1
|
Defects in Stratum Corneum Desquamation Are the Predominant Effect of Impaired ABCA12 Function in a Novel Mouse Model of Harlequin Ichthyosis. PLoS One 2016; 11:e0161465. [PMID: 27551807 PMCID: PMC4994956 DOI: 10.1371/journal.pone.0161465] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/05/2016] [Indexed: 01/23/2023] Open
Abstract
Harlequin Ichthyosis is a severe skin disease caused by mutations in the human gene encoding ABCA12. Here, we characterize a novel mutation in intron 29 of the mouse Abca12 gene that leads to the loss of a 5' splice donor site and truncation of the Abca12 RNA transcript. Homozygous mutants of this smooth skin or smsk allele die perinatally with shiny translucent skin, typical of animal models of Harlequin Ichthyosis. Characterization of smsk mutant skin showed that the delivery of glucosylceramides and CORNEODESMOSIN was defective, while ultrastructural analysis revealed abnormal lamellar bodies and the absence of lipid lamellae in smsk epidermis. Unexpectedly, mutant stratum corneum remained intact when subjected to harsh chemical dissociation procedures. Moreover, both KALLIKREIN 5 and -7 were drastically decreased, with retention of desmoplakin in mutant SC. In cultured wild type keratinocytes, both KALLIKREIN 5 and -7 colocalized with ceramide metabolites following calcium-induced differentiation. Reducing the intracellular levels of glucosylceramide with a glucosylceramide synthase inhibitor resulted in decreased secretion of KALLIKREIN proteases by wild type keratinocytes, but not by smsk mutant keratinocytes. Together, these findings suggest an essential role for ABCA12 in transferring not only lipids, which are required for the formation of multilamellar structures in the stratum corneum, but also proteolytic enzymes that are required for normal desquamation. Smsk mutant mice recapitulate many of the pathological features of HI and can be used to explore novel topical therapies against a potentially lethal and debilitating neonatal disease.
Collapse
|
2
|
Gissen P, Arias IM. Structural and functional hepatocyte polarity and liver disease. J Hepatol 2015; 63:1023-37. [PMID: 26116792 PMCID: PMC4582071 DOI: 10.1016/j.jhep.2015.06.015] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 06/14/2015] [Accepted: 06/15/2015] [Indexed: 02/08/2023]
Abstract
Hepatocytes form a crucially important cell layer that separates sinusoidal blood from the canalicular bile. They have a uniquely organized polarity with a basal membrane facing liver sinusoidal endothelial cells, while one or more apical poles can contribute to several bile canaliculi jointly with the directly opposing hepatocytes. Establishment and maintenance of hepatocyte polarity is essential for many functions of hepatocytes and requires carefully orchestrated cooperation between cell adhesion molecules, cell junctions, cytoskeleton, extracellular matrix and intracellular trafficking machinery. The process of hepatocyte polarization requires energy and, if abnormal, may result in severe liver disease. A number of inherited disorders affecting tight junction and intracellular trafficking proteins have been described and demonstrate clinical and pathophysiological features overlapping those of the genetic cholestatic liver diseases caused by defects in canalicular ABC transporters. Thus both structural and functional components contribute to the final hepatocyte polarity phenotype. Many acquired liver diseases target factors that determine hepatocyte polarity, such as junctional proteins. Hepatocyte depolarization frequently occurs but is rarely recognized because hematoxylin-eosin staining does not identify the bile canaliculus. However, the molecular mechanisms underlying these defects are not well understood. Here we aim to provide an update on the key factors determining hepatocyte polarity and how it is affected in inherited and acquired diseases.
Collapse
Affiliation(s)
- Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK; UCL Institute of Child Health, London, UK; Great Ormond Street Hospital, London, UK.
| | - Irwin M Arias
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States
| |
Collapse
|
3
|
Very-low-density lipoprotein (VLDL)-producing and hepatitis C virus-replicating HepG2 cells secrete no more lipoviroparticles than VLDL-deficient Huh7.5 cells. J Virol 2013; 87:5065-80. [PMID: 23427158 DOI: 10.1128/jvi.01405-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the plasma samples of hepatitis C virus (HCV)-infected patients, lipoviroparticles (LVPs), defined as (very-) low-density viral particles immunoprecipitated with anti-β-lipoproteins antibodies are observed. This HCV-lipoprotein association has major implications with respect to our understanding of HCV assembly, secretion, and entry. However, cell culture-grown HCV (HCVcc) virions produced in Huh7 cells, which are deficient for very-low-density lipoprotein (VLDL) secretion, are only associated with and dependent on apolipoprotein E (apoE), not apolipoprotein B (apoB), for assembly and infectivity. In contrast to Huh7, HepG2 cells can be stimulated to produce VLDL by both oleic acid treatment and inhibition of the MEK/extracellular signal-regulated kinase (ERK) pathway but are not permissive for persistent HCV replication. Here, we developed a new HCV cell culture model to study the interaction between HCV and lipoproteins, based on engineered HepG2 cells stably replicating a blasticidin-tagged HCV JFH1 strain (JB). Control Huh7.5-JB as well as HepG2-JB cell lines persistently replicated viral RNA and expressed viral proteins with a subcellular colocalization of double-stranded RNA (dsRNA), core, gpE2, and NS5A compatible with virion assembly. The intracellular RNA replication level was increased in HepG2-JB cells upon dimethyl sulfoxide (DMSO) treatment, MEK/ERK inhibition, and NS5A overexpression to a level similar to that observed in Huh7.5-JB cells. Both cell culture systems produced infectious virions, which were surprisingly biophysically and biochemically similar. They floated at similar densities on gradients, contained mainly apoE but not apoB, and were not neutralized by anti-apoB antibodies. This suggests that there is no correlation between the ability of cells to simultaneously replicate HCV as well as secrete VLDL and their capacity to produce LVPs.
