1
|
Damasceno JD, Obonaga R, Silva GLA, Reis-Cunha JL, Duncan SM, Bartholomeu DC, Mottram JC, McCulloch R, Tosi LRO. Conditional genome engineering reveals canonical and divergent roles for the Hus1 component of the 9-1-1 complex in the maintenance of the plastic genome of Leishmania. Nucleic Acids Res 2019; 46:11835-11846. [PMID: 30380080 PMCID: PMC6294564 DOI: 10.1093/nar/gky1017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 10/11/2018] [Indexed: 12/16/2022] Open
Abstract
Leishmania species are protozoan parasites whose remarkably plastic genome limits the establishment of effective genetic manipulation and leishmaniasis treatment. The strategies used by Leishmania to maintain its genome while allowing variability are not fully understood. Here, we used DiCre-mediated conditional gene deletion to show that HUS1, a component of the 9-1-1 (RAD9-RAD1-HUS1) complex, is essential and is required for a G2/M checkpoint. By analyzing genome-wide instability in HUS1 ablated cells, HUS1 is shown to have a conserved role, by which it preserves genome stability and also a divergent role, by which it promotes genome variability. These roles of HUS1 are related to distinct patterns of formation and resolution of single-stranded DNA and γH2A, throughout the cell cycle. Our findings suggest that Leishmania 9-1-1 subunits have evolved to co-opt canonical genomic maintenance and genomic variation functions. Hence, this study reveals a pivotal function of HUS1 in balancing genome stability and transmission in Leishmania. These findings may be relevant to understanding the evolution of genome maintenance and plasticity in other pathogens and eukaryotes.
Collapse
Affiliation(s)
- Jeziel D Damasceno
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Ricardo Obonaga
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Gabriel L A Silva
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - João L Reis-Cunha
- Laboratório de Genômica de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brasil
| | - Samuel M Duncan
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Daniella C Bartholomeu
- Laboratório de Genômica de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brasil
| | - Jeremy C Mottram
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK.,Centre for Immunology and Infection, Department of Biology, University of York, York YO10 5DD, UK
| | - Richard McCulloch
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Luiz R O Tosi
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| |
Collapse
|
2
|
Sierant ML, Davey SK. Identification and characterization of a novel nuclear structure containing members of the homologous recombination and DNA damage response pathways. Cancer Genet 2018; 228-229:98-109. [DOI: 10.1016/j.cancergen.2018.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/06/2018] [Accepted: 10/12/2018] [Indexed: 12/22/2022]
|
3
|
Ohashi E, Tsurimoto T. Functions of Multiple Clamp and Clamp-Loader Complexes in Eukaryotic DNA Replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:135-162. [PMID: 29357057 DOI: 10.1007/978-981-10-6955-0_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Proliferating cell nuclear antigen (PCNA) and replication factor C (RFC) were identified in the late 1980s as essential factors for replication of simian virus 40 DNA in human cells, by reconstitution of the reaction in vitro. Initially, they were only thought to be involved in the elongation stage of DNA replication. Subsequent studies have demonstrated that PCNA functions as more than a replication factor, through its involvement in multiple protein-protein interactions. PCNA appears as a functional hub on replicating and replicated chromosomal DNA and has an essential role in the maintenance genome integrity in proliferating cells.Eukaryotes have multiple paralogues of sliding clamp, PCNA and its loader, RFC. The PCNA paralogues, RAD9, HUS1, and RAD1 form the heterotrimeric 9-1-1 ring that is similar to the PCNA homotrimeric ring, and the 9-1-1 clamp complex is loaded onto sites of DNA damage by its specific loader RAD17-RFC. This alternative clamp-loader system transmits DNA-damage signals in genomic DNA to the checkpoint-activation network and the DNA-repair apparatus.Another two alternative loader complexes, CTF18-RFC and ELG1-RFC, have roles that are distinguishable from the role of the canonical loader, RFC. CTF18-RFC interacts with one of the replicative DNA polymerases, Polε, and loads PCNA onto leading-strand DNA, and ELG1-RFC unloads PCNA after ligation of lagging-strand DNA. In the progression of S phase, these alternative PCNA loaders maintain appropriate amounts of PCNA on the replicating sister DNAs to ensure that specific enzymes are tethered at specific chromosomal locations.
Collapse
Affiliation(s)
- Eiji Ohashi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Toshiki Tsurimoto
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
4
|
USP37 deubiquitinates Cdt1 and contributes to regulate DNA replication. Mol Oncol 2016; 10:1196-206. [PMID: 27296872 DOI: 10.1016/j.molonc.2016.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 01/25/2023] Open
Abstract
DNA replication control is a key process in maintaining genomic integrity. Monitoring DNA replication initiation is particularly important as it needs to be coordinated with other cellular events and should occur only once per cell cycle. Crucial players in the initiation of DNA replication are the ORC protein complex, marking the origin of replication, and the Cdt1 and Cdc6 proteins, that license these origins to replicate by recruiting the MCM2-7 helicase. To accurately achieve its functions, Cdt1 is tightly regulated. Cdt1 levels are high from metaphase and during G1 and low in S/G2 phases of the cell cycle. This control is achieved, among other processes, by ubiquitination and proteasomal degradation. In an overexpression screen for Cdt1 deubiquitinating enzymes, we isolated USP37, to date the first ubiquitin hydrolase controlling Cdt1. USP37 overexpression stabilizes Cdt1, most likely a phosphorylated form of the protein. In contrast, USP37 knock down destabilizes Cdt1, predominantly during G1 and G1/S phases of the cell cycle. USP37 interacts with Cdt1 and is able to de-ubiquitinate Cdt1 in vivo and, USP37 is able to regulate the loading of MCM complexes onto the chromatin. In addition, downregulation of USP37 reduces DNA replication fork speed. Taken together, here we show that the deubiquitinase USP37 plays an important role in the regulation of DNA replication. Whether this is achieved via Cdt1, a central protein in this process, which we have shown to be stabilized by USP37, or via additional factors, remains to be tested.
Collapse
|
5
|
Chk1 Activation Protects Rad9A from Degradation as Part of a Positive Feedback Loop during Checkpoint Signalling. PLoS One 2015; 10:e0144434. [PMID: 26658951 PMCID: PMC4676731 DOI: 10.1371/journal.pone.0144434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/18/2015] [Indexed: 11/19/2022] Open
Abstract
Phosphorylation of Rad9A at S387 is critical for establishing a physical interaction with TopBP1, and to downstream activation of Chk1 for checkpoint activation. We have previously demonstrated a phosphorylation of Rad9A that occurs at late time points in cells exposed to genotoxic agents, which is eliminated by either Rad9A overexpression, or conversion of S387 to a non-phosphorylatable analogue. Based on this, we hypothesized that this late Rad9A phosphorylation is part of a feedback loop regulating the checkpoint. Here, we show that Rad9A is hyperphosphorylated and accumulates in cells exposed to bleomycin. Following the removal of bleomycin, Rad9A is polyubiquitinated, and Rad9A protein levels drop, indicating an active degradation process for Rad9A. Chk1 inhibition by UCN-01 or siRNA reduces Rad9A levels in cells synchronized in S-phase or exposed to DNA damage, indicating that Chk1 activation is required for Rad9A stabilization in S-phase and during checkpoint activation. Together, these results demonstrate a positive feedback loop involving Rad9A-dependend activation of Chk1, coupled with Chk1-dependent stabilization of Rad9A that is critical for checkpoint regulation.
Collapse
|
6
|
Hwang BJ, Jin J, Gunther R, Madabushi A, Shi G, Wilson GM, Lu AL. Association of the Rad9-Rad1-Hus1 checkpoint clamp with MYH DNA glycosylase and DNA. DNA Repair (Amst) 2015; 31:80-90. [PMID: 26021743 DOI: 10.1016/j.dnarep.2015.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 05/04/2015] [Accepted: 05/08/2015] [Indexed: 12/18/2022]
Abstract
Cell cycle checkpoints provide surveillance mechanisms to activate the DNA damage response, thus preserving genomic integrity. The heterotrimeric Rad9-Rad1-Hus1 (9-1-1) clamp is a DNA damage response sensor and can be loaded onto DNA. 9-1-1 is involved in base excision repair (BER) by interacting with nearly every enzyme in BER. Here, we show that individual 9-1-1 components play distinct roles in BER directed by MYH DNA glycosylase. Analyses of Hus1 deletion mutants revealed that the interdomain connecting loop (residues 134-155) is a key determinant of MYH binding. Both the N-(residues 1-146) and C-terminal (residues 147-280) halves of Hus1, which share structural similarity, can interact with and stimulate MYH. The Hus1(K136A) mutant retains physical interaction with MYH but cannot stimulate MYH glycosylase activity. The N-terminal domain, but not the C-terminal half of Hus1 can also bind DNA with moderate affinity. Intact Rad9 expressed in bacteria binds to and stimulates MYH weakly. However, Rad9(1-266) (C-terminal truncated Rad9) can stimulate MYH activity and bind DNA with high affinity, close to that displayed by heterotrimeric 9(1-266)-1-1 complexes. Conversely, Rad1 has minimal roles in stimulating MYH activity or binding to DNA. Finally, we show that preferential recruitment of 9(1-266)-1-1 to 5'-recessed DNA substrates is an intrinsic property of this complex and is dependent on complex formation. Together, our findings provide a mechanistic rationale for unique contributions by individual 9-1-1 subunits to MYH-directed BER based on subunit asymmetry in protein-protein interactions and DNA binding events.
