1
|
Huang Y, Wang N, Xing H, Tian J, Zhang D, Gao D, Hsia HC, Lu J, Raredon MSB, Kyriakides TR. Alteration of skin fibroblast steady state contributes to healing outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627278. [PMID: 39713414 PMCID: PMC11661132 DOI: 10.1101/2024.12.06.627278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Fibroblasts display complex functions associated with distinct gene expression profiles that influence matrix production and cell communications and the autonomy of tissue development and repair. Thrombospondin-2 (TSP-2), produced by fibroblasts, is a potent angiogenesis inhibitor and negatively associated with tissue repair. Single-cell (sc) sequencing analysis on WT and TSP2KO skin fibroblasts demonstrate distinct cell heterogeneity. Specifically, we found an enrichment of Sox10+ multipotent progenitor cells, identified as Schwann precursor cells, in TSP2KO fibroblasts, while fibrosis-related subpopulations decreased. Immunostaining of tissue and cells validated the increase of this Sox10+ population in KO fibroblasts. Furthermore, in silico analysis suggested enhanced pro-survival signaling, including WNT, TGF-β, and PDGF-β, alongside a reduced BMP4 response. Additionally, the creation of two TSP2KO NIH3T3 cell lines using the CRISPR/Cas9 technique allowed functional and signaling validation in a less complex system. Moreover, KO 3T3 cells exhibited enhanced migration and proliferation, with elevated levels of pro-regenerative molecules including TGF-β3 and Wnt4, and enrichment of nuclear β-catenin. These functional and molecular alterations likely contribute to improved healing and increased neurogenesis in TSP2-deficient wounds. Overall, our findings describe the heterogeneity of dermal fibroblasts and identify pro-regenerative features of TSP2KO fibroblasts.
Collapse
Affiliation(s)
- Yaqing Huang
- Department of Pathology, Yale University, New Haven, CT 06520, USA
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06520, USA
| | - Nuoya Wang
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06520, USA
- Department of Anesthesiology, Yale University, New Haven, CT 06520, USA
| | - Hao Xing
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06520, USA
| | - Jingru Tian
- Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Dingyao Zhang
- Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Daqian Gao
- Plastic & Reconstructive Surgery, Yale University, New Haven, CT 06520, USA
| | - Henry C. Hsia
- Plastic & Reconstructive Surgery, Yale University, New Haven, CT 06520, USA
| | - Jun Lu
- Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Micha Sam Brickman Raredon
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06520, USA
- Department of Anesthesiology, Yale University, New Haven, CT 06520, USA
| | - Themis R. Kyriakides
- Department of Pathology, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
2
|
Cao X, Wu X, Zhang Y, Qian X, Sun W, Zhao Y. Emerging biomedical technologies for scarless wound healing. Bioact Mater 2024; 42:449-477. [PMID: 39308549 PMCID: PMC11415838 DOI: 10.1016/j.bioactmat.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Complete wound healing without scar formation has attracted increasing attention, prompting the development of various strategies to address this challenge. In clinical settings, there is a growing preference for emerging biomedical technologies that effectively manage fibrosis following skin injury, as they provide high efficacy, cost-effectiveness, and minimal side effects compared to invasive and costly surgical techniques. This review gives an overview of the latest developments in advanced biomedical technologies for scarless wound management. We first introduce the wound healing process and key mechanisms involved in scar formation. Subsequently, we explore common strategies for wound treatment, including their fabrication methods, superior performance and the latest research developments in this field. We then shift our focus to emerging biomedical technologies for scarless wound healing, detailing the mechanism of action, unique properties, and advanced practical applications of various biomedical technology-based therapies, such as cell therapy, drug therapy, biomaterial therapy, and synergistic therapy. Finally, we critically assess the shortcomings and potential applications of these biomedical technologies and therapeutic methods in the realm of scar treatment.
Collapse
Affiliation(s)
- Xinyue Cao
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiangyi Wu
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanyuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiaoyun Qian
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Weijian Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuanjin Zhao
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Shenzhen Research Institute, Southeast University, Shenzhen, 518071, China
| |
Collapse
|
3
|
Liu H, Li H, Bai X, Zhao Y, Cai Y, Pan H, Guo L, Liu K, Liu Q, Huang X, Zampetaki A, Margariti A, Zeng L, Cai T. Histone Deacetylase 7-Derived 7-Amino Acid Peptide Increases Skin Wound Healing via Regulating Epidermal Fibroblast Proliferation and Migration. J Cell Mol Med 2024; 28:e70209. [PMID: 39601342 PMCID: PMC11600263 DOI: 10.1111/jcmm.70209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Due to the complexity of wound healing, how to achieve successful healing is a significant clinical challenge. In this study, we found that the histone deacetylase-7-derived 7-amino acid peptide (7A, MHSPGAD), especially its phosphorylated version 7Ap (MH[pSer]PGAD), increased dermal fibroblast cell HDFα proliferation and migration via elevated delta-catenin (CTNND1) serine phosphorylation-mediated beta-catenin (CTNNB) nuclear translocation and subsequent upregulation of c-Myc and cyclin D1 expression. 7Ap physically interacted with platelet-derived growth factor receptor (PDGFR) and increased PDGFR interaction with cyclin-dependent kinase 6 (CDK6). The PDGFR siRNA or CDK6 siRNA knockdown ablated 7AP-induced CTNND1 phosphorylation and subsequent c-Myc/cyclin D1 expression, indicating a novel 7Ap-PDGFR-CDK6-CTNND1/CTNNB signal pathway in regulating fibroblast proliferation and migration. Furthermore, 7Ap increased human umbilic vein endothelial cell proliferation and tube formation, suggesting an angiogenic effect. In a full-thickness excision wound rat model, the local administration of 50 ng/mL of 7Ap in hydrogel exerted a similar effect as 1 μg/mL vascular endothelial growth factor on accelerating wound healing, featured by enhanced fibroblast proliferation and migration, collagen deposition, and increased new vessel formation during the early phase of wound healing. Taken together, this study not only elicited a novel signal pathway in fibroblast proliferation but also paved an avenue to develop 7Ap as a treatment option for skin wound healing.