Collapse
|
4
|
Oikawa N, Goto M, Ikeda K, Taguchi R, Yanagisawa K. The γ-secretase inhibitor DAPT increases the levels of gangliosides at neuritic terminals of differentiating PC12 cells. Neurosci Lett 2012; 525:49-53. [PMID: 22867970 DOI: 10.1016/j.neulet.2012.07.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/13/2012] [Accepted: 07/12/2012] [Indexed: 11/17/2022]
Abstract
Mutations in presenilins are the major cause of early onset familial Alzheimer disease. It has recently been argued that clinical presenilin mutations work as loss-of-function but not toxic gain-of-function. To investigate whether presenilins are involved in the regulation of the distribution of neuronal membrane lipids, we treated neuronally differentiated PC12 cells with DAPT, an inhibitor of presenilin-dependent γ-secretase, and performed lipid analyses of neuritic terminals, which is an initial site of Aβ deposition in brains, using liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) in combination with multiple reaction monitoring (MRM). With DAPT treatment, levels of sphingomyelin, phosphatidylcholine, and cholesterol remained unchanged. However, DAPT treatment increased the ganglioside levels in PC12 neuritic terminals. Together with a previous finding that accumulation of gangliosides at neuritic terminals facilitates Aβ assembly and deposition, the present data suggest that the loss-of-function of presenilins, i.e., a decrease in γ-secretase activity, has an impact on neuronal membrane architecture in a way that eventually exacerbates Alzheimer pathology.
Collapse
Affiliation(s)
- Naoto Oikawa
- Department of Drug Discovery, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology, Obu 474-8522, Japan
| | | | | | | | | |
Collapse
|
5
|
Nakagawa T, Moriwaki K, Terao N, Nakagawa T, Miyamoto Y, Kamada Y, Miyoshi E. Analysis of polarized secretion of fucosylated alpha-fetoprotein in HepG2 cells. J Proteome Res 2012; 11:2798-806. [PMID: 22483194 DOI: 10.1021/pr201154k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fucosylated alpha-fetoprotein (AFP) is a more specific biomarker for hepatocellular carcinoma (HCC) than AFP. However, the mechanisms underlying the increase in fucosylated AFP in sera of HCC patients remain largely unknown. Recently, we reported that fucosylation is a possible signal for the secretion of hepatic glycoproteins into bile and that the fucosylation-based sorting machinery might be disrupted in the liver bearing HCC. In this study, we investigated the selective secretion of fucosylated AFP into bile canaliculus (BC) structures of the human hepatoma cell line HepG2. The proportion of fucosylated AFP in BC structures was higher than that in the medium, as judged by lectin affinity electrophoresis. Suppression of fucosylation by the double knock-down of GDP-mannose-4,6-dehydratase and the human homologue of GDP-4-keto-6-deoxymannose-3,5-epimerase-4-reductase, which contribute to the synthesis of GDP-fucose, a donor substrate for fucosyltransferases, did not decrease the proportion of fucosylated AFP in BC structures but decreased this proportion in conditioned medium. Furthermore, increased AFP fucosylation was observed in medium, but not in BC structures, upon adding free fucose. These results suggest that saturation of fucosylated AFP in BC structures is accompanied by its increase in conditioned medium, probably leading to increased fucosylated AFP in sera of HCC patients.
Collapse
Affiliation(s)
- Tsutomu Nakagawa
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Mattaloni SM, Kolobova E, Favre C, Marinelli RA, Goldenring JR, Larocca MC. AKAP350 Is involved in the development of apical "canalicular" structures in hepatic cells HepG2. J Cell Physiol 2011; 227:160-71. [PMID: 21374596 DOI: 10.1002/jcp.22713] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hepatocytes are epithelial cells whose apical poles constitute the bile canaliculi. The establishment and maintenance of canalicular poles is a finely regulated process that dictates the efficiency of primary bile secretion. Protein kinase A (PKA) modulates this process at different levels. AKAP350 is an A-kinase anchoring protein that scaffolds protein complexes involved in modulating the dynamic structures of the Golgi apparatus and microtubule cytoskeleton, facilitating microtubule nucleation at this organelle. In this study, we evaluated whether AKAP350 is involved in the development of bile canaliculi-like structures in hepatocyte derived HepG2 cells. We found that AKAP350 recruits PKA to the centrosomes and Golgi apparatus in HepG2 cells. De-localization of AKAP350 from these organelles led to reduced apical cell polarization. A decrease in AKAP350 expression inhibited the formation of canalicular structures and impaired F-actin organization at canalicular poles. Furthermore, loss of AKAP350 expression led to diminished polarized expression of the p-glycoprotein (MDR1/ABCB1) at the apical "canalicular" membrane. AKAP350 knock down effects on canalicular structures formation and actin organization could be mimicked by inhibition of Golgi microtubule nucleation by depletion of CLIP associated proteins (CLASPs). Our data reveal that AKAP350 participates in mechanisms which determine the development of canalicular structures as well as accurate canalicular expression of distinct proteins and actin organization, and provide evidence on the involvement of Golgi microtubule nucleation in hepatocyte apical polarization.
