1
|
Hajj J, Sizemore B, Singh K. Impact of Epigenetics, Diet, and Nutrition-Related Pathologies on Wound Healing. Int J Mol Sci 2024; 25:10474. [PMID: 39408801 PMCID: PMC11476922 DOI: 10.3390/ijms251910474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Chronic wounds pose a significant challenge to healthcare. Stemming from impaired wound healing, the consequences can be severe, ranging from amputation to mortality. This comprehensive review explores the multifaceted impact of chronic wounds in medicine and the roles that diet and nutritional pathologies play in the wound-healing process. It has been well established that an adequate diet is crucial to proper wound healing. Nutrients such as vitamin D, zinc, and amino acids play significant roles in cellular regeneration, immune functioning, and collagen synthesis and processing. Additionally, this review discusses how patients with chronic conditions like diabetes, obesity, and nutritional deficiencies result in the formation of chronic wounds. By integrating current research findings, this review highlights the significant impact of the genetic make-up of an individual on the risk of developing chronic wounds and the necessity for adequate personalized dietary interventions. Addressing the nutritional needs of individuals, especially those with chronic conditions, is essential for improving wound outcomes and overall patient care. With new developments in the field of genomics, there are unprecedented opportunities to develop targeted interventions that can precisely address the unique metabolic needs of individuals suffering from chronic wounds, thereby enhancing treatment effectiveness and patient outcomes.
Collapse
Affiliation(s)
- John Hajj
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.H.); (B.S.)
| | - Brandon Sizemore
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.H.); (B.S.)
| | - Kanhaiya Singh
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.H.); (B.S.)
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
2
|
Lee GB, Kim Y, Lee KE, Vinayagam R, Singh M, Kang SG. Anti-Inflammatory Effects of Quercetin, Rutin, and Troxerutin Result From the Inhibition of NO Production and the Reduction of COX-2 Levels in RAW 264.7 Cells Treated with LPS. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05003-4. [PMID: 39096472 DOI: 10.1007/s12010-024-05003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
Flavonols effectively scavenge the reactive nitrogen species (RNS) and reactive oxygen species (ROS) and act as immune-enhancing, anti-inflammatory, anti-diabetic, and anti-carcinogenic agents. Here, we explored the comparative antioxidant and anti-inflammatory properties of plant-originating flavonols, like quercetin, rutin, and troxerutin against acetylsalicylic acid. Quercetin and rutin showed a high ability to remove active ROS, but troxerutin and acetylsalicylic acid exhibited little such function. In RAW 264.7 cells, quercetin, rutin, and troxerutin did not exhibit cellular toxicity at low concentrations. In addition, quercetin, rutin, and troxerutin considerably (p < 0.05) lowered the protein expression of cyclooxygenase 2 (COX-2) as compared to acetylsalicylic acid in cells inflamed with lipopolysaccharides (LPS). Additionally, in inflamed cells, quercetin and rutin significantly down-regulated the nitrogen oxide (NO) level (p < 0.05) at higher concentrations, whereas Troxerutin did not reduce the NO level. In addition, Troxerutin down-regulated the pro-inflammatory protein markers, such as TNF-α, COX-2, NF-κB, and IL-1β better than quercetin, rutin, and acetylsalicylic acid. We observed that troxerutin exhibited a significantly greater anti-inflammatory effect than acetylsalicylic acid did. Acetylsalicylic acid did not significantly down-regulated the expression of COX-2 and TNF-α (p < 0.05) compared to troxerutin. Hence, it can be concluded that the down-regulation of NO levels and the expression of COX-2 and TNF-α proteins could be mechanisms of action for the natural compounds quercetin, rutin, and troxerutin in preventing inflammation.
