1
|
Medishetti R, C MR, Chatti K. Cabozantinib-induced edema in zebrafish represents an adverse effect characterized by defects in lymphatic vasculature and renal function. J Biochem Mol Toxicol 2023; 37:e23413. [PMID: 37335823 DOI: 10.1002/jbt.23413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/21/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Tyrosine kinase inhibitors (TKIs) are a major class of targeted cancer therapy drugs. Overcoming the limitations of approved TKIs and the development of new TKIs continues to be an important need. The adoption of higher throughput and accessible animal models to evaluate TKI adverse effects will help in this regard. We exposed zebrafish larvae to a set of 22 Food and Drug Administration-approved TKIs and assessed mortality, early developmental abnormalities, and gross morphological abnormalities posthatching. We found edema posthatching as a consistent and prominent consequence of VEGFR inhibitors, and of cabozantinib in particular. The edema occurred at concentrations that did not cause lethality or any other abnormality, and was independent of the developmental stage. Further experiments identified loss of blood and lymphatic vasculature, and suppression of renal function in larvae exposed to 10 µM cabozantinib. Molecular analysis showed downregulation of the vasculature marker genes vegfr, prox1a, sox18, and the renal function markers nephrin and podocin as the potential molecular basis for the above defects, implicating them in the mechanism of cabozantinib-induced edema. Our findings reveal edema as a previously unreported phenotypic effect of cabozantinib and identify the likely mechanistic basis. These findings also highlight the need for studies investigating edema due to vascular and renal dysfunction as a potential clinical adverse effect of cabozantinib, and possibly other VEGFR inhibitors.
Collapse
Affiliation(s)
- Raghavender Medishetti
- Center for Innovation in Molecular and Pharmaceutical Sciences, Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, Telangana, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mallikarjuna Rao C
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kiranam Chatti
- Center for Innovation in Molecular and Pharmaceutical Sciences, Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, Telangana, India
| |
Collapse
|
2
|
Ramšak Ž, Modic V, Li RA, vom Berg C, Zupanic A. From Causal Networks to Adverse Outcome Pathways: A Developmental Neurotoxicity Case Study. FRONTIERS IN TOXICOLOGY 2022; 4:815754. [PMID: 35295214 PMCID: PMC8915909 DOI: 10.3389/ftox.2022.815754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 11/15/2022] Open
Abstract
The last decade has seen the adverse outcome pathways (AOP) framework become one of the most powerful tools in chemical risk assessment, but the development of new AOPs remains a slow and manually intensive process. Here, we present a faster approach for AOP generation, based on manually curated causal toxicological networks. As a case study, we took a recently published zebrafish developmental neurotoxicity network, which contains causally connected molecular events leading to neuropathologies, and developed two new adverse outcome pathways: Inhibition of Fyna (Src family tyrosine kinase A) leading to increased mortality via decreased eye size (AOP 399 on AOP-Wiki) and GSK3beta (Glycogen synthase kinase 3 beta) inactivation leading to increased mortality via defects in developing inner ear (AOP 410). The approach consists of an automatic separation of the toxicological network into candidate AOPs, filtering the AOPs according to available evidence and length as well as manual development of new AOPs and weight-of-evidence evaluation. The semiautomatic approach described here provides a new opportunity for fast and straightforward AOP development based on large network resources.