Collapse
Affiliation(s)
- Huina Liu
- Ningbo No.2 HospitalNingboChina
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
| | - Hua Li
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
| | - Xuefeng Bai
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Science and MedicineKing's College LondonLondonUK
| | - Yue Zhao
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Science and MedicineKing's College LondonLondonUK
| | - Yannan Cai
- Ningbo Women and Children's HospitalNingboChina
| | - Huiqing Pan
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
| | - Linyan Guo
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
| | - Kun Liu
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Qian Liu
- Department of GeriatricChengdu Fifth People's HospitalChengduChina
| | | | - Anna Zampetaki
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Science and MedicineKing's College LondonLondonUK
| | - Andriana Margariti
- School of Medicine, Dentistry and Biomedical SciencesThe Wellcome‐Wolfson Institute of Experimental MedicineBelfastUK
| | - Lingfang Zeng
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Science and MedicineKing's College LondonLondonUK
| | - Ting Cai
- Ningbo No.2 HospitalNingboChina
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
| |
Collapse
|
4
|
Savekar PL, Nadaf SJ, Killedar SG, Kumbar VM, Hoskeri JH, Bhagwat DA, Gurav SS. Citric acid cross-linked pomegranate peel extract-loaded pH-responsive β-cyclodextrin/carboxymethyl tapioca starch hydrogel film for diabetic wound healing. Int J Biol Macromol 2024; 274:133366. [PMID: 38914385 DOI: 10.1016/j.ijbiomac.2024.133366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Pomegranate peel extract (PPE) hydrogel films filled with citric acid (CA) and β-cyclodextrin-carboxymethyl tapioca starch (CMS) were designed mainly to prevent wound infections and speed up the healing process. FTIR and NMR studies corroborated the carboxymethylation of neat tapioca starch (NS). CMS exhibited superior swelling behavior than NS. The amount of CA and β-CD controlled the physicochemical parameters of developed PPE/CA/β-CD/CMS films. Optimized film (OF) exhibited acceptable swellability, wound fluid absorptivity, water vapor transmission rate, water contact angle, and mechanical properties. Biodegradable, biocompatible, and antibacterial films exhibited pH dependence in the release of ellagic acid for up to 24 h. In mice model, PPE/CA/β-CD/CMS hydrogel film treatment showed promising wound healing effects, including increased collagen deposition, reduced inflammation, activation of the Wingless-related integration site (wnt) pathway leading to cell division, proliferation, and migration to the wound site. The expression of the WNT3A gene did not show any significant differences among all the studied groups. Developed PPE-loaded CA/β-CD/CMS film promoted wound healing by epithelialization, granulation tissue thickness, collagen deposition, and angiogenesis, hence could be recommended as a biodegradable and antibacterial hydrogel platform to improve the cell proliferation during the healing of diabetic wounds.
Collapse
Affiliation(s)
- Pranav L Savekar
- Shivraj College of Pharmacy, Gadhinglaj 416502, Maharashtra, India
| | - Sameer J Nadaf
- Bharati Vidyapeeth College of Pharmacy, Palus 416310, Maharashtra, India.
| | - Suresh G Killedar
- Anandi Pharmacy College, Kalambe Tarf Kale 416205, Maharashtra, India
| | - Vijay M Kumbar
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education (KLE University), Nehru Nagar, Belagavi 590 010, Karnataka, India
| | - Joy H Hoskeri
- Department of Bioinformatics and Biotechnology, Karnataka State Akkamahadevi Women's University, Vijayapura, Karnataka, India
| | | | - Shailendra S Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Goa 403001, India.
| |
Collapse
|
5
|
Shang Y, Li M, Zhang L, Han C, Shen K, Wang K, Li Y, Zhang Y, Luo L, Jia Y, Guo K, Cai W, Zhang J, Wang X, Wang H, Hu D. Exosomes derived from mouse vibrissa dermal papilla cells promote hair follicle regeneration during wound healing by activating Wnt/β-catenin signaling pathway. J Nanobiotechnology 2024; 22:425. [PMID: 39030543 PMCID: PMC11264511 DOI: 10.1186/s12951-024-02689-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/01/2024] [Indexed: 07/21/2024] Open
Abstract
Hair follicle (HF) regeneration during wound healing continues to present a significant clinical challenge. Dermal papilla cell-derived exosomes (DPC-Exos) hold immense potential for inducing HF neogenesis. However, the accurate role and underlying mechanisms of DPC-Exos in HF regeneration in wound healing remain to be fully explained. This study, represents the first analysis into the effects of DPC-Exos on fibroblasts during wound healing. Our findings demonstrated that DPC-Exos could stimulate the proliferation and migration of fibroblasts, more importantly, enhance the hair-inducing capacity of fibroblasts. Fibroblasts treated with DPC-Exos were capable of inducing HF neogenesis in nude mice when combined with neonatal mice epidermal cells. In addition, DPC-Exos accelerated wound re-epithelialization and promoted HF regeneration during the healing process. Treatment with DPC-Exos led to increased expression levels of the Wnt pathway transcription factors β-catenin and Lef1 in both fibroblasts and the dermis of skin wounds. Specifically, the application of a Wnt pathway inhibitor reduced the effects of DPC-Exos on fibroblasts and wound healing. Accordingly, these results offer evidence that DPC-Exos promote HF regeneration during wound healing by enhancing the hair-inducing capacity of fibroblasts and activating the Wnt/β-catenin signaling pathway. This suggests that DPC-Exos may represent a promising therapeutic strategy for achieving regenerative wound healing.
Collapse
Affiliation(s)
- Yage Shang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Mengyang Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Lixia Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Chao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Kuo Shen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Kejia Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yue Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Liang Luo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Kai Guo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Weixia Cai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jian Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Xujie Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China.
| | - Hongtao Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China.
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
6
|
Kuncorojakti S, Pratama AZA, Antujala CA, Harijanto CTB, Arsy RK, Kurniawan PA, Tjahjono Y, Hendriati L, Widodo T, Aswin A, Diyantoro D, Wijaya AY, Rodprasert W, Susilowati H. Acceleration of wound healing using adipose mesenchymal stem cell secretome hydrogel on partial-thickness cutaneous thermal burn wounds: An in vivo study in rats. Vet World 2024; 17:1545-1554. [PMID: 39185045 PMCID: PMC11344119 DOI: 10.14202/vetworld.2024.1545-1554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/21/2024] [Indexed: 08/27/2024] Open
Abstract
Background and Aim The intricate healing process involves distinct sequential and overlapping phases in thermal injury. To maintain the zone of stasis in Jackson's burn wound model, proper wound intervention is essential. The extent of research on the histoarchitecture of thermal wound healing and the application of mesenchymal stem cell (MSC)-free-based therapy is limited. This study aimed to assess the efficacy of MSC-secretome-based hydrogel for treating partial-thickness cutaneous thermal burn wounds. Materials and Methods Eighteen male Wistar rats were divided into three groups, namely the hydrogel base (10 mg), hydrogel secretome (10 mg) and Bioplacenton™ (10 mg) treatment groups. All groups were treated twice a day (morning and evening) for 7 days. Skin tissue samples from the animals were processed for histological evaluation using the formalin-fixed paraffin-embedded method on days 3 and 7. Results This study's findings showed that secretome hydrogel expedited thermal burn wound healing, decreasing residual burn area, boosting collagen deposition and angiogenesis, guiding scar formation, and influencing the inflammation response facilitated by polymorphonuclear leukocytes and macrophages. Conclusion The secretome hydrogel significantly improves healing outcomes in partial-thickness cutaneous thermal burn wounds. The administration of secretome hydrogel accelerates the reduction of the residual burn area and promotes fibroblast proliferation and collagen density. The repairment of histo-architecture of the damaged tissue was also observed such as the reduction of burn depth, increased angiogenesis and epidermal scar index while the decreased dermal scar index. Furthermore, the secretome hydrogel can modulate the immunocompetent cells by decreasing the polymorphonuclear and increasing the mononuclear cells. Thus, it effectively and safely substitutes for thermal injury stem cell-free therapeutic approaches. The study focuses on the microscopical evaluation of secretome hydrogel; further research to investigate at the molecular level may be useful in predicting the beneficial effect of secretome hydrogel in accelerating wound healing.