Collapse
Affiliation(s)
- Stella M Mattaloni
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | | | | |
Collapse
|
7
|
Hepatocytes traffic and export hepatitis B virus basolaterally by polarity-dependent mechanisms. J Virol 2011; 85:12474-81. [PMID: 21937643 DOI: 10.1128/jvi.05344-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses commonly utilize the cellular trafficking machinery of polarized cells to effect viral export. Hepatocytes are polarized in vivo, but most in vitro hepatocyte models are either nonpolarized or have morphology unsuitable for the study of viral export. Here, we investigate the mechanisms of trafficking and export for the hepadnaviruses hepatitis B virus (HBV) and duck hepatitis B virus (DHBV) in polarized hepatocyte-derived cell lines and primary duck hepatocytes. DHBV export, but not replication, was dependent on the development of hepatocyte polarity, with export significantly abrogated over time as primary hepatocytes lost polarity. Using Transwell cultures of polarized N6 cells and adenovirus-based transduction, we observed that export of both HBV and DHBV was vectorially regulated and predominantly basolateral. Monitoring of polarized N6 cells and nonpolarized C11 cells during persistent, long-term DHBV infection demonstrated that newly synthesized sphingolipid and virus displayed significant colocalization and fluorescence resonance energy transfer, implying cotransportation from the Golgi complex to the plasma membrane. Notably, 15% of virus was released apically from polarized cells, corresponding to secretion into the bile duct in vivo, also in association with sphingolipids. We conclude that DHBV and, probably, HBV are reliant upon hepatocyte polarity to be efficiently exported and this export is in association with sphingolipid structures, possibly lipid rafts. This study provides novel insights regarding the mechanisms of hepadnavirus trafficking in hepatocytes, with potential relevance to pathogenesis and immune tolerance.
Collapse
|
8
|
Ohgaki R, Matsushita M, Kanazawa H, Ogihara S, Hoekstra D, van Ijzendoorn SCD. The Na+/H+ exchanger NHE6 in the endosomal recycling system is involved in the development of apical bile canalicular surface domains in HepG2 cells. Mol Biol Cell 2010; 21:1293-304. [PMID: 20130086 PMCID: PMC2847532 DOI: 10.1091/mbc.e09-09-0767] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This study underscores the emerging role of NHE6 as a novel regulatory protein in the apical surface development of human hepatoma HepG2 cells. A limited range of endosomal pH facilitated by NHE6.1 is suggested to be important for securing the polarized distribution of membrane lipids and proteins and maintenance of apical bile canaliculi. Polarized epithelial cells develop and maintain distinct apical and basolateral surface domains despite a continuous flux of membranes between these domains. The Na+/H+exchanger NHE6 localizes to endosomes but its function is unknown. Here, we demonstrate that polarized hepatoma HepG2 cells express an NHE6.1 variant that localizes to recycling endosomes and colocalizes with transcytosing bulk membrane lipids. NHE6.1 knockdown or overexpression decreases or increases recycling endosome pH, respectively, and inhibits the maintenance of apical, bile canalicular plasma membranes and, concomitantly, apical lumens. NHE6.1 knockdown or overexpression has little effect on the de novo biogenesis of apical surface domains. NHE6.1 knockdown does not inhibit basolateral-to-apical transcytosis of bulk membrane lipids, but it does promote their progressive loss from the apical surface, leaving cells unable to efficiently retain bulk membrane and bile canalicular proteins at the apical surface. The data suggest that a limited range of endosome pH mediated by NHE6.1 is important for securing the polarized distribution of membrane lipids at the apical surface and maintenance of apical bile canaliculi in HepG2 cells and hence cell polarity. This study underscores the emerging role of the endosomal recycling system in apical surface development and identifies NHE6 as a novel regulatory protein in this process.
Collapse
Affiliation(s)
- Ryuichi Ohgaki
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
9
|
Wojtal KA, Diskar M, Herberg FW, Hoekstra D, van Ijzendoorn SCD. Regulatory subunit I-controlled protein kinase A activity is required for apical bile canalicular lumen development in hepatocytes. J Biol Chem 2009; 284:20773-80. [PMID: 19465483 DOI: 10.1074/jbc.m109.013599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Signaling via cAMP plays an important role in apical cell surface dynamics in epithelial cells. In hepatocytes, elevated levels of cAMP as well as extracellular oncostatin M stimulate apical lumen development in a manner that depends on protein kinase A (PKA) activity. However, neither the identity of PKA isoforms involved nor the mechanisms of the cross-talk between oncostatin M and cAMP/PKA signaling pathways have been elucidated. Here we demonstrate that oncostatin M and PKA signaling converge at the level of the PKA holoenzyme downstream of oncostatin M-stimulated MAPK activation. Experiments were performed with chemically modified cAMP analogues that preferentially target regulatory subunit (R) I or RII holoenzymes, respectively, in hepatocytes. The data suggest that the dissociation of RI- but not RII-containing holoenzymes, as well as catalytic activity of PKA, is required for apical lumen development in response to elevated levels of cAMP and oncostatin M. However, oncostatin M signaling does not stimulate PKA holoenzyme dissociation in living cells. Based on pharmacological and cell biological studies, it is concluded that RI-controlled PKA activity is essential for cAMP- and oncostatin M-stimulated development of apical bile canalicular lumens.
