1
|
Rift Valley Fever Virus Non-Structural Protein S Is Associated with Nuclear Translocation of Active Caspase-3 and Inclusion Body Formation. Viruses 2022; 14:v14112487. [PMID: 36366585 PMCID: PMC9698985 DOI: 10.3390/v14112487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/06/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Rift Valley fever phlebovirus (RVFV) causes Rift Valley fever (RVF), an emerging zoonotic disease that causes abortion storms and high mortality rates in young ruminants as well as severe or even lethal complications in a subset of human patients. This study investigates the pathomechanism of intranuclear inclusion body formation in severe RVF in a mouse model. Liver samples from immunocompetent mice infected with virulent RVFV 35/74, and immunodeficient knockout mice that lack interferon type I receptor expression and were infected with attenuated RVFV MP12 were compared to livers from uninfected controls using histopathology and immunohistochemistry for RVFV nucleoprotein, non-structural protein S (NSs) and pro-apoptotic active caspase-3. Histopathology of the livers showed virus-induced, severe hepatic necrosis in both mouse strains. However, immunohistochemistry and immunofluorescence revealed eosinophilic, comma-shaped, intranuclear inclusions and an intranuclear (co-)localization of RVFV NSs and active caspase-3 only in 35/74-infected immunocompetent mice, but not in MP12-infected immunodeficient mice. These results suggest that intranuclear accumulation of RVFV 35/74 NSs is involved in nuclear translocation of active caspase-3, and that nuclear NSs and active caspase-3 are involved in the formation of the light microscopically visible inclusion bodies.
Collapse
|
2
|
Sado FY, Tchetgna HS, Kamgang B, Djonabaye D, Nakouné E, McCall PJ, Ndip RN, Wondji CS. Seroprevalence of Rift Valley fever virus in domestic ruminants of various origins in two markets of Yaoundé, Cameroon. PLoS Negl Trop Dis 2022; 16:e0010683. [PMID: 35951644 PMCID: PMC9397978 DOI: 10.1371/journal.pntd.0010683] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/23/2022] [Accepted: 07/20/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Rift Valley fever (RVF) is a mosquito-borne zoonosis endemic in Africa. With little known of the burden or epidemiology of RVF virus (RVFV) in Cameroon, this study aimed to determine the seroprevalence of RVFV in domestic ruminants of various origins in two markets of Yaoundé, Cameroon. METHODOLOGY/PRINCIPAL FINDINGS The origin of animals randomly sampled at two livestock markets in Yaoundé were recorded and plasma samples collected for competitive and capture Enzyme-linked Immunosorbent Assay (ELISA) to determine the prevalence of Immunoglobulins G (IgG) and Immunoglobulins M (IgM) antibodies. Following ELISA IgM results, a real-time reverse transcription-polymerase chain reaction (qRT-PCR) was performed to detect RVFV RNA. In June-August 2019, February-March 2020, and March-April 2021, 756 plasma samples were collected from 441 cattle, 168 goats, and 147 sheep. RVFV IgG seroprevalence was 25.7% for all animals, 42.2% in cattle, 2.7% in sheep, and 2.4% in goats. However, IgM seroprevalence was low, at 0.9% in all animals, 1.1% in cattle, 1.4% in sheep, and 0% in goats. The seroprevalence rates varied according to the animal's origin with the highest rate (52.6%) in cattle from Sudan. In Cameroon, IgG and IgM rates respectively were 45.1% and 2.8% in the North, 44.8% and 0% in the Adamawa, 38.6% and 1.7% in the Far-North. All IgM positive samples were from Cameroon. In cattle, 2/5 IgM positive samples were also IgG positive, but both IgM positive samples in sheep were IgG negative. Three (42.9%) IgM positive samples were positive for viral RVFV RNA using qRT-PCR but given the high ct values, no amplicon was obtained. CONCLUSION/SIGNIFICANCE These findings confirm the circulation of RVFV in livestock in Cameroon with prevalence rates varying by location. Despite low IgM seroprevalence rates, RVF outbreaks can occur without being noticed. Further epidemiological studies are needed to have a broad understanding of RVFV transmission in Cameroon.
