1
|
Li CY, Boldt H, Parent E, Ficklin J, James A, Anlage TJ, Boyer LM, Pierce BR, Siegfried KR, Harris MP, Haag ES. Genetic tools for the study of the mangrove killifish, Kryptolebias marmoratus, an emerging vertebrate model for phenotypic plasticity. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:164-177. [PMID: 37553824 DOI: 10.1002/jez.b.23216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/04/2023] [Accepted: 07/21/2023] [Indexed: 08/10/2023]
Abstract
Kryptolebias marmoratus (Kmar), a teleost fish of the order Cyprinodontiformes, has a suite of unique phenotypes and behaviors not observed in other fishes. Many of these phenotypes are discrete and highly plastic-varying over time within an individual, and in some cases reversible. Kmar and its interfertile sister species, K. hermaphroditus, are the only known self-fertile vertebrates. This unusual sexual mode has the potential to provide unique insights into the regulation of vertebrate sexual development, and also lends itself to genetics. Kmar is easily adapted to the lab and requires little maintenance. However, its internal fertilization and small clutch size limits its experimental use. To support Kmar as a genetic model, we compared alternative husbandry techniques to maximize recovery of early cleavage-stage embryos. We find that frequent egg collection enhances yield, and that protease treatment promotes the greatest hatching success. We completed a forward mutagenesis screen and recovered several mutant lines that serve as important tools for genetics in this model. Several will serve as useful viable recessive markers for marking crosses. Importantly, the mutant kissylips lays embryos at twice the rate of wild-type. Combining frequent egg collection with the kissylips mutant background allows for a substantial enhancement of early embryo yield. These improvements were sufficient to allow experimental analysis of early development and the successful mono- and bi-allelic targeted knockout of an endogenous tyrosinase gene with CRISPR/Cas9 nucleases. Collectively, these tools will facilitate modern developmental genetics in this fascinating fish, leading to future insights into the regulation of plasticity.
Collapse
Affiliation(s)
- Cheng-Yu Li
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Helena Boldt
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Emily Parent
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Jax Ficklin
- Department of Biology, University of Maryland, College Park, Maryland, USA
- College of Computer, Mathematical, and Natural Sciences, Biological Sciences Graduate Program, University of Maryland, College Park, Maryland, USA
| | - Althea James
- Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Troy J Anlage
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Lena M Boyer
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Brianna R Pierce
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Kellee R Siegfried
- Department of Biology, University of Massachusetts, Boston, Massachusetts, USA
| | - Matthew P Harris
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Eric S Haag
- Department of Biology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
2
|
Miller CL, Sun D, Thornton LH, McGuigan K. The Contribution of Mutation to Variation in Temperature-Dependent Sprint Speed in Zebrafish, Danio rerio. Am Nat 2023; 202:519-533. [PMID: 37792923 DOI: 10.1086/726011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractThe contribution of new mutations to phenotypic variation and the consequences of this variation for individual fitness are fundamental concepts for understanding genetic variation and adaptation. Here, we investigated how mutation influenced variation in a complex trait in zebrafish, Danio rerio. Typical of many ecologically relevant traits in ectotherms, swimming speed in fish is temperature dependent, with evidence of adaptive evolution of thermal performance. We chemically induced novel germline point mutations in males and measured sprint speed in their sons at six temperatures (between 16°C and 34°C). Heterozygous mutational effects on speed were strongly positively correlated among temperatures, resulting in statistical support for only a single axis of mutational variation, reflecting temperature-independent variation in speed (faster-slower mode). These results suggest pleiotropic effects on speed across different temperatures; however, spurious correlations arise via linkage or heterogeneity in mutation number when mutations have consistent directional effects on each trait. Here, mutation did not change mean speed, indicating no directional bias in mutational effects. The results contribute to emerging evidence that mutations may predominantly have synergistic cross-environment effects, in contrast to conditionally neutral or antagonistic effects that underpin thermal adaptation. We discuss several aspects of experimental design that may affect resolution of mutations with nonsynergistic effects.