Collapse
Affiliation(s)
- Kacper A Wojtal
- Department of Cell Biology, Section of Membrane Cell Biology, University Medical Center Groningen, University of Groningen, Groningen 9713AV, The Netherlands
| | | | | | | | | |
Collapse
|
10
|
Abstract
Viruses exploit signaling pathways to their advantage during multiple stages of their life cycle. We demonstrate a role for protein kinase A (PKA) in the hepatitis C virus (HCV) life cycle. The inhibition of PKA with H89, cyclic AMP (cAMP) antagonists, or the protein kinase inhibitor peptide reduced HCV entry into Huh-7.5 hepatoma cells. Bioluminescence resonance energy transfer methodology allowed us to investigate the PKA isoform specificity of the cAMP antagonists in Huh-7.5 cells, suggesting a role for PKA type II in HCV internalization. Since viral entry is dependent on the host cell expression of CD81, scavenger receptor BI, and claudin-1 (CLDN1), we studied the role of PKA in regulating viral receptor localization by confocal imaging and fluorescence resonance energy transfer (FRET) analysis. Inhibiting PKA activity in Huh-7.5 cells induced a reorganization of CLDN1 from the plasma membrane to an intracellular vesicular location(s) and disrupted FRET between CLDN1 and CD81, demonstrating the importance of CLDN1 expression at the plasma membrane for viral receptor activity. Inhibiting PKA activity in Huh-7.5 cells reduced the infectivity of extracellular virus without modulating the level of cell-free HCV RNA, suggesting that particle secretion was not affected but that specific infectivity was reduced. Viral particles released from H89-treated cells displayed the same range of buoyant densities as did those from control cells, suggesting that viral protein association with lipoproteins is not regulated by PKA. HCV infection of Huh-7.5 cells increased cAMP levels and phosphorylated PKA substrates, supporting a model where infection activates PKA in a cAMP-dependent manner to promote virus release and transmission.
Collapse
|
11
|
Petersen NH, Faergeman NJ, Faegeman NJ, Yu L, Wüstner D. Kinetic imaging of NPC1L1 and sterol trafficking between plasma membrane and recycling endosomes in hepatoma cells. J Lipid Res 2008; 49:2023-37. [PMID: 18523240 DOI: 10.1194/jlr.m800145-jlr200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Niemann-Pick C1-like 1 (NPC1L1) is a recently identified protein that mediates intestinal cholesterol absorption and regulates biliary cholesterol excretion. The itineraries and kinetics of NPC1L1 trafficking remain uncertain. In this study, we have visualized movement of NPC1L1-enhanced green fluorescent protein (NPC1L1-EGFP) and cholesterol analogs in hepatoma cells. At steady state, about 42% of NPC1L1 resided in the transferrin (Tf)-positive, sterol-enriched endocytic recycling compartment (ERC), whereas time-lapse microscopy demonstrated NPC1L1 traffic between the plasma membrane and the ERC. Fluorescence recovery after photobleaching revealed rapid recovery (half-time approximately 2.5 min) of about 35% of NPC1L1 in the ERC, probably replenished from peripheral sorting endosomes. Acute cholesterol depletion blocked internalization of NPC1L1-EGFP and Tf and stimulated recycling of NPC1L1-EGFP from the ERC to the plasma membrane. NPC1L1-EGFP facilitated transport of fluorescent sterols from the plasma membrane to the ERC. Insulin induced translocation of vesicles containing NPC1L1 and fluorescent sterol from the ERC to the cell membrane. Upon polarization of hepatoma cells, NPC1L1 resided almost exclusively in the canalicular membrane, where the protein is highly mobile. Our study demonstrates dynamic trafficking of NPC1L1 between the cell surface and intracellular compartments and suggests that this transport is involved in NPC1L1-mediated cellular sterol uptake.
Collapse
Affiliation(s)
- Nicole Hartwig Petersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M, Denmark
| | | | | | | | | |
Collapse
|
12
|
Wojtal KA, Hoekstra D, van Ijzendoorn SCD. cAMP-dependent protein kinase A and the dynamics of epithelial cell surface domains: moving membranes to keep in shape. Bioessays 2008; 30:146-55. [PMID: 18200529 DOI: 10.1002/bies.20705] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cyclic adenosine monophosphate (cAMP) and cAMP-dependent protein kinase A (PKA) are evolutionary conserved molecules with a well-established position in the complex network of signal transduction pathways. cAMP/PKA-mediated signaling pathways are implicated in many biological processes that cooperate in organ development including the motility, survival, proliferation and differentiation of epithelial cells. Cell surface polarity, here defined as the anisotropic organisation of cellular membranes, is a critical parameter for most of these processes. Changes in the activity of cAMP/PKA elicit a variety of effects on intracellular membrane dynamics, including membrane sorting and trafficking. One of the most intriguing aspects of cAMP/PKA signaling is its evolutionary conserved abundance on the one hand and its precise spatial-temporal actions on the other. Here, we review recent developments with regard to the role of cAMP/PKA in the regulation of intracellular membrane trafficking in relation to the dynamics of epithelial surface domains.