Collapse
Affiliation(s)
- Suryo Kuncorojakti
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | | | - Cahya Asri Antujala
- Department of Pharmaceutics Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia
| | | | - Rozak Kurnia Arsy
- Department of Pharmaceutics Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia
| | - Putut Andika Kurniawan
- Department of Pharmaceutics Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia
| | - Yudy Tjahjono
- Department of Pharmaceutics Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia
| | - Lucia Hendriati
- Department of Pharmaceutics Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia
| | - Teguh Widodo
- Department of Pharmaceutics Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia
| | - Ahmad Aswin
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Diyantoro Diyantoro
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Department of Health, Faculty of Vocational Studies, Universitas Airlangga, Surabaya, Indonesia
| | - Andi Yasmin Wijaya
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Watchareewan Rodprasert
- Veterinary Stem Cell and Bioengineering Innovation Center, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Helen Susilowati
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
7
|
Gumede DB, Abrahamse H, Houreld NN. Targeting Wnt/β-catenin signaling and its interplay with TGF-β and Notch signaling pathways for the treatment of chronic wounds. Cell Commun Signal 2024; 22:244. [PMID: 38671406 PMCID: PMC11046856 DOI: 10.1186/s12964-024-01623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024] Open
Abstract
Wound healing is a tightly regulated process that ensures tissue repair and normal function following injury. It is modulated by activation of pathways such as the transforming growth factor-beta (TGF-β), Notch, and Wnt/β-catenin signaling pathways. Dysregulation of this process causes poor wound healing, which leads to tissue fibrosis and ulcerative wounds. The Wnt/β-catenin pathway is involved in all phases of wound healing, primarily in the proliferative phase for formation of granulation tissue. This review focuses on the role of the Wnt/β-catenin signaling pathway in wound healing, and its transcriptional regulation of target genes. The crosstalk between Wnt/β-catenin, Notch, and the TGF-β signaling pathways, as well as the deregulation of Wnt/β-catenin signaling in chronic wounds are also considered, with a special focus on diabetic ulcers. Lastly, we discuss current and prospective therapies for chronic wounds, with a primary focus on strategies that target the Wnt/β-catenin signaling pathway such as photobiomodulation for healing diabetic ulcers.
Collapse
Affiliation(s)
- Dimakatso B Gumede
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Nicolette N Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa.
| |
Collapse
|
8
|
Lesmanawati FE, Windura CA, Saputro ID, Hariani L. Autologous fat grafting and adipose-derived stem cells therapy for acute burns and burn-related scar: A systematic review. Tzu Chi Med J 2024; 36:203-211. [PMID: 38645780 PMCID: PMC11025588 DOI: 10.4103/tcmj.tcmj_189_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 12/01/2023] [Indexed: 04/23/2024] Open
Abstract
Objectives The objective of this study was to analyze all available research on the application of autologous fat grafting (AFG) and adipose-derived stem cells (ADSC) to present evidence-based recommendations, particularly in the clinical treatment of acute burns and burn-related scars. Materials and Methods We conducted a systematic search of PubMed, COCHRANE, and EMBASE, as well as a manual search of previous reviews' reference lists up. The risk of bias (RoB) was assessed using RoB 2.0 and ROBINS-I, where appropriate. Results Six eligible studies were selected (2 randomized clinical trials [RCT], 1 retrospective cohort, and 3 experimental studies) with subjects ranging from 3 to 100. Only one study evaluated the use of AFG for acute burns. Improvements in wound healing, vascularization, scar characteristics, and tissue architecture were generally observed in some studies, supported by molecular markers, while one study reported nonsignificant results. Subjective patient satisfaction was reported to have improved. Functional outcomes improvement in the treated regions was minimal. However, study heterogeneity arose mainly from treatment protocols. Cautious results interpretation due to potential bias, especially in selection and confounding domains, and limited clinical trials are important to note. More studies are needed to evaluate. Conclusion AFG and ADSC hold potential as valuable treatment options for burn-related scars, supported by a body of evidence, but further well-designed RCT are needed. The efficacy of acute burn settings is yet to be further evaluated since evidence is limited.
Collapse
Affiliation(s)
- Fanny Evasari Lesmanawati
- Department of Plastic Reconstructive and Aesthetic Surgery, Faculty of Medicine Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, East Java, Indonesia
| | - Carolus Aldo Windura
- Department of Plastic Reconstructive and Aesthetic Surgery, Faculty of Medicine Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, East Java, Indonesia
| | - Iswinarno Doso Saputro
- Department of Plastic Reconstructive and Aesthetic Surgery, Faculty of Medicine Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, East Java, Indonesia
| | - Lynda Hariani
- Department of Plastic Reconstructive and Aesthetic Surgery, Faculty of Medicine Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, East Java, Indonesia
| |
Collapse
|
9
|
Daniello V, De Leo V, Lasalvia M, Hossain MN, Carbone A, Catucci L, Zefferino R, Ingrosso C, Conese M, Di Gioia S. Solanum lycopersicum (Tomato)-Derived Nanovesicles Accelerate Wound Healing by Eliciting the Migration of Keratinocytes and Fibroblasts. Int J Mol Sci 2024; 25:2452. [PMID: 38473700 DOI: 10.3390/ijms25052452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Plant-derived nanovesicles have been considered interesting in medicine for their breakthrough biological effects, including those relevant to wound healing. However, tomato-derived nanovesicles (TDNVs) have not been studied for their effects on wound closure yet. TDNVs were isolated from Solanum lycopersicum (var. Piccadilly) ripe tomatoes by ultracentrifugation. Extract (collected during the isolation procedure) and NVs (pellet) were characterized by transmission electron microscopy and laser Doppler electrophoresis. Wound healing in the presence of Extract or NVs was analyzed by a scratch assay with monocultures of human keratinocytes (HUKE) or NIH-3T3 mouse fibroblasts. Cell proliferation and migration were studied by MTT and agarose spot assay, respectively. The vesicles in the Extract and NV samples were nanosized with a similar mean diameter of 115 nm and 130 nm, respectively. Both Extract and NVs had already accelerated wound closure of injured HUKE and NIH-3T3 monocultures by 6 h post-injury. Although neither sample exerted a cytotoxic effect on HUKE and NIH-3T3 fibroblasts, they did not augment cell proliferation. NVs and the Extract increased cell migration of both cell types. NVs from tomatoes may accelerate wound healing by increasing keratinocyte and fibroblast migration. These results indicate the potential therapeutic usefulness of TDNVs in the treatment of chronic or hard-to-heal ulcers.