Collapse
Affiliation(s)
- Francine Yousseu Sado
- Microbiology and Parasitology Department, Centre for Research in Infectious Diseases, Yaounde, Cameroon
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Cameroon
| | - Huguette Simo Tchetgna
- Microbiology and Parasitology Department, Centre for Research in Infectious Diseases, Yaounde, Cameroon
| | - Basile Kamgang
- Microbiology and Parasitology Department, Centre for Research in Infectious Diseases, Yaounde, Cameroon
| | - Doumani Djonabaye
- Microbiology and Parasitology Department, Centre for Research in Infectious Diseases, Yaounde, Cameroon
- Department of Biochemistry, Laboratory of Pharmacology and Toxicology, University of Yaounde I, Cameroon
| | - Emmanuel Nakouné
- Laboratory of Influenza, viral hemorrhagic fever, arbovirus, zoonosis, emerging and re-emerging viruses, Institut Pasteur of Bangui, Central African Republic
| | - Philip J. McCall
- Vector Biology Department, Liverpool School of Tropical Medicine, United Kingdom
| | - Roland Ndip Ndip
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Cameroon
| | - Charles S. Wondji
- Microbiology and Parasitology Department, Centre for Research in Infectious Diseases, Yaounde, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, United Kingdom
| |
Collapse
|
3
|
Pawęska JT, Jansen van Vuren P, Msimang V, Lô MM, Thiongane Y, Mulumba-Mfumu LK, Mansoor A, Fafetine JM, Magona JW, Boussini H, Bażanow B, Wilson WC, Pepin M, Unger H, Viljoen G. Large-Scale International Validation of an Indirect ELISA Based on Recombinant Nucleocapsid Protein of Rift Valley Fever Virus for the Detection of IgG Antibody in Domestic Ruminants. Viruses 2021; 13:1651. [PMID: 34452515 PMCID: PMC8402881 DOI: 10.3390/v13081651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 12/21/2022] Open
Abstract
Diagnostic performance of an indirect enzyme-linked immunosorbent assay (I-ELISA) based on a recombinant nucleocapsid protein (rNP) of the Rift Valley fever virus (RVFV) was validated for the detection of the IgG antibody in sheep (n = 3367), goat (n = 2632), and cattle (n = 3819) sera. Validation data sets were dichotomized according to the results of a virus neutralization test in sera obtained from RVF-endemic (Burkina Faso, Democratic Republic of Congo, Mozambique, Senegal, Uganda, and Yemen) and RVF-free countries (France, Poland, and the USA). Cut-off values were defined using the two-graph receiver operating characteristic analysis. Estimates of the diagnostic specificity of the RVFV rNP I-ELISA in animals from RVF-endemic countries ranged from 98.6% (cattle) to 99.5% (sheep) while in those originating from RVF-free countries, they ranged from 97.7% (sheep) to 98.1% (goats). Estimates of the diagnostic sensitivity in ruminants from RVF-endemic countries ranged from 90.7% (cattle) to 100% (goats). The results of this large-scale international validation study demonstrate the high diagnostic accuracy of the RVFV rNP I-ELISA. Standard incubation and inactivation procedures evaluated did not have an adverse effect on the detectable levels of the anti-RVFV IgG in ruminant sera and thus, together with recombinant antigen-based I-ELISA, provide a simple, safe, and robust diagnostic platform that can be automated and carried out outside expensive bio-containment facilities. These advantages are particularly important for less-resourced countries where there is a need to accelerate and improve RVF surveillance and research on epidemiology as well as to advance disease control measures.
Collapse
Affiliation(s)
- Janusz T. Pawęska
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa;
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- Faculty of Health Sciences, School of Pathology, University of Witwatersrand, Johannesburg 2050, South Africa
| | - Petrus Jansen van Vuren
- Australian Centre for Disease Preparedness, CSIRO Health & Biosecurity, Geelong, VIC 3220, Australia;
| | - Veerle Msimang
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa;
| | - Modu Moustapha Lô
- Laboratoire National de l’Elevage et de Recherches Vétérinaires, Route de Front de Terre, Dakar Hann 2057, BP, Senegal; (M.M.L.); (Y.T.)
| | - Yaya Thiongane
- Laboratoire National de l’Elevage et de Recherches Vétérinaires, Route de Front de Terre, Dakar Hann 2057, BP, Senegal; (M.M.L.); (Y.T.)