Collapse
Affiliation(s)
- Bor-Jang Hwang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Jin Jin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Randall Gunther
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Amrita Madabushi
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Natural and Physical Sciences, Life Sciences Institute; Baltimore City Community College, Baltimore, MD 21201, United States
| | - Guoli Shi
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; University of Maryland School of Nursing, Baltimore, MD 21201, United States
| | - Gerald M Wilson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - A-Lien Lu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|
7
|
Jin J, Hwang BJ, Chang PW, Toth EA, Lu AL. Interaction of apurinic/apyrimidinic endonuclease 2 (Apn2) with Myh1 DNA glycosylase in fission yeast. DNA Repair (Amst) 2014; 15:1-10. [PMID: 24559510 PMCID: PMC3967872 DOI: 10.1016/j.dnarep.2014.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 12/27/2013] [Accepted: 01/06/2014] [Indexed: 12/29/2022]
Abstract
Oxidative DNA damage is repaired primarily by the base excision repair (BER) pathway in a process initiated by removal of base lesions or mismatched bases by DNA glycosylases. MutY homolog (MYH, MUTYH, or Myh1) is a DNA glycosylase which excises adenine paired with the oxidative lesion 8-oxo-7,8-dihydroguanine (8-oxoG, or G°), thus reducing G:C to T:A mutations. The resulting apurinic/apyrimidinic (AP) site is processed by an AP-endonuclease or a bifunctional glycosylase/lyase. We show here that the major Schizosaccharomyces pombe AP endonuclease, Apn2, binds to the inter-domain connector located between the N- and C-terminal domains of Myh1. This Myh1 inter-domain connector also interacts with the Hus1 subunit of the Rad9-Rad1-Hus1 checkpoint clamp. Mutagenesis studies indicate that Apn2 and Hus1 bind overlapping but different sequence motifs on Myh1. Mutation on I(261) of Myh1 reduces its interaction with Hus1, but only slightly attenuates its interaction with Apn2. However, E(262) of Myh1 is a key determinant for both Apn2 and Hus1 interactions. Like human APE1, Apn2 has 3'-phosphodiesterase activity. However, unlike hAPE1, Apn2 has a weak AP endonuclease activity which cleaves the AP sites generated by Myh1 glycosylase. Functionally, Apn2 stimulates Myh1 glycosylase activity and Apn2 phosphodiesterase activity is stimulated by Myh1. The cross stimulation of Myh1 and Apn2 enzymatic activities is dependent on their physical interaction. Thus, Myh1 and Apn2 constitute an initial BER complex.
Collapse
Affiliation(s)
- Jin Jin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Bor-Jang Hwang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Po-Wen Chang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Eric A Toth
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Rockville, MD 20850, USA
| | - A-Lien Lu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
8
|
Wen FC, Chang TW, Tseng YL, Lee JC, Chang MC. hRAD9 functions as a tumor suppressor by inducing p21-dependent senescence and suppressing epithelial-mesenchymal transition through inhibition of Slug transcription. Carcinogenesis 2014; 35:1481-90. [PMID: 24403312 DOI: 10.1093/carcin/bgu009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Senescence and epithelial-mesenchymal transition (EMT) have opposing roles in tumor progression, in that, one is a barrier against tumorigenesis, whereas the other is required for invasive malignancies. Here, we report that the DNA damage response (DDR) protein hRAD9 contributes to induction of senescence and inhibition of EMT. Our data show that hRAD9 is frequently downregulated in breast and lung cancers. Loss of hRAD9 expression is associated with tumor stage in breast and lung cancers, as well as with acquisition of an invasive phenotype. Ectopic hRAD9 expression in highly invasive cancer cell lines, H1299 and MDA-MB 231, with low endogenous hRAD9 induced senescence by upregulation of nuclear p21, independent of the p53 status. Ectopic expression of hRAD9 also significantly attenuated cellular migration and invasion in vitro and tumor growth in a xenograft mouse model in vivo. In contrast, silencing hRAD9 in lower invasive cancer cell lines, A549 and MCF7, with high endogenous hRAD9 dramatically increased their migration and invasion abilities, and simultaneously activated EMT. Knockdown of hRAD9 increased, whereas ectopic expression of hRAD9 decreased, the expression of Slug. Moreover, hRAD9 directly bound to the promoter region of slug gene and repressed its transcriptional activity. Taken together, these results suggest that hRAD9 is a potential tumor suppressor in breast and lung cancers and that it is likely to function by upregulating p21 and inhibiting Slug to regulate tumorigenesis.
Collapse
Affiliation(s)
- Fan-Chih Wen
- Institute of Basic Medical Sciences and Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tsai-Wang Chang
- Department of Surgery, National Cheng Kung University Medical College and Hospital, Tainan 70101, Taiwan and
| | - Yau-Lin Tseng
- Department of Surgery, National Cheng Kung University Medical College and Hospital, Tainan 70101, Taiwan and
| | - Janq-Chang Lee
- Department of Surgery, National Cheng Kung University Medical College and Hospital, Tainan 70101, Taiwan and
| | - Ming-Chung Chang
- Institute of Basic Medical Sciences and Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, Department of Nutrition, College of Medicine and Nursing, Hung Kuang University, Taichung 43302, Taiwan
| |
Collapse
|
9
|
Kelly R, Davey SK. Tousled-like kinase-dependent phosphorylation of Rad9 plays a role in cell cycle progression and G2/M checkpoint exit. PLoS One 2013; 8:e85859. [PMID: 24376897 PMCID: PMC3869942 DOI: 10.1371/journal.pone.0085859] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/06/2013] [Indexed: 11/23/2022] Open
Abstract
Genomic integrity is preserved by checkpoints, which act to delay cell cycle progression in the presence of DNA damage or replication stress. The heterotrimeric Rad9-Rad1-Hus1 (9-1-1) complex is a PCNA-like clamp that is loaded onto DNA at structures resulting from damage and is important for initiating and maintaining the checkpoint response. Rad9 possesses a C-terminal tail that is phosphorylated constitutively and in response to cell cycle position and DNA damage. Previous studies have identified tousled-like kinase 1 (TLK1) as a kinase that may modify Rad9. Here we show that Rad9 is phosphorylated in a TLK-dependent manner in vitro and in vivo, and that T355 within the C-terminal tail is the primary targeted residue. Phosphorylation of Rad9 at T355 is quickly reduced upon exposure to ionizing radiation before returning to baseline later in the damage response. We also show that TLK1 and Rad9 interact constitutively, and that this interaction is enhanced in chromatin-bound Rad9 at later stages of the damage response. Furthermore, we demonstrate via siRNA-mediated depletion that TLK1 is required for progression through S-phase in normally cycling cells, and that cells lacking TLK1 display a prolonged G2/M arrest upon exposure to ionizing radiation, a phenotype that is mimicked by over-expression of a Rad9-T355A mutant. Given that TLK1 has previously been shown to be transiently inactivated upon phosphorylation by Chk1 in response to DNA damage, we propose that TLK1 and Chk1 act in concert to modulate the phosphorylation status of Rad9, which in turn serves to regulate the DNA damage response.
Collapse
Affiliation(s)
- Ryan Kelly
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen’s University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Scott K. Davey
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen’s University, Kingston, Ontario, Canada
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
10
|
Štorcelová M, Vicián M, Reis R, Zeman M, Herichová I. Expression of cell cycle regulatory factors hus1, gadd45a, rb1, cdkn2a and mre11a correlates with expression of clock gene per2 in human colorectal carcinoma tissue. Mol Biol Rep 2013; 40:6351-61. [PMID: 24062075 DOI: 10.1007/s11033-013-2749-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 09/14/2013] [Indexed: 01/20/2023]
Abstract
Deregulated expression of clock gene per2 has previously been associated with progression of cancer. The aim of the present study was to identify genes related to per2 expression and involved in cell cycle control. Patients surgically treated for colorectal carcinoma with up-regulated and down-regulated per2 expression in cancer versus adjacent tissue were studied. Total RNA from cancer tissue of these patients was used to specify genes associated with altered per2 expression using the Human Cell Cycle RT(2) profiler PCR array system. We identified seven genes positively correlated (hus1, gadd45α, rb1, cdkn2a, cdk5rp1, mre11a, sumo1) and two genes negatively correlated (cdc20, birc5) with per2 expression. Expression of these seven genes was subsequently measured by real time PCR in all patients of the cohort. Patients were divided into three groups according to TNM classification. We observed an increase in gene expression in cancer tissue compared to adjacent tissue in the first group of patients in all genes measured. Expression of genes positively associated with per2 gene expression was dependent on tumor staging and changes were observed preferentially in cancer tissue. For genes negatively associated with per2 expression we also detected changes in expression dependent on tumor staging. Expression of cdc20 and birc5 was increasing in the proximal tissue and decreasing in the cancer tissue. These results implicate functional involvement of per2 in the process of carcinogenesis via newly uncovered genes. The relevancy of gene expression for determination of diagnosis and prognosis should be considered in relation to tumor staging.
Collapse
Affiliation(s)
- Mária Štorcelová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University Bratislava, Mlynska dolina B-2, 842 15, Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
11
|
Palacios DA, Miyake M, Rosser CJ. Radiosensitization in prostate cancer: mechanisms and targets. BMC Urol 2013; 13:4. [PMID: 23351141 PMCID: PMC3583813 DOI: 10.1186/1471-2490-13-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/05/2012] [Indexed: 01/05/2023] Open
Abstract
Prostate cancer is the second most commonly diagnosed cancer in American men over the age of 45 years and is the third most common cause of cancer related deaths in American men. In 2012 it is estimated that 241,740 men will be diagnosed with prostate cancer and 28,170 men will succumb to prostate cancer. Currently, radiation therapy is one of the most common definitive treatment options for localized prostate cancer. However, significant number of patients undergoing radiation therapy will develop locally persistent/recurrent tumours. The varying response rates to radiation may be due to 1) tumor microenvironment, 2) tumor stage/grade, 3) modality used to deliver radiation, and 4) dose of radiation. Higher doses of radiation has not always proved to be effective and have been associated with increased morbidity. Compounds designed to enhance the killing effects of radiation, radiosensitizers, have been extensively investigated over the past decade. The development of radiosensitizing agents could improve survival, improve quality of life and reduce costs, thus benefiting both patients and healthcare systems. Herin, we shall review the role and mechanisms of various agents that can sensitize tumours, specifically prostate cancer.