Collapse
Affiliation(s)
- Živa Ramšak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Vid Modic
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Roman A. Li
- Department of Environmental Toxicology, Eawag—Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
| | - Colette vom Berg
- Department of Environmental Toxicology, Eawag—Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
| | - Anze Zupanic
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- *Correspondence: Anze Zupanic,
| |
Collapse
|
3
|
Liu Y, Du H, Wang S, Lv Y, Deng H, Chang K, Zhou P, Hu C. Grass carp (Ctenopharyngodon idella) TNK1 modulates JAK-STAT signaling through phosphorylating STAT1. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103951. [PMID: 33253749 DOI: 10.1016/j.dci.2020.103951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
TNK1 (thirty-eight-negative kinase 1) belongs to the ACK (Activated Cdc42 Kinases) family of intracellular non-receptor tyrosine kinases that usually acts as an important regulator in cytokine receptor-mediated intracellular signal transduction pathways. JAK-STAT signal pathway acts as a key point in cellular proliferation, differentiation and immunomodulatory. Mammalian TNK1 is involved in antiviral immunity and activation of growth factors. However, TNK1 has rarely been studied in fish. To evaluate the role of fish TNK1 in JAK-STAT pathway, we cloned the full-length cDNA sequence of grass carp (Ctenopharyngodon idella) TNK1 (CiTNK1). CiTNK1 protein consists of N-terminal Tyrkc (tyrosine kinase) domain, C-terminal SH3 (Src homology 3) domain and Pro-rich domain. Phylogenetic analysis showed that CiTNK1 has a closer relationship with Danio rerio TNK1. The expression and phosphorylation of CiTNK1 in grass carp tissues and cells was increased under poly(I:C) stimulation. Subcellular localization and co-immunoprecipitation indicated that CiTNK1 is targeted in the cytoplasm and interacts with grass carp STAT1 (CiSTAT1). Co-transfection of CiTNK1 and CiSTAT1 into cells facilitated the expression of IFN I. This is because that the presence of CiTNK1 enhanced the phosphorylation of CiSTAT1 and causes activation of CiSTAT1. Our results revealed that TNK1 can potentiate the phosphorylation of STAT1 and then regulates JAK-STAT pathway to trigger IFN I expression in fish.
Collapse
Affiliation(s)
- Yapeng Liu
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Hailing Du
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Shanghong Wang
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Yangfeng Lv
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Hang Deng
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Kaile Chang
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Pengcheng Zhou
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Chengyu Hu
- College of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
4
|
Li L, Liu D, Liu A, Li J, Wang H, Zhou J. Genomic Survey of Tyrosine Kinases Repertoire in Electrophorus electricus With an Emphasis on Evolutionary Conservation and Diversification. Evol Bioinform Online 2020; 16:1176934320922519. [PMID: 32546936 PMCID: PMC7249569 DOI: 10.1177/1176934320922519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/07/2020] [Indexed: 12/05/2022] Open
Abstract
Tyrosine kinases (TKs) play key roles in the regulation of multicellularity in
organisms and involved primarily in cell growth, differentiation, and
cell-to-cell communication. Genome-wide characterization of TKs has been
conducted in many metazoans; however, systematic information regarding this
superfamily in Electrophorus electricus (electric eel) is still
lacking. In this study, we identified 114 TK genes in the E
electricus genome and investigated their evolution, molecular
features, and domain architecture using phylogenetic profiling to gain a better
understanding of their similarities and specificity. Our results suggested that
the electric eel TK (EeTK) repertoire was shaped by whole-genome duplications
(WGDs) and tandem duplication events. Compared with other vertebrate TKs, gene
members in Jak, Src, and EGFR subfamily duplicated specifically, but with
members lost in Eph, Axl, and Ack subfamily in electric eel. We also conducted
an exhaustive survey of TK genes in genomic databases, identifying 1674 TK
proteins in 31 representative species covering all the main metazoan lineages.
Extensive evolutionary analysis indicated that TK repertoire in vertebrates
tended to be remarkably conserved, but the gene members in each subfamily were
very variable. Comparative expression profile analysis showed that electric
organ tissues and muscle shared a similar pattern with specific highly expressed
TKs (ie, epha7, musk, jak1, and pdgfra), suggesting that regulation of TKs might
play an important role in specifying an electric organ identity from its muscle
precursor. We further identified TK genes exhibiting tissue-specific expression
patterns, indicating that members in TKs participated in subfunctionalization
representing an evolutionary divergence required for the performance of
different tissues. This work generates valuable information for further gene
function analysis and identifying candidate TK genes reflecting their unique
tissue-function specializations in electric eel.