Collapse
|
3
|
Rohner N. The cavefish Astyanax mexicanus. Nat Methods 2023; 20:948-950. [PMID: 37434002 DOI: 10.1038/s41592-023-01916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Affiliation(s)
- Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO, USA.
| |
Collapse
|
4
|
Beyens A, Pottie L, Sips P, Callewaert B. Clinical and Molecular Delineation of Cutis Laxa Syndromes: Paradigms for Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:273-309. [PMID: 34807425 DOI: 10.1007/978-3-030-80614-9_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cutis laxa (CL) syndromes are a large and heterogeneous group of rare connective tissue disorders that share loose redundant skin as a hallmark clinical feature, which reflects dermal elastic fiber fragmentation. Both acquired and congenital-Mendelian- forms exist. Acquired forms are progressive and often preceded by inflammatory triggers in the skin, but may show systemic elastolysis. Mendelian forms are often pleiotropic in nature and classified upon systemic manifestations and mode of inheritance. Though impaired elastogenesis is a common denominator in all Mendelian forms of CL, the underlying gene defects are diverse and affect structural components of the elastic fiber or impair metabolic pathways interfering with cellular trafficking, proline synthesis, or mitochondrial functioning. In this chapter we provide a detailed overview of the clinical and molecular characteristics of the different cutis laxa types and review the latest insights on elastic fiber assembly and homeostasis from both human and animal studies.
Collapse
Affiliation(s)
- Aude Beyens
- Center for Medical Genetics Ghent, Department of Dermatology, Department of Biomolecular Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Lore Pottie
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Patrick Sips
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium.
| |
Collapse
|
5
|
Daane JM, Blum N, Lanni J, Boldt H, Iovine MK, Higdon CW, Johnson SL, Lovejoy NR, Harris MP. Modulation of bioelectric cues in the evolution of flying fishes. Curr Biol 2021; 31:5052-5061.e8. [PMID: 34534441 PMCID: PMC9172250 DOI: 10.1016/j.cub.2021.08.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/09/2021] [Accepted: 08/20/2021] [Indexed: 01/03/2023]
Abstract
Changes to allometry, or the relative proportions of organs and tissues within organisms, is a common means for adaptive character change in evolution. However, little is understood about how relative size is specified during development and shaped during evolution. Here, through a phylogenomic analysis of genome-wide variation in 35 species of flying fishes and relatives, we identify genetic signatures in both coding and regulatory regions underlying the convergent evolution of increased paired fin size and aerial gliding behaviors. To refine our analysis, we intersected convergent phylogenomic signatures with mutants with altered fin size identified in distantly related zebrafish. Through these paired approaches, we identify a surprising role for an L-type amino acid transporter, lat4a, and the potassium channel, kcnh2a, in the regulation of fin proportion. We show that interaction between these genetic loci in zebrafish closely phenocopies the observed fin proportions of flying fishes. The congruence of experimental and phylogenomic findings point to conserved, non-canonical signaling integrating bioelectric cues and amino acid transport in the establishment of relative size in development and evolution.
Collapse
Affiliation(s)
- Jacob M Daane
- Department of Orthopaedic Research, Boston Children's Hospital, Boston, MA 02124, USA; Department of Genetics, Harvard Medical School, Boston, MA 02124, USA; Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA 01908, USA.
| | - Nicola Blum
- Department of Orthopaedic Research, Boston Children's Hospital, Boston, MA 02124, USA; Department of Genetics, Harvard Medical School, Boston, MA 02124, USA
| | - Jennifer Lanni
- Department of Biology, Wheaton College, Norton, MA 02766, USA
| | - Helena Boldt
- Department of Orthopaedic Research, Boston Children's Hospital, Boston, MA 02124, USA; Department of Genetics, Harvard Medical School, Boston, MA 02124, USA
| | - M Kathryn Iovine
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Charles W Higdon
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA
| | - Stephen L Johnson
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA
| | - Nathan R Lovejoy
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C-1A4, Canada
| | - Matthew P Harris
- Department of Orthopaedic Research, Boston Children's Hospital, Boston, MA 02124, USA; Department of Genetics, Harvard Medical School, Boston, MA 02124, USA.