Collapse
Affiliation(s)
- Diego A Palacios
- Section of Urologic Oncology, MD Anderson Cancer Center Orlando, Orlando, FL 32806, USA
| | | | | |
Collapse
|
12
|
Zhan Z, He K, Zhu D, Jiang D, Huang YH, Li Y, Sun C, Jin YH. Phosphorylation of Rad9 at serine 328 by cyclin A-Cdk2 triggers apoptosis via interfering Bcl-xL. PLoS One 2012; 7:e44923. [PMID: 23028682 PMCID: PMC3441668 DOI: 10.1371/journal.pone.0044923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/09/2012] [Indexed: 11/18/2022] Open
Abstract
Cyclin A-Cdk2, a cell cycle regulated Ser/Thr kinase, plays important roles in a variety of apoptoticprocesses. However, the mechanism of cyclin A-Cdk2 regulated apoptosis remains unclear. Here, we demonstrated that Rad9, a member of the BH3-only subfamily of Bcl-2 proteins, could be phosphorylated by cyclin A-Cdk2 in vitro and in vivo. Cyclin A-Cdk2 catalyzed the phosphorylation of Rad9 at serine 328 in HeLa cells during apoptosis induced by etoposide, an inhibitor of topoisomeraseII. The phosphorylation of Rad9 resulted in its translocation from the nucleus to the mitochondria and its interaction with Bcl-xL. The forced activation of cyclin A-Cdk2 in these cells by the overexpression of cyclin A,triggered Rad9 phosphorylation at serine 328 and thereby promoted the interaction of Rad9 with Bcl-xL and the subsequent initiation of the apoptotic program. The pro-apoptotic effects regulated by the cyclin A-Cdk2 complex were significantly lower in cells transfected with Rad9S328A, an expression vector that encodes a Rad9 mutant that is resistant to cyclin A-Cdk2 phosphorylation. These findings suggest that cyclin A-Cdk2 regulates apoptosis through a mechanism that involves Rad9phosphorylation.
Collapse
Affiliation(s)
- Zhuo Zhan
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, China
- State Key Laboratory of Supramolecular Structure & Materials, Jilin University, Changchun, China
| | - Kan He
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, China
| | - Dan Zhu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, China
| | - Dan Jiang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, China
| | - Ying-Hui Huang
- Cancer Center, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yang Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, China
| | - Chao Sun
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, China
| | - Ying-Hua Jin
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, China
- State Key Laboratory of Supramolecular Structure & Materials, Jilin University, Changchun, China
- * E-mail:
| |
Collapse
|
13
|
Ueda S, Takeishi Y, Ohashi E, Tsurimoto T. Two serine phosphorylation sites in the C-terminus of Rad9 are critical for 9-1-1 binding to TopBP1 and activation of the DNA damage checkpoint response in HeLa cells. Genes Cells 2012; 17:807-16. [PMID: 22925454 DOI: 10.1111/j.1365-2443.2012.01630.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/02/2012] [Indexed: 01/21/2023]
Abstract
A heteromeric proliferating cell nuclear antigen-like ring complex 9-1-1 is comprised of Rad9, Hus1 and Rad1. When assembled, 9-1-1 binds to TopBP1 and activates the ATR-Chk1 checkpoint pathway. This binding in vitro depends on the phosphorylation of Ser-341 and Ser-387 in Rad9 and is reduced to 70% and 20% by an alanine substitution for Ser-341 (S341A) and Ser-387 (S387A), respectively, and to background level by their simultaneous substitution (2A). Here, we show the importance of phosphorylation of these two serine residues in vivo. siRNA-mediated knockdown of Rad9 in HeLa cells impaired UV-induced phosphorylation of checkpoint kinase, Chk1, and conferred hypersensitivity to UV irradiation and to methyl methane sulfonate or hydroxyurea treatments. Either siRNA-resistant wild-type Rad9 (Rad9R(r)) or Rad9R(r) harboring the S341A substitution restored the phosphorylation of Chk1 and damage sensitivity, whereas Rad9R(r) harboring S387A or 2A did not. However, high expression of S387A restored Chk1 phosphorylation and partially suppressed the hypersensitivity. Thus, the affinity of Rad9 to TopBP1 correlates with the activation of the cellular DNA damage response and survival after DNA damage in HeLa cells, and phosphorylation of Ser-341 and Ser-387 of Rad9 is critical for full activation of the checkpoint response to DNA damage.
Collapse
Affiliation(s)
- Satoshi Ueda
- Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | | | | | | |
Collapse
|
14
|
Thompson LH. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res 2012; 751:158-246. [PMID: 22743550 DOI: 10.1016/j.mrrev.2012.06.002] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 06/09/2012] [Accepted: 06/16/2012] [Indexed: 12/15/2022]
Abstract
The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. "Superfluous" protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology & Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, United States.
| |
Collapse
|
15
|
Ishikawa K, Ishii H, Saito T, Ichimura K. Multiple functions of rad9 for preserving genomic integrity. Curr Genomics 2011; 7:477-80. [PMID: 18369403 DOI: 10.2174/138920206779315746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 11/08/2006] [Accepted: 11/10/2006] [Indexed: 01/03/2023] Open
Abstract
DNA-damage checkpoints sense and respond to genomic damage. Human Rad9 (hRad9), an evolutionarily conserved gene with multiple functions for preserving genomic integrity, plays multiple roles in fundamental biological processes, including the regulation of the DNA damage response, cell cycle checkpoint control, DNA repair, apoptosis, transcriptional regulation, exonuclease activity, ribonucleotide synthesis and embryogenesis. This review examines work that provides significant insight into the molecular mechanisms of several individual cellular processes which might be beneficial for developing novel therapeutic approaches to cancerous diseases with genomic instability.
Collapse
|
16
|
Lieberman HB, Bernstock JD, Broustas CG, Hopkins KM, Leloup C, Zhu A. The role of RAD9 in tumorigenesis. J Mol Cell Biol 2011; 3:39-43. [PMID: 21278450 DOI: 10.1093/jmcb/mjq039] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
RAD9 regulates multiple cellular processes that influence genomic integrity, and for at least some of its functions the protein acts as part of a heterotrimeric complex bound to HUS1 and RAD1 proteins. RAD9 participates in DNA repair, including base excision repair, homologous recombination repair and mismatch repair, multiple cell cycle phase checkpoints and apoptosis. In addition, functions including the transactivation of downstream target genes, immunoglobulin class switch recombination, as well as 3'-5' exonuclease activity have been reported. Aberrant RAD9 expression has been linked to breast, lung, thyroid, skin and prostate tumorigenesis, and a cause-effect relationship has been demonstrated for the latter two. Interestingly, human RAD9 overproduction correlates with prostate cancer whereas deletion of Mrad9, the corresponding mouse gene, in keratinocytes leads to skin cancer. These results reveal that RAD9 protein can function as an oncogene or tumor suppressor, and aberrantly high or low levels can have deleterious health consequences. It is not clear which of the many functions of RAD9 is critical for carcinogenesis, but several alternatives are considered herein and implications for the development of novel cancer therapies based on these findings are examined.
Collapse
Affiliation(s)
- Howard B Lieberman
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, 630 W 168th St, New York, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Maniwa Y, Nishio W, Yoshimura M. Application of hRad9 in lung cancer treatment as a molecular marker and a molecular target. Thorac Cancer 2011; 2:7-15. [PMID: 27755837 DOI: 10.1111/j.1759-7714.2010.00036.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
DNA damage sensor proteins work as upstream components of the DNA damage checkpoint signaling pathways that are essential for cell cycle control and the induction of apoptosis. hRad9 is a member of a family of proteins that act as DNA damage sensors and plays an important role as an upstream regulator of checkpoint signaling. We clarified the significant accumulation of hRad9 in the nuclei of tumor cells in surgically-resected non-small-cell lung cancer (NSCLC) specimens and found the capacity to produce a functional hRad9 protein was intact in lung cancer cells. This finding suggested that hRad9 was a vital component in the pathways that lead to the survival and progression of NSCLC and suggested that hRad9 was a good candidate for a molecular target to control lung cancer cell growth. RNA interference targeting hRad9 was performed to examine this hypothesis. The impairment of the DNA damage checkpoint signaling pathway induced cancer cell death. hRad9 might be a novel molecular target for lung cancer treatment.
Collapse
Affiliation(s)
- Yoshimasa Maniwa
- Division of Thoracic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Wataru Nishio
- Division of Thoracic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahiro Yoshimura
- Division of Thoracic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
18
|
Chang DY, Shi G, Durand-Dubief M, Ekwall K, Lu AL. The role of MutY homolog (Myh1) in controlling the histone deacetylase Hst4 in the fission yeast Schizosaccharomyces pombe. J Mol Biol 2010; 405:653-65. [PMID: 21110984 DOI: 10.1016/j.jmb.2010.11.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 11/03/2010] [Accepted: 11/16/2010] [Indexed: 10/18/2022]
Abstract
The DNA glycosylase MutY homolog (Myh1) excises adenines misincorporated opposite guanines or 7,8-dihydro-8-oxo-guanines on DNA by base excision repair thereby preventing G:C to T:A mutations. Schizosaccharomyces pombe (Sp) Hst4 is an NAD(+)-dependent histone/protein deacetylase involved in gene silencing and maintaining genomic integrity. Hst4 regulates deacetylation of histone 3 Lys56 at the entry and exit points of the nucleosome core particle. Here, we demonstrate that the hst4 mutant is more sensitive to H(2)O(2) than wild-type cells. H(2)O(2) treatment results in an SpMyh1-dependent decrease in SpHst4 protein level and hyperacetylation of histone 3 Lys56. Furthermore, SpHst4 interacts with SpMyh1 and the cell cycle checkpoint Rad9-Rad1-Hus1 (9-1-1) complex. SpHst4, SpMyh1, and SpHus1 are physically bound to telomeres. Following oxidative stress, there is an increase in the telomeric association of SpMyh1. Conversely, the telomeric association of spHst4 is decreased. Deletion of SpMyh1 strongly abrogated telomeric association of SpHst4 and SpHus1. However, telomeric association of SpMyh1 is enhanced in hst4Δ cells in the presence of chronic DNA damage. These results suggest that SpMyh1 repair regulates the functions of SpHst4 and the 9-1-1 complex in maintaining genomic stability.
