1
|
Manley W, Tran T, Prusinski M, Brisson D. Comparative ecological analysis and predictive modeling of tick-borne pathogens. JOURNAL OF MEDICAL ENTOMOLOGY 2024:tjae127. [PMID: 39439315 DOI: 10.1093/jme/tjae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/29/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024]
Abstract
Tick-borne diseases constitute the predominant vector-borne health threat in North America. Recent observations have noted a significant expansion in the range of the black-legged tick (Ixodes scapularis Say, Acari: Ixodidae), alongside a rise in the incidence of diseases caused by its transmitted pathogens: Borrelia burgdorferi Johnson (Spirochaetales: Spirochaetaceae), Babesia microti Starcovici (Piroplasmida: Babesiidae), and Anaplasma phagocytophilium Zhu (Rickettsiales: Anaplasmataceae), the causative agents of Lyme disease, babesiosis, and anaplasmosis, respectively. Prior research identified environmental features that influence the ecological dynamics of I. scapularis and B. burgdorferi that can be used to predict the distribution and abundance of these organisms, and thus Lyme disease risk. In contrast, there is a paucity of research into the environmental determinants of B. microti and A. phagocytophilium. Here, we use over a decade of surveillance data to model the impact of environmental features on the infection prevalence of these increasingly common human pathogens in ticks across New York State (NYS). Our findings reveal a consistent northward and westward expansion of B. microti in NYS from 2009 to 2019, while the range of A. phagocytophilum varied at fine spatial scales. We constructed biogeographic models using data from over 650 site-year visits and encompassing more than 250 environmental variables to accurately forecast infection prevalence for each pathogen to a future year that was not included in model training. Several environmental features were identified to have divergent effects on the pathogens, revealing potential ecological differences governing their distribution and abundance. These validated biogeographic models have applicability for disease prevention efforts.
Collapse
Affiliation(s)
- William Manley
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Tam Tran
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Dustin Brisson
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Alkishe A, Cobos ME, Peterson AT. Broad-scale ecological niches of pathogens vectored by the ticks Ixodes scapularis and Amblyomma americanum in North America. PeerJ 2024; 12:e17944. [PMID: 39193518 PMCID: PMC11348911 DOI: 10.7717/peerj.17944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Environmental dimensions, such as temperature, precipitation, humidity, and vegetation type, influence the activity, survival, and geographic distribution of tick species. Ticks are vectors of various pathogens that cause disease in humans, and Ixodes scapularis and Amblyomma americanum are among the tick species that transmit pathogens to humans across the central and eastern United States. Although their potential geographic distributions have been assessed broadly via ecological niche modeling, no comprehensive study has compared ecological niche signals between ticks and tick-borne pathogens. We took advantage of National Ecological Observatory Network (NEON) data for these two tick species and associated bacteria pathogens across North America. We used two novel statistical tests that consider sampling and absence data explicitly to perform these explorations: a univariate analysis based on randomization and resampling, and a permutational multivariate analysis of variance. Based on univariate analyses, in Amblyomma americanum, three pathogens (Borrelia lonestari, Ehrlichia chaffeensis, and E. ewingii) were tested; pathogens showed nonrandom distribution in at least one environmental dimension. Based on the PERMANOVA test, the null hypothesis that the environmental position and variation of pathogen-positive samples are equivalent to those of A. americanum could not be rejected for any of the pathogens, except for the pathogen E. ewingii in maximum and minimum vapor pressure and minimum temperature. For Ixodes scapularis, six pathogens (A. phagocytophilum, Babesia microti, Borrelia burgdorferi sensu lato, B. mayonii, B. miyamotoi, and Ehrlichia muris-like) were tested; only B. miyamotoi was not distinct from null expectations in all environmental dimensions, based on univariate tests. In the PERMANOVA analyses, the pathogens departed from null expectations for B. microti and B. burgdorferi sensu lato, with smaller niches in B. microti, and larger niches in B. burgdorferi sensu lato, than the vector. More generally, this study shows the value of large-scale data resources with consistent sampling methods, and known absences of key pathogens in particular samples, for answering public health questions, such as the relationship of presence and absence of pathogens in their hosts respect to environmental conditions.
