1
|
Mir H, Alex T, Rajawat J, Kadam A, Begum R. Response of Dictyostelium discoideum to UV-C and involvement of poly (ADP-ribose) polymerase. Cell Prolif 2015; 48:363-74. [PMID: 25858552 DOI: 10.1111/cpr.12182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 12/05/2014] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Radiation and chemical mutagens are direct DNA-damaging agents and ultraviolet (UV) radiation is frequently used in biological studies. Consequent to ozone depletion, UV-C could become a great challenge to living organisms on earth, in the near future. The present study has focused on the role of poly (ADP-ribose) polymerase (PARP) during UV-C-induced growth and developmental changes in Dictyostelium discoideum, a phylogenetically important unicellular eukaryote. MATERIALS AND METHODS Dictyostelium discoideum cells were exposed to different doses of UV-C and PARP activity, and effects of its inhibition were studied. Expression of developmentally regulated genes yakA, car1, aca, csA, regA, ctnA, ctnB, gp24, hspD and dsn were analysed using semiquantitative RT-PCR. RESULTS We report that the D. discoideum cells displayed PARP activation within 2 min of UV-C irradiation and there was increase in NO levels in a dose-dependent manner. UV-C-irradiated cells had impaired growth, delayed or blocked development and delayed germination compared to control cells. In our previous studies we have shown that inhibition of PARP recovered oxidative stress-induced changes in D. discoideum; however, intriguingly PARP inhibition did not correct all defects as effectively in UV-C-irradiated cells. This possibly was due to interplay with increased NO signalling. CONCLUSIONS Our results signify that UV-C and oxidative stress affected growth and development in D. discoideum by different mechanisms; these studies could provide major clues to complex mechanisms of growth and development in higher organisms.
Collapse
Affiliation(s)
- H Mir
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | | | | | | | | |
Collapse
|
2
|
Singh SP, Dhakshinamoorthy R, Jaiswal P, Schmidt S, Thewes S, Baskar R. The thyroxine inactivating gene, type III deiodinase, suppresses multiple signaling centers in Dictyostelium discoideum. Dev Biol 2014; 396:256-68. [PMID: 25446527 DOI: 10.1016/j.ydbio.2014.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 12/26/2022]
Abstract
Thyroxine deiodinases, the enzymes that regulate thyroxine metabolism, are essential for vertebrate growth and development. In the genome of Dictyostelium discoideum, a single intronless gene (dio3) encoding type III thyroxine 5' deiodinase is present. The amino acid sequence of D. discoideum Dio3 shares 37% identity with human T4 deiodinase and is a member of the thioredoxin reductase superfamily. dio3 is expressed throughout growth and development and by generating a knockout of dio3, we have examined the role of thyroxine 5' deiodinase in D. discoideum. dio3(-) had multiple defects that affected growth, timing of development, aggregate size, cell streaming, and cell-type differentiation. A prominent phenotype of dio3(-) was the breaking of late aggregates into small signaling centers, each forming a fruiting body of its own. cAMP levels, its relay, photo- and chemo-taxis were also defective in dio3(-). Quantitative RT-PCR analyses suggested that expression levels of genes encoding adenylyl cyclase A (acaA), cAMP-receptor A (carA) and cAMP-phosphodiesterases were reduced. There was a significant reduction in the expression of CadA and CsaA, which are involved in cell-cell adhesion. The dio3(-) slugs had prestalk identity, with pronounced prestalk marker ecmA expression. Thus, Dio3 seems to have roles in mediating cAMP synthesis/relay, cell-cell adhesion and slug patterning. The phenotype of dio3(-) suggests that Dio3 may prevent the formation of multiple signaling centers during D. discoideum development. This is the first report of a gene involved in thyroxine metabolism that is also involved in growth and development in a lower eukaryote.
Collapse
Affiliation(s)
- Shashi Prakash Singh
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Ranjani Dhakshinamoorthy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Pundrik Jaiswal
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Stefanie Schmidt
- Institute for Biology - Microbiology, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Sascha Thewes
- Institute for Biology - Microbiology, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Ramamurthy Baskar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600036, India.