Collapse
Affiliation(s)
- Dau-Yin Chang
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, 108 North Greene Street, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
19
|
Groehler AL, Lannigan DA. A chromatin-bound kinase, ERK8, protects genomic integrity by inhibiting HDM2-mediated degradation of the DNA clamp PCNA. ACTA ACUST UNITED AC 2010; 190:575-86. [PMID: 20733054 PMCID: PMC2928013 DOI: 10.1083/jcb.201002124] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proliferating cell nuclear antigen (PCNA) acts as a scaffold, coordinator, and stimulator of numerous processes required for faithful transmission of genetic information. Maintaining PCNA levels above a critical threshold is essential, but little is known about PCNA protein turnover. We now show that ERK8 (extracellular signal-regulated kinase 8) is required for PCNA protein stability. ERK8 contains a conserved PCNA-interacting protein (PIP) box. Chromatin-bound ERK8 (ERK8(CHROMATIN)) interacts via this motif with PCNA(CHROMATIN), which acts as a platform for numerous proteins involved in DNA metabolism. Silencing ERK8 decreases PCNA levels and increases DNA damage. Ectopic expression of PCNA blocks DNA damage induced by ERK8 loss. ERK8 prevents HDM2-mediated PCNA destruction by inhibiting the association of PCNA with HDM2. This regulation is physiologically relevant as ERK8 activity is inhibited in transformed mammary cells. Our results reveal an unanticipated mechanism to control PCNA levels in normal cycling mammary epithelial cells and implicate ERK8 in the regulation of genomic stability.
Collapse
Affiliation(s)
- Angela L Groehler
- Department of Microbiology and Center for Cell Signaling, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
20
|
Greer Card DA, Sierant ML, Davey S. Rad9A is required for G2 decatenation checkpoint and to prevent endoreduplication in response to topoisomerase II inhibition. J Biol Chem 2010; 285:15653-15661. [PMID: 20305300 DOI: 10.1074/jbc.m109.096156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rad9A checkpoint protein interacts with and is required for proper localization of topoisomerase II-binding protein 1 (TopBP1) in response to DNA damage. Topoisomerase II (Topo II), another binding partner of TopBP1, decatenates sister chromatids that become intertwined during replication. Inhibition of Topo II by ICRF-193 (meso-4,4'-(3,2-butanediyl)-bis-(2,6-piperazinedione)), a catalytic inhibitor that does not induce DNA double-strand breaks, causes a mitotic delay known as the G(2) decatenation checkpoint. Here, we demonstrate that this checkpoint, dependent on ATR and BRCA1, also requires Rad9A. Analysis of different Rad9A phosphorylation mutants suggests that these modifications are required to prevent endoreduplication and to maintain decatenation checkpoint arrest. Furthermore, Rad9A Ser(272) is phosphorylated in response to Topo II inhibition. ICRF-193 treatment also causes phosphorylation of an effector kinase downstream of Rad9A in the DNA damage checkpoint pathway, Chk2, at Thr(68). Both of these sites are major targets of phosphorylation by the ATM kinase, although it has previously been shown that ATM is not required for the decatenation checkpoint. Examination of ataxia telangectasia (A-T) cells demonstrates that ATR does not compensate for ATM loss, suggesting that phosphorylation of Rad9A and Chk2 by ATM plays an additional role in response to Topo II inhibition than checkpoint function alone. Finally, we have shown that murine embryonic stem cells deficient for Rad9A have higher levels of catenated mitotic spreads than wild-type counterparts. Together, these results emphasize the importance of Rad9A in preserving genomic integrity in the presence of catenated chromosomes and all types of DNA aberrations.
Collapse
Affiliation(s)
- Deborah A Greer Card
- Cancer Research Institute, Division of Cancer Biology and Genetics, Queen's University, Kingston, Ontario K7L 3N6, Canada; Departments of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Megan L Sierant
- Cancer Research Institute, Division of Cancer Biology and Genetics, Queen's University, Kingston, Ontario K7L 3N6, Canada; Departments of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Scott Davey
- Cancer Research Institute, Division of Cancer Biology and Genetics, Queen's University, Kingston, Ontario K7L 3N6, Canada; Departments of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada; Departments of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada; Departments of Oncology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
21
|
Lomonosova E, Chinnadurai G. BH3-only proteins in apoptosis and beyond: an overview. Oncogene 2009; 27 Suppl 1:S2-19. [PMID: 19641503 DOI: 10.1038/onc.2009.39] [Citation(s) in RCA: 317] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BH3-only BCL-2 family proteins are effectors of canonical mitochondrial apoptosis. They discharge their pro-apoptotic functions through BH1-3 pro-apoptotic proteins such as BAX and BAK, while their activity is suppressed by BH1-4 anti-apoptotic BCL-2 family members. The precise mechanism by which BH3-only proteins mediate apoptosis remains unresolved. The existing data are consistent with three mutually non-exclusive models (1) displacement of BH1-3 proteins from complexes with BH1-4 proteins; (2) direct interaction with and conformational activation of BH1-3 proteins; and (3) membrane insertion and membrane remodeling. The BH3-only proteins appear to play critical roles in restraining cancer and inflammatory diseases such as rheumatoid arthritis. Molecules that mimic the effect of BH3-only proteins are being used in treatments against these diseases. The cell death activity of a subclass of BH3-only members (BNIP3 and BNIP3L) is linked to cardiomyocyte loss during heart failure. In addition to their established role in apoptosis, several BH3-only members also regulate diverse cellular functions in cell-cycle regulation, DNA repair and metabolism. Several members are implicated in the induction of autophagy and autophagic cell death, possibly through unleashing of the BH3-only autophagic effector Beclin 1 from complexes with BCL-2/BCL-xL. The Chapters included in the current Oncogene Review issues provide in-depth discussions on various aspects of major BH3-only proteins.
Collapse
Affiliation(s)
- E Lomonosova
- Institute for Molecular Virology, Saint Louis University School of Medicine, Doisy Research Center, St Louis, MO 63104, USA
| | | |
Collapse
|
22
|
De Boeck G, Forsyth RG, Praet M, Hogendoorn PCW. Telomere-associated proteins: cross-talk between telomere maintenance and telomere-lengthening mechanisms. J Pathol 2009; 217:327-44. [PMID: 19142887 DOI: 10.1002/path.2500] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Telomeres, the ends of eukaryotic chromosomes, have been the subject of intense investigation over the last decade. As telomere dysfunction has been associated with ageing and developing cancer, understanding the exact mechanisms regulating telomere structure and function is essential for the prevention and treatment of human cancers and age-related diseases. The mechanisms by which cells maintain telomere lengthening involve either telomerase or the alternative lengthening of the telomere pathway, although specific mechanisms of the latter and the relationship between the two are as yet unknown. Many cellular factors directly (TRF1/TRF2) and indirectly (shelterin-complex, PinX, Apollo and tankyrase) interact with telomeres, and their interplay influences telomere structure and function. One challenge comes from the observation that many DNA damage response proteins are stably associated with telomeres and contribute to several other aspects of telomere function. This review focuses on the different components involved in telomere maintenance and their role in telomere length homeostasis. Special attention is paid to understanding how these telomere-associated factors, and mainly those involved in double-strand break repair, perform their activities at the telomere ends.
Collapse
Affiliation(s)
- Gitte De Boeck
- N. Goormaghtigh Institute of Pathology, University Hospital Ghent, De Pintelaan 185, 9000 Ghent, Belgium
| | | | | | | |
Collapse
|
23
|
Misri S, Pandita S, Kumar R, Pandita TK. Telomeres, histone code, and DNA damage response. Cytogenet Genome Res 2009; 122:297-307. [PMID: 19188699 DOI: 10.1159/000167816] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2008] [Indexed: 12/30/2022] Open
Abstract
Genomic stability is maintained by telomeres, the end terminal structures that protect chromosomes from fusion or degradation. Shortening or loss of telomeric repeats or altered telomere chromatin structure is correlated with telomere dysfunction such as chromosome end-to-end associations that could lead to genomic instability and gene amplification. The structure at the end of telomeres is such that its DNA differs from DNA double strand breaks (DSBs) to avoid nonhomologous end-joining (NHEJ), which is accomplished by forming a unique higher order nucleoprotein structure. Telomeres are attached to the nuclear matrix and have a unique chromatin structure. Whether this special structure is maintained by specific chromatin changes is yet to be thoroughly investigated. Chromatin modifications implicated in transcriptional regulation are thought to be the result of a code on the histone proteins (histone code). This code, involving phosphorylation, acetylation, methylation, ubiquitylation, and sumoylation of histones, is believed to regulate chromatin accessibility either by disrupting chromatin contacts or by recruiting non-histone proteins to chromatin. The histone code in which distinct histone tail-protein interactions promote engagement may be the deciding factor for choosing specific DSB repair pathways. Recent evidence suggests that such mechanisms are involved in DNA damage detection and repair. Altered telomere chromatin structure has been linked to defective DNA damage response (DDR), and eukaryotic cells have evolved DDR mechanisms utilizing proficient DNA repair and cell cycle checkpoints in order to maintain genomic stability. Recent studies suggest that chromatin modifying factors play a critical role in the maintenance of genomic stability. This review will summarize the role of DNA damage repair proteins specifically ataxia-telangiectasia mutated (ATM) and its effectors and the telomere complex in maintaining genome stability.
Collapse
Affiliation(s)
- S Misri
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | | | | | | |
Collapse
|
24
|
Budzowska M, Kanaar R. Mechanisms of dealing with DNA damage-induced replication problems. Cell Biochem Biophys 2008; 53:17-31. [PMID: 19034694 DOI: 10.1007/s12013-008-9039-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2008] [Indexed: 12/31/2022]
Abstract
During every S phase, cells need to duplicate their genomes so that both daughter cells inherit complete copies of genetic information. Given the large size of mammalian genomes and the required precision of DNA replication, genome duplication requires highly fine-tuned corrective and quality control processes. A major threat to the accuracy and efficiency of DNA synthesis is the presence of DNA lesions, caused by both endogenous and exogenous damaging agents. Replicative DNA polymerases, which carry out the bulk of DNA synthesis, evolved to do their job extremely precisely and efficiently. However, they are unable to use damaged DNA as a template and, consequently, are stopped at most DNA lesions. Failure to restart such stalled replication forks can result in major chromosomal aberrations and lead to cell dysfunction or death. Therefore, a well-coordinated response to replication perturbation is essential for cell survival and fitness. Here we review how this response involves activating checkpoint signaling and the use of specialized pathways promoting replication restart. Checkpoint signaling adjusts cell cycle progression to the emergency situation and thus gives cells more time to deal with the damage. Replication restart is mediated by two pathways. Homologous recombination uses homologous DNA sequence to repair or bypass the lesion and is therefore mainly error free. Error-prone translesion synthesis employs specialized, low fidelity polymerases to bypass the damage.