Collapse
Affiliation(s)
- Kacper A Wojtal
- Division of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
13
|
Wojtal KA, Hoekstra D, van IJzendoorn SC. Anchoring of protein kinase A-regulatory subunit IIalpha to subapically positioned centrosomes mediates apical bile canalicular lumen development in response to oncostatin M but not cAMP. Mol Biol Cell 2007; 18:2745-54. [PMID: 17494870 PMCID: PMC1924835 DOI: 10.1091/mbc.e06-08-0732] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Oncostatin M and cAMP signaling stimulate apical surface-directed membrane trafficking and apical lumen development in hepatocytes, both in a protein kinase A (PKA)-dependent manner. Here, we show that oncostatin M, but not cAMP, promotes the A-kinase anchoring protein (AKAP)-dependent anchoring of the PKA regulatory subunit (R)IIalpha to subapical centrosomes and that this requires extracellular signal-regulated kinase 2 activation. Stable expression of the RII-displacing peptide AKAP-IS, but not a scrambled peptide, inhibits the association of RIIalpha with centrosomal AKAPs and results in the repositioning of the centrosome from a subapical to a perinuclear location. Concomitantly, common endosomes, but not apical recycling endosomes, are repositioned from a subapical to a perinuclear location, without significant effects on constitutive or oncostatin M-stimulated basolateral-to-apical transcytosis. Importantly, however, the expression of the AKAP-IS peptide completely blocks oncostatin M-, but not cAMP-stimulated apical lumen development. Together, the data suggest that centrosomal anchoring of RIIalpha and the interrelated subapical positioning of these centrosomes is required for oncostatin M-, but not cAMP-mediated, bile canalicular lumen development in a manner that is uncoupled from oncostatin M-stimulated apical lumen-directed membrane trafficking. The results also imply that multiple PKA-mediated signaling pathways control apical lumen development and that subapical centrosome positioning is important in some of these pathways.
Collapse
Affiliation(s)
- Kacper A. Wojtal
- Department of Cell Biology/Membrane Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Dick Hoekstra
- Department of Cell Biology/Membrane Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Sven C.D. van IJzendoorn
- Department of Cell Biology/Membrane Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
14
|
Wüstner D. Quantification of polarized trafficking of transferrin and comparison with bulk membrane transport in hepatic cells. Biochem J 2006; 400:267-80. [PMID: 16879100 PMCID: PMC1652827 DOI: 10.1042/bj20060626] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transport of the recycling marker transferrin was analysed in polarized hepatic HepG2 cells using quantitative fluorescence microscopy and mathematical modelling. A detailed map and kinetic model for transport of transferrin in hepatic cells was developed. Fluorescent transferrin was found to be transported sequentially through basolateral SE (sorting endosomes) to a SAC/ARC (subapical compartment/apical recycling compartment). DiI (di-indocarbocyanine) lipid probes of different acyl chain length (DiIC12 and DiIC16) co-localized with transferrin in basolateral SE and in the SAC/ARC. By kinetic comparison of hepatic transport of transferrin and labelled HDL (high-density lipoprotein), it is shown that transport of transferrin from SE to the SAC/ARC follows a default pathway together with HDL. Kinetic modelling of fluorescence data provides an identical half-time for SE-to-SAC/ARC transport of transferrin and fluorescent HDL (t(1/2)=4.2 min). Fluorescent transferrin was found to recycle with a half-time of t(1/2)=12.9 min from the SAC/ARC to the basolateral cell surface of HepG2 cells. In contrast with HDL, targeting of labelled transferrin from the SAC/ARC to the apical biliary canaliculus was negligible. The results indicate that transport from basolateral hepatic SE to the SAC/ARC represents a bulk flow process and that polarized sorting occurs mainly at the level of the SAC/ARC.
Collapse
Affiliation(s)
- Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| |
Collapse
|
15
|
Wakabayashi Y, Kipp H, Arias IM. Transporters on Demand: Intracellular Reservoirs and Cycling of Bile Canalicular ABC Transporters. J Biol Chem 2006; 281:27669-73. [PMID: 16737964 DOI: 10.1074/jbc.r600013200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yoshiyuki Wakabayashi
- Unit on Cellular Polarity, Cell Biology and Metabolism Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
16
|
Wojtal KA, de Vries E, Hoekstra D, van IJzendoorn SC. Efficient trafficking of MDR1/P-glycoprotein to apical canalicular plasma membranes in HepG2 cells requires PKA-RIIalpha anchoring and glucosylceramide. Mol Biol Cell 2006; 17:3638-50. [PMID: 16723498 PMCID: PMC1525225 DOI: 10.1091/mbc.e06-03-0230] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In hepatocytes, cAMP/PKA activity stimulates the exocytic insertion of apical proteins and lipids and the biogenesis of bile canalicular plasma membranes. Here, we show that the displacement of PKA-RIIalpha from the Golgi apparatus severely delays the trafficking of the bile canalicular protein MDR1 (P-glycoprotein), but not that of MRP2 (cMOAT), DPP IV and 5'NT, to newly formed apical surfaces. In addition, the direct trafficking of de novo synthesized glycosphingolipid analogues from the Golgi apparatus to the apical surface is inhibited. Instead, newly synthesized glucosylceramide analogues are rerouted to the basolateral surface via a vesicular pathway, from where they are subsequently endocytosed and delivered to the apical surface via transcytosis. Treatment of HepG2 cells with the glucosylceramide synthase inhibitor PDMP delays the appearance of MDR1, but not MRP2, DPP IV, and 5'NT at newly formed apical surfaces, implicating glucosylceramide synthesis as an important parameter for the efficient Golgi-to-apical surface transport of MDR1. Neither PKA-RIIalpha displacement nor PDMP inhibited (cAMP-stimulated) apical plasma membrane biogenesis per se, suggesting that other cAMP effectors may play a role in canalicular development. Taken together, our data implicate the involvement of PKA-RIIalpha anchoring in the efficient direct apical targeting of distinct proteins and glycosphingolipids to newly formed apical plasma membrane domains and suggest that rerouting of Golgi-derived glycosphingolipids may underlie the delayed Golgi-to-apical surface transport of MDR1.