| |
Collapse
|
3
|
Li SI, Buttery NJ, Thompson CRL, Purugganan MD. Sociogenomics of self vs. non-self cooperation during development of Dictyostelium discoideum. BMC Genomics 2014; 15:616. [PMID: 25048306 PMCID: PMC4118049 DOI: 10.1186/1471-2164-15-616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/14/2014] [Indexed: 12/21/2022] Open
Abstract
Background Dictyostelium discoideum, a microbial model for social evolution, is known to distinguish self from non-self and show genotype-dependent behavior during chimeric development. Aside from a small number of cell-cell recognition genes, however, little is known about the genetic basis of self/non-self recognition in this species. Based on the key hypothesis that there should be differential expression of genes if D. discoideum cells were interacting with non-clone mates, we performed transcriptomic profiling study in this species during clonal vs. chimeric development. The transcriptomic profiles of D. discoideum cells in clones vs. different chimeras were compared at five different developmental stages using a customized microarray. Effects of chimerism on global transcriptional patterns associated with social interactions were observed. Results We find 1,759 genes significantly different between chimera and clone, 1,144 genes associated significant strain differences, and 6,586 genes developmentally regulated over time. Principal component analysis showed a small amount of the transcriptional variance to chimerism-related factors (Chimerism: 0.18%, Chimerism × Timepoint: 0.03%). There are 162 genes specifically regulated under chimeric development, with continuous small differences between chimera vs. clone over development. Almost 60% of chimera-associated differential genes were differentially expressed at the 4 h aggregate stage, which corresponds to the initial transition of D. discoideum from solitary life to a multicellular phase. Conclusions A relatively small proportion of over-all variation in gene expression is explained by differences between chimeric and clonal development. The relatively small modifications in gene expression associated with chimerism is compatible with the high level of cooperation observed among different strains of D. discoideum; cells of distinct genetic backgrounds will co-aggregate indiscriminately and co-develop into fruiting bodies. Chimeric development may involve re-programming of the transcriptome through small modifications of the developmental genetic network, which may also indicate that response to social interaction involves many genes with individually small transcriptional effect. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-616) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Michael D Purugganan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
| |
Collapse
|
4
|
TgrC1 mediates cell–cell adhesion by interacting with TgrB1 via mutual IPT/TIG domains during development of Dictyostelium discoideum. Biochem J 2013; 452:259-69. [DOI: 10.1042/bj20121674] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cell–cell adhesion plays crucial roles in cell differentiation and morphogenesis during development of Dictyostelium discoideum. The heterophilic adhesion protein TgrC1 (Tgr is transmembrane, IPT, IG, E-set, repeat protein) is expressed during cell aggregation, and disruption of the tgrC1 gene results in the arrest of development at the loose aggregate stage. We have used far-Western blotting coupled with MS to identify TgrB1 as the heterophilic binding partner of TgrC1. Co-immunoprecipitation and pull-down studies showed that TgrB1 and TgrC1 are capable of binding with each other in solution. TgrB1 and TgrC1 are encoded by a pair of adjacent genes which share a common promoter. Both TgrB1 and TgrC1 are type I transmembrane proteins, which contain three extracellular IPT/TIG (immunoglobulin, plexin, transcription factor-like/transcription factor immunoglobulin) domains. Antibodies raised against TgrB1 inhibit cell reassociation at the post-aggregation stage of development and block fruiting body formation. Ectopic expression of TgrB1 and TgrC1 driven by the actin15 promoter leads to heterotypic cell aggregation of vegetative cells. Using recombinant proteins that cover different portions of TgrB1 and TgrC1 in binding assays, we have mapped the cell-binding regions in these two proteins to Lys537–Ala783 in TgrB1 and Ile336–Val360 in TgrC1, corresponding to their respective TIG3 and TIG2 domain.
Collapse
|
5
|
Jaiswal P, Singh SP, Aiyar P, Akkali R, Baskar R. Regulation of multiple tip formation by caffeine in cellular slime molds. BMC DEVELOPMENTAL BIOLOGY 2012; 12:26. [PMID: 22928977 PMCID: PMC3488011 DOI: 10.1186/1471-213x-12-26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/20/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND The multicellular slug in Dictyostelium has a single tip that acts as an organising centre patterning the rest of the slug. High adenosine levels at the tip are believed to be responsible for this tip dominance and the adenosine antagonist, caffeine overrides this dominance promoting multiple tip formation. RESULTS Caffeine induced multiple tip effect is conserved in all the Dictyostelids tested. Two key components of cAMP relay namely, cAMP phosphodiesterase (Pde4) and adenyl cyclase-A (AcaA) levels get reduced during secondary tip formation in Dictyostelium discoideum. Pharmacological inhibition of cAMP phosphodiesterase also resulted in multiple tips. Caffeine reduces cAMP levels by 16.4, 2.34, 4.71 and 6.30 folds, respectively in D. discoideum, D. aureostipes, D. minutum and Polysphondylium pallidum. We propose that altered cAMP levels, perturbed cAMP gradient and impaired signalling may be the critical factors for the origin of multiple tips in other Dictyostelids as well. In the presence of caffeine, slug cell movement gets impaired and restricted. The cell type specific markers, ecmA (prestalk) and pspA (prespore) cells are not equally contributing during additional tip formation. During additional tip emergence, prespore cells transdifferentiate to compensate the loss of prestalk cells. CONCLUSION Caffeine decreases adenyl cyclase-A (AcaA) levels and as a consequence low cAMP is synthesised altering the gradient. Further if cAMP phosphodiesterase (Pde4) levels go down in the presence of caffeine, the cAMP gradient breaks down. When there is no cAMP gradient, directional movement is inhibited and might favour re-differentiation of prespore to prestalk cells.
