1
|
Expression Characterization of AtPDI11 and Functional Analysis of AtPDI11 D Domain in Oxidative Protein Folding. Int J Mol Sci 2022; 23:ijms23031409. [PMID: 35163331 PMCID: PMC8836223 DOI: 10.3390/ijms23031409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/10/2022] Open
Abstract
The formation and isomerization of disulfide bonds mediated by protein disulfide isomerase (PDI) in the endoplasmic reticulum (ER) is of fundamental importance in eukaryotes. Canonical PDI structure comprises four domains with the order of a-b-b′-a′. In Arabidopsis thaliana, the PDI-S subgroup contains only one member, AtPDI11, with an a-a′-D organization, which has no orthologs in mammals or yeast. However, the expression pattern of AtPDI11 and the functioning mechanism of AtPDI11 D domain are currently unclear. In this work, we found that PDI-S is evolutionarily conserved between land plants and algal organisms. AtPDI11 is expressed in various tissues and its induction by ER stress is disrupted in bzip28/60 and ire1a/b mutants that are null mutants of key components in the unfolded protein response (UPR) signal transduction pathway, suggesting that the induction of AtPDI11 by ER stress is mediated by the UPR signaling pathway. Furthermore, enzymatic activity assays and genetic evidence showed that the D domain is crucially important for the activities of AtPDI11. Overall, this work will help to further understand the working mechanism of AtPDI11 in catalyzing disulfide formation in plants.
Collapse
|
2
|
Kozlov G, Gehring K. Calnexin cycle - structural features of the ER chaperone system. FEBS J 2020; 287:4322-4340. [PMID: 32285592 PMCID: PMC7687155 DOI: 10.1111/febs.15330] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/31/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER) is the major folding compartment for secreted and membrane proteins and is the site of a specific chaperone system, the calnexin cycle, for folding N-glycosylated proteins. Recent structures of components of the calnexin cycle have deepened our understanding of quality control mechanisms and protein folding pathways in the ER. In the calnexin cycle, proteins carrying monoglucosylated glycans bind to the lectin chaperones calnexin and calreticulin, which recruit a variety of function-specific chaperones to mediate protein disulfide formation, proline isomerization, and general protein folding. Upon trimming by glucosidase II, the glycan without an inner glucose residue is no longer able to bind to the lectin chaperones. For proteins that have not yet folded properly, the enzyme UDP-glucose:glycoprotein glucosyltransferase (UGGT) acts as a checkpoint by adding a glucose back to the N-glycan. This allows the misfolded proteins to re-associate with calnexin and calreticulin for additional rounds of chaperone-mediated refolding and prevents them from exiting the ERs. Here, we review progress in structural studies of the calnexin cycle, which reveal common features of how lectin chaperones recruit function-specific chaperones and how UGGT recognizes misfolded proteins.
Collapse
Affiliation(s)
- Guennadi Kozlov
- From the Department of Biochemistry & Centre for Structural BiologyMcGill UniversityMontréalQCCanada
| | - Kalle Gehring
- From the Department of Biochemistry & Centre for Structural BiologyMcGill UniversityMontréalQCCanada
| |
Collapse
|
3
|
Abstract
ABSTRACT
For most of the proteins synthesized in the endoplasmic reticulum (ER), disulfide bond formation accompanies protein folding in a process called oxidative folding. Oxidative folding is catalyzed by a number of enzymes, including the family of protein disulfide isomerases (PDIs), as well as other proteins that supply oxidizing equivalents to PDI family proteins, like ER oxidoreductin 1 (Ero1). Oxidative protein folding in the ER is a basic vital function, and understanding its molecular mechanism is critical for the application of plants as protein production tools. Here, I review the recent research and progress related to the enzymes involved in oxidative folding in the plant ER. Firstly, nine groups of plant PDI family proteins are introduced. Next, the enzymatic properties of plant Ero1 are described. Finally, the cooperative folding by multiple PDI family proteins and Ero1 is described.
Collapse
Affiliation(s)
- Reiko Urade
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, Japan
| |
Collapse
|
4
|
IreA Controls Endoplasmic Reticulum Stress-Induced Autophagy and Survival through Homeostasis Recovery. Mol Cell Biol 2018; 38:MCB.00054-18. [PMID: 29632077 DOI: 10.1128/mcb.00054-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/01/2018] [Indexed: 02/06/2023] Open
Abstract
The unfolded protein response (UPR) is an adaptive pathway that restores cellular homeostasis after endoplasmic reticulum (ER) stress. The ER-resident kinase/RNase Ire1 is the only UPR sensor conserved during evolution. Autophagy, a lysosomal degradative pathway, also contributes to the recovery of cell homeostasis after ER stress, but the interplay between these two pathways is still poorly understood. We describe the Dictyostelium discoideum ER stress response and characterize its single bona fide Ire1 orthologue, IreA. We found that tunicamycin (TN) triggers a gene-expression reprogramming that increases the protein folding capacity of the ER and alleviates ER protein load. Further, IreA is required for cell survival after TN-induced ER stress and is responsible for nearly 40% of the transcriptional changes induced by TN. The response of Dictyostelium cells to ER stress involves the combined activation of an IreA-dependent gene expression program and the autophagy pathway. These two pathways are independently activated in response to ER stress but, interestingly, autophagy requires IreA at a later stage for proper autophagosome formation. We propose that unresolved ER stress in cells lacking IreA causes structural alterations of the ER, leading to a late-stage blockade of autophagy clearance. This unexpected functional link may critically affect eukaryotic cell survival under ER stress.
Collapse
|
5
|
Unfolding the Endoplasmic Reticulum of a Social Amoeba: Dictyostelium discoideum as a New Model for the Study of Endoplasmic Reticulum Stress. Cells 2018; 7:cells7060056. [PMID: 29890774 PMCID: PMC6025073 DOI: 10.3390/cells7060056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/28/2018] [Accepted: 06/05/2018] [Indexed: 01/19/2023] Open
Abstract
The endoplasmic reticulum (ER) is a membranous network with an intricate dynamic architecture necessary for various essential cellular processes. Nearly one third of the proteins trafficking through the secretory pathway are folded and matured in the ER. Additionally, it acts as calcium storage, and it is a main source for lipid biosynthesis. The ER is highly connected with other organelles through regions of membrane apposition that allow organelle remodeling, as well as lipid and calcium traffic. Cells are under constant changes due to metabolic requirements and environmental conditions that challenge the ER network’s maintenance. The unfolded protein response (UPR) is a signaling pathway that restores homeostasis of this intracellular compartment upon ER stress conditions by reducing the load of proteins, and by increasing the processes of protein folding and degradation. Significant progress on the study of the mechanisms that restore ER homeostasis was achieved using model organisms such as yeast, Arabidopsis, and mammalian cells. In this review, we address the current knowledge on ER architecture and ER stress response in Dictyostelium discoideum. This social amoeba alternates between unicellular and multicellular phases and is recognized as a valuable biomedical model organism and an alternative to yeast, particularly for the presence of traits conserved in animal cells that were lost in fungi.