| |
Collapse
|
6
|
Li C, Barton C, Henke K, Daane J, Treaster S, Caetano-Lopes J, Tanguay RL, Harris MP. celsr1a is essential for tissue homeostasis and onset of aging phenotypes in the zebrafish. eLife 2020; 9:50523. [PMID: 31985398 PMCID: PMC7010407 DOI: 10.7554/elife.50523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/24/2020] [Indexed: 12/11/2022] Open
Abstract
The use of genetics has been invaluable in defining the complex mechanisms of aging and longevity. Zebrafish, while a prominent model for vertebrate development, have not been used systematically to address questions of how and why we age. In a mutagenesis screen focusing on late developmental phenotypes, we identified a new mutant that displays aging phenotypes at young adult stages. We find that the phenotypes are due to loss-of-function in the non-classical cadherin celsr1a. The premature aging is not associated with increased cellular senescence or telomere length but is a result of a failure to maintain progenitor cell populations. We show that celsr1a is essential for maintenance of stem cell progenitors in late stages. Caloric restriction can ameliorate celsr1a aging phenotypes. These data suggest that celsr1a function helps to mediate stem cell maintenance during maturation and homeostasis of tissues and thus regulates the onset or expressivity of aging phenotypes.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Orthopedics, Boston Children's Hospital, Boston, United States
| | - Carrie Barton
- Department of Environmental and Molecular Toxicology, Oregon State University, Sinnhuber Aquatic Research Laboratory, Corvallis, United States
| | - Katrin Henke
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Orthopedics, Boston Children's Hospital, Boston, United States
| | - Jake Daane
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Orthopedics, Boston Children's Hospital, Boston, United States
| | - Stephen Treaster
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Orthopedics, Boston Children's Hospital, Boston, United States
| | - Joana Caetano-Lopes
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Orthopedics, Boston Children's Hospital, Boston, United States
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Sinnhuber Aquatic Research Laboratory, Corvallis, United States
| | - Matthew P Harris
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Orthopedics, Boston Children's Hospital, Boston, United States
| |
Collapse
|
7
|
Lanni JS, Peal D, Ekstrom L, Chen H, Stanclift C, Bowen ME, Mercado A, Gamba G, Kahle KT, Harris MP. Integrated K+ channel and K+Cl- cotransporter functions are required for the coordination of size and proportion during development. Dev Biol 2019; 456:164-178. [PMID: 31472116 PMCID: PMC7235970 DOI: 10.1016/j.ydbio.2019.08.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/07/2019] [Accepted: 08/23/2019] [Indexed: 10/26/2022]
Abstract
The coordination of growth during development establishes proportionality within and among the different anatomic structures of organisms. Innate memory of this proportionality is preserved, as shown in the ability of regenerating structures to return to their original size. Although the regulation of this coordination is incompletely understood, mutant analyses of zebrafish with long-finned phenotypes have uncovered important roles for bioelectric signaling in modulating growth and size of the fins and barbs. To date, long-finned mutants identified are caused by hypermorphic mutations, leaving unresolved whether such signaling is required for normal development. We isolated a new zebrafish mutant, schleier, with proportional overgrowth phenotypes caused by a missense mutation and loss of function in the K+-Cl- cotransporter Kcc4a. Creation of dominant negative Kcc4a in wild-type fish leads to loss of growth restriction in fins and barbs, supporting a requirement for Kcc4a in regulation of proportion. Epistasis experiments suggest that Kcc4a and the two-pore potassium channel Kcnk5b both contribute to a common bioelectrical signaling response in the fin. These data suggest that an integrated bioelectric signaling pathway is required for the coordination of size and proportion during development.