Collapse
Affiliation(s)
- Valeria Daniello
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Vincenzo De Leo
- Department of Chemistry, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Maria Lasalvia
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Md Niamat Hossain
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Annalucia Carbone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Lucia Catucci
- Department of Chemistry, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Roberto Zefferino
- Department of Medical and Surgical Sciences, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Chiara Ingrosso
- Institute for Chemical and Physical Processes of National Research Council (CNR-IPCF), S.S. Bari, c/o Department of Chemistry, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| |
Collapse
|
10
|
To TT, Oparaugo NC, Kheshvadjian AR, Nelson AM, Agak GW. Understanding Type 3 Innate Lymphoid Cells and Crosstalk with the Microbiota: A Skin Connection. Int J Mol Sci 2024; 25:2021. [PMID: 38396697 PMCID: PMC10888374 DOI: 10.3390/ijms25042021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Innate lymphoid cells (ILCs) are a diverse population of lymphocytes classified into natural killer (NK) cells, ILC1s, ILC2s, ILC3s, and ILCregs, broadly following the cytokine secretion and transcription factor profiles of classical T cell subsets. Nonetheless, the ILC lineage does not have rearranged antigen-specific receptors and possesses distinct characteristics. ILCs are found in barrier tissues such as the skin, lungs, and intestines, where they play a role between acquired immune cells and myeloid cells. Within the skin, ILCs are activated by the microbiota and, in turn, may influence the microbiome composition and modulate immune function through cytokine secretion or direct cellular interactions. In particular, ILC3s provide epithelial protection against extracellular bacteria. However, the mechanism by which these cells modulate skin health and homeostasis in response to microbiome changes is unclear. To better understand how ILC3s function against microbiota perturbations in the skin, we propose a role for these cells in response to Cutibacterium acnes, a predominant commensal bacterium linked to the inflammatory skin condition, acne vulgaris. In this article, we review current evidence describing the role of ILC3s in the skin and suggest functional roles by drawing parallels with ILC3s from other organs. We emphasize the limited understanding and knowledge gaps of ILC3s in the skin and discuss the potential impact of ILC3-microbiota crosstalk in select skin diseases. Exploring the dialogue between the microbiota and ILC3s may lead to novel strategies to ameliorate skin immunity.
Collapse
Affiliation(s)
- Thao Tam To
- Division of Dermatology, Department of Medicine, University of California (UCLA), Los Angeles, CA 90095, USA
| | - Nicole Chizara Oparaugo
- Division of Dermatology, Department of Medicine, University of California (UCLA), Los Angeles, CA 90095, USA
| | - Alexander R. Kheshvadjian
- Division of Dermatology, Department of Medicine, University of California (UCLA), Los Angeles, CA 90095, USA
| | - Amanda M. Nelson
- Department of Dermatology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - George W. Agak
- Division of Dermatology, Department of Medicine, University of California (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Das P, Majumder R, Sen N, Nandi SK, Ghosh A, Mandal M, Basak P. A computational analysis to evaluate deleterious SNPs of GSK3β, a multifunctional and regulatory protein, for metabolism, wound healing, and migratory processes. Int J Biol Macromol 2024; 256:128262. [PMID: 37989431 DOI: 10.1016/j.ijbiomac.2023.128262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/04/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
This study focused on GSK-3β, a critical serine/threonine kinase with diverse cellular functions. However, there is limited understanding of the impact of non-synonymous single nucleotide polymorphisms (nsSNPs) on its structure and function. Through an exhaustive in-silico investigation 12 harmful nsSNPs were predicted from a pool of 172 acquired from the NCBI dbSNP database using 12 established tools that detects deleterious SNPs. Consistently, these nsSNPs were discovered in locations with high levels of conservation. Notably, the three harmful nsSNPs F67C, A83T, and T138I were situated in the active/binding site of GSK-3β, which may affect the protein's capacity to bind to substrates and other proteins. Molecular dynamics simulations revealed that the F67C and T138I mutants had stable structures, indicating rigidness, whereas the A83T mutant was unstable. Analysis of secondary structures revealed different modifications in all mutant forms, which may affect the stability, functioning, and interactions of the protein. These mutations appear to alter the structural dynamics of GSK-3β, which may have functional ramifications, such as the formation of novel secondary structures and variations in coil-to-helix transitions. In conclusion, this study illuminates the possible structural and functional ramifications of these GSK-3 nsSNPs, revealing how protein compactness, stiffness, and interactions may affect biological activities.
Collapse
Affiliation(s)
- Pratik Das
- School of Bioscience and Engineering, Jadavpur University, Kolkata, India
| | - Ranabir Majumder
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, India
| | - Nandita Sen
- Molecular biology wing, Dept of Biotechnology, PES University, Bangalore, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery & Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Arabinda Ghosh
- Department of Computational Biology and Biotechnology, Mahapurusha Srimanta Sankaradeva Viswavidyalaya, Guwahati Unit, Guwahati, Assam, India
| | - Mahitosh Mandal
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, India
| | - Piyali Basak
- School of Bioscience and Engineering, Jadavpur University, Kolkata, India.
| |
Collapse
|
12
|
Kim E, Seo SH, Hwang Y, Ryu YC, Kim H, Lee KM, Lee JW, Park KH, Choi KY. Inhibiting the cytosolic function of CXXC5 accelerates diabetic wound healing by enhancing angiogenesis and skin repair. Exp Mol Med 2023; 55:1770-1782. [PMID: 37524876 PMCID: PMC10474114 DOI: 10.1038/s12276-023-01064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 08/02/2023] Open
Abstract
Diabetic wound healing, including diabetic foot ulcer (DFU), is a serious complication of diabetes. Considering the complexity of DFU development, the identification of a factor that mediates multiple pathogeneses is important for treatment. In this study, we found that CXXC-type zinc finger protein 5 (CXXC5), a negative regulator of the Wnt/β-catenin pathway, was overexpressed with suppression of the Wnt/β-catenin pathway and its target genes involved in wound healing and angiogenesis in the wound tissues of DFU patients and diabetes-induced model mice. KY19334, a small molecule that activates the Wnt/β-catenin pathway by inhibiting the CXXC5-Dvl interaction, accelerated wound healing in diabetic mice. The enhancement of diabetic wound healing could be achieved by restoring the suppressed Wnt/β-catenin signaling and subsequently inducing its target genes. Moreover, KY19334 induced angiogenesis in hindlimb ischemia model mice. Overall, these findings revealed that restorative activation of Wnt/β-catenin signaling by inhibiting the function of cytosolic CXXC5 could be a therapeutic approach for treating DFUs.