| | - Leopold K. Mulumba-Mfumu
- Ministry of Agriculture, Democratic Republic of Congo, Kinshasa 7948, Democratic Republic of the Congo;
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Kinshasa, P.O. Box 127, Kinshasa XI, Democratic Republic of the Congo
| | - Alqadasi Mansoor
- Central Veterinary Laboratory, General Directorate of Animal Health & Veterinary Quarantine, Ministry of Agriculture and Irrigation, Sana’a 31220, Yemen;
- Food and Agriculture Organization Office, Sana’a 31220, Yemen
| | - José M. Fafetine
- Veterinary Faculty, Eduardo Mondlane University, Maputo 1103, Mozambique;
| | - Joseph W. Magona
- National Livestock Resources Research Institute, Tororo P.O. Box 96, Uganda;
- Food and Agriculture Organization, Gaborone P.O. Box 54, Botswana
| | - Hiver Boussini
- Direction Generale Des Services Veterinaires, Ministère des Ressources Animales, Ouagadougou 09 BP 907, Burkina Faso;
- African Union Interafrican Bureau for Animal Resources, Nairobi P.O. Box 30786-00100, Kenya
| | - Barbara Bażanow
- Department of Pathology, Faculty of Veterinary Science, University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - William C. Wilson
- United States Department of Agriculture, Agricultural Research Service, Foreign Arthropod Borne Animal Diseases Research Unit, National Bio- and Agro-Defense Facility, Manhattan, KS 66502, USA;
| | - Michel Pepin
- Agence Française de Sécurité Sanitaire des Aliments, F-69364 Lyon, France;
- VetAgro Sup, Campus Vétérinaire de Lyon, F-69364 Lyon, France
| | - Hermann Unger
- Joint FAO/IAEA Centre for Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, 1400 Vienna, Austria; (H.U.); (G.V.)
| | - Gerrit Viljoen
- Joint FAO/IAEA Centre for Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, 1400 Vienna, Austria; (H.U.); (G.V.)
| |
Collapse
|
4
|
Preliminary Evaluation of a Recombinant Rift Valley Fever Virus Glycoprotein Subunit Vaccine Providing Full Protection against Heterologous Virulent Challenge in Cattle. Vaccines (Basel) 2021; 9:vaccines9070748. [PMID: 34358166 PMCID: PMC8310273 DOI: 10.3390/vaccines9070748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/15/2023] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen that causes periodic outbreaks of abortion in ruminant species and hemorrhagic disease in humans in sub-Saharan Africa. These outbreaks have a significant impact on veterinary and public health. Its introduction to the Arabian Peninsula in 2003 raised concerns of further spread of this transboundary pathogen to non-endemic areas. These concerns are supported by the presence of competent vectors in many non-endemic countries. There is no licensed RVF vaccine available for humans and only a conditionally licensed veterinary vaccine available in the United States. Currently employed modified live attenuated virus vaccines in endemic countries lack the ability for differentiating infected from vaccinated animals (DIVA). Previously, the efficacy of a recombinant subunit vaccine based on the RVFV Gn and Gc glycoproteins, derived from the 1977 human RVFV isolate ZH548, was demonstrated in sheep. In the current study, cattle were vaccinated subcutaneously with the Gn only, or Gn and Gc combined, with either one or two doses of the vaccine and then subjected to heterologous virus challenge with the virulent Kenya-128B-15 RVFV strain, isolated from Aedes mosquitoes in 2006. The elicited immune responses by some vaccine formulations (one or two vaccinations) conferred complete protection from RVF within 35 days after the first vaccination. Vaccines given 35 days prior to RVFV challenge prevented viremia, fever and RVFV-associated histopathological lesions. This study indicates that a recombinant RVFV glycoprotein-based subunit vaccine platform is able to prevent and control RVFV infections in target animals.