Collapse
|
6
|
Kozlov G, Muñoz-Escobar J, Castro K, Gehring K. Mapping the ER Interactome: The P Domains of Calnexin and Calreticulin as Plurivalent Adapters for Foldases and Chaperones. Structure 2017; 25:1415-1422.e3. [DOI: 10.1016/j.str.2017.07.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/09/2017] [Accepted: 07/25/2017] [Indexed: 10/18/2022]
|
7
|
Barisch C, Soldati T. Mycobacterium marinum Degrades Both Triacylglycerols and Phospholipids from Its Dictyostelium Host to Synthesise Its Own Triacylglycerols and Generate Lipid Inclusions. PLoS Pathog 2017; 13:e1006095. [PMID: 28103313 PMCID: PMC5245797 DOI: 10.1371/journal.ppat.1006095] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/28/2016] [Indexed: 12/21/2022] Open
Abstract
During a tuberculosis infection and inside lipid-laden foamy macrophages, fatty acids (FAs) and sterols are the major energy and carbon source for Mycobacterium tuberculosis. Mycobacteria can be found both inside a vacuole and the cytosol, but how this impacts their access to lipids is not well appreciated. Lipid droplets (LDs) store FAs in form of triacylglycerols (TAGs) and are energy reservoirs of prokaryotes and eukaryotes. Using the Dictyostelium discoideum/Mycobacterium marinum infection model we showed that M. marinum accesses host LDs to build up its own intracytosolic lipid inclusions (ILIs). Here, we show that host LDs aggregate at regions of the bacteria that become exposed to the cytosol, and appear to coalesce on their hydrophobic surface leading to a transfer of diacylglycerol O-acyltransferase 2 (Dgat2)-GFP onto the bacteria. Dictyostelium knockout mutants for both Dgat enzymes are unable to generate LDs. Instead, the excess of exogenous FAs is esterified predominantly into phospholipids, inducing uncontrolled proliferation of the endoplasmic reticulum (ER). Strikingly, in absence of host LDs, M. marinum alternatively exploits these phospholipids, resulting in rapid reversal of ER-proliferation. In addition, the bacteria are unable to restrict their acquisition of lipids from the dgat1&2 double knockout leading to vast accumulation of ILIs. Recent data indicate that the presence of ILIs is one of the characteristics of dormant mycobacteria. During Dictyostelium infection, ILI formation in M. marinum is not accompanied by a significant change in intracellular growth and a reduction in metabolic activity, thus providing evidence that storage of neutral lipids does not necessarily induce dormancy.
Collapse
Affiliation(s)
- Caroline Barisch
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, Geneva, Switzerland
- * E-mail:
| | - Thierry Soldati
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, Geneva, Switzerland
| |
Collapse
|
8
|
Liu I, Bogacz M, Schaffroth C, Dirdjaja N, Krauth-Siegel RL. Catalytic properties, localization, and in vivo role of Px IV, a novel tryparedoxin peroxidase of Trypanosoma brucei. Mol Biochem Parasitol 2016; 207:84-8. [PMID: 27262262 DOI: 10.1016/j.molbiopara.2016.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 10/21/2022]
Abstract
Px IV is a distant relative of the known glutathione peroxidase-type enzymes of African trypanosomes. Immunofluorescence microscopy of bloodstream cells expressing C-terminally Myc6-tagged Px IV revealed a mitochondrial localization. Recombinant Px IV possesses very low activity as glutathione peroxidase but catalyzes the trypanothione/tryparedoxin-dependent reduction of hydrogen peroxide and, even more efficiently, of arachidonic acid hydroperoxide. Neither overexpression in bloodstream cells nor the deletion of both alleles in bloodstream or procyclic parasites affected the in vitro proliferation. Trypanosoma brucei Px IV shares 58% of all residues with TcGPXII. The orthologous enzymes have in common their substrate preference for fatty acid hydroperoxides. However, the T. cruzi protein has been reported to be localized in the endoplasmic reticulum and to be specific for glutathione as reducing agent. Taken together, our data show that Px IV is a low abundant tryparedoxin peroxidase of T. brucei that is not essential, at least under culture conditions.
Collapse
Affiliation(s)
- Ilon Liu
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Marta Bogacz
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Corinna Schaffroth
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Natalie Dirdjaja
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - R Luise Krauth-Siegel
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| |
Collapse
|
9
|
Lorenzon-Ojea AR, Caldeira W, Ribeiro AF, Fisher SJ, Guzzo CR, Bevilacqua E. Stromal cell derived factor-2 (Sdf2): A novel protein expressed in mouse. Int J Biochem Cell Biol 2014; 53:262-70. [DOI: 10.1016/j.biocel.2014.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 05/01/2014] [Accepted: 05/19/2014] [Indexed: 10/25/2022]
|
10
|
Abstract
Protein disulfide isomerase (PDI), ERp5, and ERp57, among perhaps other thiol isomerases, are important for the initiation of thrombus formation. Using the laser injury thrombosis model in mice to induce in vivo arterial thrombus formation, it was shown that thrombus formation is associated with PDI secretion by platelets, that inhibition of PDI blocked platelet thrombus formation and fibrin generation, and that endothelial cell activation leads to PDI secretion. Similar results using this and other thrombosis models in mice have demonstrated the importance of ERp5 and ERp57 in the initiation of thrombus formation. The integrins, αIIbβ3 and αVβ3, play a key role in this process and interact directly with PDI, ERp5, and ERp57. The mechanism by which thiol isomerases participate in thrombus generation is being evaluated using trapping mutant forms to identify substrates of thiol isomerases that participate in the network pathways linking thiol isomerases, platelet receptor activation, and fibrin generation. PDI as an antithrombotic target is being explored using isoquercetin and quercetin 3-rutinoside, inhibitors of PDI identified by high throughput screening. Regulation of thiol isomerase expression, analysis of the storage, and secretion of thiol isomerases and determination of the electron transfer pathway are key issues to understanding this newly discovered mechanism of regulation of the initiation of thrombus formation.