Collapse
Affiliation(s)
- Kacper A. Wojtal
- Section of Membrane Cell Biology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Erik de Vries
- Section of Membrane Cell Biology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Dick Hoekstra
- Section of Membrane Cell Biology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Sven C.D. van IJzendoorn
- Section of Membrane Cell Biology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
17
|
Wüstner D. Improved visualization and quantitative analysis of fluorescent membrane sterol in polarized hepatic cells. J Microsc 2005; 220:47-64. [PMID: 16269063 DOI: 10.1111/j.1365-2818.2005.01516.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dehydroergosterol is a natural yeast sterol which has recently been employed for direct observation of intracellular sterol transport by UV microscopy. Here, methods are described for improved visualization and quantification of dehydroergosterol in the membranes of polarized HepG2 cells. Using a new online assay, it is shown that dehydroergosterol derived from a cyclodextrin complex inserted into the plasma membrane with a half time of t(1/2) approximately 34 s. Based on a detailed bleaching analysis of dehydroergosterol, slightly different bleaching rates for dehydroergosterol in the basolateral and canalicular membrane were found, indicating different fluorophore environments. Bleaching correction in concert with 3D imaging allows for detection of dehydroergosterol enrichment in microvilli of the canalicular membrane forming the biliary canaliculus. Evidence is provided that some dehydroergosterol accumulating in a subapical compartment or apical recycling compartment can rapidly (t(1/2) approximately 2 min) exchange in vesicles towards the biliary canaliculus while the majority of dehydroergosterol does not redistribute from this compartment. The rapidly exchanging pool resembles only a small portion of the total subapical compartment or apical recycling compartment-associated dehydroergosterol (about 15-30%). Kinetic modelling supports the theory that the subapical compartment or apical recycling compartment to biliary canaliculus transport pathway for sterol is unidirectional. This pathway might be important for rapid biliary transport of free sterol produced by hydrolysis of cholesteryl esters derived from high density lipoprotein.
Collapse
Affiliation(s)
- D Wüstner
- Theoretical Biophysics Group, Max-Delbrück Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
18
|
Tyteca D, van Ijzendoorn SCD, Hoekstra D. Calmodulin modulates hepatic membrane polarity by protein kinase C-sensitive steps in the basolateral endocytic pathway. Exp Cell Res 2005; 310:293-302. [PMID: 16154564 DOI: 10.1016/j.yexcr.2005.07.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 07/08/2005] [Accepted: 07/17/2005] [Indexed: 01/24/2023]
Abstract
Membrane polarity is maintained by a complex intermingling of various trafficking pathways, including basolateral and apical endocytosis. The present work was undertaken to better define the role of basolateral endocytic transport in apical membrane homeostasis. When polarized HepG2 hepatoma cells were incubated with calmodulin antagonists, the cells lost their polarity, as reflected by an inhibition of lipid transport of a fluorescent sphingomyelin to the apical membrane and an impediment of its recycling to the basolateral membrane. Instead, an accumulation of the lipid in dilated early endosomal compartments was observed, presumably due to a frustration of vesiculation. Interestingly, lipid transport to the apical pole, lipid recycling to the basolateral membrane and cell polarity were reestablished, while dilated compartments disappeared, when the cells were simultaneously treated with specific inhibitors of protein kinase C (PKC). Consistently, following activation of PKC, extensive dilation/vacuolation of early sorting endosomes was observed, very similar as seen upon treatment with calmodulin antagonists. Thus, the results indicate that membrane trafficking at early steps of the basolateral endocytic pathway in HepG2 cells is regulated by an intricate interplay between calmodulin and PKC. This interference, although not affecting endocytosis as such, compromises cell polarity by impeding membrane trafficking from early endosomes to the apical membrane.
Collapse
Affiliation(s)
- Donatienne Tyteca
- Department of Cell Biology/Section Membrane Cell Biology, University Medical Center Groningen, A.Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | |
Collapse
|
19
|
Hoekstra D, Tyteca D, van IJzendoorn SCD. The subapical compartment: a traffic center in membrane polarity development. J Cell Sci 2005; 117:2183-92. [PMID: 15126620 DOI: 10.1242/jcs.01217] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Spatially separated apical and basolateral plasma membrane domains that have distinct functions and molecular compositions are a characteristic feature of epithelial cell polarity. The subapical compartment (SAC), also known as the common endosome (CE), where endocytic pathways from both surfaces merge, plays a crucial role in the maintenance and probably the biogenesis of these distinct membrane domains. Although differences in morphology are apparent, the same principal features of a SAC can be distinguished in different types of epithelial cells. As polarity develops, the compartment acquires several distinct machineries that, in conjunction with the cytoskeleton, are necessary for polarized trafficking. Disrupting trafficking via the SAC and hence bypassing its sorting machinery, as occurs upon actin depolymerization, leads to mis-sorting of apical and basolateral molecules, thereby compromising the development of polarity. The structural and functional integrity of the compartment in part depends on microtubules. Moreover, the acquisition of a particular set of Rab proteins, including Rab11 and Rab3, appears to be crucial in regulating molecular sorting and vesicular transport relevant both to recycling to either plasma membrane domain and to de novo assembly of the apical domain. Furthermore, subcompartmentalization of the SAC appears to be key to its various functions.