Collapse
Affiliation(s)
- Magda Budzowska
- Department of Cell Biology & Genetics, Cancer Genomics Center, Rotterdam, The Netherlands
| | | |
Collapse
|
25
|
He W, Zhao Y, Zhang C, An L, Hu Z, Liu Y, Han L, Bi L, Xie Z, Xue P, Yang F, Hang H. Rad9 plays an important role in DNA mismatch repair through physical interaction with MLH1. Nucleic Acids Res 2008; 36:6406-17. [PMID: 18842633 PMCID: PMC2582629 DOI: 10.1093/nar/gkn686] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rad9 is conserved from yeast to humans and plays roles in DNA repair (homologous recombination repair, and base-pair excision repair) and cell cycle checkpoint controls. It has not previously been reported whether Rad9 is involved in DNA mismatch repair (MMR). In this study, we have demonstrated that both human and mouse Rad9 interacts physically with the MMR protein MLH1. Disruption of the interaction by a single-point mutation in Rad9 leads to significantly reduced MMR activity. This disruption does not affect S/M checkpoint control and the first round of G2/M checkpoint control, nor does it alter cell sensitivity to UV light, gamma rays or hydroxyurea. Our data indicate that Rad9 is an important factor in MMR and carries out its MMR function specifically through interaction with MLH1.
Collapse
Affiliation(s)
- Wei He
- National Laboratory of Biomacromolecules, Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cabrera G, Cabrejos ME, Morassutti AL, Cabezón C, Orellana J, Hellman U, Zaha A, Galanti N. DNA damage, RAD9 and fertility/infertility of Echinococcus granulosus hydatid cysts. J Cell Physiol 2008; 216:498-506. [PMID: 18348165 DOI: 10.1002/jcp.21418] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hydatidosis, caused by the larval stage of the platyhelminth parasite Echinococcus granulosus, affects human and animal health. Hydatid fertile cysts are formed in intermediate hosts (human and herbivores) producing protoscoleces, the infective form to canines, at their germinal layers. Infertile cysts are also formed, but they are unable to produce protoscoleces. The molecular mechanisms involved in hydatid cysts fertility/infertility are unknown. Nevertheless, previous work from our laboratory has suggested that apoptosis is involved in hydatid cyst infertility and death. On the other hand, fertile hydatid cysts can resist oxidative damage due to reactive oxygen and nitrogen species. On these foundations, we have postulated that when oxidative damage of DNA in the germinal layers exceeds the capability of DNA repair mechanisms, apoptosis is triggered and hydatid cysts infertility occurs. We describe a much higher percentage of nuclei with oxidative DNA damage in dead protoscoleces and in the germinal layer of infertile cysts than in fertile cysts, suggesting that DNA repair mechanisms are active in fertile cysts. rad9, a conserved gene, plays a key role in cell cycle checkpoint modulation and DNA repair. We found that RAD9 of E. granulosus (EgRAD9) is expressed at the mRNA and protein levels. As it was found in other eukaryotes, EgRAD9 is hyperphosphorylated in response to DNA damage. Our results suggest that molecules involved in DNA repair in the germinal layer of fertile hydatid cysts and in protoscoleces, such as EgRAD9, may allow preserving the fertility of hydatid cysts in the presence of ROS and RNS.
Collapse
Affiliation(s)
- Gonzalo Cabrera
- Programa Disciplinario de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Expression of DNA Damage Checkpoint Protein Hus1 in Epithelial Ovarian Tumors Correlates With Prognostic Markers. Int J Gynecol Pathol 2008; 27:24-32. [DOI: 10.1097/pgp.0b013e31812dfaef] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Singh VK, Nurmohamed S, Davey SK, Jia Z. Tri-cistronic cloning, overexpression and purification of human Rad9, Rad1, Hus1 protein complex. Protein Expr Purif 2007; 54:204-11. [PMID: 17493829 DOI: 10.1016/j.pep.2007.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 03/05/2007] [Accepted: 03/12/2007] [Indexed: 12/16/2022]
Abstract
The least understood components of the DNA damage checkpoint are the DNA damage sensors. Genetic studies of Schizosaccharomyces pombe identified six yeast genes, Rad3, Rad17, Rad9, Rad1, Hus1, and Rad26, which encode proteins thought to sense DNA damage and activate the checkpoint-signaling cascade. It has been suggested that Rad9, Rad1 and Hus1 make a heterotrimeric complex forming a PCNA-like structure. In order to carry out structural and biophysical studies of the complex and its associated proteins, the cDNAs encoding full length human Rad9, Rad1 and Hus1 were cloned together into the pET28a vector using a one-step ligation procedure. Here we report successful tri-cistronic cloning, overexpression and purification of this three-protein complex using a single hexa-histidine tag. The trimeric protein complex of Rad9, Rad1 and Hus1 was purified to near homogeneity, yielding approximately 10mg of protein from one liter of Escherichia coli culture.
Collapse
Affiliation(s)
- Vinay Kumar Singh
- Department of Biochemistry, Queen's University, Kingston, Ont., Canada K7L 3N6
| | | | | | | |
Collapse
|
29
|
Huang J, Yuan H, Lu C, Liu X, Cao X, Wan M. Jab1 mediates protein degradation of the Rad9-Rad1-Hus1 checkpoint complex. J Mol Biol 2007; 371:514-27. [PMID: 17583730 PMCID: PMC2712929 DOI: 10.1016/j.jmb.2007.05.095] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 04/09/2007] [Accepted: 05/23/2007] [Indexed: 12/11/2022]
Abstract
The Rad1-Rad9-Hus1 (9-1-1) complex serves a dual role as a DNA-damage sensor in checkpoint signaling and as a mediator in the DNA repair pathway. However, the intercellular mechanisms that regulate the 9-1-1 complex are poorly understood. Jab1, the fifth component of the COP9 signalosome complex, has a central role in the degradation of multiple proteins and is emerging as an important regulator in cancer development. Here, we tested the hypothesis that Jab1 controls the protein stability of the 9-1-1 complex via the proteosome pathway. We provide evidence that Jab1 physically associates with the 9-1-1 complex, and show that this association is mediated through direct interaction between Jab1 and Rad1, one of the subunits of the 9-1-1 complex. Importantly, Jab1 causes translocation of the 9-1-1 complex from the nucleus to the cytoplasm, mediating rapid degradation of the 9-1-1 complex via the 26 S proteasome. Furthermore, Jab1 significantly suppresses checkpoint signaling activation, DNA synthesis recovery from blockage and cell viability after replication stresses such as UV exposure, gamma radiation and treatment with hydroxyurea. These results suggest that Jab1 is an important regulator for the stability of protein 9-1-1 control in cells, which may provide novel information on the involvement of Jab1 in the checkpoint and DNA repair signaling in response to DNA damage.
Collapse
Affiliation(s)
- Jin Huang
- The Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- School of Medicine, Shihezi University, Shihezi, Xinjiang, People’s Republic of China
| | - Honglin Yuan
- The Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- School of Medicine, Shihezi University, Shihezi, Xinjiang, People’s Republic of China
| | - Chongyuan Lu
- The Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ximeng Liu
- The Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xu Cao
- The Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mei Wan
- The Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Address correspondence to: Mei Wan, MD., Ph.D., Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, Tel. 205 975-0076; Fax: 205 934-1775;
| |
Collapse
|
30
|
Rad9 modulates the P21WAF1 pathway by direct association with p53. BMC Mol Biol 2007; 8:37. [PMID: 17511890 PMCID: PMC1885445 DOI: 10.1186/1471-2199-8-37] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 05/21/2007] [Indexed: 11/24/2022] Open
Abstract
Background Previous studies suggest that human RAD9 (hRad9), encoding a DNA damage checkpoint molecule, which is frequently amplified in epithelial tumor cells of breast, lung, head and neck cancer, participates in regulation of the tumor suppressor p53-dependent transactivation of pro-survival P21WAF1. This study examined the exact mechanism of the hRad9 function, especially through the phosphorylation of the C-terminus, in the transcription regulation of P21WAF1. Results The transfection of phosphorylation-defective hRAD9 mutants of C-terminus resulted in reduction of the p53-dependent P21WAF1 transactivation; the knockdown of total hRad9 elicited an increased P21WAF1 mRNA expression. Immunoprecipitation and a ChIP assay showed that hRad9 and p53 formed a complex and both were associated with two p53-consensus DNA-binding sequences in the 5' region of P21WAF1 gene. The association was reduced in the experiment of phosphorylation-defective hRAD9 mutants. Conclusion The present study indicates the direct involvement of hRad9 in the p53-dependent P21WAF1 transcriptional mechanism, presumably via the phosphorylation sites, and alterations of the hRad9 pathway might therefore contribute to the perturbation of checkpoint activation in cancer cells.