Collapse
Affiliation(s)
- Eunhwan Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Seol Hwa Seo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yumi Hwang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yeong Chan Ryu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Heejene Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Kyoung-Mi Lee
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jin Woo Lee
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Kwang Hwan Park
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| | - Kang-Yell Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
- CK Regeon Inc, Engineering Research Park, 50 Yonsei Ro, Seodaemun-Gu, Seoul, 03722, South Korea.
| |
Collapse
|
13
|
Zhu L, Liu L, Wang A, Liu J, Huang X, Zan T. Positive feedback loops between fibroblasts and the mechanical environment contribute to dermal fibrosis. Matrix Biol 2023; 121:1-21. [PMID: 37164179 DOI: 10.1016/j.matbio.2023.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
Dermal fibrosis is characterized by excessive deposition of extracellular matrix in the dermis and affects millions of people worldwide and causes limited movement, disfigurement and psychological distress in patients. Fibroblast dysfunction of plays a central role in the pathogenesis of dermal fibrosis and is controlled by distinct factors. Recent studies support the hypothesis that fibroblasts can drive matrix deposition and stiffening, which in turn can exacerbate the functional dysregulation of fibroblasts. Ultimately, through a positive feedback loop, uncontrolled pathological fibrosis develops. This review aims to summarize the phenomenon and mechanism of the positive feedback loop in dermal fibrosis, and discuss potential therapeutic targets to help further elucidate the pathogenesis of dermal fibrosis and develop therapeutic strategies. In this review, fibroblast-derived compositional and structural changes in the ECM that lead to altered mechanical properties are briefly discussed. We focus on the mechanisms by which mechanical cues participate in dermal fibrosis progression. The mechanosensors discussed in the review include integrins, DDRs, proteoglycans, and mechanosensitive ion channels. The FAK, ERK, Akt, and Rho pathways, as well as transcription factors, including MRTF and YAP/TAZ, are also discussed. In addition, we describe stiffness-induced biological changes in the ECM on fibroblasts that contribute to the formation of a positive feedback loop. Finally, we discuss therapeutic strategies to treat the vicious cycle and present important suggestions for researchers conducting in-depth research.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lechen Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Aoli Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jinwen Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Kim E, Hwang Y, Kim H, Kim GU, Ryu YC, Yoon M, Choi KY. Pyruvate Kinase M2 Accelerates Cutaneous Wound Healing via Glycolysis and Wnt/β-Catenin Signaling. Pharmaceutics 2023; 15:2028. [PMID: 37631242 PMCID: PMC10458512 DOI: 10.3390/pharmaceutics15082028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Cutaneous wound healing is a complex and dynamic process with high energy demand. The activation of glycolysis is essential for restoring the structure and function of injured tissues in wounds. Pyruvate kinase M2 (PKM2) is an enzyme that plays a crucial role in the last step of glycolysis. PKM2-mediated glycolysis is known to play an important role in diseases related to regeneration and inflammation. However, the role of PKM2 in wound healing has not been fully elucidated. In this study, we found that PKM2 expression and pyruvate kinase (PK) activity were increased with the activation of Wnt/β-catenin signaling during wound healing in mice. TEPP-46, an allosteric activator of PKM2, enhanced HaCaT human keratinocyte migration and cutaneous wound healing with an increment of PK activity. Moreover, we confirmed the effect of co-treatment with TEPP-46 and KY19382, a Wnt/β-catenin signaling activator through the interference with the CXXC-type zinc finger protein 5 (CXXC5) Dishevelled interaction, on wound healing. The combination treatment significantly accelerated wound healing, which was confirmed by the expression level of PCNA, keratin 14, and α-SMA. Furthermore, co-treatment induced angiogenesis in the wound beds. Overall, activation of both glycolysis and Wnt/β-catenin signaling has the potential to be used as a therapeutic approach for wound healing.
Collapse
Affiliation(s)
- Eunhwan Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (E.K.); (Y.H.); (H.K.); (G.-U.K.); (Y.C.R.); (M.Y.)
| | - Yumi Hwang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (E.K.); (Y.H.); (H.K.); (G.-U.K.); (Y.C.R.); (M.Y.)
| | - Heejene Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (E.K.); (Y.H.); (H.K.); (G.-U.K.); (Y.C.R.); (M.Y.)
| | - Geon-Uk Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (E.K.); (Y.H.); (H.K.); (G.-U.K.); (Y.C.R.); (M.Y.)
| | - Yeong Chan Ryu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (E.K.); (Y.H.); (H.K.); (G.-U.K.); (Y.C.R.); (M.Y.)
| | - Minguen Yoon
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (E.K.); (Y.H.); (H.K.); (G.-U.K.); (Y.C.R.); (M.Y.)
| | - Kang-Yell Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (E.K.); (Y.H.); (H.K.); (G.-U.K.); (Y.C.R.); (M.Y.)
- CK Regeon Inc., Seoul 03722, Republic of Korea
| |
Collapse
|
15
|
Yoon M, Kim E, Seo SH, Kim GU, Choi KY. KY19382 Accelerates Cutaneous Wound Healing via Activation of the Wnt/β-Catenin Signaling Pathway. Int J Mol Sci 2023; 24:11742. [PMID: 37511501 PMCID: PMC10380997 DOI: 10.3390/ijms241411742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
The Wnt/β-catenin signaling pathway plays important roles in the multi-phases of wound healing: homeostasis, inflammation, proliferative, and remodeling phases. However, there are no clinically available therapeutic agents targeting the Wnt/β-catenin pathway. In this study, we tested the effect of 5, 6-dichloroindirubin-3'-methoxime (KY19382), a small molecule that activates the Wnt/β-catenin pathway via interference with the function of the negative feedback regulator CXXC5, on cutaneous wound healing. KY19382 significantly enhanced cell migration of human keratinocytes and dermal fibroblasts with increased levels of β-catenin, phalloidin, Keratin 14, proliferating cell nuclear antigen (PCNA), Collagen I, and alpha-smooth muscle actin (α-SMA) by activating the Wnt/β-catenin signaling pathway without causing significant cytotoxicity. In addition, levels of Collagen I, Keratin 14, PCNA, and stem cell markers were significantly increased by KY19382 in a cutaneous murine wound healing model. Moreover, KY19382 treatment accelerated re-epithelialization and neo-epidermis formation with collagen deposition and stem cell activation at an early stage of cutaneous wound healing. Overall, KY19382 accelerates wound healing via activating the Wnt/β-catenin pathway, and may have the potential to be used for the development of a new wound healing agent.
Collapse
Affiliation(s)
- Minguen Yoon
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Eunhwan Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seol Hwa Seo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Geon-Uk Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Kang-Yell Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- CK Regeon Inc., Seoul 03722, Republic of Korea
| |
Collapse
|
16
|
Li W, Xiong F, Yao C, Zhang T, Zhou L, Zhang Z, Wang Z, Mao Y, Zhou P, Guan J. The impact of Allgower-Donati suture pattern and postoperative sweet foods on wound suture breakage in experimental rats. Heliyon 2023; 9:e13934. [PMID: 36915567 PMCID: PMC10006471 DOI: 10.1016/j.heliyon.2023.e13934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/27/2023] Open
Abstract
Background Wound gnawing and/or scratching in rats often occurs in experimental models, causing suture breakage and wound dehiscence, and consequently affecting experimental results and wasting resources. This study aimed to investigate the impact of the combined postoperative use of the Allgower-Donati (A-D) suture pattern and sweet foods on suture breakage, inflammation, and healing in wounds. Materials and methods Sprague Dawley (SD) rats (n = 48) were treated for linear wounds on the back by four procedures: simple suture, simple suture with postoperative sweet foods, A-D suture, and A-D suture with postoperative sweet foods. Additionally, CD68 immunofluorescence and CD31 immunohistochemistry were used to analyze wound inflammation and vascularization, respectively, on postoperative day 7. Sirius red staining was used to assess collagen deposition on postoperative day 14. Results Gnawing and scratching of wound sutures were significantly reduced in treated rats (P < 0.01). Neovascularization and collagen deposition were significantly increased (P < 0.001), and inflammatory responses were significantly reduced (P < 0.001) in animals receiving AD sutures and postoperative sweet foods. CD31/CD68 analyses showed that A-D suture and postoperative sweet foods regulated wound angiogenesis and attenuated wound inflammation. Conclusions Sweet food provision after A-D suture union surgery could reduce wound gnawing and/or scratching, suture breakage, incisional dehiscence, wound inflammation, and promote wound healing in rats.