Collapse
Affiliation(s)
| | - David Peal
- Department of Genetics, Harvard Medical School, Boston, MA, 02124, USA; Department of Orthopaedic Research, Boston Children's Hospital, Boston, MA, 02124, USA
| | - Laura Ekstrom
- Department of Biology, Wheaton College, Norton, MA, 02766, USA
| | - Haining Chen
- Department of Biology, Wheaton College, Norton, MA, 02766, USA
| | | | - Margot E Bowen
- Department of Genetics, Harvard Medical School, Boston, MA, 02124, USA; Department of Orthopaedic Research, Boston Children's Hospital, Boston, MA, 02124, USA
| | | | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico; Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico
| | - Kristopher T Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology, and NIH-Rockefeller Center for Mendelian Genomics, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Matthew P Harris
- Department of Genetics, Harvard Medical School, Boston, MA, 02124, USA; Department of Orthopaedic Research, Boston Children's Hospital, Boston, MA, 02124, USA
| |
Collapse
|
8
|
Walter KM, Miller GW, Chen X, Harvey DJ, Puschner B, Lein PJ. Changes in thyroid hormone activity disrupt photomotor behavior of larval zebrafish. Neurotoxicology 2019; 74:47-57. [PMID: 31121238 DOI: 10.1016/j.neuro.2019.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/12/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Abstract
High throughput in vitro, in silico, and computational approaches have identified numerous environmental chemicals that interfere with thyroid hormone (TH) activity, and it is posited that human exposures to such chemicals are a contributing factor to neurodevelopmental disorders. However, whether hits in screens of TH activity are predictive of developmental neurotoxicity (DNT) has yet to be systematically addressed. The zebrafish has been proposed as a second tier model for assessing the in vivo DNT potential of TH active chemicals. As an initial evaluation of the feasibility of this proposal, we determined whether an endpoint often used to assess DNT in larval zebrafish, specifically photomotor behavior, is altered by experimentally induced hyper- and hypothyroidism. Developmental hyperthyroidism was simulated by static waterborne exposure of zebrafish to varying concentrations (3-300 nM) of thyroxine (T4) or triiodothyronine (T3) beginning at 6 h post-fertilization (hpf) and continuing through 5 days post-fertilization (dpf). Teratogenic effects and lethality were observed at 4 and 5 dpf in fish exposed to T4 or T3 at concentrations >30 nM. However, as early as 3 dpf, T4 (> 3 nM) and T3 (> 10 nM) significantly increased swimming activity triggered by sudden changes from light to dark, particularly during the second dark period (Dark 2). Conversely, developmental hypothyroidism, which was induced by treatment with 6-propyl-2-thiouracil (PTU), morpholino knockdown of the TH transporter mct8, or ablation of thyroid follicles in adult females prior to spawning, generally decreased swimming activity during dark periods, although effects did vary across test days. All effects of developmental hypothyroidism on photomotor behavior occurred independent of teratogenic effects and were most robust during Dark 2. Treatment with the T4 analog, Tetrac, restored photomotor response in mct8 morphants to control levels. Collectively, these findings suggest that while the sensitivity of photomotor behavior in larval zebrafish to detect TH disruption is influenced by test parameters, this test can distinguish between TH promoting and TH blocking activity and may be useful for assessing the DNT potential of TH-active chemicals.
Collapse
Affiliation(s)
- Kyla M Walter
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA, 95616, United States.
| | - Galen W Miller
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA, 95616, United States.
| | - Xiaopeng Chen
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA, 95616, United States.
| | - Danielle J Harvey
- Department of Public Health Sciences University of California, Davis, School of Medicine, Davis, California 95616, United States.
| | - Birgit Puschner
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA, 95616, United States.