Collapse
Affiliation(s)
- Gi Baek Lee
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Yohan Kim
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Kyung Eun Lee
- Stemforce, 313 Institute of Industrial Technology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Ramachandran Vinayagam
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Mahendra Singh
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
3
|
Canales-Alvarez O, Canales-Martinez MM, Dominguez-Verano P, Balderas-Cordero D, Madrigal-Bujaidar E, Álvarez-González I, Rodriguez-Monroy MA. Effect of Mexican Propolis on Wound Healing in a Murine Model of Diabetes Mellitus. Int J Mol Sci 2024; 25:2201. [PMID: 38396882 PMCID: PMC10889666 DOI: 10.3390/ijms25042201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Diabetes mellitus (DM) affects the wound healing process, resulting in impaired healing or aberrant scarring. DM increases reactive oxygen species (ROS) production, fibroblast senescence and angiogenesis abnormalities, causing exacerbated inflammation accompanied by low levels of TGF-β and an increase in Matrix metalloproteinases (MMPs). Propolis has been proposed as a healing alternative for diabetic patients because it has antimicrobial, anti-inflammatory, antioxidant and proliferative effects and important properties in the healing process. An ethanolic extract of Chihuahua propolis (ChEEP) was obtained and fractionated, and the fractions were subjected to High-Performance Liquid Chromatography with diode-array (HPLC-DAD), High-Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS) and Gas Chromatography-Mass Spectrometry (GC-MS) analyses and 46 compounds were detected. Deep wounds were made in a murine DM model induced by streptozotocin, and the speed of closure and the wound tensile strength were evaluated by the tensiometric method, which showed that ChEEP had similar activity to Recoveron, improving the speed of healing and increasing the wound tensile strength needed to open the wound again. A histological analysis of the wounds was performed using H&E staining, and when Matrix metalloproteinase 9 (MMP9) and α-actin were quantified by immunohistochemistry, ChEEP was shown to be associated with improved histological healing, as indicated by the reduced MMP9 and α-actin expression. In conclusion, topical ChEEP application enhances wound healing in diabetic mice.
Collapse
Affiliation(s)
- Octavio Canales-Alvarez
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Zacatenco, Ciudad de México 07738, Mexico; (O.C.-A.); (E.M.-B.); (I.Á.-G.)
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES Iztacala, Avenida de los Barrios Número 1, Tlalnepantla 54090, Estado de México, Mexico; (P.D.-V.); (D.B.-C.)
| | - Maria Margarita Canales-Martinez
- Laboratorio de Farmacognosia, UBIPRO, UNAM, FES Iztacala, Avenida de los Barrios Número 1, Tlalnepantla 54090, Estado de México, Mexico;
| | - Pilar Dominguez-Verano
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES Iztacala, Avenida de los Barrios Número 1, Tlalnepantla 54090, Estado de México, Mexico; (P.D.-V.); (D.B.-C.)
| | - Daniela Balderas-Cordero
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES Iztacala, Avenida de los Barrios Número 1, Tlalnepantla 54090, Estado de México, Mexico; (P.D.-V.); (D.B.-C.)
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Zacatenco, Ciudad de México 07738, Mexico; (O.C.-A.); (E.M.-B.); (I.Á.-G.)
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Zacatenco, Ciudad de México 07738, Mexico; (O.C.-A.); (E.M.-B.); (I.Á.-G.)
| | - Marco Aurelio Rodriguez-Monroy
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES Iztacala, Avenida de los Barrios Número 1, Tlalnepantla 54090, Estado de México, Mexico; (P.D.-V.); (D.B.-C.)
| |
Collapse
|
4
|
Atmaja RRD, Annadiyah VK, Thoyyibah M, Maimunah S, Ma'arif B, Mutiah R, Budi IM, Amiruddin M, Inayatilah FR. The effect of red fruit oil ( Pandanus conoideus Lamk.) emulgel on angiogenesis and collagen density in incisive wound healing in mice ( Mus musculus). J Adv Pharm Technol Res 2023; 14:311-316. [PMID: 38107452 PMCID: PMC10723169 DOI: 10.4103/japtr.japtr_67_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/25/2023] [Accepted: 07/31/2023] [Indexed: 12/19/2023] Open
Abstract
Pandanus conoideus Lamk. or commonly known as red fruit oil (RFO) can be used to accelerate wound healing because it contains tocopherols, carotenoids, oleic acid, linoleic acid, and linolenic acid. The RFO in this study was formulated in the form of an emulgel because it has the most convenient and effective drug delivery system. The aims of this study were to determine the activity of RFO emulgel on increasing the amount of angiogenesis and collagen density in incised wound healing and to determine the optimal dose of RFO emulgel to increase the amount of angiogenesis and collagen density in incised wound healing. This was a true experimental study with a posttest only control group design that included five treatment groups: a positive control group (10% povidone-iodine), a negative control (gel base), and three groups that varied the concentration of RFO emulgel used at 5%, 10%, and 15%. Parameters observed were the amount of angiogenesis using Image Raster software and the percentage of areas of collagen density using ImageJ software. The data were analyzed using a one-way ANOVA test and continued with the least significant difference test. The results of this study showed that RFO emulgel was able to increase the amount of angiogenesis and collagen density in the wound healing process with P = 0.000. An increase in the amount of angiogenesis and collagen density occurred in mice treated with RFO compared to the positive and negative control groups. It can be concluded that RFO emulgel has activity toward increasing the amount of angiogenesis and collagen density in the wound healing of mice incisions. The optimal dose concentration of RFO emulgel for increasing the amount of angiogenesis and collagen density in incision wound healing was shown in RFO emulgel with a concentration of 15%.