Collapse
Affiliation(s)
- Bruce Furie
- From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | | |
Collapse
|
11
|
Molecular characterization and expression profiling of the protein disulfide isomerase gene family in Brachypodium distachyon L. PLoS One 2014; 9:e94704. [PMID: 24747843 PMCID: PMC3991636 DOI: 10.1371/journal.pone.0094704] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/17/2014] [Indexed: 01/09/2023] Open
Abstract
Protein disulfide isomerases (PDI) are involved in catalyzing protein disulfide bonding and isomerization in the endoplasmic reticulum and functions as a chaperone to inhibit the aggregation of misfolded proteins. Brachypodium distachyon is a widely used model plant for temperate grass species such as wheat and barley. In this work, we report the first molecular characterization, phylogenies, and expression profiles of PDI and PDI-like (PDIL) genes in B. distachyon in different tissues under various abiotic stresses. Eleven PDI and PDIL genes in the B. distachyon genome by in silico identification were evenly distributed across all five chromosomes. The plant PDI family has three conserved motifs that are involved in catalyzing protein disulfide bonding and isomerization, but a different exon/intron structural organization showed a high degree of structural differentiation. Two pairs of genes (BdPDIL4-1 and BdPDIL4-2; BdPDIL7-1 and BdPDIL7-2) contained segmental duplications, indicating each pair originated from one progenitor. Promoter analysis showed that Brachypodium PDI family members contained important cis-acting regulatory elements involved in seed storage protein synthesis and diverse stress response. All Brachypodium PDI genes investigated were ubiquitously expressed in different organs, but differentiation in expression levels among different genes and organs was clear. BdPDIL1-1 and BdPDIL5-1 were expressed abundantly in developing grains, suggesting that they have important roles in synthesis and accumulation of seed storage proteins. Diverse treatments (drought, salt, ABA, and H2O2) induced up- and down-regulated expression of Brachypodium PDI genes in seedling leaves. Interestingly, BdPDIL1-1 displayed significantly up-regulated expression following all abiotic stress treatments, indicating that it could be involved in multiple stress responses. Our results provide new insights into the structural and functional characteristics of the plant PDI gene family.
Collapse
|
12
|
O'Connor TJ, Boyd D, Dorer MS, Isberg RR. Aggravating genetic interactions allow a solution to redundancy in a bacterial pathogen. Science 2012; 338:1440-4. [PMID: 23239729 DOI: 10.1126/science.1229556] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interactions between hosts and pathogens are complex, so understanding the events that govern these interactions requires the analysis of molecular mechanisms operating in both organisms. Many pathogens use multiple strategies to target a single event in the disease process, confounding the identification of the important determinants of virulence. We developed a genetic screening strategy called insertional mutagenesis and depletion (iMAD) that combines bacterial mutagenesis and RNA interference, to systematically dissect the interplay between a pathogen and its host. We used this technique to resolve the network of proteins secreted by the bacterium Legionella pneumophila to promote intracellular growth, a critical determinant of pathogenicity of this organism. This strategy is broadly applicable, allowing the dissection of any interface between two organisms involving numerous interactions.
Collapse
Affiliation(s)
- Tamara J O'Connor
- Howard Hughes Medical Institute and Department of Molecular Microbiology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
13
|
In silico identification and analysis of the protein disulphide isomerases in wheat and rice. Biologia (Bratisl) 2012. [DOI: 10.2478/s11756-011-0164-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
d'Aloisio E, Paolacci AR, Dhanapal AP, Tanzarella OA, Porceddu E, Ciaffi M. The Protein Disulfide Isomerase gene family in bread wheat (T. aestivum L.). BMC PLANT BIOLOGY 2010; 10:101. [PMID: 20525253 PMCID: PMC3017771 DOI: 10.1186/1471-2229-10-101] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Accepted: 06/03/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND The Protein Disulfide Isomerase (PDI) gene family encodes several PDI and PDI-like proteins containing thioredoxin domains and controlling diversified metabolic functions, including disulfide bond formation and isomerisation during protein folding. Genomic, cDNA and promoter sequences of the three homologous wheat genes encoding the "typical" PDI had been cloned and characterized in a previous work. The purpose of present research was the cloning and characterization of the complete set of genes encoding PDI and PDI like proteins in bread wheat (Triticum aestivum cv Chinese Spring) and the comparison of their sequence, structure and expression with homologous genes from other plant species. RESULTS Eight new non-homologous wheat genes were cloned and characterized. The nine PDI and PDI-like sequences of wheat were located in chromosome regions syntenic to those in rice and assigned to eight plant phylogenetic groups. The nine wheat genes differed in their sequences, genomic organization as well as in the domain composition and architecture of their deduced proteins; conversely each of them showed high structural conservation with genes from other plant species in the same phylogenetic group. The extensive quantitative RT-PCR analysis of the nine genes in a set of 23 wheat samples, including tissues and developmental stages, showed their constitutive, even though highly variable expression. CONCLUSIONS The nine wheat genes showed high diversity, while the members of each phylogenetic group were highly conserved even between taxonomically distant plant species like the moss Physcomitrella patens. Although constitutively expressed the nine wheat genes were characterized by different expression profiles reflecting their different genomic organization, protein domain architecture and probably promoter sequences; the high conservation among species indicated the ancient origin and diversification of the still evolving gene family. The comprehensive structural and expression characterization of the complete set of PDI and PDI-like wheat genes represents a basis for the functional characterization of this gene family in the hexaploid context of bread wheat.
Collapse
Affiliation(s)
- Elisa d'Aloisio
- Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Anna R Paolacci
- Dipartimento di Agrobiologia e Agrochimica, Università della Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy
| | - Arun P Dhanapal
- Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Oronzo A Tanzarella
- Dipartimento di Agrobiologia e Agrochimica, Università della Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy
| | - Enrico Porceddu
- Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Dipartimento di Agrobiologia e Agrochimica, Università della Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy
| | - Mario Ciaffi
- Dipartimento di Agrobiologia e Agrochimica, Università della Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy
| |
Collapse
|
15
|
Sheppard V, Poulsen N, Kröger N. Characterization of an endoplasmic reticulum-associated silaffin kinase from the diatom Thalassiosira pseudonana. J Biol Chem 2010; 285:1166-76. [PMID: 19889629 PMCID: PMC2801245 DOI: 10.1074/jbc.m109.039529] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 11/02/2009] [Indexed: 11/06/2022] Open
Abstract
The formation of SiO(2)-based cell walls by diatoms (a large group of unicellular microalgae) is a well established model system for the study of molecular mechanisms of biological mineral morphogenesis (biomineralization). Diatom biomineralization involves highly phosphorylated proteins (silaffins and silacidins), analogous to other biomineralization systems, which also depend on diverse sets of phosphoproteins (e.g. mammalian teeth and bone, mollusk shells, and sponge silica). The phosphate moieties on biomineralization proteins play an essential role in mineral formation, yet the kinases catalyzing the phosphorylation of these proteins have remained poorly characterized. Recent functional genomics studies on the diatom Thalassiosira pseudonana have revealed >100 proteins potentially involved in diatom silica formation. Here we have characterized the biochemical properties and biological function of one of these proteins, tpSTK1. Multiple tpSTK1-like proteins are encoded in diatom genomes, all of which exhibit low but significant sequence similarity to kinases from other organisms. We show that tpSTK1 has serine/threonine kinase activity capable of phosphorylating silaffins but not silacidins. Cell biological and biochemical analysis demonstrated that tpSTK1 is an abundant component of the lumen of the endoplasmic reticulum. The present study provides the first molecular structure of a kinase that appears to catalyze phosphorylation of biomineral forming proteins in vivo.