Collapse
|
5
|
Rift Valley fever virus detection in susceptible hosts with special emphasis in insects. Sci Rep 2021; 11:9822. [PMID: 33972596 PMCID: PMC8110843 DOI: 10.1038/s41598-021-89226-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 04/15/2021] [Indexed: 11/09/2022] Open
Abstract
Rift Valley fever phlebovirus (RVFV, Phenuiviridae) is an emerging arbovirus that can cause potentially fatal disease in many host species including ruminants and humans. Thus, tools to detect this pathogen within tissue samples from routine diagnostic investigations or for research purposes are of major interest. This study compares the immunohistological usefulness of several mono- and polyclonal antibodies against RVFV epitopes in tissue samples derived from natural hosts of epidemiologic importance (sheep), potentially virus transmitting insect species (Culex quinquefasciatus, Aedes aegypti) as well as scientific infection models (mouse, Drosophila melanogaster, C6/36 cell pellet). While the nucleoprotein was the epitope most prominently detected in mammal and mosquito tissue samples, fruit fly tissues showed expression of glycoproteins only. Antibodies against non-structural proteins exhibited single cell reactions in salivary glands of mosquitoes and the C6/36 cell pellet. However, as single antibodies exhibited a cross reactivity of varying degree in non-infected specimens, a careful interpretation of positive reactions and consideration of adequate controls remains of critical importance. The results suggest that primary antibodies directed against viral nucleoproteins and glycoproteins can facilitate RVFV detection in mammals and insects, respectively, and therefore will allow RVFV detection for diagnostic and research purposes.
Collapse
|
6
|
A Duplex Fluorescent Microsphere Immunoassay for Detection of Bluetongue and Epizootic Hemorrhagic Disease Virus Antibodies in Cattle Sera. Viruses 2021; 13:v13040682. [PMID: 33921013 PMCID: PMC8071417 DOI: 10.3390/v13040682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 01/19/2023] Open
Abstract
Bluetongue virus (BTV) causes internationally reportable hemorrhagic disease in cattle, sheep, and white-tailed deer. The closely related, and often co-circulating, epizootic hemorrhagic disease virus causes a clinically similar devastating disease in white-tailed deer, with increasing levels of disease in cattle in the past 10 years. Transmitted by Culicoides biting midges, together, they constitute constant disease threats to the livelihood of livestock owners. In cattle, serious economic impacts result from decreased animal production, but most significantly from trade regulations. For effective disease surveillance and accurate trade regulation implementation, rapid, sensitive assays that can detect exposure of cattle to BTV and/or EHDV are needed. We describe the development and validation of a duplex fluorescent microsphere immunoassay (FMIA) to simultaneously detect and differentiate antibodies to BTV and EHDV in a single bovine serum sample. Performance of the duplex FMIA for detection and differentiation of BTV and EHDV serogroup antibodies was comparable, with higher sensitivity than commercially available single-plex competitive enzyme-linked immunosorbent assays (cELISA) for detection of each virus antibody separately. The FMIA adds to the currently available diagnostic tools for hemorrhagic orbiviral diseases in cattle as a sensitive, specific assay, with the benefits of serogroup differentiation in a single serum sample, and multiplexing flexibility in a high-throughput platform.
Collapse
|
7
|
Surtees R, Stern D, Ahrens K, Kromarek N, Lander A, Kreher P, Weiss S, Hewson R, Punch EK, Barr JN, Witkowski PT, Couacy-Hymann E, Marzi A, Dorner BG, Kurth A. Development of a multiplex microsphere immunoassay for the detection of antibodies against highly pathogenic viruses in human and animal serum samples. PLoS Negl Trop Dis 2020; 14:e0008699. [PMID: 33095766 PMCID: PMC7641473 DOI: 10.1371/journal.pntd.0008699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/04/2020] [Accepted: 08/11/2020] [Indexed: 11/18/2022] Open
Abstract
Surveillance of highly pathogenic viruses circulating in both human and animal populations is crucial to unveil endemic infections and potential zoonotic reservoirs. Monitoring the burden of disease by serological assay could be used as an early warning system for imminent outbreaks as an increased seroprevalance often precedes larger outbreaks. However, the multitude of highly pathogenic viruses necessitates the need to identify specific antibodies against several targets from both humans as well as from potential reservoir animals such as bats. In order to address this, we have developed a broadly reactive multiplex microsphere immunoassay (MMIA) for the detection of antibodies against several highly pathogenic viruses from both humans and animals. To this aim, nucleoproteins (NP) of Ebola virus (EBOV), Marburg virus (MARV) and nucleocapsid proteins (NP) of Crimean-Congo haemorrhagic fever virus, Rift Valley fever virus and Dobrava-Belgrade hantavirus were employed in a 5-plex assay for IgG detection. After optimisation, specific binding to each respective NP was shown by testing sera from humans and non-human primates with known infection status. The usefulness of our assay for serosurveillance was shown by determining the immune response against the NP antigens in a panel of 129 human serum samples collected in Guinea between 2011 and 2012 in comparison to a panel of 88 sera from the German blood bank. We found good agreement between our MMIA and commercial or in-house reference methods by ELISA or IIFT with statistically significant higher binding to both EBOV NP and MARV NP coupled microspheres in the Guinea panel. Finally, the MMIA was successfully adapted to detect antibodies from bats that had been inoculated with EBOV- and MARV- virus-like particles, highlighting the versatility of this technique and potentially enabling the monitoring of wildlife as well as human populations with this assay. We were thus able to develop and validate a sensitive and broadly reactive high-throughput serological assay which could be used as a screening tool to detect antibodies against several highly pathogenic viruses.