Collapse
Affiliation(s)
- Ria Ramadhani Dwi Atmaja
- Department of Pharmacy, Faculty of Medical and Health Science, Maulana Malik Ibrahim State Islamic University, Malang, East Java
| | - Veny Khairani Annadiyah
- Department of Pharmacy, Faculty of Medical and Health Science, Maulana Malik Ibrahim State Islamic University, Malang, East Java
| | - Maulida Thoyyibah
- Department of Pharmacy, Faculty of Medical and Health Science, Maulana Malik Ibrahim State Islamic University, Malang, East Java
| | - Siti Maimunah
- Department of Pharmacy, Faculty of Medical and Health Science, Maulana Malik Ibrahim State Islamic University, Malang, East Java
| | - Burhan Ma'arif
- Department of Pharmacy, Faculty of Medical and Health Science, Maulana Malik Ibrahim State Islamic University, Malang, East Java
| | - Roihatul Mutiah
- Department of Pharmacy, Faculty of Medical and Health Science, Maulana Malik Ibrahim State Islamic University, Malang, East Java
| | - I Made Budi
- Department of Biology, Faculty of Mathematics and Natural Science, Cenderawasih University, Jayapura, Papua, Indonesia
| | - Muhammad Amiruddin
- Department of Pharmacy, Faculty of Medical and Health Science, Maulana Malik Ibrahim State Islamic University, Malang, East Java
| | - Fidia Rizkiah Inayatilah
- Department of Pharmacy, Faculty of Medical and Health Science, Maulana Malik Ibrahim State Islamic University, Malang, East Java
| |
Collapse
|
5
|
Burger B, Sagiorato RN, Silva JR, Candreva T, Pacheco MR, White D, Castelucci BG, Pral LP, Fisk HL, Rabelo ILA, Elias-Oliveira J, Osório WR, Consonni SR, Farias ADS, Vinolo MAR, Lameu C, Carlos D, Fielding BA, Whyte MB, Martinez FO, Calder PC, Rodrigues HG. Eicosapentaenoic acid-rich oil supplementation activates PPAR-γ and delays skin wound healing in type 1 diabetic mice. Front Immunol 2023; 14:1141731. [PMID: 37359536 PMCID: PMC10289002 DOI: 10.3389/fimmu.2023.1141731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Delayed wound healing is a devastating complication of diabetes and supplementation with fish oil, a source of anti-inflammatory omega-3 (ω-3) fatty acids including eicosapentaenoic acid (EPA), seems an appealing treatment strategy. However, some studies have shown that ω-3 fatty acids may have a deleterious effect on skin repair and the effects of oral administration of EPA on wound healing in diabetes are unclear. We used streptozotocin-induced diabetes as a mouse model to investigate the effects of oral administration of an EPA-rich oil on wound closure and quality of new tissue formed. Gas chromatography analysis of serum and skin showed that EPA-rich oil increased the incorporation of ω-3 and decreased ω-6 fatty acids, resulting in reduction of the ω-6/ω-3 ratio. On the tenth day after wounding, EPA increased production of IL-10 by neutrophils in the wound, reduced collagen deposition, and ultimately delayed wound closure and impaired quality of the healed tissue. This effect was PPAR-γ-dependent. EPA and IL-10 reduced collagen production by fibroblasts in vitro. In vivo, topical PPAR-γ-blockade reversed the deleterious effects of EPA on wound closure and on collagen organization in diabetic mice. We also observed a reduction in IL-10 production by neutrophils in diabetic mice treated topically with the PPAR-γ blocker. These results show that oral supplementation with EPA-rich oil impairs skin wound healing in diabetes, acting on inflammatory and non-inflammatory cells.