Collapse
Affiliation(s)
- Pundrik Jaiswal
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Shashi Prakash Singh
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Prasad Aiyar
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Rakhil Akkali
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Ramamurthy Baskar
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| |
Collapse
|
6
|
Jaiswal P, Soldati T, Thewes S, Baskar R. Regulation of aggregate size and pattern by adenosine and caffeine in cellular slime molds. BMC DEVELOPMENTAL BIOLOGY 2012; 12:5. [PMID: 22269093 PMCID: PMC3341216 DOI: 10.1186/1471-213x-12-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 01/23/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND Multicellularity in cellular slime molds is achieved by aggregation of several hundreds to thousands of cells. In the model slime mold Dictyostelium discoideum, adenosine is known to increase the aggregate size and its antagonist caffeine reduces the aggregate size. However, it is not clear if the actions of adenosine and caffeine are evolutionarily conserved among other slime molds known to use structurally unrelated chemoattractants. We have examined how the known factors affecting aggregate size are modulated by adenosine and caffeine. RESULT Adenosine and caffeine induced the formation of large and small aggregates respectively, in evolutionarily distinct slime molds known to use diverse chemoattractants for their aggregation. Due to its genetic tractability, we chose D. discoideum to further investigate the factors affecting aggregate size. The changes in aggregate size are caused by the effect of the compounds on several parameters such as cell number and size, cell-cell adhesion, cAMP signal relay and cell counting mechanisms. While some of the effects of these two compounds are opposite to each other, interestingly, both compounds increase the intracellular glucose level and strengthen cell-cell adhesion. These compounds also inhibit the synthesis of cAMP phosphodiesterase (PdsA), weakening the relay of extracellular cAMP signal. Adenosine as well as caffeine rescue mutants impaired in stream formation (pde4- and pdiA-) and colony size (smlA- and ctnA-) and restore their parental aggregate size. CONCLUSION Adenosine increased the cell division timings thereby making large number of cells available for aggregation and also it marginally increased the cell size contributing to large aggregate size. Reduced cell division rates and decreased cell size in the presence of caffeine makes the aggregates smaller than controls. Both the compounds altered the speed of the chemotactic amoebae causing a variation in aggregate size. Our data strongly suggests that cytosolic glucose and extracellular cAMP levels are the other major determinants regulating aggregate size and pattern. Importantly, the aggregation process is conserved among different lineages of cellular slime molds despite using unrelated signalling molecules for aggregation.
Collapse
Affiliation(s)
- Pundrik Jaiswal
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai-600036, India
| | | | | | | |
Collapse
|
7
|
Sultana H, Neelakanta G, Rivero F, Blau-Wasser R, Schleicher M, Noegel AA. Ectopic expression of cyclase associated protein CAP restores the streaming and aggregation defects of adenylyl cyclase a deficient Dictyostelium discoideum cells. BMC DEVELOPMENTAL BIOLOGY 2012; 12:3. [PMID: 22239817 PMCID: PMC3316131 DOI: 10.1186/1471-213x-12-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 01/12/2012] [Indexed: 12/02/2022]
Abstract
Background Cell adhesion, an integral part of D. discoideum development, is important for morphogenesis and regulated gene expression in the multicellular context and is required to trigger cell-differentiation. G-protein linked adenylyl cyclase pathways are crucially involved and a mutant lacking the aggregation specific adenylyl cyclase ACA does not undergo multicellular development. Results Here, we have investigated the role of cyclase-associated protein (CAP), an important regulator of cell polarity and F-actin/G-actin ratio in the aca- mutant. We show that ectopic expression of GFP-CAP improves cell polarization, streaming and aggregation in aca- cells, but it fails to completely restore development. Our studies indicate a requirement of CAP in the ACA dependent signal transduction for progression of the development of unicellular amoebae into multicellular structures. The reduced expression of the cell adhesion molecule DdCAD1 together with csA is responsible for the defects in aca- cells to initiate multicellular development. Early development was restored by the expression of GFP-CAP that enhanced the DdCAD1 transcript levels and to a lesser extent the csA mRNA levels. Conclusions Collectively, our data shows a novel role of CAP in regulating cell adhesion mechanisms during development that might be envisioned to unravel the functions of mammalian CAP during animal embryogenesis.
Collapse
Affiliation(s)
- Hameeda Sultana
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Köln, Germany.
| | | | | | | | | | | |
Collapse
|
8
|
Siu CH, Sriskanthadevan S, Wang J, Hou L, Chen G, Xu X, Thomson A, Yang C. Regulation of spatiotemporal expression of cell-cell adhesion molecules during development of Dictyostelium discoideum. Dev Growth Differ 2011; 53:518-27. [DOI: 10.1111/j.1440-169x.2011.01267.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Gao T, Roisin-Bouffay C, Hatton RD, Tang L, Brock DA, DeShazo T, Olson L, Hong WP, Jang W, Canseco E, Bakthavatsalam D, Gomer RH. A cell number-counting factor regulates levels of a novel protein, SslA, as part of a group size regulation mechanism in Dictyostelium. EUKARYOTIC CELL 2007; 6:1538-51. [PMID: 17660362 PMCID: PMC2043358 DOI: 10.1128/ec.00169-07] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Developing Dictyostelium cells form aggregation streams that break into groups of approximately 2 x 10(4) cells. The breakup and subsequent group size are regulated by a secreted multisubunit counting factor (CF). To elucidate how CF regulates group size, we isolated second-site suppressors of smlA(-), a transformant that forms small groups due to oversecretion of CF. smlA(-) sslA1(CR11) cells form roughly wild-type-size groups due to an insertion in the beginning of the coding region of sslA1, one of two highly similar genes encoding a novel protein. The insertion increases levels of SslA. In wild-type cells, the sslA1(CR11) mutation forms abnormally large groups. Reducing SslA levels by antisense causes the formation of smaller groups. The sslA(CR11) mutation does not affect the extracellular accumulation of CF activity or the CF components countin and CF50, suggesting that SslA does not regulate CF secretion. However, CF represses levels of SslA. Wild-type cells starved in the presence of smlA(-) cells, recombinant countin, or recombinant CF50 form smaller groups, whereas sslA1(CR11) cells appear to be insensitive to the presence of smlA(-) cells, countin, or CF50, suggesting that the sslA1(CR11) insertion affects CF signal transduction. We previously found that CF reduces intracellular glucose levels. sslA(CR11) does not significantly affect glucose levels, while glucose increases SslA levels. Together, the data suggest that SslA is a novel protein involved in part of a signal transduction pathway regulating group size.