Collapse
Affiliation(s)
- Abdelghafar Alkishe
- Department of Ecology and Evolutionary Biology & Biodiversity Institute, University of Kansas, Lawrence, KS, United States of America
- Zoology Department/Faculty of Science, University of Tripoli, Tripoli, Libya
- Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Marlon E. Cobos
- Department of Ecology and Evolutionary Biology & Biodiversity Institute, University of Kansas, Lawrence, KS, United States of America
| | - A. Townsend Peterson
- Department of Ecology and Evolutionary Biology & Biodiversity Institute, University of Kansas, Lawrence, KS, United States of America
| |
Collapse
|
3
|
Logan JJ, Knudby A, Leighton PA, Talbot B, McKay R, Ramsay T, Blanford JI, Ogden NH, Kulkarni MA. Ixodes scapularis density and Borrelia burgdorferi prevalence along a residential-woodland gradient in a region of emerging Lyme disease risk. Sci Rep 2024; 14:13107. [PMID: 38849451 PMCID: PMC11161484 DOI: 10.1038/s41598-024-64085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024] Open
Abstract
The environmental risk of Lyme disease, defined by the density of Ixodes scapularis ticks and their prevalence of Borrelia burgdorferi infection, is increasing across the Ottawa, Ontario region, making this a unique location to explore the factors associated with environmental risk along a residential-woodland gradient. In this study, we collected I. scapularis ticks and trapped Peromyscus spp. mice, tested both for tick-borne pathogens, and monitored the intensity of foraging activity by deer in residential, woodland, and residential-woodland interface zones of four neighbourhoods. We constructed mixed-effect models to test for site-specific characteristics associated with densities of questing nymphal and adult ticks and the infection prevalence of nymphal and adult ticks. Compared to residential zones, we found a strong increasing gradient in tick density from interface to woodland zones, with 4 and 15 times as many nymphal ticks, respectively. Infection prevalence of nymphs and adults together was 15 to 24 times greater in non-residential zone habitats. Ecological site characteristics, including soil moisture, leaf litter depth, and understory density, were associated with variations in nymphal density and their infection prevalence. Our results suggest that high environmental risk bordering residential areas poses a concern for human-tick encounters, highlighting the need for targeted disease prevention.
Collapse
Affiliation(s)
- James J Logan
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada.
| | - Anders Knudby
- Department of Geography, Environment and Geomatics, University of Ottawa, Ottawa, ON, Canada
| | - Patrick A Leighton
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Benoit Talbot
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Roman McKay
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Tim Ramsay
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Justine I Blanford
- Department of Earth Observation Science, Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, The Netherlands
| | - Nicholas H Ogden
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, QC, Canada
| | - Manisha A Kulkarni
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
4
|
Murison K, Wilson CH, Clow KM, Gasmi S, Hatchette TF, Bourgeois AC, Evans GA, Koffi JK. Epidemiology and clinical manifestations of reported Lyme disease cases: Data from the Canadian Lyme disease enhanced surveillance system. PLoS One 2023; 18:e0295909. [PMID: 38100405 PMCID: PMC10723709 DOI: 10.1371/journal.pone.0295909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
Lyme disease cases reported in seven Canadian provinces from 2009 to 2019 through the Lyme Disease Enhanced Surveillance System are described herein by demographic, geography, time and season. The proportion of males was greater than females. Bimodal peaks in incidence were observed in children and older adults (≥60 years of age) for all clinical signs except cardiac manifestations, which were more evenly distributed across age groups. Proportions of disease stages varied between provinces: Atlantic provinces reported mainly early Lyme disease, while Ontario reported equal proportions of early and late-stage Lyme disease. Early Lyme disease cases were mainly reported between May through November, whereas late Lyme disease were reported in December through April. Increased awareness over time may have contributed to a decrease in the proportion of cases reporting late disseminated Lyme disease. These analyses help better describe clinical features of reported Lyme disease cases in Canada.
Collapse
Affiliation(s)
- Kiera Murison
- Infectious Diseases and Vaccination Programs Branch, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Christy H. Wilson
- Infectious Diseases and Vaccination Programs Branch, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Katie M. Clow
- Department of Population Medicine, University of Guelph, Guelph, Ontario, Canada
| | - Salima Gasmi
- Infectious Diseases and Vaccination Programs Branch, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
| | - Todd F. Hatchette
- Department of Pathology and Laboratory Medicine, Nova Scotia Health Authority, Departments of Pathology, Immunology and Microbiology, Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Annie-Claude Bourgeois
- Infectious Diseases and Vaccination Programs Branch, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Gerald A. Evans
- Infection Prevention & Control, Kingston Health Sciences Centre, Biomedical & Molecular Sciences and Pathology & Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
| | - Jules K. Koffi
- Infectious Diseases and Vaccination Programs Branch, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
5
|
Nichol GK, Weese JS, Clow KM. Isolation and multilocus sequence typing of Borrelia burgdorferi from Ixodes scapularis collected from dogs in Ontario, Canada. BMC Res Notes 2023; 16:43. [PMID: 36997986 PMCID: PMC10061846 DOI: 10.1186/s13104-023-06315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/21/2023] [Indexed: 04/01/2023] Open
Abstract
OBJECTIVE To identify the multilocus sequence typing (MLST) sequence types of Borrelia burgdorferi from Ixodes scapularis in Ontario, Canada. RESULTS One hundred and eighty-five I. scapularis ticks were submitted from 134 dogs via participating clinics from April 1, 2019, to March 31, 2020. Seventeen MLST sequence types of B. burgdorferi were detected from fifty-eight cultured isolates from 21 ticks. The most common MLST sequence types were 12 and 16. Mixed infections of two MLST sequence types were detected in four ticks. Three sequence types (48, 317, 639) were new detections in Ontario.