Collapse
Affiliation(s)
- Beatriz Burger
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Roberta Nicolli Sagiorato
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Jéssica Rondoni Silva
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Thamiris Candreva
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Mariana R. Pacheco
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Daniel White
- Department of General Surgery, The Royal Surrey National Health Service (NHS) Foundation Trust Hospital, Guildford, United Kingdom
| | - Bianca G. Castelucci
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Laís P. Pral
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Helena L. Fisk
- School of Human Development & Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Izadora L. A. Rabelo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Jefferson Elias-Oliveira
- Departments of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Wislei Riuper Osório
- Laboratory of Manufacturing Advanced Materials, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Silvio Roberto Consonni
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Alessandro dos Santos Farias
- Autoimmune Research Lab, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Claudiana Lameu
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Daniela Carlos
- Departments of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Barbara A. Fielding
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Martin Brunel Whyte
- Department of Medicine, King’s College Hospital National Health Service (NHS) Foundation Trust, London, United Kingdom
- Department of Clinical & Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Fernando O. Martinez
- Department of Biochemical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Philip C. Calder
- School of Human Development & Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- National Institute for Health and Care Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Hosana Gomes Rodrigues
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| |
Collapse
|
6
|
Jiang H, Xu Q, Wang X, Shi L, Yang X, Sun J, Mei X. Preparation of Antibacterial, Arginine-Modified Ag Nanoclusters in the Hydrogel Used for Promoting Diabetic, Infected Wound Healing. ACS OMEGA 2023; 8:12653-12663. [PMID: 37065086 PMCID: PMC10099449 DOI: 10.1021/acsomega.2c07266] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Diabetic foot ulcers with complex healing wounds accompanied by bacterial infection are considered a significant clinical problem which are made worse by the lack of effective treatments. Traditional antibiotics and dressings have failed to address wound infection and healing, and multifunctional combination therapies are attractive for treating chronic wounds. In this study, arginine (Arg) was loaded onto the surface of silver nanoclusters and encapsulated in a hydrogel to achieve antibacterial, anti-inflammatory, angiogenic, and collagen deposition functions through the slow release of Arg combined with silver nanoclusters. In vitro studies indicated that Arg-Ag@H composites inhibited methicillin-resistant Staphylococcus aureus and Escherichia coli by 94 and 97%, respectively. The inhibition of bacterial biofilms reached 85%, and the migration ability of human venous endothelial cells (HUVECs) increased by 50%. In vitro studies showed that Arg-Ag@H composites increased the healing area of wounds by 26% and resulted in a 98% skin wound-healing rate. Safety studies confirmed the excellent biocompatibility of Arg-Ag@H. The results suggest that Arg-Ag@H offers new possibilities for treating chronic diabetic wounds.