Collapse
Affiliation(s)
| | | | - Nils Kröger
- From the Schools of Chemistry and Biochemistry
- Materials Science and Engineering, and
- Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
| |
Collapse
|
16
|
Stress-induced expression of protein disulfide isomerase associated 3 (PDIA3) in Atlantic salmon (Salmo salar L.). Comp Biochem Physiol B Biochem Mol Biol 2009; 154:435-42. [DOI: 10.1016/j.cbpb.2009.08.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 08/26/2009] [Accepted: 08/30/2009] [Indexed: 12/24/2022]
|
17
|
Lee S, Han JW, Leeper L, Gruver JS, Chung CY. Regulation of the formation and trafficking of vesicles from Golgi by PCH family proteins during chemotaxis. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:1199-209. [PMID: 19409937 PMCID: PMC2703453 DOI: 10.1016/j.bbamcr.2009.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 04/22/2009] [Accepted: 04/24/2009] [Indexed: 12/14/2022]
Abstract
Previous study demonstrated that WASP localizes on vesicles during Dictyostelium chemotaxis and these vesicles appear to be preferentially distributed at the leading and trailing edge of migrating cells. In this study, we have examined the role of PCH family proteins, Nwk/Bzz1p-like protein (NLP) and Syndapin-like protein (SLP), in the regulation of the formation and trafficking of WASP-vesicles during chemotaxis. NLP and SLP appear to be functionally redundant and deletion of both nlp and slp genes causes the loss of polarized F-actin organization and significant defects in chemotaxis. WASP and NLP are colocalized on vesicles and interactions between two molecules via the SH3 domain of NLP/SLP and the proline-rich repeats of WASP are required for vesicle formation from Golgi. Microtubules are required for polarized trafficking of these vesicles as vesicles showing high directed mobility are absent in cells treated with nocodazole. Our results suggest that interaction of WASP with NLP/SLP is required for the formation and trafficking of vesicles from Golgi to the membrane, which might play a central role in the establishment of cell polarity during chemotaxis.
Collapse
Affiliation(s)
- S. Lee
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600
| | - J. W. Han
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600
| | - L. Leeper
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600
| | - J. S. Gruver
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600
| | - C. Y. Chung
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600
| |
Collapse
|
18
|
Wang H, Boavida LC, Ron M, McCormick S. Truncation of a protein disulfide isomerase, PDIL2-1, delays embryo sac maturation and disrupts pollen tube guidance in Arabidopsis thaliana. THE PLANT CELL 2008; 20:3300-11. [PMID: 19050167 PMCID: PMC2630445 DOI: 10.1105/tpc.108.062919] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Pollen tubes must navigate through different female tissues to deliver sperm to the embryo sac for fertilization. Protein disulfide isomerases play important roles in the maturation of secreted or plasma membrane proteins. Here, we show that certain T-DNA insertions in Arabidopsis thaliana PDIL2-1, a protein disulfide isomerase (PDI), have reduced seed set, due to delays in embryo sac maturation. Reciprocal crosses indicate that these mutations acted sporophytically, and aniline blue staining and scanning electron microscopy showed that funicular and micropylar pollen tube guidance were disrupted. A PDIL2-1-yellow fluorescent protein fusion was mainly localized in the endoplasmic reticulum and was expressed in all tissues examined. In ovules, expression in integument tissues was much higher in the micropylar region in later developmental stages, but there was no expression in embryo sacs. We show that reduced seed set occurred when another copy of full-length PDIL2-1 or when enzymatically active truncated versions were expressed, but not when an enzymatically inactive version was expressed, indicating that these T-DNA insertion lines are gain-of-function mutants. Our results suggest that these truncated versions of PDIL2-1 function in sporophytic tissues to affect ovule structure and impede embryo sac development, thereby disrupting pollen tube guidance.
Collapse
Affiliation(s)
- Huanzhong Wang
- Plant Gene Expression Center and Department of Plant and Microbial Biology, U.S. Department of Agriculture/Agricultural Research Service and University of California at Berkeley, Albany, California 94710, USA
| | | | | | | |
Collapse
|
19
|
Ramos MA, Mares RE, Magaña PD, Ortega JE, Cornejo-Bravo JM. In silico identification of the protein disulfide isomerase family from a protozoan parasite. Comput Biol Chem 2008; 32:66-70. [DOI: 10.1016/j.compbiolchem.2007.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 09/01/2007] [Accepted: 09/09/2007] [Indexed: 10/22/2022]
|
20
|
Stehle F, Stubbs MT, Strack D, Milkowski C. Heterologous expression of a serine carboxypeptidase-like acyltransferase and characterization of the kinetic mechanism. FEBS J 2008; 275:775-87. [PMID: 18190530 DOI: 10.1111/j.1742-4658.2007.06244.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In plant secondary metabolism, beta-acetal ester-dependent acyltransferases, such as the 1-O-sinapoyl-beta-glucose:l-malate sinapoyltransferase (SMT; EC 2.3.1.92), are homologous to serine carboxypeptidases. Mutant analyses and modeling of Arabidopsis SMT (AtSMT) have predicted amino acid residues involved in substrate recognition and catalysis, confirming the main functional elements conserved within the serine carboxypeptidase protein family. However, the functional shift from hydrolytic to acyltransferase activity and structure-function relationship of AtSMT remain obscure. To address these questions, a heterologous expression system for AtSMT has been developed that relies on Saccharomyces cerevisiae and an episomal leu2-d vector. Codon usage adaptation of AtSMT cDNA raised the produced SMT activity by a factor of approximately three. N-terminal fusion to the leader peptide from yeast proteinase A and transfer of this expression cassette to a high copy vector led to further increase in SMT expression by factors of 12 and 42, respectively. Finally, upscaling the biomass production by fermenter cultivation lead to another 90-fold increase, resulting in an overall 3900-fold activity compared to the AtSMT cDNA of plant origin. Detailed kinetic analyses of the recombinant protein indicated a random sequential bi-bi mechanism for the SMT-catalyzed transacylation, in contrast to a double displacement (ping-pong) mechanism, characteristic of serine carboxypeptidases.
Collapse
Affiliation(s)
- Felix Stehle
- Department of Secondary Metabolism, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany
| | | | | | | |
Collapse
|
21
|
Lippert U, Diao D, Barak NN, Ferrari DM. Conserved Structural and Functional Properties of D-domain Containing Redox-active and -inactive Protein Disulfide Isomerase-related Protein Chaperones. J Biol Chem 2007; 282:11213-20. [PMID: 17296603 DOI: 10.1074/jbc.m604440200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structure and mode of binding of the endoplasmic reticulum protein disulfide isomerase-related proteins to their substrates is currently a focus of intensive research. We have recently determined the crystal structure of the Drosophila melanogaster protein disulfide isomerase-related protein Wind and have described two essential substrate binding sites within the protein, one within the thioredoxin b-domain and another within the C-terminal D-domain. Although a mammalian ortholog of Wind (ERp29/28) is known, conflicting interpretations of its structure and putative function have been postulated. Here, we have provided evidence indicating that ERp29 is indeed similar in both structure and function to its Drosophila ortholog. Using a site-directed mutagenesis approach, we have demonstrated that homodimerization of the b-domains is significantly reduced in vitro upon replacement of key residues at the predicted dimerization interface. Investigation of Wind-ERp29 fusion constructs showed that mutants of the D-domain of ERp29 prevent transport of a substrate protein (Pipe) in a manner consistent with the presence of a discrete, conserved peptide binding site in the D-domain. Finally, we have highlighted the general applicability of these findings by showing that the D-domain of a redox-active disulfide isomerase, from the slime mold Dictyostelium discoideum, can also functionally replace the Wind D-domain in vivo.
