ecological diversity, and opportunities for integration with malaria control, are primarily African; others such as ever-increasing urbanization, insecticide resistance and lack of evidence for most control-interventions reflect problems throughout the tropics. We identify key knowledge gaps and future research areas, and in particular, highlight the need to improve knowledge of the distributions of disease and major vectors, insecticide resistance, and to develop specific plans and capacity for arboviral disease surveillance, prevention and outbreak responses.
Collapse
Affiliation(s)
- David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | - Basile Kamgang
- Centre for Research in Infectious Diseases, Yaoundé PO Box 13501, Cameroon.
| | - Athanase Badolo
- Laboratoire d'Entomologie Fondamentale et Appliquée (LEFA), Université Ouaga 1 Pr Joseph Ki-Zerbo, Ouagadougou 03 BP 7021, Burkina Faso.
| | - Catherine L Moyes
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK.
| | - Freya M Shearer
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK.
| | - Mamadou Coulibaly
- University of Sciences, Techniques and Technologies of Bamako, Bamako BP 1805, Mali.
| | - João Pinto
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisbon, Portugal.
| | - Louis Lambrechts
- Insect-Virus Interactions, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France.
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 2000, 75015 Paris, France.
| | - Philip J McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| |
Collapse
|
9
|
Luiz Rosa da Silva J, Undurraga Schwalm F, Eugênio Silva C, da Costa M, Heermann R, Santos da Silva O. Larvicidal and Growth-Inhibitory Activity of Entomopathogenic Bacteria Culture Fluids Against Aedes aegypti (Diptera: Culicidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:378-385. [PMID: 28062794 DOI: 10.1093/jee/tow224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Indexed: 06/06/2023]
Abstract
Dengue, Chikungunya, and Zika are important vector-borne diseases, and Aedes aegypti L. is their main transmitter. As the disease management is mainly based on mosquito control strategies, the search for alternative and cost-effective approaches is ongoing. The Gram-negative bacteria Xenorhabdus nematophila and Photorhabdus luminescens are symbiotically associated with entomopathogenic nematodes and are highly pathogenic for insect larvae. After we have recently confirmed the toxicity of these bacteria in Ae. aegypti larvae, we here evaluated the toxic activity of culture fluids on the development of this mosquito species. Larval susceptibility was assessed by exposing larvae to different concentrations of P. luminescens or X. nematophila culture fluids to confirm whether secondary metabolites might cause the mosquitos' death. Xenorhabdus nematophila culture fluid was more effective and stable during the mosquito pathogenicity bioassays compared to that of P. luminescens. Larval mortality started a few hours after exposure of the insects to the fluids. Furthermore, the residual effect of larvicidal activity of X. nematophila fluid persisted at full efficiency for 4 d. Particularly, larval mortality was still higher than 50% for up to 8 d. Exposure of larvae to a sublethal dose of X. nematophila fluid delayed pupation as well as emergence of adult mosquitoes and caused cumulative larval mortality higher than 90% by day 14. Here, we describe for the first time the use of stable culture fluids and therefore secondary metabolites of P. luminescens and X. nematophila as a promising basis for the use as biopesticide for control of Ae. aegypti in the future.
Collapse
Affiliation(s)
- João Luiz Rosa da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Undurraga Schwalm
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Eugênio Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marisa da Costa
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ralf Heermann
- Biozentrum, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152 Martinsried/München, Germany
| | - Onilda Santos da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
10
|
Susceptibility profile of Aedes aegypti from Santiago Island, Cabo Verde, to insecticides. Acta Trop 2015; 152:66-73. [PMID: 26307496 DOI: 10.1016/j.actatropica.2015.08.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/23/2015] [Accepted: 08/18/2015] [Indexed: 11/23/2022]
Abstract
In 2009, Cabo Verde diagnosed the first dengue cases, with 21,137 cases reported and Aedes aegypti was identified as the vector. Since the outbreak, chemical insecticides and source reduction were used to control the mosquito population. This study aimed to assess the susceptibility of A. aegypti populations from Santiago, Cabo Verde to insecticides and identify the mechanisms of resistance. Samples of A. aegypti eggs were obtained at two different time periods (2012 and 2014), using ovitraps in different locations in Santiago Island to establish the parental population. F1 larvae were exposed to different concentrations of insecticides (Bacillus thuringiensis var israelensis (Bti), diflubenzuron and temephos) to estimate the lethal concentrations (LC90) and calculate the respective rate of resistance (RR90). Semi-field tests using temephos-ABATE(®) were performed to evaluate the persistence of the product. Bottle tests using female mosquitoes were carried out to determine the susceptibility to the adulticides malathion, cypermethrin and deltamethrin. Biochemical and molecular tests were performed to investigate the presence of metabolic resistance mechanisms, associated with the enzymes glutathione S-transferases (GSTs), esterases and mixed-function oxidases (MFO) and to detect mutations or alterations in the sodium channel and acetylcholinesterase genes. A. aegypti mosquitoes from Santiago exhibited resistance to deltamethrin, cypermethrin (mortality<80%) and temephos (RR90=4.4) but susceptibility to malathion (mortality≥98%), Bti and diflubenzuron. The low level of resistance to temephos did not affect the effectiveness of Abate(®). The enzymatic analysis conducted in 2012 revealed slight changes in the activities of GST (25%), MFO (18%), α-esterase (19%) and β-esterase (17%), but no significant changes in 2014. Target site resistance mutations were not detected. Our results suggest that the A. aegypti population from Santiago is resistant to two major insecticides used for vector control, deltamethrin and temephos. To our knowledge, this is the first report of temephos resistance in an African A. aegypti population. The low level of temephos resistance was maintained from 2012-2014, which suggested the imposition of selective pressure, although it was not possible to identify the resistance mechanisms involved. These data show that the potential failures in the local mosquito control program are not associated with insecticide resistance.
Collapse
|