Collapse
Affiliation(s)
- Housen Jiang
- Dalian
Medical University, Dalian 116044, Liaoning, China
- Department
of Hand and Foot Orthopedic Surgery, Weifang
People’s Hospital, Weifang 261042, Shandong, China
| | - Qin Xu
- Department
of Hand and Foot Orthopedic Surgery, Weifang
People’s Hospital, Weifang 261042, Shandong, China
| | - Xiaolin Wang
- Department
of Pathology, Weifang Hospital of Traditional
Chinese Medicine, Weifang 261042, Shandong, China
| | - Lin Shi
- Department
of Hand and Foot Orthopedic Surgery, Weifang
People’s Hospital, Weifang 261042, Shandong, China
| | - Xuedong Yang
- Department
of Hand and Foot Orthopedic Surgery, Weifang
People’s Hospital, Weifang 261042, Shandong, China
| | - Jianmin Sun
- Department
of Hand and Foot Orthopedic Surgery, Weifang
People’s Hospital, Weifang 261042, Shandong, China
| | - Xifan Mei
- Department
of Orthopedics, Third Affiliated Hospital
of Jinzhou Medical University, Jinzhou 121000, China
| |
Collapse
|
7
|
Sher J, Jan G, Israr M, Irfan M, Yousuf N, Ullah F, Rauf A, Alshammari A, Alharbi M. Biological Characterization of Polystichum lonchitis L. for Phytochemical and Pharmacological Activities in Swiss Albino Mice Model. PLANTS (BASEL, SWITZERLAND) 2023; 12:1455. [PMID: 37050081 PMCID: PMC10096758 DOI: 10.3390/plants12071455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Polystichum lonchitis L. is a fern belonging to the family Dryopteridaceae. The present study was conducted to evaluate its pharmacological, antioxidant, and phytochemical properties, and to conduct GC-MS screening of P. lonchitis. The acetic acid-induced writhing test, yeast-induced hyperpyrexia method, carrageenan-induced rat paw edema model, and charcoal meal test model were carried out to assess analgesic, antipyretic, anti-inflammatory, and antispasmodic activity, respectively. DPPH was used as an antioxidant, while the phytochemical screening was conducted using standard scientific methods. Among the pharmacological activities, the most significant effects were observed in the analgesic and anti-inflammatory activities, followed by the antipyretic and antispasmodic activities, at a dose of 450 mg/kg after the 4th hour, compared with 150 mg/kg and 300 mg/kg. For the evaluation of antioxidant activities, the most significant results were detected in the methanolic and aqueous extracts. The detection of flavonoids and phenol occurred most significantly in the methanolic extract, and then in the ethanolic and aqueous extracts. The main compounds detected using GC-MS analysis with a high metabolic rate was 𝛼-D-Galactopyranoside, which had a metabolic rate of 0.851, and methyl and n-hexadecanoic, which had a metabolic rate of 0.972. Overall, the results suggested that P. lonchitis had a strong potential for pharmacological activities. The suggested assessment provided a way to isolate the bioactive constituents and will help to provide new medicines with fewer side effects. Due to the fern's effectiveness against various diseases, the results provide clear evidence that they also have the potential to cure various diseases.
Collapse
Affiliation(s)
- Jan Sher
- Center for Integrative Conservation, Yunnan Key Laboratory for Conservation of Tropical Rainforest and Asian Elephant, Xishuangbanna Tropical Botanical Garden, Mengla 666303, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Gul Jan
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Muhammad Israr
- Department of Botany, Government Post Graduate College Mardan, Mardan 23200, Pakistan
| | - Muhammad Irfan
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
- Department of Botany, University of Swabi, Swabi 23561, Pakistan
- Missouri Botanical Garden, 4344 Shaw Blvd., St. Louis, MI 63110, USA
| | - Nighat Yousuf
- Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100049, China
| | - Fazal Ullah
- Department of Botany, University of Swabi, Swabi 23561, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi 23561, Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Gitea MA, Bungau SG, Gitea D, Pasca BM, Purza AL, Radu AF. Evaluation of the Phytochemistry-Therapeutic Activity Relationship for Grape Seeds Oil. Life (Basel) 2023; 13:178. [PMID: 36676127 PMCID: PMC9864701 DOI: 10.3390/life13010178] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Seeds' abundant biologically active compounds make them a suitable primary platform for the production of natural extracts, innovative foods, medicines, and cosmetics. High levels of industrial and agricultural residues and byproducts are generated during the processing of grapes, although some parts can also be repurposed. This paper examines the phytochemical composition, manufacturing processes, and health-improving attributes of many varieties of grape oil derived using various extraction methods. Since the results are influenced by a range of factors, they are expressed differently among studies, and the researchers employ a variety of measuring units, making it difficult to convey the results. The primary topics covered in most papers are grape seed oil's lipophilic fatty acids, tocopherols, and phytosterols. In addition, new methods for extracting grape seed oil should therefore be designed; these methods must be affordable, energy-efficient, and environmentally friendly in order to increase the oil's quality by extracting bioactive components and thereby increasing its biological activity in order to become part of the overall management of multiple diseases.