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA, 95616, United States.
| |
Collapse
|
9
|
Krishnan J, Rohner N. Sweet fish: Fish models for the study of hyperglycemia and diabetes. J Diabetes 2019; 11:193-203. [PMID: 30264455 DOI: 10.1111/1753-0407.12860] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/01/2018] [Accepted: 09/09/2018] [Indexed: 01/15/2023] Open
Abstract
Fish are good for your health in more ways than you may expect. For one, eating fish is a common dietary recommendation for a healthy diet. However, fish have much more to provide than omega-3 fatty acids to your circulatory system. Some fish species now serve as important and innovative model systems for diabetes research, providing novel and unique advantages compared with classical research models. Not surprisingly, the largest share of diabetes research in fish occurs in the laboratory workhorse among fish, the zebrafish (Danio rerio). Established as a genetic model system to study development, these small cyprinid fish have eventually conquered almost every scientific discipline and, over the past decade, have emerged as an important model system for metabolic diseases, including diabetes mellitus. In this review we highlight the practicability of using zebrafish to study diabetes and hyperglycemia, and summarize some of the recent research and breakthroughs made using this model. Equally exciting is the appearance of another emerging discipline, one that is taking advantage of evolution by studying cases of naturally occurring insulin resistance in fish species. We briefly discuss two such models in this review, namely the rainbow trout (Oncorhynchus mykiss) and the cavefish (Astyanax mexicanus).
Collapse
Affiliation(s)
- Jaya Krishnan
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
- Department of Molecular and Integrative Physiology, KU Medical Center, Kansas City, Missouri, USA
| |
Collapse
|
10
|
McGuigan K, Aw E. How does mutation affect the distribution of phenotypes? Evolution 2017; 71:2445-2456. [PMID: 28884791 DOI: 10.1111/evo.13358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/27/2017] [Accepted: 08/29/2017] [Indexed: 12/14/2022]
Abstract
The potential for mutational processes to influence patterns of neutral or adaptive phenotypic evolution is not well understood. If mutations are directionally biased, shifting trait means in a particular direction, or if mutation generates more variance in some directions of multivariate trait space than others, mutation itself might be a source of bias in phenotypic evolution. Here, we use mutagenesis to investigate the affect of mutation on trait mean and (co)variances in zebrafish, Danio rerio. Mutation altered the relationship between age and both prolonged swimming speed and body shape. These observations suggest that mutational effects on ontogeny or aging have the potential to generate variance across the phenome. Mutations had a far greater effect in males than females, although whether this is a reflection of sex-specific ontogeny or aging remains to be determined. In males, mutations generated positive covariance between swimming speed, size, and body shape suggesting the potential for mutation to affect the evolutionary covariation of these traits. Overall, our observations suggest that mutation does not generate equal variance in all directions of phenotypic space or in each sex, and that pervasive variation in ontogeny or aging within a cohort could affect the variation available to evolution.
Collapse
Affiliation(s)
- Katrina McGuigan
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072
| | - Ernest Aw
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072
| |
Collapse
|
11
|
Genetic Screen for Postembryonic Development in the Zebrafish ( Danio rerio): Dominant Mutations Affecting Adult Form. Genetics 2017; 207:609-623. [PMID: 28835471 DOI: 10.1534/genetics.117.300187] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/17/2017] [Indexed: 11/18/2022] Open
Abstract
Large-scale forward genetic screens have been instrumental for identifying genes that regulate development, homeostasis, and regeneration, as well as the mechanisms of disease. The zebrafish, Danio rerio, is an established genetic and developmental model used in genetic screens to uncover genes necessary for early development. However, the regulation of postembryonic development has received less attention as these screens are more labor intensive and require extensive resources. The lack of systematic interrogation of late development leaves large aspects of the genetic regulation of adult form and physiology unresolved. To understand the genetic control of postembryonic development, we performed a dominant screen for phenotypes affecting the adult zebrafish. In our screen, we identified 72 adult viable mutants showing changes in the shape of the skeleton as well as defects in pigmentation. For efficient mapping of these mutants and mutation identification, we devised a new mapping strategy based on identification of mutant-specific haplotypes. Using this method in combination with a candidate gene approach, we were able to identify linked mutations for 22 out of 25 mutants analyzed. Broadly, our mutational analysis suggests that there are key genes and pathways associated with late development. Many of these pathways are shared with humans and are affected in various disease conditions, suggesting constraint in the genetic pathways that can lead to change in adult form. Taken together, these results show that dominant screens are a feasible and productive means to identify mutations that can further our understanding of gene function during postembryonic development and in disease.