Collapse
Affiliation(s)
- Rebecca Surtees
- Biosafety Level-4 Laboratory, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Daniel Stern
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Katharina Ahrens
- Biosafety Level-4 Laboratory, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Nicole Kromarek
- Biosafety Level-4 Laboratory, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Angelika Lander
- Biosafety Level-4 Laboratory, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Petra Kreher
- Biosafety Level-4 Laboratory, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Sabrina Weiss
- Institute of Virology, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Roger Hewson
- Virology and Pathogenesis Group, National Infection Service, Public Health England, Porton Down, United Kingdom
| | - Emma K Punch
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
| | - John N Barr
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
| | - Peter T Witkowski
- Institute of Virology, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | | | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Brigitte G Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Andreas Kurth
- Biosafety Level-4 Laboratory, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
8
|
Selmi R, Mamlouk A, Ben Said M, Ben Yahia H, Abdelaali H, Ben Chehida F, Daaloul-Jedidi M, Gritli A, Messadi L. First serological evidence of the Rift Valley fever Phlebovirus in Tunisian camels. Acta Trop 2020; 207:105462. [PMID: 32325049 DOI: 10.1016/j.actatropica.2020.105462] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/28/2020] [Accepted: 03/28/2020] [Indexed: 12/13/2022]
Abstract
Rift Valley fever (RVF) is a mosquito-borne zoonosis that severely impacts livelihoods, national and international economies, and human health. Few studies have investigated the prevalence of this infection in Tunisian livestock. The present report aimed to update the epidemiological status and identify the risk factors associated with this RVF virus infection in the one-humped dromedary camel from arid areas. A total of 470 sera of apparently healthy camels (Camelus dromedarius) were collected from six governorates from southern and central Tunisia. Samples were tested by a competitive Enzyme Linked Immunosorbent Assay (ELISA). An overall, 162 camels (34%, 95%CI: 0.1-0.4) were seropositive to RVF virus antigen. Logistic regression model revealed three potential risk factors associated with the infection. A meaningful high seropositivity was observed among aged camels (>10 years-old) (40%) (P=0.001; OR=3.367). Besides, camels raised in small flocks particularly intended for meat production showed a high level of seropositivity (37%) (P=0.013; OR=13.173). Animals having close contact with other ruminants showed high seroprevalence (37%) (P=0.022; OR=10.919). This report indicated that Tunisian one-humped dromedaries were exposed to this virus and may contribute to its dissemination among farmers and other livestock. Furthers studies are urgently required to isolate and characterize this virus, evaluate the potential risk of human infection particularly in farmers, veterinarians and slaughterhouse workers and finally to program a serious strategy for RVF control.
Collapse
|
9
|
Kading RC, Abworo EO, Hamer GL. Rift Valley Fever Virus, Japanese Encephalitis Virus, and African Swine Fever Virus: Three Transboundary, Vector-Borne, Veterinary Biothreats With Diverse Surveillance, and Response Capacity Needs. Front Vet Sci 2019; 6:458. [PMID: 31921916 PMCID: PMC6923192 DOI: 10.3389/fvets.2019.00458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022] Open
Abstract
Early detection of emerging foreign animal diseases is critical to pathogen surveillance and control programs. Rift valley fever virus (RVFV), Japanese encephalitis virus (JEV), and African swine fever virus (ASFV) represent three taxonomically and ecologically diverse vector-borne viruses with the potential to be introduced to the United States. To promote preparedness for such an event, we reviewed the current surveillance strategies and diagnostic tools in practice around the world for these emerging viruses, and summarized key points pertaining to the availability of existing guidelines and strategic approaches for early detection, surveillance, and disease management activities. We compare and contrast the surveillance and management approaches of these three diverse agents of disease as case studies to emphasize the importance of the ecological context and biology of vectors and vertebrate hosts. The information presented in this review will inform stakeholders of the current state of surveillance approaches against these transboundary foreign animal disease which threaten the United States.