Collapse
Affiliation(s)
- Dick Hoekstra
- Department of Membrane Cell Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | |
Collapse
|
20
|
Van IJzendoorn SCD, Théard D, Van Der Wouden JM, Visser W, Wojtal KA, Hoekstra D. Oncostatin M-stimulated apical plasma membrane biogenesis requires p27(Kip1)-regulated cell cycle dynamics. Mol Biol Cell 2004; 15:4105-14. [PMID: 15240818 PMCID: PMC515344 DOI: 10.1091/mbc.e04-03-0201] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Revised: 06/17/2004] [Accepted: 06/24/2004] [Indexed: 11/11/2022] Open
Abstract
Oncostatin M regulates membrane traffic and stimulates apicalization of the cell surface in hepatoma cells in a protein kinase A-dependent manner. Here, we show that oncostatin M enhances the expression of the cyclin-dependent kinase (cdk)2 inhibitor p27(Kip1), which inhibits G(1)-S phase progression. Forced G(1)-S-phase transition effectively renders presynchronized cells insensitive to the apicalization-stimulating effect of oncostatin M. G(1)-S-phase transition prevents oncostatin M-mediated recruitment of protein kinase A to the centrosomal region and precludes the oncostatin M-mediated activation of a protein kinase A-dependent transport route to the apical surface, which exits the subapical compartment (SAC). This transport route has previously been shown to be crucial for apical plasma membrane biogenesis. Together, our data indicate that oncostatin M-stimulated apicalization of the cell surface is critically dependent on the ability of oncostatin M to control p27(Kip1)/cdk2-mediated G(1)-S-phase progression and suggest that the regulation of apical plasma membrane-directed traffic from SAC is coupled to centrosome-associated signaling pathways.
Collapse
Affiliation(s)
- Sven C D Van IJzendoorn
- Department of Membrane Cell Biology, University of Groningen, 9713 AV, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
21
|
Van IJzendoorn SCD, Van Der Wouden JM, Liebisch G, Schmitz G, Hoekstra D. Polarized membrane traffic and cell polarity development is dependent on dihydroceramide synthase-regulated sphinganine turnover. Mol Biol Cell 2004; 15:4115-24. [PMID: 15229289 PMCID: PMC515345 DOI: 10.1091/mbc.e04-04-0290] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 06/09/2004] [Accepted: 06/17/2004] [Indexed: 01/22/2023] Open
Abstract
Sphingoid bases have been implicated in various cellular processes including cell growth, apoptosis and cell differentiation. Here, we show that the regulated turnover of sphingoid bases is crucial for cell polarity development, i.e., the biogenesis of apical plasma membrane domains, in well-differentiated hepatic cells. Thus, inhibition of dihydroceramide synthase or sphinganine kinase activity with fumonisin B1 or N,N-dimethylsphingosine, respectively, dramatically perturbs cell polarity development, which is due to increased levels of sphinganine. Consistently, reduction of free sphinganine levels stimulates cell polarity development. Moreover, dihydroceramide synthase, the predominant enzyme responsible for sphinganine turnover, is a target for cell polarity stimulating cAMP/protein kinase A (PKA) signaling cascades. Indeed, electrospray ionization tandem mass spectrometry analyses revealed a significant reduction in sphinganine levels in cAMP/PKA-stimulated cells. These data suggest that sphinganine turnover is critical for and is actively regulated during HepG2 cell polarity development. Previously, we have identified an apical plasma membrane-directed trafficking pathway from the subapical compartment. This transport pathway, which is part of the basolateral-to-apical transcytotic itinerary, plays a crucial role in apical plasma membrane biogenesis. Here, we show that, as a part of the underlying mechanism, the inhibition of dihydroceramide synthase activity and ensuing increased sphinganine levels specifically perturb the activation of this particular pathway in the de novo apical membrane biogenesis.
Collapse
Affiliation(s)
- Sven C D Van IJzendoorn
- Department of Cell Biology/Section Membrane Cell Biology, University of Groningen, 9713-AV Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
22
|
van der Wouden JM, Maier O, van IJzendoorn SCD, Hoekstra D. Membrane dynamics and the regulation of epithelial cell polarity. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 226:127-64. [PMID: 12921237 DOI: 10.1016/s0074-7696(03)01003-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Plasma membranes of epithelial cells consist of two domains, an apical and a basolateral domain, the surfaces of which differ in composition. The separation of these domains by a tight junction and the fact that specific transport pathways exist for intracellular communication between these domains and distinct intracellular compartments relevant to cell polarity development, have triggered extensive research on issues that focus on how the polarity is generated and maintained. Apart from proper assembly of tight junctions, their potential functioning as landmark for the transport machinery, cell-cell adhesion is obviously instrumental in barrier formation. In recent years, distinct endocytic compartments, defined as subapical compartment or common endosome, were shown to play a prominent role in regulating membrane trafficking to and from polarized membrane domains. Sorting devices remain to be determined but likely include distinct rab proteins, and evidence is accumulating to indicate that signaling events may direct intracellular membrane transport, intimately involved in the biogenesis and maintenance of polarized membrane domains and hence the development of cell polarity.