Collapse
|
31
|
Zhao M, Begum S, Ha PK, Westra W, Califano J. Downregulation of RAD17 in head and neck cancer. Head Neck 2007; 30:35-42. [PMID: 17657792 DOI: 10.1002/hed.20660] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA repair genes play a critical role in maintaining genome stability and have been implicated in tumorigenesis. Head and neck squamous cell carcinoma (HNSCC) often shows chromosomal instability. We examined the expression of human RAD17, a DNA damage cell cycle checkpoint gene, in primary head and neck cancer tissue. METHODS Significance analysis of microarrays was applied to expression array results examining more than 12,000 genes in 7 samples of primary HNSCC and 6 samples of normal control oral epithelial tissue. Additional confirmation was performed by quantitative reverse transcription-polymerase chain reaction (RT-PCR) in these samples and western blot with an additional 12 primary HNSCC and 7 normal samples, followed by loss of heterozygosity (LOH) analysis and quantitative PCR at the RAD17 locus. RESULTS Multiple checkpoint and DNA repair genes were downregulated in primary head and neck tumor tissue compared with normal control epithelial tissue, including hRAD17. Its Z-score and fold change were -2.5 and 0.39, respectively. The results of normalized, quantitative RT-PCR showed decreased expression of hRAD17 mRNA in tumor tissue (mean value 0.2166) when compared with normal tissue (mean value 0.3957, p < .05). Western blot demonstrated undetectable expression of hRAD17 protein in primary tumor tissue (0/12), while there was strong expression of hRAD17 protein in normal oral mucosal tissue (6/7). To determine possible mechanisms of inactivation, the hRAD17 locus at 5q13 was analyzed using microsatellite markers, showing 70% LOH in 30 primary HNSCCs. Quantitative PCR showed that RAD17 DNA copy number was decreased in the majority of head and neck tumor tissue samples. CONCLUSION Loss of hRAD17 expression occurs frequently in HNSCC, is often due to genomic deletion, and may facilitate genomic instability in HNSCC.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Otolaryngology-Head and Neck Surgery, Head and Neck Cancer Research Division, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, USA
| | | | | | | | | |
Collapse
|
32
|
Slijepcevic P. The role of DNA damage response proteins at telomeres—an “integrative” model. DNA Repair (Amst) 2006; 5:1299-306. [PMID: 16798109 DOI: 10.1016/j.dnarep.2006.05.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 05/19/2006] [Accepted: 05/22/2006] [Indexed: 12/22/2022]
Abstract
Telomeres are specialized structures at chromosome ends which play the key role in chromosomal end protection. There is increasing evidence that many DNA damage response proteins are involved in telomere maintenance. For example, cells defective in DNA double strand break repair proteins including Ku, DNA-PKcs, RAD51D and the MRN (MRE11/RAD51/NBS1) complex show loss of telomere capping function. Similarly, mouse and human cells defective in ataxia telangiectasia mutated (ATM) have defective telomeres. A total of 14 mammalian DNA damage response proteins have, so far, been implicated in telomere maintenance. Recent studies indicate that three more proteins, namely BRCA1, hRad9 and PARP1 are involved in telomere maintenance. The involvement of a wide range of DNA damage response proteins at telomeres raises an important question: do telomere maintenance mechanisms constitute an integral part of DNA damage response machinery? A model termed the "integrative" model is proposed here to argue in favour of telomere maintenance being an integral part of DNA damage response. The "integrative" model is supported by the observation that a telomeric protein, TRF2, is not confined to its local telomeric environment but it migrates to the sites of DNA breakage following exposure of cells to ionizing radiation. Furthermore, even if telomeres are maintained in a non-canonical way, as in the case of Drosophila, DNA damage response proteins are still involved in telomere maintenance suggesting integration of telomere maintenance mechanisms into the DNA damage response network.
Collapse
Affiliation(s)
- Predrag Slijepcevic
- Brunel Institute of Cancer Genetics and Pharmacogenomics, Division of Biosceinces, School of Health Sciences and Social Care, Brunel University, Kingston Lane, Uxbridge, Middlesex, UB8 3PH, United Kingdom.
| |
Collapse
|
33
|
Lieberman HB. Rad9, an evolutionarily conserved gene with multiple functions for preserving genomic integrity. J Cell Biochem 2006; 97:690-7. [PMID: 16365875 DOI: 10.1002/jcb.20759] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Rad9 gene is evolutionarily conserved. Analysis of the gene from yeast, mouse and human reveal roles in multiple, fundamental biological processes primarily but not exclusively important for regulating genomic integrity. The encoded mammalian proteins participate in promoting resistance to DNA damage, cell cycle checkpoint control, DNA repair, and apoptosis. Other functions include a role in embryogenesis, the transactivation of multiple target genes, co-repression of androgen-induced transcription activity of the androgen receptor, a 3'-5' exonuclease activity, and the regulation of ribonucleotide synthesis. Analyses of the functions of Rad9, and in particular its role in regulating and coordinating numerous fundamental biological activities, should not only provide information about the molecular mechanisms of several individual cellular processes, but might also lend insight into the more global control and coordination of what at least superficially present as independent pathways.
Collapse
Affiliation(s)
- Howard B Lieberman
- Center for Radiological Research, Columbia University, 630 W. 168th St., New York, New York 10032, USA.
| |
Collapse
|
34
|
Brandt PD, Helt CE, Keng PC, Bambara RA. The Rad9 protein enhances survival and promotes DNA repair following exposure to ionizing radiation. Biochem Biophys Res Commun 2006; 347:232-7. [PMID: 16814252 DOI: 10.1016/j.bbrc.2006.06.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 06/13/2006] [Indexed: 10/24/2022]
Abstract
Following DNA damage cells initiate cell cycle checkpoints to allow time to repair sustained lesions. Rad9, Rad1, and Hus1 proteins form a toroidal complex, termed the 9-1-1 complex, that is involved in checkpoint signaling. 9-1-1 shares high structural similarity to the DNA replication protein proliferating cell nuclear antigen (PCNA) and 9-1-1 has been shown in vitro to stimulate steps of the repair process known as long patch base excision repair. Using a system that allows conditional repression of the Rad9 protein in human cell culture, we show that Rad9, and by extension, the 9-1-1 complex, enhances cell survival, is required for efficient exit from G2-phase arrest, and stimulates the repair of damaged DNA following ionizing radiation. These data provide in vivo evidence that the human 9-1-1 complex participates in DNA repair in addition to its previously described role in DNA damage sensing.
Collapse
Affiliation(s)
- Patrick D Brandt
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, The University of Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
35
|
Pandita RK, Sharma GG, Laszlo A, Hopkins KM, Davey S, Chakhparonian M, Gupta A, Wellinger RJ, Zhang J, Powell SN, Roti Roti JL, Lieberman HB, Pandita TK. Mammalian Rad9 plays a role in telomere stability, S- and G2-phase-specific cell survival, and homologous recombinational repair. Mol Cell Biol 2006; 26:1850-64. [PMID: 16479004 PMCID: PMC1430264 DOI: 10.1128/mcb.26.5.1850-1864.2006] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The protein products of several rad checkpoint genes of Schizosaccharomyces pombe (rad1+, rad3+, rad9+, rad17+, rad26+, and hus1+) play crucial roles in sensing changes in DNA structure, and several function in the maintenance of telomeres. When the mammalian homologue of S. pombe Rad9 was inactivated, increases in chromosome end-to-end associations and frequency of telomere loss were observed. This telomere instability correlated with enhanced S- and G2-phase-specific cell killing, delayed kinetics of gamma-H2AX focus appearance and disappearance, and reduced chromosomal repair after ionizing radiation (IR) exposure, suggesting that Rad9 plays a role in cell cycle phase-specific DNA damage repair. Furthermore, mammalian Rad9 interacted with Rad51, and inactivation of mammalian Rad9 also resulted in decreased homologous recombinational (HR) repair, which occurs predominantly in the S and G2 phases of the cell cycle. Together, these findings provide evidence of roles for mammalian Rad9 in telomere stability and HR repair as a mechanism for promoting cell survival after IR exposure.
Collapse
Affiliation(s)
- Raj K Pandita
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave., St. Louis, MO 63108, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Maniwa Y, Yoshimura M, Bermudez VP, Okada K, Kanomata N, Ohbayashi C, Nishimura Y, Hayashi Y, Hurwitz J, Okita Y. His239Arg SNP of HRAD9 is associated with lung adenocarcinoma. Cancer 2006; 106:1117-22. [PMID: 16444745 DOI: 10.1002/cncr.21705] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND It was previously reported that a functional human (h) Rad9 protein accumulated in the nuclei of non-small cell lung carcinoma (NSCLC) cells. Those experiments, however, did not examine whether the hRad9 gene was mutated in those cells. The sequence of the HRAD9 gene in NSCLC cells was investigated. METHODS The sequence of the HRAD9 was examined in tumor and peripheral normal lung tissues obtained from 50 lung adenocarcinoma patients during surgery. The expression of its mRNA using reverse transcription polymerase chain reaction (RT-PCR) was also examined. RESULTS No sequence alterations were detected in the HRAD9 gene, which was found to be normally transcribed in surgically resected lung carcinoma cells. However, in eight (16.0%) cases a single nucleotide polymorphism (SNP) was observed at the second position of codon 239 (His/Arg heterozygous variant) of the gene. This frequency was significantly higher than that found in the normal population. CONCLUSIONS Whereas the capacity to produce a functional hRad9 protein was intact in lung adenocarcinoma cells, a nonsynonymous SNP of HRAD9 was detected that might be associated with the development of lung adenocarcinoma.
Collapse
Affiliation(s)
- Yoshimasa Maniwa
- Division of Cardiovascular, Thoracic, and Pediatric Surgery, Kobe University Graduate School of Medicine, Kobe, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Parrilla-Castellar ER, Arlander SJH, Karnitz L. Dial 9-1-1 for DNA damage: the Rad9-Hus1-Rad1 (9-1-1) clamp complex. DNA Repair (Amst) 2005; 3:1009-14. [PMID: 15279787 DOI: 10.1016/j.dnarep.2004.03.032] [Citation(s) in RCA: 235] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genotoxic stress activates checkpoint signaling pathways that block cell cycle progression, trigger apoptosis, and regulate DNA repair. Studies in yeast and humans have shown that Rad9, Hus1, Rad1, and Rad17 play key roles in checkpoint activation. Three of these proteins-Rad9, Hus1, and Rad1-interact in a heterotrimeric complex (dubbed the 9-1-1 complex), which resembles a PCNA-like sliding clamp, whereas Rad17 is part of a clamp-loading complex that is related to the PCNA clamp loader, replication factor-C (RFC). In response to genotoxic damage, the 9-1-1 complex is loaded around DNA by the Rad17-containing clamp loader. The DNA-bound 9-1-1 complex then facilitates ATR-mediated phosphorylation and activation of Chk1, a protein kinase that regulates S-phase progression, G2/M arrest, and replication fork stabilization. In addition to its role in checkpoint activation, accumulating evidence suggests that the 9-1-1 complex also participates in DNA repair. Taken together, these findings suggest that the 9-1-1 clamp is a multifunctional complex that is loaded onto DNA at sites of damage, where it coordinates checkpoint activation and DNA repair.