Collapse
Affiliation(s)
- Grace K Nichol
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - J Scott Weese
- Department of Pathobiology & the Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Katie M Clow
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
6
|
Robinson EL, Jardine CM, Russell C, Clow KM. Comparing Canadian Lyme disease risk area classification methodologies. Zoonoses Public Health 2023; 70:294-303. [PMID: 36628930 DOI: 10.1111/zph.13023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/18/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023]
Abstract
Lyme disease risk areas have increased across Canada in recent decades with the ongoing range expansion of Ixodes scapularis and Borrelia burgdorferi. Different methodologies are used by federal and provincial governments to determine local Lyme disease risk, which can make comparisons between regions challenging. In this study, seven Canadian Lyme disease risk classification methodologies were compared with each other to highlight the strengths and limitations of how each definition measured I. scapularis and B. burgdorferi risk. Each methodology was applied to active surveillance data from Ontario, and per cent agreement and kappa statistics were calculated. The methodologies varied in their measurements of the risk of exposure to I. scapularis and B. burgdorferi based on their use of active surveillance techniques, multiple types of collected surveillance data and laboratory confirmation of B. burgdorferi. Most initial Lyme disease risk site classifications were maintained over time. Kappa and per cent agreement statistics highlighted large differences between 8 of the 15 methodology pairings, indicating the presence of inconsistencies between most methodologies. Accurate, consistent surveillance and assessment of the spread of I. scapularis and its pathogens will aid with communicating Lyme disease risk to the public and preventing tick-borne pathogen transmission.
Collapse
Affiliation(s)
- Emily L Robinson
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Claire M Jardine
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Curtis Russell
- Enteric, Zoonotic and Vector-Borne Diseases, Public Health Ontario, Toronto, Ontario, Canada
| | - Katie M Clow
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
7
|
Crandall KE, Kerr JT, Millien V. Emerging Tick-Borne Pathogens in Central Canada: Recent Detections of Babesia odocoilei and Rickettsia rickettsii. Vector Borne Zoonotic Dis 2022; 22:535-544. [PMID: 36264197 DOI: 10.1089/vbz.2022.0036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: The spread of emerging tick-borne pathogens has steadily increased in Canada with the widespread establishment of tick vectors and vertebrate hosts. At present, Borrelia burgdorferi, the bacterium causing Lyme disease, is the most common tick-borne pathogen in Canada and primarily transmitted by Ixodes scapularis. A low prevalence of other emerging tick-borne pathogens, such as Anaplasma phagocytophilum, Babesia species, Borrelia miyamotoi, and Francisella tularensis have also been detected through surveillance efforts in Canada. Although Rickettsia rickettsii has been historically detected in Haemaphysalis leporispalustris in Canada, the current prevalence and geographic extent of this pathogen is unknown. Material and Methods: In this study, we assessed the presence and prevalence of several emerging tick-borne pathogens in ticks and hosts collected through tick dragging and small mammal trapping in Central Canada. Results: Nested PCR testing detected three pathogen species in ticks, with Babesia odocoilei and B. burgdorferi in I. scapularis in addition to R. rickettsii in H. leporispalustris. Three pathogen species were detected in small mammals by nested PCR including B. odocoilei in Blarina brevicauda, Babesia microti in Peromyscus leucopus, and a Hepatozoon species in P. leucopus and Peromyscus maniculatus. B. burgdorferi and Babesia species were the pathogens most often detected in our samples, suggesting they are widely distributed across Central Canada. We also detected B. odocoilei and R. rickettsii beyond their known geographic distribution. Conclusions: Our results provide evidence that emerging tick-borne pathogens may be present outside defined risk areas identified by current surveillance efforts in Canada. As a result, emerging tick-borne pathogens introduced by the dispersal of infected ticks by migratory birds or maintained by hosts and vectors through cryptic transmission cycles may go undetected. More comprehensive testing including all tick life stages and additional tick-borne pathogens will help detect the spread and potential risk of emerging or re-emerging tick-borne pathogens for human and wildlife populations throughout Canada.
Collapse
Affiliation(s)
- Kirsten E Crandall
- Department of Biology, University of Ottawa, Ottawa, Canada.,Department of Biology, McGill University, Montréal, Canada.,Redpath Museum, McGill University, Montréal, Canada
| | - Jeremy T Kerr
- Department of Biology, University of Ottawa, Ottawa, Canada
| | | |
Collapse
|