Collapse
Affiliation(s)
- Weifeng Li
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, China
- First Department of Orthopedics, People's Hospital of Lixin County, Bozhou, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu, China
| | - Feng Xiong
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, China
| | - Cheng Yao
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, China
| | - Tingbao Zhang
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, China
| | - Liangshuang Zhou
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, China
| | - Zhanyue Zhang
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu, China
| | - Zhaodong Wang
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu, China
| | - Yingji Mao
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu, China
| | - Pinghui Zhou
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu, China
| | - Jianzhong Guan
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu, China
| |
Collapse
|
17
|
Im G, Kim Y, Lee TI, Bhang SH. Subaqueous free-standing 3D cell culture system for ultrafast cell compaction, mechano-inductive immune control, and improving therapeutic angiogenesis. Bioeng Transl Med 2023; 8:e10438. [PMID: 36925707 PMCID: PMC10013761 DOI: 10.1002/btm2.10438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/08/2022] Open
Abstract
Conventional 3D cell culture methods require a comprehensive complement in labor-intensive and time-consuming processes along with in vivo circumstantial mimicking. Here, we describe a subaqueous free-standing 3D cell culture (FS) device that can induce the omnidirectional environment and generate ultrafast human adipose-derived stem cells (hADSCs) that efficiently aggregate with compaction using acoustic pressure. The cell culture conditions were optimized using the FS device and identified the underlying molecular mechanisms. Unique phenomena in cell aggregation have led to extraordinary cellular behavior that can upregulate cell compaction, mechanosensitive immune control, and therapeutic angiogenesis. Therefore, we designated the resulting cell aggregates as "pressuroid." Notably, external acoustic stimulation produced by the FS device affected the pressuroids. Furthermore, the pressuroids exhibited upregulation in mechanosensitive genes and proteins, PIEZO1/2. CyclinD1 and PCNA, which are strongly associated with cell adhesion and proliferation, were elevated by PIEZO1/2. In addition, we found that pressuroids significantly increase angiogenic paracrine factor secretion, promote cell adhesion molecule expression, and enhance M2 immune modulation of Thp1 cells. Altogether, we have concluded that our pressuroid would suggest a more effective therapy method for future cell therapy than the conventional one.
Collapse
Affiliation(s)
- Gwang‐Bum Im
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
- Present address:
Department of Cardiac Surgery, Boston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Yu‐Jin Kim
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Tae Il Lee
- Department of Materials Science and EngineeringGachon UniversitySeongnamRepublic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| |
Collapse
|
18
|
Zulkefli N, Che Zahari CNM, Sayuti NH, Kamarudin AA, Saad N, Hamezah HS, Bunawan H, Baharum SN, Mediani A, Ahmed QU, Ismail AFH, Sarian MN. Flavonoids as Potential Wound-Healing Molecules: Emphasis on Pathways Perspective. Int J Mol Sci 2023; 24:ijms24054607. [PMID: 36902038 PMCID: PMC10003005 DOI: 10.3390/ijms24054607] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 03/02/2023] Open
Abstract
Wounds are considered to be a serious problem that affects the healthcare sector in many countries, primarily due to diabetes and obesity. Wounds become worse because of unhealthy lifestyles and habits. Wound healing is a complicated physiological process that is essential for restoring the epithelial barrier after an injury. Numerous studies have reported that flavonoids possess wound-healing properties due to their well-acclaimed anti-inflammatory, angiogenesis, re-epithelialization, and antioxidant effects. They have been shown to be able to act on the wound-healing process via expression of biomarkers respective to the pathways that mainly include Wnt/β-catenin, Hippo, Transforming Growth Factor-beta (TGF-β), Hedgehog, c-Jun N-Terminal Kinase (JNK), NF-E2-related factor 2/antioxidant responsive element (Nrf2/ARE), Nuclear Factor Kappa B (NF-κB), MAPK/ERK, Ras/Raf/MEK/ERK, phosphatidylinositol 3-kinase (PI3K)/Akt, Nitric oxide (NO) pathways, etc. Hence, we have compiled existing evidence on the manipulation of flavonoids towards achieving skin wound healing, together with current limitations and future perspectives in support of these polyphenolic compounds as safe wound-healing agents, in this review.
Collapse
Affiliation(s)
- Nabilah Zulkefli
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | | | - Nor Hafiza Sayuti
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Ammar Akram Kamarudin
- UKM Molecular Biology Institute (UMBI), UKM Medical Center, Kuala Lumpur 56000, Selangor, Malaysia
| | - Norazalina Saad
- Laboratory of Cancer Research UPM-MAKNA (CANRES), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Hamizah Shahirah Hamezah
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Hamidun Bunawan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Qamar Uddin Ahmed
- Drug Discovery and Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
| | - Ahmad Fahmi Harun Ismail
- Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
- Correspondence: (A.F.H.I.); (M.N.S.)
| | - Murni Nazira Sarian
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Correspondence: (A.F.H.I.); (M.N.S.)
| |
Collapse
|
19
|
Ma Y, Liu Z, Miao L, Jiang X, Ruan H, Xuan R, Xu S. Mechanisms underlying pathological scarring by fibroblasts during wound healing. Int Wound J 2023. [PMID: 36726192 DOI: 10.1111/iwj.14097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
Pathological scarring is an abnormal outcome of wound healing, which often manifests as excessive proliferation and transdifferentiation of fibroblasts (FBs), and excessive deposition of the extracellular matrix. FBs are the most important effector cells involved in wound healing and scar formation. The factors that promote pathological scar formation often act on the proliferation and function of FB. In this study, we describe the factors that lead to abnormal FB formation in pathological scarring in terms of the microenvironment, signalling pathways, epigenetics, and autophagy. These findings suggest that understanding the causes of abnormal FB formation may aid in the development of precise and effective preventive and treatment strategies for pathological scarring that are associated with improved quality of life of patients.