Collapse
Affiliation(s)
- Ling Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Dangyun Liu
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, Huai'an, P.R. China
| | - Ake Liu
- Faculty of Biological Science and Technology, Changzhi University, Changzhi, P.R. China
| | - Jingquan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Hui Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Jingqi Zhou
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
5
|
Fuentes R, Tajer B, Kobayashi M, Pelliccia JL, Langdon Y, Abrams EW, Mullins MC. The maternal coordinate system: Molecular-genetics of embryonic axis formation and patterning in the zebrafish. Curr Top Dev Biol 2020; 140:341-389. [PMID: 32591080 DOI: 10.1016/bs.ctdb.2020.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Axis specification of the zebrafish embryo begins during oogenesis and relies on proper formation of well-defined cytoplasmic domains within the oocyte. Upon fertilization, maternally-regulated cytoplasmic flow and repositioning of dorsal determinants establish the coordinate system that will build the structure and developmental body plan of the embryo. Failure of specific genes that regulate the embryonic coordinate system leads to catastrophic loss of body structures. Here, we review the genetic principles of axis formation and discuss how maternal factors orchestrate axis patterning during zebrafish early embryogenesis. We focus on the molecular identity and functional contribution of genes controlling critical aspects of oogenesis, egg activation, blastula, and gastrula stages. We examine how polarized cytoplasmic domains form in the oocyte, which set off downstream events such as animal-vegetal polarity and germ line development. After gametes interact and form the zygote, cytoplasmic segregation drives the animal-directed reorganization of maternal determinants through calcium- and cell cycle-dependent signals. We also summarize how maternal genes control dorsoventral, anterior-posterior, mesendodermal, and left-right cell fate specification and how signaling pathways pattern these axes and tissues during early development to instruct the three-dimensional body plan. Advances in reverse genetics and phenotyping approaches in the zebrafish model are revealing positional patterning signatures at the single-cell level, thus enhancing our understanding of genotype-phenotype interactions in axis formation. Our emphasis is on the genetic interrogation of novel and specific maternal regulatory mechanisms of axis specification in the zebrafish.
Collapse
Affiliation(s)
- Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| | - Benjamin Tajer
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Manami Kobayashi
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Jose L Pelliccia
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | | | - Elliott W Abrams
- Department of Biology, Purchase College, State University of New York, Harrison, NY, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
6
|
Imatinib mesylate effects on zebrafish reproductive success: Gonadal development, gamete quality, fertility, embryo-larvae viability and development, and related genes. Toxicol Appl Pharmacol 2019; 379:114645. [PMID: 31278918 DOI: 10.1016/j.taap.2019.114645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/24/2019] [Accepted: 07/01/2019] [Indexed: 11/20/2022]
Abstract
Imatinib (IM) is a tyrosine kinase (TK) inhibitor (TKI) used to treat chronic myeloid leukemia. Clinical case reports and a few laboratory mammal studies provide inconclusive evidence about its deleterious effects on reproduction. The aim of the current study was to evaluate the potential of zebrafish to characterize IM-induced effects on reproduction and clarify IM effects on reproductive success. To this end, we exposed adult zebrafish to four concentrations of IM for 30 days followed by a 30-day depuration period. IM exposure caused a concentration-dependent, irreversible, suppression of folliculogenesis, reversible decrease in sperm density and motility, decreased fecundity and fertility, but no significant change in atretic follicle abundance. We also observed IM-induced premature hatching, but no significant change in embryo-larvae survivability. However, we found significant IM-induced morphometric malformations. IM decreased expression of vegfaa and igf2a (two reproductive-, angiogenic-, and growth-related genes) in testes and ovaries. The results demonstrate IM can induce significant changes in critical reproductive endpoints and zebrafish as a suitable model organism to show effects of IM on reproduction. The findings suggest that TKI effects on reproductive success should be considered.