Collapse
|
12
|
Gut P, Reischauer S, Stainier DYR, Arnaout R. LITTLE FISH, BIG DATA: ZEBRAFISH AS A MODEL FOR CARDIOVASCULAR AND METABOLIC DISEASE. Physiol Rev 2017; 97:889-938. [PMID: 28468832 PMCID: PMC5817164 DOI: 10.1152/physrev.00038.2016] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/17/2022] Open
Abstract
The burden of cardiovascular and metabolic diseases worldwide is staggering. The emergence of systems approaches in biology promises new therapies, faster and cheaper diagnostics, and personalized medicine. However, a profound understanding of pathogenic mechanisms at the cellular and molecular levels remains a fundamental requirement for discovery and therapeutics. Animal models of human disease are cornerstones of drug discovery as they allow identification of novel pharmacological targets by linking gene function with pathogenesis. The zebrafish model has been used for decades to study development and pathophysiology. More than ever, the specific strengths of the zebrafish model make it a prime partner in an age of discovery transformed by big-data approaches to genomics and disease. Zebrafish share a largely conserved physiology and anatomy with mammals. They allow a wide range of genetic manipulations, including the latest genome engineering approaches. They can be bred and studied with remarkable speed, enabling a range of large-scale phenotypic screens. Finally, zebrafish demonstrate an impressive regenerative capacity scientists hope to unlock in humans. Here, we provide a comprehensive guide on applications of zebrafish to investigate cardiovascular and metabolic diseases. We delineate advantages and limitations of zebrafish models of human disease and summarize their most significant contributions to understanding disease progression to date.
Collapse
Affiliation(s)
- Philipp Gut
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Sven Reischauer
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Didier Y R Stainier
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Rima Arnaout
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
13
|
Fadeev A, Krauss J, Singh AP, Nüsslein-Volhard C. Zebrafish Leucocyte tyrosine kinase controls iridophore establishment, proliferation and survival. Pigment Cell Melanoma Res 2016; 29:284-96. [DOI: 10.1111/pcmr.12454] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/19/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Andrey Fadeev
- Max-Planck-Institut für Entwicklungsbiologie; Tübingen Germany
| | - Jana Krauss
- Max-Planck-Institut für Entwicklungsbiologie; Tübingen Germany
| | | | | |
Collapse
|
14
|
Fadeev A, Krauss J, Frohnhöfer HG, Irion U, Nüsslein-Volhard C. Tight Junction Protein 1a regulates pigment cell organisation during zebrafish colour patterning. eLife 2015; 4. [PMID: 25915619 PMCID: PMC4446668 DOI: 10.7554/elife.06545] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/24/2015] [Indexed: 01/21/2023] Open
Abstract
Zebrafish display a prominent pattern of alternating dark and light stripes generated by the precise positioning of pigment cells in the skin. This arrangement is the result of coordinated cell movements, cell shape changes, and the organisation of pigment cells during metamorphosis. Iridophores play a crucial part in this process by switching between the dense form of the light stripes and the loose form of the dark stripes. Adult schachbrett (sbr) mutants exhibit delayed changes in iridophore shape and organisation caused by truncations in Tight Junction Protein 1a (ZO-1a). In sbr mutants, the dark stripes are interrupted by dense iridophores invading as coherent sheets. Immuno-labelling and chimeric analyses indicate that Tjp1a is expressed in dense iridophores but down-regulated in the loose form. Tjp1a is a novel regulator of cell shape changes during colour pattern formation and the first cytoplasmic protein implicated in this process. DOI:http://dx.doi.org/10.7554/eLife.06545.001 The striking horizontal striped pattern of the zebrafish makes it a decorative addition to many home aquariums. The stripes are a result of three different pigment cells interacting with each other, and first begin to emerge when the animal is two to three weeks old. At that time, iridescent cells called iridophores begin to multiply and spread in the skin. In the light-coloured stripes, the iridophores are compact and ‘dense’; in the dark stripes the