Collapse
|
38
|
Flatten K, Dai NT, Vroman BT, Loegering D, Erlichman C, Karnitz LM, Kaufmann SH. The role of checkpoint kinase 1 in sensitivity to topoisomerase I poisons. J Biol Chem 2005; 280:14349-55. [PMID: 15699047 DOI: 10.1074/jbc.m411890200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Agents that target topoisomerase I are widely utilized to treat human cancer. Previous studies have indicated that both the ataxia telangiectasia mutated (ATM)/checkpoint kinase (Chk) 2 and ATM- and Rad 3-related (ATR)/Chk1 checkpoint pathways are activated after treatment with these agents. The relative contributions of these two pathways to survival of cells after treatment with topoisomerase I poisons are currently unknown. To address this issue, we assessed the roles of ATR, Chk1, ATM, and Chk2 in cells treated with the topoisomerase I poisons camptothecin and 7-ethyl-10-hydroxycamptothecin (SN-38), the active metabolite of irinotecan. Colony forming assays demonstrated that down-regulation of ATR or Chk1 sensitized cells to SN-38 and camptothecin. In contrast, ATM and Chk2 had minimal effect of sensitivity to SN-38 or camptothecin. Additional experiments demonstrated that the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin, which down-regulates Chk1, also sensitized a variety of human carcinoma cell lines to SN-38. Collectively, these results show that the ATR/Chk1 pathway plays a predominant role in the response to topoisomerase I inhibitors in carcinoma cells and identify a potential approach for enhancing the efficacy of these drugs.
Collapse
Affiliation(s)
- Karen Flatten
- Division of Oncology Research, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Smilenov LB, Lieberman HB, Mitchell SA, Baker RA, Hopkins KM, Hall EJ. Combined Haploinsufficiency for ATM and RAD9 as a Factor in Cell Transformation, Apoptosis, and DNA Lesion Repair Dynamics. Cancer Res 2005. [DOI: 10.1158/0008-5472.933.65.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Loss of function of oncogenes, tumor suppressor genes and DNA damage processing genes has been implicated in the development of many types of cancer, but for the vast majority of cases, there is no link to specific germ line mutations. In the last several years, heterozygosity leading to haploinsufficiency for proteins involved in DNA repair pathways was shown to play a role in genomic instability and carcinogenesis after DNA damage is induced. Because the effect of haploinsufficiency for one protein is relatively small, we hypothesize that predisposition to cancer could be a result of the additive effect of heterozygosity for two or more genes, critical for pathways that control DNA damage signaling, repair or apoptosis. To address this issue, primary mouse cells, haploinsufficient for one or two proteins, ATM and RAD9, related to the cellular response to DNA damage were examined. The results show that cells having low levels of both ATM and RAD9 proteins are more sensitive to transformation by radiation, have different DNA double-strand break repair dynamics and are less apoptotic when compared with wild-type controls or those cells haploinsufficient for only one of these proteins. Our conclusions are that under stress conditions, the efficiency and capacity for DNA repair mediated by the ATM/RAD9 cell signaling network depend on the abundance of both proteins and that, in general, DNA repair network efficiencies are genotype-dependent and can vary within a specific range.
Collapse
Affiliation(s)
- Lubomir B. Smilenov
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Howard B. Lieberman
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Stephen A. Mitchell
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Ronald A. Baker
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Kevin M. Hopkins
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Eric J. Hall
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
40
|
Maniwa Y, Yoshimura M, Bermudez VP, Yuki T, Okada K, Kanomata N, Ohbayashi C, Hayashi Y, Hurwitz J, Okita Y. Accumulation of hRad9 protein in the nuclei of nonsmall cell lung carcinoma cells. Cancer 2005; 103:126-32. [PMID: 15558813 DOI: 10.1002/cncr.20740] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND DNA damage sensor proteins have received much attention as upstream components of the DNA damage checkpoint signaling pathway that are required for cell cycle control and the induction of apoptosis. Deficiencies in these proteins are directly linked to the accumulation of gene mutations, which can induce cellular transformation and result in malignant disease. METHODS Using 48 sets of tumor tissue specimens and peripheral normal lung tissue specimens from 48 patients with nonsmall cell lung carcinoma (NSCLC) who underwent surgery, the authors investigated the expression of hRad9 protein, a member of the human DNA damage sensor family, using immunohistochemical and Western blot analyses. RESULTS Immunohistochemical analysis detected the accumulation of hRad9 in the nuclei of tumor cells in 16 tumor tissue specimens, (33% of tumor tissue specimens examined). Western blot analysis also revealed elevated levels of phosphorylated hRad9 protein in NSCLC cells that was accompanied by the detection of phosphorylated Chk1, a protein kinase that regulates the downstream signaling of the DNA damage checkpoint pathway. Furthermore, strong expression of hRad9 was correlated with an increase in Ki-67 expression index in the tumor cells that were examined. CONCLUSIONS The findings made in the current study suggest that Rad9 expression may play an important role in cell cycle control in NSCLC cells and may influence NSCLC cell phenotype.
Collapse
Affiliation(s)
- Yoshimasa Maniwa
- Division of Cardiovascular, Thoracic, and Pediatric Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Jurvansuu J, Raj K, Stasiak A, Beard P. Viral transport of DNA damage that mimics a stalled replication fork. J Virol 2005; 79:569-80. [PMID: 15596849 PMCID: PMC538728 DOI: 10.1128/jvi.79.1.569-580.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adeno-associated virus type 2 (AAV2) infection incites cells to arrest with 4N DNA content or die if the p53 pathway is defective. This arrest depends on AAV2 DNA, which is single stranded with inverted terminal repeats that serve as primers during viral DNA replication. Here, we show that AAV2 DNA triggers damage signaling that resembles the response to an aberrant cellular DNA replication fork. UV treatment of AAV2 enhances the G2 arrest by generating intrastrand DNA cross-links which persist in infected cells, disrupting viral DNA replication and maintaining the viral DNA in the single-stranded form. In cells, such DNA accumulates into nuclear foci with a signaling apparatus that involves DNA polymerase delta, ATR, TopBP1, RPA, and the Rad9/Rad1/Hus1 complex but not ATM or NBS1. Focus formation and damage signaling strictly depend on ATR and Chk1 functions. Activation of the Chk1 effector kinase leads to the virus-induced G2 arrest. AAV2 provides a novel way to study the cellular response to abnormal DNA replication without damaging cellular DNA. By using the AAV2 system, we show that in human cells activation of phosphorylation of Chk1 depends on TopBP1 and that it is a prerequisite for the appearance of DNA damage foci.
Collapse
Affiliation(s)
- Jaana Jurvansuu
- Swiss Institute for Experimental Cancer Research and National Center of Competence in Research Molecular Oncology, Epalinges, Lausanne, Switzerland
| | | | | | | |
Collapse
|
42
|
Kawabe T. G2 checkpoint abrogation as a cancer specific, cell cycle disruption. ACTA ACUST UNITED AC 2005. [DOI: 10.4993/acrt.13.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Hopkins KM, Auerbach W, Wang XY, Hande MP, Hang H, Wolgemuth DJ, Joyner AL, Lieberman HB. Deletion of mouse rad9 causes abnormal cellular responses to DNA damage, genomic instability, and embryonic lethality. Mol Cell Biol 2004; 24:7235-48. [PMID: 15282322 PMCID: PMC479733 DOI: 10.1128/mcb.24.16.7235-7248.2004] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe rad9 gene promotes cell survival through activation of cell cycle checkpoints induced by DNA damage. Mouse embryonic stem cells with a targeted deletion of Mrad9, the mouse ortholog of this gene, were created to evaluate its function in mammals. Mrad9(-/-) cells demonstrated a marked increase in spontaneous chromosome aberrations and HPRT mutations, indicating a role in the maintenance of genomic integrity. These cells were also extremely sensitive to UV light, gamma rays, and hydroxyurea, and heterozygotes were somewhat sensitive to the last two agents relative to Mrad9(+/+) controls. Mrad9(-/-) cells could initiate but not maintain gamma-ray-induced G(2) delay and retained the ability to delay DNA synthesis rapidly after UV irradiation, suggesting that checkpoint abnormalities contribute little to the radiosensitivity observed. Ectopic expression of Mrad9 or human HRAD9 complemented Mrad9(-/-) cell defects, indicating that the gene has radioresponse and genomic maintenance functions that are evolutionarily conserved. Mrad9(+/-) mice were generated, but heterozygous intercrosses failed to yield Mrad9(-/-) pups, since embryos died at midgestation. Furthermore, Mrad9(-/-) mouse embryo fibroblasts were not viable. These investigations establish Mrad9 as a key mammalian genetic element of pathways that regulate the cellular response to DNA damage, maintenance of genomic integrity, and proper embryonic development.
Collapse
Affiliation(s)
- Kevin M Hopkins
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Dufault VM, Oestreich AJ, Vroman BT, Karnitz LM. Identification and characterization of RAD9B, a paralog of the RAD9 checkpoint gene. Genomics 2004; 82:644-51. [PMID: 14611806 DOI: 10.1016/s0888-7543(03)00200-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
RAD9 is an integral element of the PCNA-like HUS1-RAD1-RAD9 (9-1-1) complex that participates in genotoxin-induced CHK1 activation. We have identified a novel RAD9 paralog, dubbed RAD9B, in humans and mice. RAD9 and RAD9B share extensive amino acid homology throughout their entire sequences (36% identity, 48% similarity). Northern blotting revealed that RAD9B transcripts are highly expressed in human testes, with lower levels found in skeletal muscle. In contrast, RT-PCR analysis and immunoprecipitation demonstrated that RAD9B is also expressed in tumor cells. Like RAD9, RAD9B associates with HUS1, RAD1, and RAD17, suggesting that it is a RAD9 paralog that engages in similar biochemical reactions. In addition, we have also shown that RAD9 and RAD9B interact with the HUS1 paralog, HUS1B. Taken together, these results suggest that these proteins can combinatorially assemble into distinct 9-1-1 clamps that may have distinct biological functions.