Collapse
Affiliation(s)
- Tong Gao
- Howard Hughes Medical Institute, MS-140, Rice University, 6100 S. Main Street, Houston, TX 77005-1892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rai M, Xiong Y, Singleton CK. Disruption of the ifkA and ifkB genes results in altered cell adhesion, morphological defects and a propensity to form pre-stalk O cells during development of Dictyostelium. Differentiation 2006; 74:583-95. [PMID: 17177855 DOI: 10.1111/j.1432-0436.2006.00085.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
IfkA and ifkB are two GCN2-like genes present in Dictyostelium. Disruption of either gene alone results in subtle developmental defects. However, disruption of ifkA and ifkB within the same strain results in severe morphological and patterning defects in the developing double null cells. The mutant cells aggregate in streams that give tightly clumped mounds. Fingers form from the mounds but remain attached to one another, especially at their bases. The fingers culminate to give fused and entangled structures lacking proper stalk but containing some spores. The morphological defects are consistent with an enhanced cell-cell and cell-substrate adhesiveness of the developing double null cells, which may result in inappropriate cell contacts and altered cell motility and sorting properties. In ifkA/ifkB nulls, cell type proportioning and patterning is altered in favor of ALC/pstO cell types. The bias toward the ALC/pstO cell types may be due, in part, to the nuclear localization of the transcription factor STATc in growing ifkA/ifkB null cells. STATc normally becomes localized to the nucleus during finger formation and only within the pre-stalk O zone. The precocious nuclear localization seen in the mutant cells may predispose the cells to a ALC/pstO cell fate. The findings indicate that IfkA and IfkB have redundant functions in Dictyostelium morphogenesis that involve maintaining proper cell-cell and cell-substrate adhesion and the equilibrium between different cell types for proper spatial patterning.
Collapse
Affiliation(s)
- Meena Rai
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235-1634, USA
| | | | | |
Collapse
|
11
|
Gomer R, Gao T, Tang Y, Knecht D, Titus MA. Cell motility mediates tissue size regulation in Dictyostelium. J Muscle Res Cell Motil 2003; 23:809-15. [PMID: 12952079 DOI: 10.1023/a:1024487930787] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Little is known about how organisms regulate the size of multicellular structures. This review condenses some of the observations about how Dictyostelium regulates the size of fruiting bodies. Very large fruiting bodies tend to fall over, and one of the ways Dictyostelium cells prevent this is by breaking up the aggregation streams when there is an excessive number of cells in the stream. Developing cells simultaneously secrete and sense counting factor (CF), a 450 kDa complex of proteins. Diffusion calculations showed that as the number of cells in a stream or group increases, the local concentration of CF will increase, allowing the cells to sense the number of cells in the stream or group. Computer simulations predicted that a high level of CF could trigger stream breakup by decreasing cell-cell adhesion and/or increasing cell motility, effectively causing the stream to dissipate and begin to fall apart. The prediction that adhesion and motility affect group size is supported by observations that decreasing adhesion by adding antibodies that bind to adhesion protein causes the formation of smaller groups, while increasing adhesion by overexpressing adhesion proteins, or decreasing motility with drugs that disrupt actin function both cause the formation of larger groups. CF both decreases adhesion and increases motility. CF increases motility in part by increasing actin polymerization and myosin phosphorylation, and decreasing myosin polymerization. New observations using a fusion of a green fluorescent protein to a protein fragment that binds polymerized actin show that in live cells CF does not affect the distribution of polymerized actin. CF increases the levels of ABP-120, an actin-bundling protein, and new observations indicate that very low levels of CF cause an increase in levels of myoB, an unconventional myosin. Our current understanding of group size regulation in Dictyostelium is thus that motility plays a key role, and that to regulate group size cells regulate the expression of at least two proteins, as well as regulating the polymerization of both actin and myosin.
Collapse
Affiliation(s)
- Richard Gomer
- Howard Hughes Medical Institute, Department of Biochemistry and Cell Biology, MS-140, Rice University, 6100 S. Main Street, Houston, TX 77005-1892, USA.
| | | | | | | | | |
Collapse
|
12
|
Ehrenman K, Yang G, Hong WP, Gao T, Jang W, Brock DA, Hatton RD, Shoemaker JD, Gomer RH. Disruption of aldehyde reductase increases group size in dictyostelium. J Biol Chem 2003; 279:837-47. [PMID: 14551196 DOI: 10.1074/jbc.m310539200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Developing Dictyostelium cells form structures containing approximately 20,000 cells. The size regulation mechanism involves a secreted counting factor (CF) repressing cytosolic glucose levels. Glucose or a glucose metabolite affects cell-cell adhesion and motility; these in turn affect whether a group stays together, loses cells, or even breaks up. NADPH-coupled aldehyde reductase reduces a wide variety of aldehydes to the corresponding alcohols, including converting glucose to sorbitol. The levels of this enzyme previously appeared to be regulated by CF. We find that disrupting alrA, the gene encoding aldehyde reductase, results in the loss of alrA mRNA and AlrA protein and a decrease in the ability of cell lysates to reduce both glyceraldehyde and glucose in an NADPH-coupled reaction. Counterintuitively, alrA- cells grow normally and have decreased glucose levels compared with parental cells. The alrA- cells form long unbroken streams and huge groups. Expression of AlrA in alrA- cells causes cells to form normal fruiting bodies, indicating that AlrA affects group size. alrA- cells have normal adhesion but a reduced motility, and computer simulations suggest that this could indeed result in the formation of large groups. alrA- cells secrete low levels of countin and CF50, two components of CF, and this could partially account for why alrA- cells form large groups. alrA- cells are responsive to CF and are partially responsive to recombinant countin and CF50, suggesting that disrupting alrA inhibits but does not completely block the CF signal transduction pathway. Gas chromatography/mass spectroscopy indicates that the concentrations of several metabolites are altered in alrA- cells, suggesting that the Dictyostelium aldehyde reductase affects several metabolic pathways in addition to converting glucose to sorbitol. Together, our data suggest that disrupting alrA affects CF secretion, causes many effects on cellular metabolism, and has a major effect on group size.