Collapse
Affiliation(s)
- Rebekah C Kading
- Arthropod-Borne Infectious Disease Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | | | - Gabriel L Hamer
- Department of Entomology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
10
|
Lindahl JF, Ragan IK, Rowland RR, Wainaina M, Mbotha D, Wilson W. A multiplex fluorescence microsphere immunoassay for increased understanding of Rift Valley fever immune responses in ruminants in Kenya. J Virol Methods 2019; 269:70-76. [PMID: 30974177 DOI: 10.1016/j.jviromet.2019.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/07/2019] [Accepted: 04/07/2019] [Indexed: 10/27/2022]
Abstract
Rift Valley fever virus (RVFV) is an important mosquito-borne pathogen with devastating impacts on agriculture and public health. With outbreaks being reported beyond the continent of Africa to the Middle East, there is great concern that RVFV will continue to spread to non-endemic areas such as the Americas and Europe. There is a need for safe and high throughput serological assays for rapid detection of RVFV during outbreaks and for surveillance. We evaluated a multiplexing fluorescence microsphere immunoassay (FMIA) for the detection of IgG and IgM antibodies in ruminant sera against the RVFV nucleocapsid Np, glycoprotein Gn, and non-structural protein NSs. Sheep and cattle sera from a region in Kenya with previous outbreaks were tested by FMIA and two commercially available competitive ELISAs (BDSL and IDvet). Our results revealed strong detection of RVFV antibodies against the Np, Gn and NSs antigen targets. Additionally, testing of samples with FMIA Np and Gn had 100% agreement with the IDvet ELISA. The targets developed in the FMIA assay provided a basis for a larger ruminant disease panel that can simultaneously screen several abortive and zoonotic pathogens.
Collapse
Affiliation(s)
- Johanna F Lindahl
- International Livestock Research Institute, Nairobi, Kenya; Zoonosis Science Center, Uppsala University, Uppsala, Sweden; Swedish University of Agricultural Research, Uppsala, Sweden.
| | - Izabela K Ragan
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - R R Rowland
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | | | - Deborah Mbotha
- International Livestock Research Institute, Nairobi, Kenya; Institute for Parasitology and Tropical Veterinary Medicine, Freie Universitaet Berlin, Berlin, Germany
| | - William Wilson
- Arthropod-Borne Animal Diseases Research Unit, USDA, ARS, Manhattan, KS, USA
| |
Collapse
|
11
|
Evaluation of Fluorescence Microsphere Immunoassay for Detection of Antibodies to Rift Valley Fever Virus Nucleocapsid Protein and Glycoproteins. J Clin Microbiol 2018; 56:JCM.01626-17. [PMID: 29563201 DOI: 10.1128/jcm.01626-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/08/2018] [Indexed: 11/20/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne, zoonotic virus that infects ruminants, including cattle, sheep, goats, camels, and buffalo. Multiplexing diagnostic assays that can simultaneously detect antibodies against multiple RVFV antigens offer a high-throughput test for disease surveillance and vaccine evaluations. We describe the improvement and evaluation of a previously developed fluorescence microsphere immunoassay (FMIA) for the detection of IgG and IgM antibodies against the RVFV glycoprotein (Gn) and the immunogenic nucleocapsid protein (Np). Well-characterized vaccinated and experimentally infected ruminant sera were used for the evaluation of the assay. Recombinant viral proteins were produced and then coupled to polystyrene magnetic beads for analysis using the Luminex MAGPIX system with xMAP technology. The FMIA was performed in parallel with virus neutralization tests. Our results revealed the highest median fluorescence intensity (MFI) values for the detection of IgG antibodies against RVFV Np, indicating that this antigen would be a good candidate for a screening assay. The Np and Gn targets could differentiate infected animals from animals vaccinated with a candidate subunit vaccine formulation based on the RVFV Gn and Gc proteins. The results presented in this report demonstrate that FMIA provides a rapid and robust serological diagnostic tool for the detection of antibodies against RVFV. The targets developed in this assay provide the basis for the development of a companion diagnostic test for an RVFV Gn/Gc subunit vaccine that is capable of differentiating infected from vaccinated animals (DIVA), as well as a multiplex serodiagnostic assay that can simultaneously screen for several ruminant diseases.