cells change into a ‘loose’ shape and organisation. Black-pigmented cells fill in the dark stripes, and a third cell type with a yellow hue condenses over the light stripes. How the three types of cell work together to make the striped pattern is not fully understood. Fadeev et al. examined a zebrafish variant with a genetic mutation that disrupts the function of a protein called Tight Junction Protein 1a (or Tjp1a)—a fish variant of a mammalian protein called ZO-1. This protein helps cells to interact with each other. The mutant fish appear spotted rather than striped, because light regions containing sheets of the dense iridophores interrupt the dark stripes. Experiments using fluorescent markers showed that Tjp1a is produced in much lower amounts in the loose iridophores in the dark stripes than in the dense iridophores of the light stripes. This led Fadeev et al. to suggest that the transition from the dense to the loose shape is dependent on the presence of Tjp1a in the cell. Tjp1a is likely to regulate how colour patterns form by controlling how iridophores interact with other types of pigment cell. The Tjp1a mutant fish provides the first glimpse into the machinery inside cells that underlies colour pattern formation, and will help to identify other components and cues responsible for cell interactions. DOI:http://dx.doi.org/10.7554/eLife.06545.002
Collapse
Affiliation(s)
- Andrey Fadeev
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Jana Krauss
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Uwe Irion
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | |
Collapse
|
15
|
Irion U, Frohnhöfer HG, Krauss J, Çolak Champollion T, Maischein HM, Geiger-Rudolph S, Weiler C, Nüsslein-Volhard C. Gap junctions composed of connexins 41.8 and 39.4 are essential for colour pattern formation in zebrafish. eLife 2014; 3:e05125. [PMID: 25535837 PMCID: PMC4296512 DOI: 10.7554/elife.05125] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 12/22/2014] [Indexed: 11/20/2022] Open
Abstract
Interactions between all three pigment cell types are required to form the stripe pattern of adult zebrafish (Danio rerio), but their molecular nature is poorly understood. Mutations in leopard (leo), encoding Connexin 41.8 (Cx41.8), a gap junction subunit, cause a phenotypic series of spotted patterns. A new dominant allele, leotK3, leads to a complete loss of the pattern, suggesting a dominant negative impact on another component of gap junctions. In a genetic screen, we identified this component as Cx39.4 (luchs). Loss-of-function alleles demonstrate that luchs is required for stripe formation in zebrafish; however, the fins are almost not affected. Double mutants and chimeras, which show that leo and luchs are only required in xanthophores and melanophores, but not in iridophores, suggest that both connexins form heteromeric gap junctions. The phenotypes indicate that these promote homotypic interactions between melanophores and xanthophores, respectively, and those cells instruct the patterning of the iridophores. DOI:http://dx.doi.org/10.7554/eLife.05125.001 The colour patterns that mark an animal's skin, hair, or feathers—called the pigmentation pattern—can be very important for its survival and fitness, helping it to hide from predators or to attract a mate. As a result, there is considerable interest in understanding how genes, proteins, and cells work together to produce the many different pigmentation patterns that exist in the animal world. Adult zebrafish have a characteristic pigmentation pattern of horizontal dark and light stripes on their bodies and fins. There are three types of pigment cell that create this pattern. Xanthophores and iridophores are found all over the body, and the dark stripes also contain melanophore cells. The silvery, reflective iridophores are the first of the cells to populate the skin, giving rise to the first light stripe. They then form a dense network of cells that breaks up to form the darker stripes. However, iridophores are not required to form stripes in the fins, suggesting that patterning occurs differently in the fins and the body. Mutations to a gene called leopard, or leo for short, cause spots to form on the skin of the zebrafish in place of the usual stripes. This gene encodes a member of the connexin family of proteins, which form channels in the membranes that surround cells. These channels—known