Collapse
Affiliation(s)
- Vanessa M Dufault
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
45
|
Yin Y, Zhu A, Jin YJ, Liu YX, Zhang X, Hopkins KM, Lieberman HB. Human RAD9 checkpoint control/proapoptotic protein can activate transcription of p21. Proc Natl Acad Sci U S A 2004; 101:8864-9. [PMID: 15184659 PMCID: PMC428438 DOI: 10.1073/pnas.0403130101] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
When human cells incur DNA damage, two fundamental responses can follow, cell cycle arrest or apoptosis. Human RAD9 (hRAD9) and p53 function in both processes, but the mechanistic relationship between their activities is unknown. p53 mediates checkpoint control at G(1) by transcriptional regulation of p21. In this report, we show that hRAD9, like p53, can also regulate p21 at the transcriptional level. We demonstrate that overexpression of hRAD9 leads to increased p21 RNA and encoded protein levels. The promoter region of p21 fused to a luciferase reporter can be transactivated by either hRAD9 or p53, indicating that hRAD9 regulates the p21 promoter for transcriptional control of expression. Using an electrophoretic mobility-shift assay, we show that hRAD9 specifically binds to a p53-consensus DNA-binding sequence in the p21 promoter. Microarray screening coupled with Northern analysis reveals that hRAD9 regulates the abundance of other messages in addition to p21. Our data reveal a previously undescribed mechanism for regulation of p21 and demonstrate that hRAD9 can control gene transcription. We suggest that hRAD9 and p53 co-regulate p21 to direct cell cycle progression by similar molecular mechanisms. Furthermore, hRAD9 might regulate other cellular processes as well by modulating transcription of multiple down-stream target genes.
Collapse
Affiliation(s)
- Yuxin Yin
- Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K, Linn S. Molecular Mechanisms of Mammalian DNA Repair and the DNA Damage Checkpoints. Annu Rev Biochem 2004; 73:39-85. [PMID: 15189136 DOI: 10.1146/annurev.biochem.73.011303.073723] [Citation(s) in RCA: 2348] [Impact Index Per Article: 117.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA damage is a relatively common event in the life of a cell and may lead to mutation, cancer, and cellular or organismic death. Damage to DNA induces several cellular responses that enable the cell either to eliminate or cope with the damage or to activate a programmed cell death process, presumably to eliminate cells with potentially catastrophic mutations. These DNA damage response reactions include: (a) removal of DNA damage and restoration of the continuity of the DNA duplex; (b) activation of a DNA damage checkpoint, which arrests cell cycle progression so as to allow for repair and prevention of the transmission of damaged or incompletely replicated chromosomes; (c) transcriptional response, which causes changes in the transcription profile that may be beneficial to the cell; and (d) apoptosis, which eliminates heavily damaged or seriously deregulated cells. DNA repair mechanisms include direct repair, base excision repair, nucleotide excision repair, double-strand break repair, and cross-link repair. The DNA damage checkpoints employ damage sensor proteins, such as ATM, ATR, the Rad17-RFC complex, and the 9-1-1 complex, to detect DNA damage and to initiate signal transduction cascades that employ Chk1 and Chk2 Ser/Thr kinases and Cdc25 phosphatases. The signal transducers activate p53 and inactivate cyclin-dependent kinases to inhibit cell cycle progression from G1 to S (the G1/S checkpoint), DNA replication (the intra-S checkpoint), or G2 to mitosis (the G2/M checkpoint). In this review the molecular mechanisms of DNA repair and the DNA damage checkpoints in mammalian cells are analyzed.
Collapse
Affiliation(s)
- Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260, USA.
| | | | | | | |
Collapse
|
47
|
Hirai I, Sasaki T, Wang HG. Human hRad1 but not hRad9 protects hHus1 from ubiquitin–proteasomal degradation. Oncogene 2004; 23:5124-30. [PMID: 15122316 DOI: 10.1038/sj.onc.1207658] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Three of the Rad family proteins, Rad9, Rad1, and Hus1, can interact with each other and form a heterotrimeric complex that is thought to play a role in the sensing step of the DNA integrity checkpoint pathways, but the nature of the Rad9-Rad1-Hus1 complex assembly remains enigmatic. Here, we demonstrate that the human hRad1 protein plays a significant role as molecular chaperone in the process of the hRad9-hRad1-hHus1 heterotrimeric complex formation. In contrast to hRad1, hHus1 is an unstable protein that is actively degraded via the ubiquitin-proteasome pathway. We show that treating cells with proteasome-specific inhibitors stabilizes hHus1 expression. Moreover, hRad1 can associate with hHus1 in the absence of hRad9 and protect hHus1 from ubiquitination and degradation in the cytoplasm. Importantly, genotoxic stress induces hRad1 expression and stabilizes the hHus1 protein. Taken together, these findings suggest a novel role of hRad1 as a potential intrinsic chaperone in the stabilization of hHus1 for the hRad9-hRad1-hHus1 checkpoint complex formation.
Collapse
Affiliation(s)
- Itaru Hirai
- Drug Discovery Program, H Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | | | |
Collapse
|
48
|
Nabetani A, Yokoyama O, Ishikawa F. Localization of hRad9, hHus1, hRad1, and hRad17 and caffeine-sensitive DNA replication at the alternative lengthening of telomeres-associated promyelocytic leukemia body. J Biol Chem 2004; 279:25849-57. [PMID: 15075340 DOI: 10.1074/jbc.m312652200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Telomere maintenance is essential for continued cell proliferation. Although most cells accomplish this by activating telomerase, a subset of immortalized tumors and cell lines do so in a telomerase-independent manner, a process called alternative lengthening of telomeres (ALT). DNA recombination has been shown to be involved in ALT, but the precise mechanisms remain unknown. A fraction of cells in a given ALT population contain a unique nuclear structure called APB (ALT-associated promyelocytic leukemia (PML) body), which is characterized by the presence of telomeric DNA in the PML body. Here we describe that hRad9, hHus1, and hRad1, which form a DNA clamp complex that is associated with DNA damage, as well as its clamp loader, hRad17, are constitutive components of APB. Phosphorylated histone H2AX (gamma-H2AX), a molecular marker of double-strand breaks (DSBs), also colocalizes with some APBs. The results suggest that telomeric DNAs at APBs are recognized as DSBs. PML staining and fluorescence in situ hybridization analyses of mitotic ALT cells revealed that telomeric DNAs present at APBs are of both extrachromosomal and native telomere origins. Furthermore, we demonstrated that DNA synthesis occurs at APBs and is significantly inhibited by caffeine, an inhibitor of phosphatidylinositol 3-kinase-related kinases. Taken together, we suggest that telomeric DNAs at APBs are recognized and processed as DSBs, leading to telomeric DNA synthesis and thereby contributing to telomere maintenance in ALT cells.
Collapse
Affiliation(s)
- Akira Nabetani
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Kyoto 606-8502
| | | | | |
Collapse
|
49
|
Abstract
Abstract
Many conventional anticancer treatments kill cells irrespective of whether they are normal or cancerous, so patients suffer from adverse side effects due to the loss of healthy cells. Anticancer insights derived from cell cycle research has given birth to the idea of cell cycle G2 checkpoint abrogation as a cancer cell specific therapy, based on the discovery that many cancer cells have a defective G1 checkpoint resulting in a dependence on the G2 checkpoint during cell replication.
Damaged DNA in humans is detected by sensor proteins (such as hHUS1, hRAD1, hRAD9, hRAD17, and hRAD26) that transmit a signal via ATR to CHK1, or by another sensor complex (that may include γH2AX, 53BP1, BRCA1, NBS1, hMRE11, and hRAD50), the signal of which is relayed by ATM to CHK2. Most of the damage signals originated by the sensor complexes for the G2 checkpoint are conducted to CDC25C, the activity of which is modulated by 14-3-3. There are also less extensively explored pathways involving p53, p38, PCNA, HDAC, PP2A, PLK1, WEE1, CDC25B, and CDC25A.
This review will examine the available inhibitors of CHK1 (Staurosporin, UCN-01, Go6976, SB-218078, ICP-1, and CEP-3891), both CHK1 and CHK2 (TAT-S216A and debromohymenialdisine), CHK2 (CEP-6367), WEE1 (PD0166285), and PP2A (okadaic acid and fostriecin), as well as the unknown checkpoint inhibitors 13-hydroxy-15-ozoapathin and the isogranulatimides. Among these targets, CHK1 seems to be the most suitable target for therapeutic G2 abrogation to date, although an unexplored target such as 14-3-3 or the strategy of targeting multiple proteins at once may be of interest in the future.
Collapse
|
50
|
Kobayashi M, Hirano A, Kumano T, Xiang SL, Mihara K, Haseda Y, Matsui O, Shimizu H, Yamamoto KI. Critical role for chicken Rad17 and Rad9 in the cellular response to DNA damage and stalled DNA replication. Genes Cells 2004; 9:291-303. [PMID: 15066121 DOI: 10.1111/j.1356-9597.2004.00728.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Rad17-replication factor C (Rad17-RFC) and Rad9-Rad1-Hus1 complexes are thought to function in the early phase of cell-cycle checkpoint control as sensors for genome damage and genome replication errors. However, genetic analysis of the functions of these complexes in vertebrates is complicated by the lethality of these gene disruptions in embryonic mouse cells. We disrupted the Rad17 and Rad9 loci by gene targeting in the chicken B lymphocyte line DT40. Rad17-/- and Rad9-/- DT40 cells are viable, and are highly sensitive to UV irradiation, alkylating agents, and DNA replication inhibitors, such as hydroxyurea. We further found that Rad17-/- and Rad9-/- but not ATM-/- cells are defective in S-phase DNA damage checkpoint controls and in the cellular response to stalled DNA replication. These results indicate a critical role for chicken Rad17 and Rad9 in the cellular response to stalled DNA replication and DNA damage.
Collapse
Affiliation(s)
- Masahiko Kobayashi
- Department of Molecular Pathology, Cancer Research Institute, Kanazawa University, Ishikawa 920-0934, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|