Collapse
Affiliation(s)
- Manuel Alexandru Gitea
- Department of Agriculture, Horticulture, Faculty of Environmental Protection, University of Oradea, 410048 Oradea, Romania
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Daniela Gitea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Bianca Manuela Pasca
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Anamaria Lavinia Purza
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Andrei-Flavius Radu
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
9
|
Gupta P, Singh A, Singh N, Ali F, Tyagi A, Shanmugam SK. Healing Potential of Propolis Extract– Passiflora edulis Seed Oil Emulgel Against Excisional Wound: Biochemical, Histopathological, and Cytokines Level Evidence. Assay Drug Dev Technol 2022; 20:300-316. [DOI: 10.1089/adt.2022.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Puneet Gupta
- Amity Institute of Pharmacy, Amity University, Noida, India
| | - Ashish Singh
- I.T.S. College of Pharmacy (Dr. A.P.J. Abdul Kalam Technical University, Lucknow), Ghaziabad, India
| | - Neelam Singh
- I.T.S. College of Pharmacy (Dr. A.P.J. Abdul Kalam Technical University, Lucknow), Ghaziabad, India
| | - Faraat Ali
- Botswana Medicines Regulatory Authority, Gaborone, Botswana
| | - Ayushi Tyagi
- I.T.S. College of Pharmacy (Dr. A.P.J. Abdul Kalam Technical University, Lucknow), Ghaziabad, India
| | - Sadish K. Shanmugam
- I.T.S. College of Pharmacy (Dr. A.P.J. Abdul Kalam Technical University, Lucknow), Ghaziabad, India
| |
Collapse
|
10
|
Mtenga DV, Ripanda AS. A review on the potential of underutilized Blackjack (Biden Pilosa) naturally occurring in sub-Saharan Africa. Heliyon 2022; 8:e09586. [PMID: 35669545 PMCID: PMC9163511 DOI: 10.1016/j.heliyon.2022.e09586] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/06/2022] [Accepted: 05/26/2022] [Indexed: 11/30/2022] Open
Abstract
Several Indigenous edible vegetables in sub-Saharan countries have potential bioactive compounds, including underutilized Biden pilosa (BP). Bioactives from Indigenous edible vegetables are re-evolving as an alternative medicine potential for drug formulations. BP has also been used to mitigate over 40 different diseases in people and animals as herbal medication. Due to globalization and urbanization, people move from more active to more sedentary lifestyles, home-cooked meals to fast foods and snacks, organic foods to processed food with high sugar, salt, and fat. The consumption of native fruits and vegetables is now replaced by a highly processed calory diet, leading to metabolic syndromes such as diabetes, obesity, and other diet-related non-communicable diseases. Hence this article was designed to investigate the existing reports on the use, knowledge and the need to utilize the potentiality of BP further to overcome nutritional deficiencies, food scarcity and mitigation of medical conditions in sub-Saharan Africa. The use of plant-based drugs will aid to decrease the health capitation load as most countries do not have enough funds for purchasing synthetic chemicals used to mitigate diseases.
Collapse
Affiliation(s)
- Deodata V. Mtenga
- Institute of Development Studies, The University of Dodoma, Dodoma, Tanzania
| | - Asha S. Ripanda
- Department of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, Tanzania
- Corresponding author.
| |
Collapse
|
11
|
Sosnowski P, Sass P, Słonimska P, Płatek R, Kamińska J, Baczyński Keller J, Mucha P, Peszyńska-Sularz G, Czupryn A, Pikuła M, Piotrowski A, Janus Ł, Rodziewicz-Motowidło S, Skowron P, Sachadyn P. Regenerative Drug Discovery Using Ear Pinna Punch Wound Model in Mice. Pharmaceuticals (Basel) 2022; 15:ph15050610. [PMID: 35631437 PMCID: PMC9145447 DOI: 10.3390/ph15050610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 01/25/2023] Open
Abstract
The ear pinna is a complex tissue consisting of the dermis, cartilage, muscles, vessels, and nerves. Ear pinna healing is a model of regeneration in mammals. In some mammals, including rabbits, punch wounds in the ear pinna close spontaneously; in common-use laboratory mice, they remain for life. Agents inducing ear pinna healing are potential regenerative drugs. We tested the effects of selected bioactive agents on 2 mm ear pinna wound closure in BALB/c mice. Our previous research demonstrated that a DNA methyltransferase inhibitor, zebularine, remarkably induced ear pinna regeneration. Although experiments with two other demethylating agents, RG108 and hydralazine, were unsuccessful, a histone deacetylase inhibitor, valproic acid, was another epigenetic agent found to increase ear hole closure. In addition, we identified a pro-regenerative activity of 4-ketoretinoic acid, a retinoic acid metabolite. Attempts to counteract the regenerative effects of the demethylating agent zebularine, with folates as methyl donors, failed. Surprisingly, a high dose of methionine, another methyl donor, promoted ear hole closure. Moreover, we showed that the regenerated areas of ear pinna were supplied with nerve fibre networks and blood vessels. The ear punch model proved helpful in testing the pro-regenerative activities of small-molecule compounds and observations of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Paweł Sosnowski