Collapse
Affiliation(s)
- Undine Lippert
- Department of Neurobiology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| | | | | | | |
Collapse
|
22
|
Wadahama H, Kamauchi S, Ishimoto M, Kawada T, Urade R. Protein disulfide isomerase family proteins involved in soybean protein biogenesis. FEBS J 2007; 274:687-703. [PMID: 17181539 DOI: 10.1111/j.1742-4658.2006.05613.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein disulfide isomerase family proteins are known to play important roles in the folding of nascent polypeptides and the formation of disulfide bonds in the endoplasmic reticulum. In this study, we cloned two similar protein disulfide isomerase family genes from soybean leaf (Glycine max L. Merrill cv. Jack) mRNA by RT-PCR using forward and reverse primers designed from the expressed sequence tag clone sequences. The cDNA encodes a protein of either 364 or 362 amino acids, named GmPDIS-1 or GmPDIS-2, respectively. The nucleotide and amino acid sequence identities of GmPDIS-1 and GmPDIS-2 were 68% and 74%, respectively. Both proteins lack the C-terminal, endoplasmic reticulum-retrieval signal, KDEL. Recombinant proteins of both GmPDIS-1 and GmPDIS-2 were expressed in Escherichia coli as soluble folded proteins that showed both an oxidative refolding activity of denatured ribonuclease A and a chaperone activity. Their domain structures were identified as containing two thioredoxin-like domains, a and a', and an ERp29c domain by peptide mapping with either trypsin or V8 protease. In cotyledon cells, both proteins were shown to distribute to the endoplasmic reticulum and protein storage vacuoles by confocal microscopy. Data from coimmunoprecipitation and crosslinking experiments suggested that GmPDIS-1 associates with proglycinin, a precursor of the seed storage protein glycinin, in the cotyledon. Levels of GmPDIS-1, but not of GmPDIS-2, were increased in cotyledons, where glycinin accumulates during seed development. GmPDIS-1, but not GmPDIS-2, was induced under endoplasmic reticulum-stress conditions.
Collapse
|
23
|
Abstract
Oxidative folding in the endoplasmic reticulum is accomplished by a group of oxidoreductases where the protein disulfide isomerase (PDI) plays a key role. Structurally, redox-active PDI domains, like many other enzymes utilizing cysteine chemistry, adopt characteristic thioredoxin folds. However, this structural unit is not necessarily associated with the redox function and the current review focuses on the interesting example of a loss-of-function PDI-like protein from the endoplasmic reticulum, ERp29. ERp29 shares a common predecessor with PDI; however in the course of divergent evolution it has lost a hallmark active site motif of redox enzymes but retained the characteristic structural fold in one of its domains. Although the functional characterization of ERp29 is far from completion, all available data point to its important role in the early secretory pathway and allow tentative categorization as a secretion factor/escort protein of a broad profile.
Collapse
Affiliation(s)
- Souren Mkrtchian
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden.
| | | |
Collapse
|
24
|
Fujita M, Yoko-O T, Jigami Y. Inositol deacylation by Bst1p is required for the quality control of glycosylphosphatidylinositol-anchored proteins. Mol Biol Cell 2005; 17:834-50. [PMID: 16319176 PMCID: PMC1356593 DOI: 10.1091/mbc.e05-05-0443] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Misfolded proteins are recognized in the endoplasmic reticulum (ER), transported back to the cytosol, and degraded by the proteasome. A number of proteins are processed and modified by a glycosylphosphatidylinositol (GPI) anchor in the ER, but the quality control mechanisms of GPI-anchored proteins remain unclear. Here, we report on the quality control mechanism of misfolded GPI-anchored proteins. We have constructed a mutant form of the beta-1,3-glucanosyltransferase Gas1p (Gas1*p) as a model misfolded GPI-anchored protein. Gas1*p was modified with a GPI anchor but retained in the ER and was degraded rapidly via the proteasome. Disruption of BST1, which encodes GPI inositol deacylase, caused a delay in the degradation of Gas1*p. This delay was because of an effect on the deacylation activity of Bst1p. Disruption of genes involved in GPI-anchored protein concentration and N-glycan processing caused different effects on the degradation of Gas1*p and a soluble misfolded version of carboxypeptidase Y. Furthermore, Gas1*p associated with both Bst1p and BiP/Kar2p, a molecular chaperone, in vivo. Our data suggest that GPI inositol deacylation plays important roles in the quality control and ER-associated degradation of GPI-anchored proteins.
Collapse
Affiliation(s)
- Morihisa Fujita
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | | | | |
Collapse
|
25
|
Ramos MA, Sanchez-Lopez R, Mares RE, Olvera F, Alagón A. Identification of an Entamoeba histolytica gene encoding a protein disulfide isomerase that functionally complements the dsbA mutation in Escherichia coli. Mol Biochem Parasitol 2005; 143:236-40. [PMID: 15990181 DOI: 10.1016/j.molbiopara.2005.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 04/13/2005] [Accepted: 04/20/2005] [Indexed: 10/25/2022]
Affiliation(s)
- Marco A Ramos
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Tecnológico 14418, Tijuana, Baja California 22390, México
| | | | | | | | | |
Collapse
|
26
|
Li Z, Solomon JM, Isberg RR. Dictyostelium discoideum strains lacking the RtoA protein are defective for maturation of the Legionella pneumophila replication vacuole. Cell Microbiol 2005; 7:431-42. [PMID: 15679845 DOI: 10.1111/j.1462-5822.2004.00472.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
To identify host proteins involved in Legionella pneumophila intracellular replication, the soil amoeba Dictyostelium discoideum was analysed. The absence of the amoebal RtoA protein is demonstrated here to depress L. pneumophila intracellular growth. Uptake of L. pneumophila into a D. discoideum rtoA(-) strain was marginally defective, but this effect was not sufficient to account for the defective intracellular growth of L. pneumophila. The rtoA mutant was also more resistant to high-multiplicity killing by the bacterium. A targeting assay testing the colocalization of L. pneumophila-containing vacuole with an endoplasmic reticulum/pre-Golgi intermediate compartment marker protein, GFP-HDEL, was used to analyse these defects. In parental D. discoideum, the L. pneumophila vacuole showed recruitment of GFP-HDEL within 40 min after introduction of bacteria to the amoebae. By 6 h after infection it was clear that the rtoA mutant acquired and retained the GFP-HDEL less efficiently than the parental strain, and that the mutant was defective for promoting the physical expansion of the membranous compartment surrounding the bacteria. Depressed intracellular growth of L. pneumophila in a D. discoideum rtoA(-) mutant therefore appeared to result from a lowered efficiency of vesicle trafficking events that are essential for the modification and expansion of the L. pneumophila-containing compartment.