Collapse
Affiliation(s)
- Karen Ehrenman
- Howard Hughes Medical Institute and Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Brock DA, Hatton RD, Giurgiutiu DV, Scott B, Jang W, Ammann R, Gomer RH. CF45-1, a secreted protein which participates in Dictyostelium group size regulation. EUKARYOTIC CELL 2003; 2:788-97. [PMID: 12912898 PMCID: PMC178340 DOI: 10.1128/ec.2.4.788-797.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Developing Dictyostelium cells aggregate to form fruiting bodies containing typically 2 x 10(4) cells. To prevent the formation of an excessively large fruiting body, streams of aggregating cells break up into groups if there are too many cells. The breakup is regulated by a secreted complex of polypeptides called counting factor (CF). Countin and CF50 are two of the components of CF. Disrupting the expression of either of these proteins results in cells secreting very little detectable CF activity, and as a result, aggregation streams remain intact and form large fruiting bodies, which invariably collapse. We find that disrupting the gene encoding a third protein present in crude CF, CF45-1, also results in the formation of large groups when cells are grown with bacteria on agar plates and then starve. However, unlike countin(-) and cf50(-) cells, cf45-1(-) cells sometimes form smaller groups than wild-type cells when the cells are starved on filter pads. The predicted amino acid sequence of CF45-1 has some similarity to that of lysozyme, but recombinant CF45-1 has no detectable lysozyme activity. In the exudates from starved cells, CF45-1 is present in a approximately 450-kDa fraction that also contains countin and CF50, suggesting that it is part of a complex. Recombinant CF45-1 decreases group size in colonies of cf45-1(-) cells with a 50% effective concentration (EC(50)) of approximately 8 ng/ml and in colonies of wild-type and cf50(-) cells with an EC(50) of approximately 40 ng/ml. Like countin(-) and cf50(-) cells, cf45-1(-) cells have high levels of cytosolic glucose, high cell-cell adhesion, and low cell motility. Together, the data suggest that CF45-1 participates in group size regulation in Dictyostelium.
Collapse
Affiliation(s)
- Debra A Brock
- Howard Hughes Medical Institute, Rice University, Houston, Texas 77005-1892, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Gao T, Ehrenman K, Tang L, Leippe M, Brock DA, Gomer RH. Cells respond to and bind countin, a component of a multisubunit cell number counting factor. J Biol Chem 2002; 277:32596-605. [PMID: 12070154 DOI: 10.1074/jbc.m203075200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Dictyostelium discoideum counting factor (CF), a secreted approximately 450-kDa complex of polypeptides, inhibits group and fruiting body size. When the gene encoding countin (a component of CF) was disrupted, cells formed large groups. We find that recombinant countin causes developing cells to form small groups, with an EC(50) of approximately 3 ng/ml, and affects cAMP signal transduction in the same manner as semipurified CF. Recombinant countin increases cell motility, decreases cell-cell adhesion, and regulates gene expression in a manner similar to the effect of CF. However, countin does not decrease adhesion or group size to the extent that semipurified CF does. A 1-min exposure of developing cells to countin causes an increase in F-actin polymerization and myosin phosphorylation and a decrease in myosin polymerization, suggesting that countin activates a rapid signal transduction pathway. (125)I-Labeled countin has countin bioactivity, and binding experiments suggest that vegetative and developing cells have approximately 53 cell-surface sites that bind countin with a K(D) of approximately 1.5 ng/ml or 60 pm. We hypothesize that countin regulates cell development through the same pathway as CF and that other proteins within the complex may modify the activity of countin and/or have independent size-regulating activities.