Collapse
|
7
|
Zebrafish heart failure models: opportunities and challenges. Amino Acids 2018; 50:787-798. [DOI: 10.1007/s00726-018-2578-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/24/2018] [Indexed: 01/03/2023]
|
8
|
He S, Tong X, Han M, Bai Y, Dai F. Genome-Wide Identification and Characterization of Tyrosine Kinases in the Silkworm, Bombyx mori. Int J Mol Sci 2018; 19:E934. [PMID: 29561793 PMCID: PMC5979338 DOI: 10.3390/ijms19040934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
The tyrosine kinases (TKs) are important parts of metazoan signaling pathways and play significant roles in cell growth, development, apoptosis and disease. Genome-wide characterization of TKs has been conducted in many metazoans, however, systematic information about this family in Lepidoptera is still lacking. We retrieved 33 TK-encoding genes in silkworm and classified them into 25 subfamilies by sequence analysis, without members in AXL, FRK, PDGFR, STYK1 and TIE subfamilies. Although domain sequences in each subfamily are conserved, TKs in vertebrates tend to be remarkably conserved and stable. Our results of phylogenetic analysis supported the previous conclusion for the second major expansion of TK family. Gene-Ontology (GO) analysis revealed that a higher proportion of BmTKs played roles in binding, catalysis, signal transduction, metabolism, biological regulation and response to stimulus, compared to all silkworm genes annotated in GO. Moreover, the expression profile analysis of BmTKs among multiple tissues and developmental stages demonstrated that many genes exhibited stage-specific and/or sex-related expression during embryogenesis, molting and metamorphosis, and that 8 BmTKs presented tissue-specific high expression. Our study provides systematic description of silkworm tyrosine kinases, and may also provide further insights into metazoan TKs and assist future studies addressing their functions.
Collapse
Affiliation(s)
- Songzhen He
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China.
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China.
| | - Minjin Han
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China.
| | - Yanmin Bai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China.
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China.
| |
Collapse
|
9
|
Zheng P, Li J, Kros JM. Breakthroughs in modern cancer therapy and elusive cardiotoxicity: Critical research-practice gaps, challenges, and insights. Med Res Rev 2018; 38:325-376. [PMID: 28862319 PMCID: PMC5763363 DOI: 10.1002/med.21463] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 12/16/2022]
Abstract
To date, five cancer treatment modalities have been defined. The three traditional modalities of cancer treatment are surgery, radiotherapy, and conventional chemotherapy, and the two modern modalities include molecularly targeted therapy (the fourth modality) and immunotherapy (the fifth modality). The cardiotoxicity associated with conventional chemotherapy and radiotherapy is well known. Similar adverse cardiac events are resurging with the fourth modality. Aside from the conventional and newer targeted agents, even the most newly developed, immune-based therapeutic modalities of anticancer treatment (the fifth modality), e.g., immune checkpoint inhibitors and chimeric antigen receptor (CAR) T-cell therapy, have unfortunately led to potentially lethal cardiotoxicity in patients. Cardiac complications represent unresolved and potentially life-threatening conditions in cancer survivors, while effective clinical management remains quite challenging. As a consequence, morbidity and mortality related to cardiac complications now threaten to offset some favorable benefits of modern cancer treatments in cancer-related survival, regardless of the oncologic prognosis. This review focuses on identifying critical research-practice gaps, addressing real-world challenges and pinpointing real-time insights in general terms under the context of clinical cardiotoxicity induced by the fourth and fifth modalities of cancer treatment. The information ranges from basic science to clinical management in the field of cardio-oncology and crosses the interface between oncology and onco-pharmacology. The complexity of the ongoing clinical problem is addressed at different levels. A better understanding of these research-practice gaps may advance research initiatives on the development of mechanism-based diagnoses and treatments for the effective clinical management of cardiotoxicity.