Collapse
Affiliation(s)
- Zhiru Li
- Howard Hughes Medical Institute, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA
| | | | | |
Collapse
|
27
|
Abstract
The natural hosts of the bacterial pathogen Legionella pneumophila are amoebae and protozoa. In these hosts, as in human macrophages, the pathogen enters the cell through phagocytosis, then rapidly modifies the phagosome to create a compartment that supports its replication. We have examined L. pneumophila entry and behaviour during early stages of the infection of Dictyostelium discoideum amoebae. Bacteria were labelled with a red fluorescent marker, and selected proteins and organelles in the host were labelled with GFP, allowing the dynamics and interactions of L. pneumophila -containing phagosomes to be tracked in living cells. These studies demonstrated that entry of L. pneumophila is an actin-mediated process, that the actin-binding protein coronin surrounds the nascent phagosome but dissociates immediately after internalization, that ER membrane is not incorporated into a phagosome during uptake, that the newly internalized phagosome is rapidly transported about the cell on microtubules, that association of ER markers with the phagosome occurs in two steps that correlate with distinct changes in phagosome movement, and that the vacuolar H(+)-ATPase does not associate with mature replication vacuoles. These studies have clarified certain aspects of the infection process and provided new insights into the dynamic interactions between the pathogen and its host.
Collapse
Affiliation(s)
- Hao Lu
- Program in Molecular, Cell, and Developmental Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73121, USA
| | | |
Collapse
|
28
|
Houston NL, Fan C, Xiang JQY, Schulze JM, Jung R, Boston RS. Phylogenetic analyses identify 10 classes of the protein disulfide isomerase family in plants, including single-domain protein disulfide isomerase-related proteins. PLANT PHYSIOLOGY 2005; 137:762-78. [PMID: 15684019 PMCID: PMC1065376 DOI: 10.1104/pp.104.056507] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Revised: 12/02/2004] [Accepted: 12/02/2004] [Indexed: 05/18/2023]
Abstract
Protein disulfide isomerases (PDIs) are molecular chaperones that contain thioredoxin (TRX) domains and aid in the formation of proper disulfide bonds during protein folding. To identify plant PDI-like (PDIL) proteins, a genome-wide search of Arabidopsis (Arabidopsis thaliana) was carried out to produce a comprehensive list of 104 genes encoding proteins with TRX domains. Phylogenetic analysis was conducted for these sequences using Bayesian and maximum-likelihood methods. The resulting phylogenetic tree showed that evolutionary relationships of TRX domains alone were correlated with conserved enzymatic activities. From this tree, we identified a set of 22 PDIL proteins that constitute a well-supported clade containing orthologs of known PDIs. Using the Arabidopsis PDIL sequences in iterative BLAST searches of public and proprietary sequence databases, we further identified orthologous sets of 19 PDIL sequences in rice (Oryza sativa) and 22 PDIL sequences in maize (Zea mays), and resolved the PDIL phylogeny into 10 groups. Five groups (I-V) had two TRX domains and showed structural similarities to the PDIL proteins in other higher eukaryotes. The remaining five groups had a single TRX domain. Two of these (quiescin-sulfhydryl oxidase-like and adenosine 5'-phosphosulfate reductase-like) had putative nonisomerase enzymatic activities encoded by an additional domain. Two others (VI and VIII) resembled small single-domain PDIs from Giardia lamblia, a basal eukaryote, and from yeast. Mining of maize expressed sequence tag and RNA-profiling databases indicated that members of all of the single-domain PDIL groups were expressed throughout the plant. The group VI maize PDIL ZmPDIL5-1 accumulated during endoplasmic reticulum stress but was not found within the intracellular membrane fractions and may represent a new member of the molecular chaperone complement in the cell.
Collapse
Affiliation(s)
- Norma L Houston
- Department of Botany, North Carolina State University, Raleigh, North Carolina 27695-7612, USA
| | | | | | | | | | | |
Collapse
|
29
|
Barnewitz K, Guo C, Sevvana M, Ma Q, Sheldrick GM, Söling HD, Ferrari DM. Mapping of a substrate binding site in the protein disulfide isomerase-related chaperone wind based on protein function and crystal structure. J Biol Chem 2004; 279:39829-37. [PMID: 15252019 DOI: 10.1074/jbc.m406839200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein disulfide isomerase (PDI)-related protein Wind is essential in Drosophila melanogaster, and is required for correct targeting of Pipe, an essential Golgi transmembrane 2-O-sulfotransferase. Apart from a thioredoxin fold domain present in all PDI proteins, Wind also has a unique C-terminal D-domain found only in PDI-D proteins. Here, we show that Pipe processing requires dimeric Wind, which interacts directly with the soluble domain of Pipe in vitro, and we map an essential substrate binding site in Wind to the vicinity of an exposed cluster of tyrosines within the thioredoxin fold domain. In vitro, binding occurs to multiple sites within the Pipe polypeptide and shows specificity for two consecutive aromatic residues. A second site in Wind, formed by a cluster of residues within the D-domain, is likewise required for substrate processing. This domain, expressed separately, impairs Pipe processing by the full-length Wind protein, indicating competitive binding to substrate. Our data represent the most accurate map of a peptide binding site in a PDI-related protein available to date and directly show peptide specificity for a naturally occurring substrate.
Collapse
Affiliation(s)
- Kathrin Barnewitz
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Lemaire SD, Miginiac-Maslow M. The thioredoxin superfamily in Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 2004; 82:203-20. [PMID: 16143836 DOI: 10.1007/s11120-004-1091-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2003] [Accepted: 02/23/2004] [Indexed: 05/04/2023]
Abstract
The thioredoxin (TRX) superfamily includes redox proteins such as thioredoxins, glutaredoxins (GRXs) and protein disulfide isomerases (PDI). These proteins share a common structural motif named the thioredoxin fold. They are involved in disulfide oxido-reduction and/or isomerization. The sequencing of the Arabidopsisgenome revealed an unsuspected multiplicity of TRX and GRX genes compared to other organisms. The availability of full Chlamydomonasgenome sequence offers the opportunity to determine whether this multiplicity is specific to higher plant species or common to all photosynthetic eukaryotes. We have previously shown that the multiplicity is more limited in Chlamydomonas for TRX and GRX families. We extend here our analysis to the PDI family. This paper presents a comparative analysis of the TRX, GRX and PDI families present in Arabidopsis,Chlamydomonas and Synechocystis. The putative subcellular localization of each protein and its relative expression level, based on EST data, have been investigated. This analysis provides a large overview of the redox regulatory systems present in Chlamydomonas. The data are discussed in view of recent results suggesting a complex cross-talk between the TRX, GRX and PDI redox regulatory networks.