Collapse
Affiliation(s)
- Tong Gao
- Howard Hughes Medical Institute, Rice University, Houston, Texas 77005-1892, USA
| | | | | | | | | | | |
Collapse
|
15
|
Wong E, Yang C, Wang J, Fuller D, Loomis WF, Siu CH. Disruption of the gene encoding the cell adhesion molecule DdCAD-1 leads to aberrant cell sorting and cell-type proportioning during Dictyostelium development. Development 2002; 129:3839-50. [PMID: 12135922 DOI: 10.1242/dev.129.16.3839] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cadA gene in Dictyostelium encodes the Ca2+-dependent cell adhesion molecule DdCAD-1, which is expressed soon after the initiation of development. To investigate the biological role of DdCAD-1, the cadA gene was disrupted by homologous recombination. The cadA-null cells showed a 50% reduction in EDTA-sensitive cell adhesion. The remaining EDTA-sensitive adhesion sites were resistant to dissociation by anti-DdCAD-1 antibody, suggesting that they were distinct adhesion sites. Cells that lacked DdCAD-1 were able to complete development and form fruiting bodies. However, they displayed abnormal slug morphology and culmination was delayed by ∼6 hours. The yield of spores was reduced by ∼50%. The proportion of prestalk cells in cadA– slugs showed a 2.5-fold increase over the parental strain. When cadA– cells were transfected with pcotB::GFP to label prespore cells, aberrant cell-sorting patterns in slugs became apparent. When mutant prestalk cells were mixed with wild-type prespore cells, mutant prestalk cells were unable to return to the anterior position of chimeric slugs, suggesting defects in the sorting mechanism. The wild-type phenotype was restored when cadA– cells were transfected with a cadA-expression vector. These results indicate that, in addition to cell-cell adhesion, DdCAD-1 plays a role in cell type proportioning and pattern formation.
Collapse
Affiliation(s)
- Estella Wong
- Banting and Best Department of Medical Research and Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Brock DA, Hatton RD, Giurgiutiu DV, Scott B, Ammann R, Gomer RH. The different components of a multisubunit cell number-counting factor have both unique and overlapping functions. Development 2002; 129:3657-68. [PMID: 12117815 DOI: 10.1242/dev.129.15.3657] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dictyostelium aggregation streams break up into groups of 103 to 2×104 cells. The cells sense the number of cells in a stream or group by the level of a secreted counting factor (CF). CF is a complex of at least 5 polypeptides. When the gene encoding countin (one of the CF polypeptides) was disrupted, the cells could not sense each other’s presence, resulting in non-breaking streams that coalesced into abnormally large groups. To understand the function of the components of CF, we have isolated cDNA sequences encoding a second component of CF, CF50. CF50 is 30% identical to lysozyme (but has very little lysozyme activity) and contains distinctive serine-glycine motifs. Transformants with a disrupted cf50 gene, like countin– cells, form abnormally large groups. Addition of recombinant CF50 protein to developing cf50– cells rescues their phenotype by decreasing group size. Abnormalities seen in aggregating countin– cells (such as high cell-cell adhesion and low motility) are also observed in the cf50– cells. Western blot analysis of conditioned medium sieve column fractions showed that the CF50 protein is present in the same fraction as the 450 kDa CF complex. In the absence of CF50, secreted countin is degraded, suggesting that one function of CF50 may be to protect countin from degradation. However, unlike countin– cells, cf50– cells differentiate into an abnormally high percentage of cells expressing SP70 (a marker expressed in a subset of prespore cells), and this difference can be rescued by exposing cells to recombinant CF50. These observations indicate that unlike other known multisubunit factors, CF contains subunits with both overlapping and unique properties.
Collapse
Affiliation(s)
- Debra A Brock
- Howard Hughes Medical Institute, Rice University, 6100 South Main Street, Houston, TX 77005-1892, USA
| | | | | | | | | | | |
Collapse
|
17
|
Coates JC, Harwood AJ. Cell-cell adhesion and signal transduction duringDictyosteliumdevelopment. J Cell Sci 2001; 114:4349-58. [PMID: 11792801 DOI: 10.1242/jcs.114.24.4349] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of the non-metazoan eukaryote Dictyostelium discoideum displays many of the features of animal embryogenesis, including regulated cell-cell adhesion. During early development, two proteins, DdCAD-1 and csA, mediate cell-cell adhesion between amoebae as they form a loosely packed multicellular mass. The mechanism governing this process is similar to epithelial sheet sealing in animals. Although cell differentiation can occur in the absence of cell contact, regulated cell-cell adhesion is an important component of Dictyostelium morphogenesis, and a third adhesion molecule, gp150, is required for multicellular development past the aggregation stage.Cell-cell junctions that appear to be adherens junctions form during the late stages of Dictyostelium development. Although they are not essential to establish the basic multicellular body plan, these junctions are required to maintain the structural integrity of the fruiting body. The Dictyostelium β-catenin homologue Aardvark (Aar) is present in adherens junctions, which are lost in its absence. As in the case of its metazoan counterparts, Aar also has a function in cell signalling and regulates expression of the pre-spore gene psA.It is becoming clear that cell-cell adhesion is an integral part of Dictyostelium development. As in animals, cell adhesion molecules have a mechanical function and may also interact with the signal-transduction processes governing morphogenesis.
Collapse
Affiliation(s)
- J C Coates
- MRC Laboratory for Molecular Cell Biology and Department of Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | | |
Collapse
|
18
|
Harris TJ, Awrey DE, Cox BJ, Ravandi A, Tsang A, Siu CH. Involvement of a triton-insoluble floating fraction in Dictyostelium cell-cell adhesion. J Biol Chem 2001; 276:18640-8. [PMID: 11278598 DOI: 10.1074/jbc.m010016200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We have isolated and characterized a Triton-insoluble floating fraction (TIFF) from Dictyostelium. Ten major proteins were consistently detected in TIFF, and six species were identified by mass spectrometry as actin, porin, comitin, regulatory myosin light chain, a novel member of the CD36 family, and the phospholipid-anchored cell adhesion molecule gp80. TIFF was enriched with many acylated proteins. Also, the sterol/phospholipid ratio of TIFF was 10-fold higher than that of the bulk plasma membrane. Immunoelectron microscopy showed that TIFF has vesicular morphology and confirmed the association of gp80 and comitin with TIFF membranes. Several TIFF properties were similar to those of Dictyostelium contact regions, which were isolated as a cytoskeleton-associated membrane fraction. Mass spectrometry demonstrated that TIFF and contact regions shared the same major proteins. During development, gp80 colocalized with F-actin, porin, and comitin at cell-cell contacts. These proteins were also recruited to gp80 caps induced by antibody cross-linking. Filipin staining revealed high sterol levels in both gp80-enriched cell-cell contacts and gp80 caps. Moreover, sterol sequestration by filipin and digitonin inhibited gp80-mediated cell-cell adhesion. This study reveals that Dictyostelium TIFF has structural properties previously attributed to vertebrate TIFF and establishes a role for Dictyostelium TIFF in cell-cell adhesion during development.