Collapse
Affiliation(s)
- Yizhao Ma
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Zhifang Liu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - LinLin Miao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Xinyu Jiang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Hongyu Ruan
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Rongrong Xuan
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Suling Xu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| |
Collapse
|
20
|
Bikle DD. Role of vitamin D and calcium signaling in epidermal wound healing. J Endocrinol Invest 2023; 46:205-212. [PMID: 35963983 PMCID: PMC9859773 DOI: 10.1007/s40618-022-01893-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/31/2022] [Indexed: 01/25/2023]
Abstract
PURPOSE This review will discuss the role of vitamin D and calcium signaling in the epidermal wound response with particular focus on the stem cells of the epidermis and hair follicle that contribute to the wounding response. METHODS Selected publications relevant to the mechanisms of wound healing in general and the roles of calcium and vitamin D in wound healing in particular were reviewed. RESULTS Following wounding the stem cells of the hair follicle and interfollicular epidermis are activated to proliferate and migrate to the wound where they take on an epidermal fate to re-epithelialize the wound and regenerate the epidermis. The vitamin D and calcium sensing receptors (VDR and CaSR, respectively) are expressed in the stem cells of the hair follicle and epidermis where they play a critical role in enabling the stem cells to respond to wounding. Deletion of Vdr and/or Casr from these cells delays wound healing. The VDR is regulated by co-regulators such as the Med 1 complex and other transcription factors such as Ctnnb (beta-catenin) and p63. The formation of the Cdh1/Ctnn (E-cadherin/catenin) complex jointly stimulated by vitamin D and calcium plays a critical role in the activation, migration, and re-epithelialization processes. CONCLUSION Vitamin D and calcium signaling are critical for the ability of epidermal and hair follicle stem cells to respond to wounding. Vitamin D deficiency with the accompanying decrease in calcium signaling can result in delayed and/or chronic wounds, a major cause of morbidity, loss of productivity, and medical expense.
Collapse
Affiliation(s)
- D D Bikle
- Department of Medicine and Dermatology, University of California San Francisco, San Francisco VA Medical Center, San Francisco, USA.
| |
Collapse
|
21
|
Zhou S, Xie M, Su J, Cai B, Li J, Zhang K. New insights into balancing wound healing and scarless skin repair. J Tissue Eng 2023; 14:20417314231185848. [PMID: 37529248 PMCID: PMC10388637 DOI: 10.1177/20417314231185848] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/17/2023] [Indexed: 08/03/2023] Open
Abstract
Scars caused by skin injuries after burns, wounds, abrasions and operations have serious physical and psychological effects on patients. In recent years, the research of scar free wound repair has been greatly expanded. However, understanding the complex mechanisms of wound healing, in which various cells, cytokines and mechanical force interact, is critical to developing a treatment that can achieve scarless wound healing. Therefore, this paper reviews the types of wounds, the mechanism of scar formation in the healing process, and the current research progress on the dual consideration of wound healing and scar prevention, and some strategies for the treatment of scar free wound repair.
Collapse
Affiliation(s)
- Shengxi Zhou
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Mengbo Xie
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jingjing Su
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Bingjie Cai
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| |
Collapse
|
22
|
Euodia daniellii Hemsl. Extract and Its Active Component Hesperidin Accelerate Cutaneous Wound Healing via Activation of Wnt/β-Catenin Signaling Pathway. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207134. [PMID: 36296727 PMCID: PMC9608813 DOI: 10.3390/molecules27207134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
The activation of the Wnt/β-catenin signaling pathway plays a key role in the wound-healing process through tissue regeneration. The extract of Euodia daniellii Hemsl. (E. daniellii), a member of the Rutaceae family, activates the Wnt/β-catenin signaling pathway. However, the function of E. daniellii in wound healing has not yet been elucidated. We performed a migration assay to determine the wound-healing effect of E. daniellii extract in vitro using human keratinocytes and dermal fibroblast. In addition, a mouse acute wound model was used to investigate the cutaneous wound-healing effect of E. daniellii extract in vivo and confirm the potential mechanism. E. daniellii extract enhanced the migration of human keratinocytes and dermal fibroblasts via the activation of the Wnt/β-catenin pathway. Moreover, the E. daniellii extract increased the levels of keratin 14, PCNA, collagen I, and α-SMA, with nuclei accumulation of β-catenin in vitro. E. daniellii extract also efficiently accelerated re-epithelialization and stimulated wound healing in vivo. Furthermore, we confirmed that hesperidin, one of the components of E. daniellii, efficiently accelerated the migration of human keratinocytes and dermal fibroblasts, as well as wound healing in vivo via the activation of the Wnt/β-catenin pathway. Overall, E. daniellii extract and its active component, hesperidin, have potential to be used as therapeutic agents for wound healing.
Collapse
|
23
|
Yin J, Zhang S, Yang C, Wang Y, Shi B, Zheng Q, Zeng N, Huang H. Mechanotransduction in skin wound healing and scar formation: Potential therapeutic targets for controlling hypertrophic scarring. Front Immunol 2022; 13:1028410. [PMID: 36325354 PMCID: PMC9618819 DOI: 10.3389/fimmu.2022.1028410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Hypertrophic scarring (HTS) is a major source of morbidity after cutaneous injury. Recent studies indicate that mechanical force significantly impacts wound healing and skin regeneration which opens up a new direction to combat scarring. Hence, a thorough understanding of the underlying mechanisms is essential in the development of efficacious scar therapeutics. This review provides an overview of the current understanding of the mechanotransduction signaling pathways in scar formation and some strategies that offload mechanical forces in the wounded region for scar prevention and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ni Zeng
- *Correspondence: Ni Zeng, ; Hanyao Huang,
| | | |
Collapse
|
24
|
Abstract
The efficacy of implanted biomaterials is largely dependent on the response of the host's immune and stromal cells. Severe foreign body response (FBR) can impede the integration of the implant into the host tissue and compromise the intended mechanical and biochemical function. Many features of FBR, including late-stage fibrotic encapsulation of implants, parallel the formation of fibrotic scar tissue after tissue injury. Regenerative organisms like zebrafish and salamanders can avoid fibrosis after injury entirely, but FBR in these research organisms is rarely investigated because their immune competence is much lower than humans. The recent characterization of a regenerative mammal, the spiny mouse (Acomys), has inspired us to take a closer look at cellular regulation in regenerative organisms across the animal kingdom for insights into avoiding FBR in humans. Here, we highlight how major features of regeneration, such as blastema formation, macrophage polarization, and matrix composition, can be modulated across a range of regenerative research organisms to elucidate common features that may be harnessed to minimize FBR. Leveraging a deeper understanding of regenerative biology for biomaterial design may help to reduce FBR and improve device integration and performance.