Collapse
Affiliation(s)
- Stéphane D Lemaire
- Institut de Biotechnologie des Plantes, Université Paris-Sud, UMR 8618 CNRS, Bâtiment 630, 91405, Orsay Cedex, France,
| | | |
Collapse
|
31
|
Ma Q, Guo C, Barnewitz K, Sheldrick GM, Soling HD, Uson I, Ferrari DM. Crystal structure and functional analysis of Drosophila Wind, a protein-disulfide isomerase-related protein. J Biol Chem 2003; 278:44600-7. [PMID: 12941941 DOI: 10.1074/jbc.m307966200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the developing Drosophila melanogaster embryo, dorsal-ventral patterning displays an absolute requirement for the product of the essential windbeutel gene, Wind. In homozygous windbeutel mutant flies, dorsal-ventral patterning fails to initiate because of the failure of the Golgi-resident proteoglycan-modifying protein, Pipe, to exit the endoplasmic reticulum, and this leads to the death of the embryo. Here, we describe the three-dimensional structure of Wind at 1.9-A resolution and identify a candidate surface for interaction with Pipe. This represents the first crystal structure of a eukaryotic protein-disulfide isomerase-related protein of the endoplasmic reticulum to be described. The dimeric protein is composed of an N-terminal thioredoxin domain and a C-terminal alpha-helical domain unique to protein-disulfide isomerase D proteins. Although Wind carries a CXXC motif that is partially surface accessible, this motif is redox inactive, and the cysteines are not required for the targeting of Pipe to the Golgi. However, both domains are required for targeting Pipe to the Golgi, and, although the mouse homologue ERp28 cannot replace the function of Wind, exchange of the Wind D-domain with that of ERp28 allows for efficient Golgi transport of Pipe.
Collapse
Affiliation(s)
- Qingjun Ma
- Department of Structural Chemistry, University of Göttingen, Tammanstrasse 4, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Gerisch G, Müller-Taubenberger A. GFP-fusion proteins as fluorescent reporters to study organelle and cytoskeleton dynamics in chemotaxis and phagocytosis. Methods Enzymol 2003; 361:320-37. [PMID: 12624918 DOI: 10.1016/s0076-6879(03)61017-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Günther Gerisch
- Max-Planck-Institute for Biochemistry, D-82152 Martinsried, Germany
| | | |
Collapse
|
33
|
Lee S, Park B, Ahn K. Determinant for endoplasmic reticulum retention in the luminal domain of the human cytomegalovirus US3 glycoprotein. J Virol 2003; 77:2147-56. [PMID: 12525649 PMCID: PMC140976 DOI: 10.1128/jvi.77.3.2147-2156.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
US3 of human cytomegalovirus is an endoplasmic reticulum resident transmembrane glycoprotein that binds to major histocompatibility complex class I molecules and prevents their departure. The endoplasmic reticulum retention signal of the US3 protein is contained in the luminal domain of the protein. To define the endoplasmic reticulum retention sequence in more detail, we have generated a series of deletion and point mutants of the US3 protein. By analyzing the rate of intracellular transport and immunolocalization of the mutants, we have identified Ser58, Glu63, and Lys64 as crucial for retention, suggesting that the retention signal of the US3 protein has a complex spatial arrangement and does not comprise a contiguous sequence of amino acids. We also show that a modified US3 protein with a mutation in any of these amino acids maintains its ability to bind class I molecules; however, such mutated proteins are no longer retained in the endoplasmic reticulum and are not able to block the cell surface expression of class I molecules. These findings indicate that the properties that allow the US3 glycoprotein to be localized in the endoplasmic reticulum and bind major histocompatibility complex class I molecules are located in different parts of the molecule and that the ability of US3 to block antigen presentation is due solely to its ability to retain class I molecules in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Sungwook Lee
- Graduate School of Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | |
Collapse
|
34
|
Meunier L, Usherwood YK, Chung KT, Hendershot LM. A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins. Mol Biol Cell 2002; 13:4456-69. [PMID: 12475965 PMCID: PMC138646 DOI: 10.1091/mbc.e02-05-0311] [Citation(s) in RCA: 402] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We demonstrate the existence of a large endoplasmic reticulum (ER)-localized multiprotein complex that is comprised of the molecular chaperones BiP; GRP94; CaBP1; protein disulfide isomerase (PDI); ERdj3, a recently identified ER Hsp40 cochaperone; cyclophilin B; ERp72; GRP170; UDP-glucosyltransferase; and SDF2-L1. This complex is associated with unassembled, incompletely folded immunoglobulin heavy chains. Except for ERdj3, and to a lesser extent PDI, this complex also forms in the absence of nascent protein synthesis and is found in a variety of cell types. Cross-linking studies reveal that the majority of these chaperones are included in the complex. Our data suggest that this subset of ER chaperones forms an ER network that can bind to unfolded protein substrates instead of existing as free pools that assembled onto substrate proteins. It is noticeable that most of the components of the calnexin/calreticulin system, which include some of the most abundant chaperones inside the ER, are either not detected in this complex or only very poorly represented. This study demonstrates an organization of ER chaperones and folding enzymes that has not been previously appreciated and suggests a spatial separation of the two chaperone systems that may account for the temporal interactions observed in other studies.
Collapse
Affiliation(s)
- Laurent Meunier
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | |
Collapse
|
35
|
Garver WS, Krishnan K, Gallagos JR, Michikawa M, Francis GA, Heidenreich RA. Niemann-Pick C1 protein regulates cholesterol transport to the trans-Golgi network and plasma membrane caveolae. J Lipid Res 2002. [DOI: 10.1016/s0022-2275(20)31487-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
36
|
Basham SE, Rose LS. The Caenorhabditis elegans polarity gene ooc-5 encodes a Torsin-related protein of the AAA ATPase superfamily. Development 2001; 128:4645-56. [PMID: 11714689 DOI: 10.1242/dev.128.22.4645] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The PAR proteins are required for polarity and asymmetric localization of cell fate determinants in C. elegans embryos. In addition, several of the PAR proteins are conserved and localized asymmetrically in polarized cells in Drosophila, Xenopus and mammals. We have previously shown that ooc-5 and ooc-3 mutations result in defects in spindle orientation and polarity in early C. elegans embryos. In particular, mutations in these genes affect the re-establishment of PAR protein asymmetry in the P1 cell of two-cell embryos. We now report that ooc-5 encodes a putative ATPase of the Clp/Hsp100 and AAA superfamilies of proteins, with highest sequence similarity to Torsin proteins; the gene for human Torsin A is mutated in individuals with early-onset torsion dystonia, a neuromuscular disease. Although Clp/Hsp100 and AAA family proteins have roles in diverse cellular activities, many are involved in the assembly or disassembly of proteins or protein complexes; thus, OOC-5 may function as a chaperone. OOC-5 protein co-localizes with a marker of the endoplasmic reticulum in all blastomeres of the early C. elegans embryo, in a pattern indistinguishable from that of OOC-3 protein. Furthermore, OOC-5 localization depends on the normal function of the ooc-3 gene. These results suggest that OOC-3 and OOC-5 function in the secretion of proteins required for the localization of PAR proteins in the P1 cell, and may have implications for the study of torsion dystonia.