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Piotr Sass
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Paulina Słonimska
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Rafał Płatek
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Jolanta Kamińska
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Jakub Baczyński Keller
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Piotr Mucha
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland;
| | - Grażyna Peszyńska-Sularz
- Tri-City University Animal House—Research Service Centre, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| | - Artur Czupryn
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland;
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| | - Arkadiusz Piotrowski
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
| | | | | | - Piotr Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland;
| | - Paweł Sachadyn
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
- Correspondence:
| |
Collapse
|
12
|
Alsenani F, Ashour AM, Alzubaidi MA, Azmy AF, Hetta MH, Abu-Baih DH, Elrehany MA, Zayed A, Sayed AM, Abdelmohsen UR, Elmaidomy AH. Wound Healing Metabolites from Peters' Elephant-Nose Fish Oil: An In Vivo Investigation Supported by In Vitro and In Silico Studies. Mar Drugs 2021; 19:md19110605. [PMID: 34822477 PMCID: PMC8625051 DOI: 10.3390/md19110605] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
Gnathonemuspetersii (F. Mormyridae) commonly known as Peters' elephant-nose fish is a freshwater elephant fish native to West and Central African rivers. The present research aimed at metabolic profiling of its derived crude oil via GC-MS analysis. In addition, wound healing aptitude in adult male New Zealand Dutch strain albino rabbits along with isolated bioactive compounds in comparison with a commercial product (Mebo®). The molecular mechanism was studied through a number of in vitro investigations, i.e., radical scavenging and inhibition of COX enzymes, in addition to in silico molecular docking study. The results revealed a total of 35 identified (71.11%) compounds in the fish oil, belonging to fatty acids (59.57%), sterols (6.11%), and alkanes (5.43%). Phytochemical investigation of the crude oil afforded isolation of six compounds 1-6. Moreover, the crude oil showed significant in vitro hydrogen peroxide and superoxide radical scavenging activities. Furthermore, the crude oil along with one of its major components (compound 4) exhibited selective inhibitory activity towards COX-2 with IC50 values of 15.27 and 2.41 µM, respectively. Topical application of the crude oil on excision wounds showed a significant (p < 0.05) increase in the wound healing rate in comparison to the untreated and Mebo®-treated groups, where fish oil increased the TGF-β1 expression, down-regulated TNF-α, and IL-1β. Accordingly, Peters' elephant-nose fish oil may be a potential alternative medication helping wound healing owing to its antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Faisal Alsenani
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Ahmed M. Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Mubarak A. Alzubaidi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ahmed F. Azmy
- Department of Microbiology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62514, Egypt;
| | - Mona H. Hetta
- Department of Pharmacognosy, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt;
| | - Dalia H. Abu-Baih
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt; (D.H.A.-B.); (M.A.E.)
| | - Mahmoud A. Elrehany
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt; (D.H.A.-B.); (M.A.E.)
| | - Ahmed Zayed
- Department of Pharmacognosy, College of Pharmacy, Medical Campus, Tanta University, Elguish Street, Tanta 31527, Egypt
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663 Kaiserslautern, Germany
- Correspondence: (A.Z.); (U.R.A.)