Collapse
Affiliation(s)
- T J Harris
- Banting and Best Department of Medical Research and Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Size regulation is a never-ending problem. Many of us worry that parts of ourselves are too big whereas other parts are too small. How organisms--and their tissues--are programmed to be a specific size, how this size is maintained, and what might cause something to become the wrong size, are key problems in developmental biology. But what are the mechanisms that regulate the size of multicellular structures?
Collapse
Affiliation(s)
- R H Gomer
- Howard Hughes Medical Institute and Department of Biochemistry and Cell Biology MS-140, Rice University, 6,100 South Main Street, Houston, Texas 77005-1892, USA.
| |
Collapse
|
20
|
Roisin-Bouffay C, Jang W, Caprette DR, Gomer RH. A Precise Group Size in Dictyostelium Is Generated by a Cell-Counting Factor Modulating Cell–Cell Adhesion. Mol Cell 2000. [DOI: 10.1016/s1097-2765(05)00082-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Chien S, Chung CY, Sukumaran S, Osborne N, Lee S, Ellsworth C, McNally JG, Firtel RA. The Dictyostelium LIM domain-containing protein LIM2 is essential for proper chemotaxis and morphogenesis. Mol Biol Cell 2000; 11:1275-91. [PMID: 10749929 PMCID: PMC14846 DOI: 10.1091/mbc.11.4.1275] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have identified limB, a gene encoding a novel LIM domain-containing protein, LIM2, in a screen for genes required for morphogenesis. limB null cells aggregate, although poorly, but they are unable to undergo morphogenesis, and the aggregates arrest at the mound stage. limB null cells exhibit an aberrant actin cytoskeleton and have numerous F-actin-enriched microspikes. The cells exhibit poor adhesion to a substratum and do not form tight cell-cell agglomerates in suspension. Furthermore, limB null cells are unable to properly polarize in chemoattractant gradients and move very poorly. Expression of limB from a prestalk-specific but not a prespore-specific promoter complements the morphogenetic defects of the limB null strain, suggesting that the limB null cell developmental defect results from an inability to properly sort prestalk cells. LIM2 protein is enriched in the cortex of wild-type cells, although it does not colocalize with the actin cytoskeleton. Our analysis indicates that LIM2 is a new regulatory protein that functions to control rearrangements of the actin cytoskeleton and is required for cell motility and chemotaxis. Our findings may be generally applicable to understanding pathways that control cell movement and morphogenesis in all multicellular organisms. Structure function studies on the LIM domains are presented.
Collapse
Affiliation(s)
- S Chien
- Section of Cell and Developmental Biology, Division of Biology, Center for Molecular Genetics, University of California, San Diego, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Dictyostelium discoideum glycoproteins: using a model system for organismic glycobiology. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0167-7306(08)60618-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
23
|
Affiliation(s)
- W F Loomis
- Department of Biology, University of California, San Diego, La Jolla, California 92093, USA.
| |
Collapse
|
24
|
Desbarats L, Brar SK, Siu CH. Involvement of cell-cell adhesion in the expression of the cell cohesion molecule gp80 in Dictyostelium discoideum. J Cell Sci 1994; 107 ( Pt 6):1705-12. [PMID: 7962211 DOI: 10.1242/jcs.107.6.1705] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soon after the initiation of the developmental cycle of Dictyostelium discoideum, cells acquire EDTA-sensitive cell-cell binding sites mediated by the glycoprotein gp24. Cells at the aggregation stage display a second type of cell adhesion site, the EDTA-resistant cell-cell binding sites, mediated by the glycoprotein gp80. The gene encoding gp80 is first turned on to a low basal level of expression in the preaggregation stage. At the onset of the aggregation stage, cells produce pulses of low levels of cAMP, which greatly augment the expression of gp80. To investigate the role of cell-cell adhesion in the regulation of gp80 expression, cells were developed in the presence of EDTA or carnitine to block the EDTA-sensitive cell binding sites. Alternatively, cell cohesion was disrupted by shaking low-density cultures at high shearing forces. In all three instances, gp80 was expressed at a substantially reduced level. In addition, exogenous cAMP pulses, which normally were capable of stimulating a precocious and enhanced expression of gp80, failed to restore the high level of gp80 expression. However, if the formation of cell-cell contact was permitted, exogenous cAMP pulses were able to rescue the expression of gp80 even when the cAMP signal relay was blocked. These results indicate that previous cell-cell contact, provided by the EDTA-sensitive binding sites, is required for the activation of the cAMP-mediated signal transduction pathway producing high levels of gp80 expression.