Collapse
Affiliation(s)
- S E Basham
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
37
|
Gatti G, Trifari S, Mesaeli N, Parker JM, Michalak M, Meldolesi J. Head-to-tail oligomerization of calsequestrin: a novel mechanism for heterogeneous distribution of endoplasmic reticulum luminal proteins. J Cell Biol 2001; 154:525-34. [PMID: 11489915 PMCID: PMC2196414 DOI: 10.1083/jcb.200103002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many proteins retained within the endo/sarcoplasmic reticulum (ER/SR) lumen express the COOH-terminal tetrapeptide KDEL, by which they continuously recycle from the Golgi complex; however, others do not express the KDEL retrieval signal. Among the latter is calsequestrin (CSQ), the major Ca2+-binding protein condensed within both the terminal cisternae of striated muscle SR and the ER vacuolar domains of some neurons and smooth muscles. To reveal the mechanisms of condensation and establish whether it also accounts for ER/SR retention of CSQ, we generated a variety of constructs: chimeras with another similar protein, calreticulin (CRT); mutants truncated of COOH- or NH2-terminal domains; and other mutants deleted or point mutated at strategic sites. By transfection in L6 myoblasts and HeLa cells we show here that CSQ condensation in ER-derived vacuoles requires two amino acid sequences, one at the NH2 terminus, the other near the COOH terminus. Experiments with a green fluorescent protein GFP/CSQ chimera demonstrate that the CSQ-rich vacuoles are long-lived organelles, unaffected by Ca2+ depletion, whose almost complete lack of movement may depend on a direct interaction with the ER. CSQ retention within the ER can be dissociated from condensation, the first identified process by which ER luminal proteins assume a heterogeneous distribution. A model is proposed to explain this new process, that might also be valid for other luminal proteins.
Collapse
Affiliation(s)
- G Gatti
- Department of Pharmacology, University of Milan, 20129 Milan, Italy
| | | | | | | | | | | |
Collapse
|
38
|
McArthur AG, Knodler LA, Silberman JD, Davids BJ, Gillin FD, Sogin ML. The evolutionary origins of eukaryotic protein disulfide isomerase domains: new evidence from the Amitochondriate protist Giardia lamblia. Mol Biol Evol 2001; 18:1455-63. [PMID: 11470836 DOI: 10.1093/oxfordjournals.molbev.a003931] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A phylogenetic analysis of protein disulfide isomerase (PDI) domain evolution was performed with the inclusion of recently reported PDIs from the amitochondriate protist Giardia lamblia, yeast PDIs that contain a single thioredoxin-like domain, and PDIs from a diverse selection of protists. We additionally report and include two new giardial PDIs, each with a single thioredoxin-like domain. Inclusion of protist PDIs in our analyses revealed that the evolutionary history of the endoplasmic reticulum may not be simple. Phylogenetic analyses support common ancestry of all eukaryotic PDIs from a thioredoxin ancestor and independent duplications of thioredoxin-like domains within PDIs throughout eukaryote evolution. This was particularly evident for Acanthamoeba PDI, Dictyostelium PDI, and mammalian erp5 domains. In contrast, gene duplication, instead of domain duplication, produces PDI diversity in G. lamblia. Based on our results and the known diversity of PDIs, we present a new hypothesis that the five single-domain PDIs of G. lamblia may reflect an ancestral mechanism of protein folding in the eukaryotic endoplasmic reticulum. The PDI complement of G. lamblia and yeast suggests that a combination of PDIs may be used as a redox chain analogous to that known for bacterial Dsb proteins.
Collapse
Affiliation(s)
- A G McArthur
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts 02543-1015, USA
| | | | | | | | | | | |
Collapse
|
39
|
Bottomley MJ, Batten MR, Lumb RA, Bulleid NJ. Quality control in the endoplasmic reticulum: PDI mediates the ER retention of unassembled procollagen C-propeptides. Curr Biol 2001; 11:1114-8. [PMID: 11509234 DOI: 10.1016/s0960-9822(01)00317-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quality control within the endoplasmic reticulum (ER) is thought to be mediated by the interaction of a folding protein with one or several resident ER proteins [1]. Protein disulphide isomerase (PDI) is one such ER resident protein that has been previously shown to interact with proteins during their folding and assembly pathways [2, 3]. It has been assumed that, as a consequence of this interaction, unassembled proteins are retained within the ER. Here, we experimentally show that this is indeed the case. We have taken advantage of our previous finding that PDI interacts with procollagen chains early on in their assembly pathway [2] to address the role of this protein in directly retaining unassembled chains within the ER. Our experimental approach involved expressing individual C-propeptide domains from different procollagen chains in mammalian cells and determining the ability of these domains to interact with PDI and to be secreted. The C-propeptide from the proalpha2(I) chain was retained within the cell, where it formed a complex with PDI. Conversely, the C-propeptide from the proalpha1(III) chain did not form a complex with PDI and was secreted. Both domains were secreted, however, from a stable cell line expressing a secreted form of PDI lacking its ER retrieval signal. Hence, we have demonstrated directly that the intracellular retention of one substrate for ER quality control is due to an interaction with PDI.
Collapse
Affiliation(s)
- M J Bottomley
- School of Biological Sciences, 2.205 Stopford Building, University of Manchester, M13 9PT, Manchester, United Kingdom
| | | | | | | |
Collapse
|
40
|
Liepinsh E, Baryshev M, Sharipo A, Ingelman-Sundberg M, Otting G, Mkrtchian S. Thioredoxin fold as homodimerization module in the putative chaperone ERp29: NMR structures of the domains and experimental model of the 51 kDa dimer. Structure 2001; 9:457-71. [PMID: 11435111 DOI: 10.1016/s0969-2126(01)00607-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND ERp29 is a ubiquitously expressed rat endoplasmic reticulum (ER) protein conserved in mammalian species. Fold predictions suggest the presence of a thioredoxin-like domain homologous to the a domain of human protein disulfide isomerase (PDI) and a helical domain similar to the C-terminal domain of P5-like PDIs. As ERp29 lacks the double-cysteine motif essential for PDI redox activity, it is suggested to play a role in protein maturation and/or secretion related to the chaperone function of PDI. ERp29 self-associates into 51 kDa dimers and also higher oligomers. RESULTS 3D structures of the N- and C-terminal domains determined by NMR spectroscopy confirmed the thioredoxin fold for the N-terminal domain and yielded a novel all-helical fold for the C-terminal domain. Studies of the full-length protein revealed a short, flexible linker between the two domains, homodimerization by the N-terminal domain, and the presence of interaction sites for the formation of higher molecular weight oligomers. A gadolinium-based relaxation agent is shown to present a sensitive tool for the identification of macromolecular interfaces by NMR. CONCLUSIONS ERp29 is the first eukaryotic PDI-related protein for which the structures of all domains have been determined. Furthermore, an experimental model of the full-length protein and its association states was established. It is the first example of a protein where the thioredoxin fold was found to act as a specific homodimerization module, without covalent linkages or supporting interactions by further domains. A homodimerization module similar as in ERp29 may also be present in homodimeric human PDI.
Collapse
Affiliation(s)
- E Liepinsh
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
41
|
Ways to rein in wayward proteins: a novel mechanism for ER retention. Trends Biochem Sci 2000; 25:541. [PMID: 11084365 DOI: 10.1016/s0968-0004(00)01697-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|