as gap junctions—allow neighbouring cells to communicate with each other. Each gap junction is made up of two half channels, with one half coming from each neighbouring cells. If the two half channels are identical, the gap junction is known as ‘homomeric’; ‘heteromeric’ gap junctions are made from two different half channels, each consisting of a different connexin protein. The connexin encoded by leo is required for both types of gap junction to form between melanophores and xanthophores. Irion et al. discovered a new mutation to the leo gene that completely disrupts the patterning of the zebrafish. A technique called a genetic screen revealed that the same patterning defects are also seen in the body of zebrafish with mutations to another gene called luchs, which encodes a different connexin protein to the one produced by leo. However, the fins of zebrafish with mutant versions of luchs remain striped. The findings of Irion et al. suggest that heteromeric gap junctions formed from the connexins produced by leo and luchs are important for xanthophores and melanophores to communicate with each other and so form the stripy patterning seen on the body of the zebrafish. The signals transmitted through the gap junctions may also make the iridophores adopt the looser arrangement that is required for the dark stripes to form. As a next step, it will be important to identify the signals that pass through these gap junctions that allow the cells to communicate with their neighbours and establish the pigmentation pattern. DOI:http://dx.doi.org/10.7554/eLife.05125.002
Collapse
Affiliation(s)
- Uwe Irion
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Jana Krauss
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | | | | | - Christian Weiler
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | |
Collapse
|
16
|
Dranow DB, Tucker RP, Draper BW. Germ cells are required to maintain a stable sexual phenotype in adult zebrafish. Dev Biol 2013; 376:43-50. [PMID: 23348677 DOI: 10.1016/j.ydbio.2013.01.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 01/14/2013] [Indexed: 01/27/2023]
Abstract
Sex in zebrafish is not determined by a major chromosomal locus, but instead relies on a mechanism that is influenced by a germ cell-derived signal, as animals that lack germ cells, or specifically oocytes, develop as phenotypic males. These data suggest that during primary sex determination, an oocyte-derived signal acts on the bipotential somatic gonad to promote the female-specific program. However, it is not known if germ cells are required only during the primary sex-determining window, or if they are required throughout adult life to maintain the female sexual phenotype. Here, we show that while wild-type zebrafish do not switch sex as adults, germ cell-depleted adult females readily convert to a male phenotype. Notably, when oocytes are depleted, but germline stem cells remain, adult females sex-revert to sperm-producing males, indicating that a germ cell-derived signal acts on the somatic gonad to promote female development directly or indirectly by repressing male-specific gene expression. These results also confirm that signals from the somatic gonad in turn ensure that the sex appropriate gamete is produced.
Collapse
Affiliation(s)
- Daniel B Dranow
- Department of Molecular and Cellular Biology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|
17
|
Stewart AM, Desmond D, Kyzar E, Gaikwad S, Roth A, Riehl R, Collins C, Monnig L, Green J, Kalueff AV. Perspectives of zebrafish models of epilepsy: What, how and where next? Brain Res Bull 2012; 87:135-43. [DOI: 10.1016/j.brainresbull.2011.11.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/20/2011] [Accepted: 11/25/2011] [Indexed: 10/14/2022]
|
18
|
Techniques for optimizing the creation of mutations in zebrafish using N-ethyl-N-nitrosourea. Lab Anim (NY) 2011; 40:353-61. [PMID: 22012195 DOI: 10.1038/laban1111-353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/12/2011] [Indexed: 11/08/2022]
Abstract
A safe and successful mutagenesis of zebrafish (Danio rerio) with N-ethyl-N-nitrosourea (ENU) involves balancing several factors. In addition to keeping the fish alive and the humans safe, labor, tank numbers and the process of finding and isolating new mutants should be considered. The author details useful techniques for optimizing zebrafish mutagenesis using ENU.
Collapse
|