Collapse
Affiliation(s)
- Ping‐Pin Zheng
- Cardio‐Oncology Research GroupErasmus Medical CenterRotterdamthe Netherlands
- Department of PathologyErasmus Medical CenterRotterdamthe Netherlands
| | - Jin Li
- Department of OncologyShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Johan M Kros
- Department of PathologyErasmus Medical CenterRotterdamthe Netherlands
| |
Collapse
|
10
|
Sarasamma S, Varikkodan MM, Liang ST, Lin YC, Wang WP, Hsiao CD. Zebrafish: A Premier Vertebrate Model for Biomedical Research in Indian Scenario. Zebrafish 2017; 14:589-605. [PMID: 29023224 DOI: 10.1089/zeb.2017.1447] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The zebrafish (Danio rerio) is a versatile model organism that has been used in biomedical research for several decades to study a wide range of biological phenomena. There are many technical advantages of using zebrafish over other vertebrate models. They are readily available, hardy, easy, and inexpensive to maintain in the laboratory, have a short life cycle, and have excellent fecundity. Due to its optical clarity and reproducible capabilities, it has become one of the predominant models of human genetic diseases. Zebrafish research has made rapid strides in the United States and Europe, but in India the field is at an early stage and many researchers still remain unaware of the full research potential of this tiny fish. The zebrafish model system was introduced into India in the early 2000s. Up to now, more than 200 scientific referred articles have been published by Indian researchers. This review gives an overview of the current state of knowledge for zebrafish research in India, with the aim of promoting wider utilization of zebrafish for high level biological studies.
Collapse
Affiliation(s)
- Sreeja Sarasamma
- 1 Department of Chemistry, Chung Yuan Christian University , Chung-Li, Taiwan .,2 Department of Bioscience Technology, Chung Yuan Christian University , Chung-Li, Taiwan .,3 Department of Chemical Biology, Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram, Kerala, India
| | - Muhammed Muhsin Varikkodan
- 1 Department of Chemistry, Chung Yuan Christian University , Chung-Li, Taiwan .,2 Department of Bioscience Technology, Chung Yuan Christian University , Chung-Li, Taiwan .,4 Department of Biotechnology and Genetic Engineering, Bharathidasan University , Tiruchirapalli, India
| | - Sung-Tzu Liang
- 1 Department of Chemistry, Chung Yuan Christian University , Chung-Li, Taiwan
| | - Yen-Chang Lin
- 5 Graduate Institute of Biotechnology, Chinese Culture University , Taipei, Taiwan
| | - Wen-Pin Wang
- 6 Institute of Medical Sciences, Tzu-Chi University , Hualien, Taiwan .,7 Department of Molecular Biology and Human Genetics, Tzu-Chi University , Hualien, Taiwan
| | - Chung-Der Hsiao
- 1 Department of Chemistry, Chung Yuan Christian University , Chung-Li, Taiwan .,8 Center for Biomedical Technology, Chung Yuan Christian University , Chung-Li, Taiwan .,9 Center for Nanotechnology, Chung Yuan Christian University , Chung-Li, Taiwan
| |
Collapse
|
11
|
Identification and characterization of tyrosine kinases in anole lizard indicate the conserved tyrosine kinase repertoire in vertebrates. Mol Genet Genomics 2017; 292:1405-1418. [PMID: 28819830 DOI: 10.1007/s00438-017-1356-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
Abstract
The tyrosine kinases (TKs) play principal roles in regulation of multicellular aspects of the organism and are implicated in many cancer types and congenital disorders. The anole lizard has recently been introduced as a model organism for laboratory-based studies of organismal function and field studies of ecology and evolution. However, the TK family of anole lizard has not been systematically identified and characterized yet. In this study, we identified 82 TK-encoding genes in the anole lizard genome and classified them into 28 subfamilies through phylogenetic analysis, with no member from ROS and STYK1 subfamilies identified. Although TK domain sequences and domain organization in each subfamily were conserved, the total number of TKs in different species was much variable. In addition, extensive evolutionary analysis in metazoans indicated that TK repertoire in vertebrates tends to be remarkably stable. Phylogenetic analysis of Eph subfamily indicated that the divergence of EphA and EphB occurred prior to the whole genome duplication (WGD) but after the split of Urochordates and vertebrates. Moreover, the expression pattern analysis of lizard TK genes among 9 different tissues showed that 14 TK genes exhibited tissue-specific expression and 6 TK genes were widely expressed. Comparative analysis of TK expression suggested that the tissue specifically expressed genes showed different expression pattern but the widely expressed genes showed similar pattern between anole lizard and human. These results may provide insights into the evolutionary diversification of animal TK genes and would aid future studies on TK protein regulation of key growth and developmental processes.