Collapse
Affiliation(s)
- L Desbarats
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
25
|
Brar SK, Siu CH. Characterization of the cell adhesion molecule gp24 in Dictyostelium discoideum. Mediation of cell-cell adhesion via a Ca(2+)-dependent mechanism. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74550-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
26
|
Fontana DR. Two distinct adhesion systems are responsible for EDTA-sensitive adhesion in Dictyostelium discoideum. Differentiation 1993; 53:139-47. [PMID: 8405764 DOI: 10.1111/j.1432-0436.1993.tb00702.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Early in their developmental program, Dictyostelium discoideum exhibit EDTA-sensitive and EDTA-resistant adhesion. The molecules which mediate the adhesions have been called contact sites, with contact sites A mediating EDTA-resistant adhesion and contact sites B mediating EDTA-sensitive adhesion. The studies described here have revealed that prior to aggregation, a second EDTA-sensitive adhesion system emerges. In keeping with previously established nomenclature, the molecules mediating the newly discovered adhesion system have been called contact sites C. Unlike contact sites B, contact sites C are unaffected by a contact sites B-blocking peptide. Contact sites C-mediated adhesion is also distinct from contact sites B-mediated adhesion in that contact sites C-mediated adhesion is EGTA-resistant and in the presence of EDTA it can be rescued by the addition of Mg2+. Thus Mg2+ may be the cation present under physiological conditions that is essential for contact sites C activity. Unlike contact sites B-mediated adhesion, contact sites C-mediated adhesion is not observed in growing amoebae. Contact sites C-mediated adhesion first becomes apparent within hours after the initiation of development and its strength appears to increase throughout the first 10 h of the developmental program. A mutant lacking the EDTA-resistant contact sites A exhibits normal contact sites B- and C-mediated adhesion, demonstrating that both EDTA-sensitive adhesion systems are independent of contact sites A. Thus aggregating D. discoideum amoebae possess three distinct adhesion systems, one of them is EDTA-resistant and the other two are EDTA-sensitive.
Collapse
Affiliation(s)
- D R Fontana
- Department of Microbiology, University of Minnesota, Minneapolis 55455
| |
Collapse
|
27
|
Siu CH, Brar P, Fritz IB. Inhibition of cell-cell adhesion and morphogenesis of Dictyostelium by carnitine. J Cell Physiol 1992; 152:157-65. [PMID: 1618917 DOI: 10.1002/jcp.1041520120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Carnitine (gamma-trimethylammonium beta-hydroxy-butyric acid) possesses the novel property of preventing cell aggregation elicited by clusterin or by fibrinogen (I.B. Fritz and K. Burdzy, J. Cell. Physiol., 140:18-28 [1989]). In investigations reported here, we show that carnitine also affects cell-cell adhesion in Dictyostelium discoideum, a cellular slime mold whose cells interact in specific and complex manners during discrete stages of development. Two types of cell adhesion systems sequentially appear on the surface of developing Dictyostelium cells, involving the surface glycoprotein gp24 which mediates EDTA-sensitive binding sites, and the surface glycoprotein gp80 which mediates the EDTA-resistant binding sites. Addition of increasing concentrations of D(+)-carnitine and L(-)-carnitine resulted in a progressive inhibition of both the EDTA-sensitive binding sites and the EDTA-resistant binding sites of Dictyostelium cells at different stages of development. In contrast, comparable or higher concentrations of choline, acetyl-beta-methylcholine, or deoxycarnitine had no detectable effects on cell aggregation. Concentrations of carnitine required for 50% inhibition of EDTA-resistant adhesion sites were found to be dependent upon levels of gp80 expressed by Dictyostelium, with greatest inhibition by carnitine of reassociation of cells containing the lowest levels of gp80. Removal of carnitine from cells by washing resulted in the rapid restoration of the ability of Dictyostelium to form aggregates and to resume normal development. We discuss possible mechanisms by which carnitine inhibits the aggregation of cells.
Collapse
Affiliation(s)
- C H Siu
- Banting and Best Department of Medical Research, C.H. Best Institute, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
28
|
Breen EJ, Eliott S, Vardy PH, White A, Williams KL. Length regulation in the Dictyostelium discoideum slug is a late event. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1992; 262:299-306. [PMID: 1640201 DOI: 10.1002/jez.1402620310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Time-lapse video light microscopy was used to study the emergence and maturation of the migratory slug from a D. discoideum aggregate. The anterior part, the tip of this simple multicellular organism, establishes migration prior to the definition of the rear, and hence the length of the slug. It was found that newly formed slugs of wild-type strain WS380B can reach lengths greater than 1 cm, yet mature slugs of this strain are rarely longer than 2-3 mumm. Often the tip extended out of the aggregation mound upon an arching pillar of cells. After the tip first touched the substratum, it commenced migration with a rapid succession of movement steps. Here we show that at the initiation of migration, a differential rate of cell movement along the developing slug axis results in a series of complicated changes, before the stable and mature shape of the slug is formed. Our results lead to new conclusions about D. discoideum slug formation and shape maintenance. Evidence is presented for regulation of slug length.
Collapse
Affiliation(s)
- E J Breen
- School of Biological Sciences, Macquarie University, Sydney, N.S.W., Australia
| | | | | | | | | |
Collapse
|
29
|
Gao E, Shier P, Siu C. Purification and partial characterization of a cell adhesion molecule (gp150) involved in postaggregation stage cell-cell binding in Dictyostelium discoideum. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50438-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|