Collapse
Affiliation(s)
- Sunaina Sapru
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Michele N Dill
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Chelsey S Simmons
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States.,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
25
|
Saygili E, Devamoglu U, Goker-Bagca B, Goksel O, Biray-Avci C, Goksel T, Yesil-Celiktas O. A drug-responsive multicellular human spheroid model to recapitulate drug-induced pulmonary fibrosis. Biomed Mater 2022; 17. [PMID: 35617946 DOI: 10.1088/1748-605x/ac73cd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/26/2022] [Indexed: 11/12/2022]
Abstract
Associated with a high mortality rate, pulmonary fibrosis (PF) is the end stage of several interstitial lung diseases. Although many factors are linked to PF progression, initiation of the fibrotic process remains to be studied. Current research focused on generating new strategies to gain a better understanding of the underlying disease mechanism as the animal models remain insufficient to reflect human physiology. Herein, to account complex cellular interactions within the fibrotic tissue, a multicellular spheroid (MCS) model where human bronchial epithelial cells incorporated with human lung fibroblasts was generated and treated with bleomycin (BLM) to emulate drug-induced PF. Recapitulating the epithelial-interstitial microenvironment, the findings successfully reflected the PF disease, where excessive alpha smooth muscle actin (α-SMA) and collagen type I secretion were noted along with the morphological changes in response to BLM. Moreover, increased levels of fibrotic linked COL13A1, MMP2, WNT3 and decreased expression level of CDH1 provide evidence for the model reliability on fibrosis modelling. Subsequent administration of the FDA approved nintedanib and pirfenidone anti-fibrotic drugs proved the drug-responsiveness of the model.
Collapse
Affiliation(s)
- Ecem Saygili
- Department of Bioengineering, Ege University, Department of Bioengineering, Bornova, Izmir, 35040, TURKEY
| | - Utku Devamoglu
- Department of Bioengineering, Ege University, Department of Bioengineering, Bornova, Izmir, 35040, TURKEY
| | - Bakiye Goker-Bagca
- Department of Medical Biology, Adnan Menderes University, Department of Medical Biology, Aydin, Aydin, 09010, TURKEY
| | - Ozlem Goksel
- Department of Pulmonary Medicine / EgeSAM-Ege University Translational Pulmonary Research Center, Ege University, Bornova, Izmir, 35040, TURKEY
| | - Cigir Biray-Avci
- Department of Medical Biology, Ege University, Bornova, Izmir, 35040, TURKEY
| | - Tuncay Goksel
- Department of Pulmonary Medicine / EgeSAM-Ege University Translational Pulmonary Research Center, Ege University, Bornova, Izmir, 35040, TURKEY
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering / EgeSAM-Ege University Translational Pulmonary Research Center, Ege University, Bornova, Izmir, 35040, TURKEY
| |
Collapse
|
26
|
Zhu X, Kazemi A, Dong Y, Pan Q, Jin P, Cheng B, Yang Y. Effectiveness of Nano Bioactive Glass Fiber Loaded with Platelet-Rich Plasma on Thermal Wound Healing Process in Rats. J Biomed Nanotechnol 2022; 18:535-545. [PMID: 35484761 DOI: 10.1166/jbn.2022.3249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study we evaluated the impact of topical application of bioactive glass fibers loaded PRP on a deep seconddegree thermal wound and its healing process sub-streaming molecular pathway of re-epithelialization. Wistar rats were randomly divided into four groups: normal control group, model group (deep second-degree thermal wound), PRP group, and PRP+nanobioactive glass fiber group. After treatment, the changes of wounds were observed daily. H&E staining was used to evaluate the pathological changes and also, qRT-PCR was used to detect the mRNA expression of KGF, IL-1, IL-6, IL-10, TGF-β, EGF, VEGF, HIF-1α, integrin α3 and integrin β1 in wound tissues. In the current study, we observed that PRP group and the PRP group basically re-epithelized on the 21st day. The wound healing rates of the PRP+nanobioactive glass fiber group and PRP group at each time point were higher than those in the model group, while there was no significant difference in wound healing rate between the PRP+nanobioactive glass fiber group and PRP group at each time point. H&E staining showed that the pathological scores of skin wound repairing in the PRP+nanobioactive glass fiber group on the 7th, 14th and 21st day were higher than that of in the model group. The qPCR results suggested the mRNA expression of IL-1, IL-6 and IL-10 in the PRP+nanobioactive glass fiber group and the PRP group were lower than those in the untreated group on the 14th day; the expression of VEGF and EGF mRNA were higher on the 3rd day; the mRNA expression of TGF-β, HIF-1α showed a tendency of increasing first and decreasing then; integrin β1 mRNA expression increased significantly, which was highest; integrin α3 mRNA expression was higher on day 3rd and 21th, respectively. The PRP+nanobioactive glass fibers and PRP can shorten the wound healing time and improve the healing quality mainly by promoting the wound epithelization through increasing the expression of EGF, VEGF, TGF-β, HIF-1α, Integrin α3, and meanwhile increasing the release of Integrin β1 and other mechanisms.
Collapse
Affiliation(s)
- Xuanru Zhu
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command of PLA, Guangzhou, 510000, China
| | - Aida Kazemi
- Clinical Research Development Unit, Shafa Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Yunqing Dong
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command of PLA, Guangzhou, 510000, China
| | - Qiao Pan
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command of PLA, Guangzhou, 510000, China
| | - Panshi Jin
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command of PLA, Guangzhou, 510000, China
| | - Biao Cheng
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command of PLA, Guangzhou, 510000, China
| | - Yangog Yang
- Rehabilation Unit, CHU Gabriel Touré, Bamako, 267, Mali
| |
Collapse
|
27
|
Doolan BJ, Onoufriadis A, Kantaputra P, McGrath JA. WNT10A, dermatology and dentistry. Br J Dermatol 2021; 185:1105-1111. [PMID: 34184264 DOI: 10.1111/bjd.20601] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 12/31/2022]
Abstract
WNTs (Wingless-related integration sites) are secreted glycoproteins that are involved in signalling pathways critical to organ development and tissue regeneration. Of the 19 known WNT ligands, one member of this family, WNT10A, appears to have specific relevance to skin, its appendages and teeth. This review focuses on how variants in the WNT10A gene have been associated with various ectodermal disorders and how such changes may have clinical relevance to dermatologists and dentists. Germline mutations in WNT10A underlie several forms of autosomal recessive ectodermal dysplasia in which heterozygous carriers may also display some lesser ectodermal anomalies. Within the general population, multiple heterozygous variants in WNT10A can cause skin, hair, sweat gland or dental alterations, also known as ectodermal derivative impairments. WNT10A variants have also been implicated in hair thickness, male androgenetic alopecia, hair curl, acne vulgaris, lipodystrophy, keloids, wound healing, tooth size, tooth agenesis, hypodontia, taurodontism and oral clefting. Beyond dermatology and dentistry, WNT10A abnormalities have also been identified in kidney fibrosis, keratoconus, certain malignancies (particularly gastrointestinal) and neuropathic pain pathways. In this review, we detail how WNT10A is implicated as a key physiological and pathological contributor to syndromic and nonsyndromic disorders, as well as population variants, affecting the skin and teeth, and document all reported mutations in WNT10A with genotype-phenotype correlation.
Collapse
Affiliation(s)
- B J Doolan
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - A Onoufriadis
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - P Kantaputra
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - J A McGrath
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| |
Collapse
|