Collapse
|
12
|
Hossain MM, Rowland RR. Replicon Particle Expressing the E2 Glycoprotein of Bovine Viral Diarrhea Virus Immunization and Evaluation of Antibody Response. Viral Immunol 2017; 31:55-61. [PMID: 28686540 DOI: 10.1089/vim.2017.0053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The objective of this study was to develop a new antigen delivery system using an alphavirus replicon particle (RP) to induce humoral antibody responses against bovine viral diarrhea virus (BVDV) recombinant antigen produced from envelope glycoprotein E2. An alphavirus RP expressing the E2 glycoprotein of BVDV was used for immunization of pigs. A fluorescent microsphere immunoassay (FMIA) has been applied to detect BVDV E2 antigen-specific antibody isotype in pig immunized with alphavirus RP. Full-length BVDV E2 (aa 1-375) was cleaved into several pieces, eight E2 DNA fragments, including full-length DNA, were cloned into expression vector pHUE, and the recombinant proteins expressed in BL-21 (DE3) Escherichia coli. After successful conjugation of purified proteins with microsphere beads, a multiplex FMIA platform was constructed, and BVDV E2 alphavirus-based RP-immunized animal serum samples were tested in the presence of bead-bound antigen targets. The results were represented as mean fluorescence intensity (MFI); the MFI values were converted to sample value/positive value (S/P) ratios. BVDV E2 (aa 1-183) showed the highest MFI values of eight recombinant E2 fragments when the specific activity of each fragment was tested. In immunized animals, data for BVDV E2-specific IgA, IgG, and IgM in serum and only IgG and IgA in oral fluids were recorded. The MFI values for the positive serum sample showed a 100-fold increase compared with the negative serum sample. Antibody isotype to BVDV E2 antigens showed that IgG > IgM > IgA in serum, whereas IgG > IgA > IgM in oral fluids. The data presented in this study suggested that boosting with the same doses of alphavirus RP in 3-week intervals may potentially enhance antibody response. The experimental results demonstrate that alphavirus RP-expressing BVDV E2 antigen induces antibody response in pig.
Collapse
Affiliation(s)
- Mohammad M Hossain
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University , Manhattan, Kansas
| | - Raymond R Rowland
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University , Manhattan, Kansas
| |
Collapse
|
13
|
Rissmann M, Ulrich R, Schröder C, Hammerschmidt B, Hanke D, Mroz C, Groschup MH, Eiden M. Vaccination of alpacas against Rift Valley fever virus: Safety, immunogenicity and pathogenicity of MP-12 vaccine. Vaccine 2016; 35:655-662. [PMID: 28012779 DOI: 10.1016/j.vaccine.2016.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/25/2016] [Accepted: 12/01/2016] [Indexed: 02/07/2023]
Abstract
Rift Valley fever (RVF) is an emerging zoonosis of major public health concern in Africa and Arabia. Previous outbreaks attributed camelids a significant role in the epidemiology of Rift Valley fever virus (RVFV), making them an important target species for vaccination. Using three alpacas as model-organisms for dromedary camels, the safety, immunogenicity and pathogenicity of the MP-12 vaccine were evaluated in this study. To compare both acute and subacute effects, animals were euthanized at 3 and 31days post infection (dpi). Clinical monitoring, analysis of liver enzymes and hematological parameters demonstrated the tolerability of the vaccine, as no significant adverse effects were observed. Comprehensive analysis of serological parameters illustrated the immunogenicity of the vaccine, eliciting high neutralizing antibody titers and antibodies targeting different viral antigens. RVFV was detected in serum and liver of the alpaca euthanized 3dpi, whereas no virus was detectable at 31dpi. Viral replication was confirmed by detection of various RVFV-antigens in hepatocytes by immunohistochemistry and the presence of mild multifocal necrotizing hepatitis. In conclusion, results indicate that MP-12 is a promising vaccine candidate but still has a residual pathogenicity, which requires further investigation.
Collapse
Affiliation(s)
- M Rissmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - R Ulrich
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - C Schröder
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - B Hammerschmidt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - D Hanke
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - C Mroz
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - M H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - M Eiden
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| |
Collapse
|