Collapse
|
12
|
Mo ZQ, Yang M, Wang HQ, Xu Y, Huang MZ, Lao GF, Li YW, Li AX, Luo XC, Dan XM. Grouper (Epinephelus coioides) BCR signaling pathway was involved in response against Cryptocaryon irritans infection. FISH & SHELLFISH IMMUNOLOGY 2016; 57:198-205. [PMID: 27514788 DOI: 10.1016/j.fsi.2016.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/23/2016] [Accepted: 08/07/2016] [Indexed: 06/06/2023]
Abstract
B cell antigen receptor (BCR) plays a crucial role in B cell development and antibody production. It comprises membrane immunoglobulin non-covalently associated with CD79a/CD79b heterodimer. After B cell activation, initial extracellular signals are transduced by BCR complex and amplified by two protein tyrosine kinases, LYN and SYK, which then trigger various pathways. In the present study, we cloned grouper genes for BCR accessory molecules, EcCD79a (669 bp) and EcCD79b (639 bp), as well as two protein tyrosine kinases, EcLYN (1482 bp) and EcSYK (1854 bp). Homology analysis showed that all four molecules had a relatively high amino acid identity compared with those in other animals. Among them, they all shared the highest identity with Takifugu rubripes (EcCD79a 49%, EcCD79b 52%, EcLYN 82% and EcSYK 77%). The conserved features and important functional residues were analyzed. Together with IgM and IgT, tissue distribution analysis showed that all six molecules were mainly expressed in immune organs, particularly systematic immune organs. In groupers infected with Cryptocaryon irritans, up-regulation of EcCD79a and b, EcIgM and EcIgT were not seen in the early stage skin and gill until 14-21 days. Up-regulation of EcCD79a was seen in head kidney at most time points, while EcCD79a and b were only significantly up-regulated in day 14 spleen. Significant up-regulation of EcIgT were seen in day 21 head kidney and day 1, day14 spleen. Significant up-regulation of EcIgM were seen in day 1 head kidney and 12 h spleen. In addition, two protein kinase genes, EcLYN and EcSYK, were up-regulated in the skin at most time points, which suggested that B cells may be activated at the skin local infection site.
Collapse
Affiliation(s)
- Ze-Quan Mo
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Man Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Hai-Qing Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Yang Xu
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou 510006, PR China
| | - Mian-Zhi Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Guo-Feng Lao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Yan-Wei Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Import and Export Technical Measures of Animal, Plant and Food, Technical Center of Guangdong Entry-Exit Inspection and Quarantine Bureau, Guangzhou 510623, Guangdong Province, PR China
| | - An-Xing Li
- State Key Laboratory of Biocontrol/Key Laboratory of Aquatic Product Safety (Sun Yat-Sen University), Ministry of Education, The School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Xiao-Chun Luo
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou 510006, PR China.
| | - Xue-Ming Dan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China.