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni Suef 62513, Egypt;
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Maaqal University, Basra 61014, Iraq
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt
- Correspondence: (A.Z.); (U.R.A.)
| | - Abeer H. Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62514, Egypt;
| |
Collapse
|
13
|
Extraction of Fatty Acids and Phenolics from Mastocarpus stellatus Using Pressurized Green Solvents. Mar Drugs 2021; 19:md19080453. [PMID: 34436292 PMCID: PMC8399028 DOI: 10.3390/md19080453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Polyunsaturated fatty acids are well known for their protective properties in relation to different skin diseases. Although seaweeds possess a low lipid fraction, they could act as an alternative renewable source of polyunsaturated fatty acids whenever other valuable seaweed components are also valorized. In this study, a biorefinery process using Mastocarpus stellatus as a model seaweed was proposed. The process started with the supercritical carbon dioxide extraction of the lipid and phenolic fractions. The influence of pressure during extraction with pure supercritical CO2 was studied while operating at a selected temperature and solvent flow rate. Kinetic data obtained during the ethanol-modified supercritical CO2 extraction were fitted to the spline model. Sequential processing was proposed with (i) pure CO2 to obtain a product with 30% PUFA content and ω-3:ω-6 ratio 1:1, (ii) ethanol-modified CO2 to extract phenolics, and (iii) microwave-assisted subcritical water extraction operating under previously optimized conditions for the extraction of phenolics, carrageenan and protein fractions. The composition of the supercritical extracts showed potential for use in both dietary and topical applications in skin care products. The remaining solids are suitable for the extraction of other valuable fractions.
Collapse
|
14
|
Zhou Y, Liu G, Huang H, Wu J. Advances and impact of arginine-based materials in wound healing. J Mater Chem B 2021; 9:6738-6750. [PMID: 34346479 DOI: 10.1039/d1tb00958c] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In studies on wound-dressing materials, bioactive materials have been developed rapidly to accelerate wound healing. In recent years, scientists have studied arginine as a bioactive component due to its excellent biosafety, antimicrobial properties and therapeutic effects on wound healing. Surprisingly, arginine therapy is also used under specific pathological conditions, such as diabetes and trauma/hemorrhagic shock. Due to the broad utilization of arginine-assisted therapy, we present the unique properties of arginine for healing lesions of damaged tissue and examined multiple arginine-based systems for the application of wound healing. This review shows that arginine-based therapy can be separated in two categories: direct supplemental approaches of free arginine, and indirect approaches based on arginine derivatives in which modified arginine can be released after biodegradation. Using these two pathways, arginine-based therapy may prove to be a promising strategy in the development of wound curative treatments.
Collapse
Affiliation(s)
- Yang Zhou
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | | | | | | |
Collapse
|
15
|
Yang J, Zhou M, Li W, Lin F, Shan G. Preparation and Evaluation of Sustained Release Platelet-Rich Plasma-Loaded Gelatin Microspheres Using an Emulsion Method. ACS OMEGA 2020; 5:27113-27118. [PMID: 33134671 PMCID: PMC7593996 DOI: 10.1021/acsomega.0c02543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/30/2020] [Indexed: 05/12/2023]
Abstract
The management and treatment of chronic wounds or acute wounds remain a major challenge in modern medicine. The application of autologous platelet-rich plasma (PRP) has become a promising adjuvant therapy to promote wound healing. PRP is derived from centrifuged whole blood to extract concentrated platelets, and a large amount of cytokines and growth factors are released upon activation. These bioactive molecules can enhance angiogenesis and tissue regeneration. Herein, PRP-loaded gelatin microspheres were prepared by the emulsion cross-linking method. Scanning electron microscopy results showed that the prepared microspheres are completely spherical, with an average particle size of 15.95 ± 3.79 μm and having a uniform particle size. Among them, the surface of a single microsphere is smooth and has a microporous structure, which may be the main channel for drug diffusion. Results of drug release measurements show that the prepared microspheres can slowly release the vascular endothelial growth factor for more than 7 days. In vitro cell experiments show that the prepared microspheres can promote proliferation and migration of L929 mouse fibroblast cells. In summary, the prepared PRP-loaded gelatin microspheres with high and long-term activity can provide experimental and theoretical knowledge for the development of the clinical long-acting injectable formulations.
Collapse
Affiliation(s)
- Jing Yang
- Department
of Clinical Laboratory, Guanghua School of Stomatology, Hospital of
Stomatology, Sun Yat-sen University, Guangdong
Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China
| | - Mou Zhou
- Department
of Blood Transfusion, General Hospital of
Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Wendan Li
- Department
of Blood Transfusion, General Hospital of
Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Fang Lin
- Department
of Blood Transfusion, General Hospital of
Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Guiqiu Shan
- Department
of Blood Transfusion, General Hospital of
Southern Theatre Command of PLA, Guangzhou 510010, China
| |
Collapse
|