| |
Collapse
|
13
|
Abstract
Sunitinib is used extensively in the treatment of metastatic renal cell carcinoma and imatinib-resistant gastrointestinal stromal tumors. However, the undesirable cardiotoxic effects of sunitinib, such as congestive heart failure and hypertension, limit its use in the clinical setting. As multiple receptor tyrosine kinases are inhibited by sunitinib, it raises a question as to which target mediates sunitinib-induced cardiotoxicity. Here, we reported that the injection of fibroblast growth factor 2 (FGF2) mRNA into one- to two-cell stage embryos protected against sunitinib-induced cardiotoxicity in zebrafish. In addition, FGF2 significantly prevented sunitinib-induced cardiotoxicity in cardiomyoblast H9c2 cells, possibly via activating the PLC-γ/c-Raf/CREB pathway. Importantly, FGF2 did not compromise the antitumor activity of sunitinib in Caki-1 and OS-RC-2 renal cell carcinoma cells. Molecular docking simulations further revealed an interaction between the tyrosine kinase domain of FGF receptor 1 (FGFR1) and sunitinib. Taken together, our results clearly demonstrated that FGF2 inhibition plays an important role in sunitinib-induced cardiotoxicity both in vitro and in vivo. This study also provided a basis for further research on sunitinib-induced cardiotoxicity and may allow rational design of new sunitinib derivatives with fewer or weak cardiotoxic effects.
Collapse
|
14
|
Dos Santos HG, Siltberg-Liberles J. Paralog-Specific Patterns of Structural Disorder and Phosphorylation in the Vertebrate SH3-SH2-Tyrosine Kinase Protein Family. Genome Biol Evol 2016; 8:2806-25. [PMID: 27519537 PMCID: PMC5630953 DOI: 10.1093/gbe/evw194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2016] [Indexed: 12/21/2022] Open
Abstract
One of the largest multigene families in Metazoa are the tyrosine kinases (TKs). These are important multifunctional proteins that have evolved as dynamic switches that perform tyrosine phosphorylation and other noncatalytic activities regulated by various allosteric mechanisms. TKs interact with each other and with other molecules, ultimately activating and inhibiting different signaling pathways. TKs are implicated in cancer and almost 30 FDA-approved TK inhibitors are available. However, specific binding is a challenge when targeting an active site that has been conserved in multiple protein paralogs for millions of years. A cassette domain (CD) containing SH3-SH2-Tyrosine Kinase domains reoccurs in vertebrate nonreceptor TKs. Although part of the CD function is shared between TKs, it also presents TK specific features. Here, the evolutionary dynamics of sequence, structure, and phosphorylation across the CD in 17 TK paralogs have been investigated in a large-scale study. We establish that TKs often have ortholog-specific structural disorder and phosphorylation patterns, while secondary structure elements, as expected, are highly conserved. Further, domain-specific differences are at play. Notably, we found the catalytic domain to fluctuate more in certain secondary structure elements than the regulatory domains. By elucidating how different properties evolve after gene duplications and which properties are specifically conserved within orthologs, the mechanistic understanding of protein evolution is enriched and regions supposedly critical for functional divergence across paralogs are highlighted.
Collapse
Affiliation(s)
- Helena G Dos Santos
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University
| | - Jessica Siltberg-Liberles
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University
| |
Collapse
|
15
|
Brunet FG, Volff JN, Schartl M. Whole Genome Duplications Shaped the Receptor Tyrosine Kinase Repertoire of Jawed Vertebrates. Genome Biol Evol 2016; 8:1600-13. [PMID: 27260203 PMCID: PMC4898815 DOI: 10.1093/gbe/evw103] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The receptor tyrosine kinase (RTK) gene family, involved primarily in cell growth and differentiation, comprises proteins with a common enzymatic tyrosine kinase intracellular domain adjacent to a transmembrane region. The amino-terminal portion of RTKs is extracellular and made of different domains, the combination of which characterizes each of the 20 RTK subfamilies among mammals. We analyzed a total of 7,376 RTK sequences among 143 vertebrate species to provide here the first comprehensive census of the jawed vertebrate repertoire. We ascertained the 58 genes previously described in the human and mouse genomes and established their phylogenetic relationships. We also identified five additional RTKs amounting to a total of 63 genes in jawed vertebrates. We found that the vertebrate RTK gene family has been shaped by the two successive rounds of whole genome duplications (WGD) called 1R and 2R (1R/2R) that occurred at the base of the vertebrates. In addition, the Vegfr and Ephrin receptor subfamilies were expanded by single gene duplications. In teleost fish, 23 additional RTK genes have been retained after another expansion through the fish-specific third round (3R) of WGD. Several lineage-specific gene losses were observed. For instance, birds have lost three RTKs, and different genes are missing in several fish sublineages. The RTK gene family presents an unusual high gene retention rate from the vertebrate WGDs (58.75% after 1R/2R, 64.4% after 3R), resulting in an expansion that might be correlated with the evolution of complexity of vertebrate cellular communication and intracellular signaling.
Collapse
Affiliation(s)
- Frédéric G Brunet
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, UMR5242 CNRS, Université Claude Bernard Lyon I, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, UMR5242 CNRS, Université Claude Bernard Lyon I, Lyon, France
| | - Manfred Schartl
- Physiologische Chemie, Biozentrum, University of Würzburg, Am Hubland, and Comprehensive Cancer Center, University Clinic Würzburg, Würzburg, Germany Texas Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, USA
| |
Collapse
|
16
|
Thomas JK, Janz DM. Embryo Microinjection of Selenomethionine Reduces Hatchability and Modifies Oxidant Responsive Gene Expression in Zebrafish. Sci Rep 2016; 6:26520. [PMID: 27210033 PMCID: PMC4876371 DOI: 10.1038/srep26520] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/04/2016] [Indexed: 01/04/2023] Open
Abstract
In previous studies we demonstrated that exposure to selenomethionine (SeMet) causes developmental toxicities in zebrafish (Danio rerio). The objectives of this study were to establish a dose-response relationship for developmental toxicities in zebrafish after embryo microinjection of Se (8, 16 or 32 μg/g dry mass of eggs) in the form of SeMet, and to investigate potential underlying mechanism(s) of SeMet-induced developmental toxicities. A dose-dependent increase in frequencies of mortality and total deformities, and reduced hatchability were observed in zebrafish exposed to excess Se via embryo microinjection. The egg Se concentration causing 20% mortality was then used to investigate transcript abundance of proteins involved in antioxidant protection and methylation. Excess Se exposure modified gene expression of oxidant-responsive transcription factors (nuclear factor erythroid 2-related factor nrf2a and nrf2b), and enzymes involved in cellular methylation (methionine adenosyltransferase mat1a and mat2ab) in zebrafish larvae. Notably, excess Se exposure up-regulated transcript abundance of aryl hydrocarbon receptor 2 (ahr2), a signalling pathway involved in the toxicity of dioxin-related compounds. Our findings suggest that oxidative stress or modification of methylation, or a combination of these mechanisms, might be responsible for Se-induced developmental toxicities in fishes.
Collapse
Affiliation(s)
- J K Thomas
- Toxicology Graduate Program, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5B3
| | - D M Janz
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5B3.,Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5B4
| |
Collapse
|
17
|
Fadeev A, Krauss J, Singh AP, Nüsslein-Volhard C. Zebrafish Leucocyte tyrosine kinase controls iridophore establishment, proliferation and survival. Pigment Cell Melanoma Res 2016; 29:284-96. [DOI: 10.1111/pcmr.12454] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/19/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Andrey Fadeev
- Max-Planck-Institut für Entwicklungsbiologie; Tübingen Germany
| | - Jana Krauss
- Max-Planck-Institut für Entwicklungsbiologie; Tübingen Germany
| | | | | |
Collapse
|