Collapse
Affiliation(s)
- Johanna M van der Wouden
- Department of Membrane Cell Biology, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | | | | | | |
Collapse
|
23
|
Plass JRM, Mol O, Heegsma J, Geuken M, de Bruin J, Elling G, Müller M, Faber KN, Jansen PLM. A progressive familial intrahepatic cholestasis type 2 mutation causes an unstable, temperature-sensitive bile salt export pump. J Hepatol 2004; 40:24-30. [PMID: 14672610 DOI: 10.1016/s0168-8278(03)00483-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND/AIMS Progressive familial intrahepatic cholestasis type 2 (PFIC-2) patients have a defect in the hepatocanalicular bile salt secretion. The disease is caused by mutations in the bile salt export pump (BSEP). Ten different missense mutations have been described. In this study, we analysed the effect of the D482G PFIC-2 mutation on BSEP function. METHODS Adenosine triphosphatase (ATPase) and taurocholate transport assays were performed with full-length mouse Bsep (mBsep) with and without the D482G mutation. The effect on expression and subcellular sorting was studied in HepG2 cells, stably expressing enhanced green fluorescent protein (EGFP)-tagged mBsep proteins. RESULTS The D482G mutation did not significantly affect the taurocholate transport activity of mBsep, even though the bile salt-inducible ATPase activity of the mutant protein was slightly reduced. Protein expression and canalicular sorting were strongly affected by the D482G mutation. Mutant EGFP-mBsep protein was only partly glycosylated and detected in both the canalicular membrane and the cytoplasm. At 30 degrees C, the mutant mRNA and protein levels were strongly increased, and the protein was predominantly glycosylated and efficiently targeted to the canalicular membrane. CONCLUSIONS These data suggest that PFIC-2 patients with the D482G mutation express a functional, but highly unstable, temperature-sensitive bile salt export pump.
Collapse
Affiliation(s)
- Jacqueline R M Plass
- Department of Gastroenterology and Hepatology, Center for Liver, Digestive and Metabolic Diseases, University Hospital Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hoekstra D, Maier O, van der Wouden JM, Slimane TA, van IJzendoorn SCD. Membrane dynamics and cell polarity: the role of sphingolipids. J Lipid Res 2003; 44:869-77. [PMID: 12639977 DOI: 10.1194/jlr.r300003-jlr200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In recent years, glycosphingolipids (GSLs) have attracted widespread attention due to the appreciation that this class of lipids has a major impact on biological life. Inhibition of the synthesis of glucosylceramide, which serves as a precursor for the generation of complex glycosphinglipids, is embryonic lethal. GSLs play a major role in growth and development. Metabolites of sphingolipids, such as ceramide, sphinganine, and sphingosine, may function as second messengers or regulators of signal transduction that affect events ranging from apoptosis to the (co)regulation of the cell cycle. In addition, GSLs can provide a molecular platform for clustering of signal transducers. The ability of sphingolipids, with or without cholesterol, to form microdomains or rafts is critical in sorting and membrane transport that underlies the biogenesis of polarized membrane domains. Here, a brief summary is presented of some recent developments in this field, with a particular emphasis on raft assembly and membrane transport in the establishment of membrane polarity.
Collapse
Affiliation(s)
- Dick Hoekstra
- University of Groningen, Department of Membrane Cell Biology, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
25
|
Maier O, Hoekstra D. Trans-Golgi network and subapical compartment of HepG2 cells display different properties in sorting and exiting of sphingolipids. J Biol Chem 2003; 278:164-73. [PMID: 12407103 DOI: 10.1074/jbc.m208259200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In HepG2 cells, the subapical compartment (SAC) is involved in the biogenesis of membrane polarity. By contrast, direct apical transport originating from the trans-Golgi network (TGN), which may contribute to polarity establishment, has been poorly defined in these cells. Thus, although newly synthesized sphingolipids can be directly transported from the TGN to the apical membrane, numerous apical resident proteins are traveling via the transcytotic route. Here, we developed an in vitro transport assay and compared the molecular sorting of 6-[N-(7-nitrobenz-2-oxa-1,3 diazol-4-yl)amino] hexanoyl-sphingomyelin (C(6)NBD-SM) and C(6)NBD-glucosylceramide (C(6)NBD-GlcCer) in TGN and SAC. SM is released from both TGN and SAC in the lumenal leaflet of transport vesicles. This holds also for GlcCer released from the SAC but not for a substantial fraction that departed from the Golgi. Distinct transport vesicles, enriched in either SM or GlcCer are released from SAC, consistent with their rigid sorting in this compartment. Different vesicle populations could not be recovered from TGN, although in situ experiments reveal that GlcCer is preferentially transported to the apical membrane, reflecting different transport mechanisms. The results indicate that in HepG2 cells sphingolipids are mainly sorted in the SAC membrane and that the release of SM from SAC and TGN is differentially regulated.
Collapse
Affiliation(s)
- Olaf Maier
- Department of Membrane Cell Biology, Faculty of Medical Sciences, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | |
Collapse
|
26
|
van Ijzendoorn SCD, Mostov KE, Hoekstra D. Role of Rab Proteins in Epithelial Membrane Traffic. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 232:59-88. [PMID: 14711116 DOI: 10.1016/s0074-7696(03)32002-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Small GTPase rab proteins play an important role in various aspects of membrane traffic, including cargo selection, vesicle budding, vesicle motility, tethering, docking, and fusion. Recent data suggest also that rabs, and their divalent effector proteins, organize organelle subdomains and as such may define functional organelle identity. Most rabs are ubiquitously expressed. However, some rabs are preferentially expressed in epithelial cells where they appear intimately associated with the epithelial-specific transcytotic pathway and/or tight junctions. This review discusses the role of rabs in epithelial membrane transport.
Collapse
Affiliation(s)
- Sven C D van Ijzendoorn
- Department of Membrane Cell Biology, University of Groningen, Groningen 9713AV, The Netherlands
| | | | | |
Collapse
|
27
|
van der Wouden JM, van IJzendoorn SC, Hoekstra D. Oncostatin M regulates membrane traffic and stimulates bile canalicular membrane biogenesis in HepG2 cells. EMBO J 2002; 21:6409-18. [PMID: 12456648 PMCID: PMC136933 DOI: 10.1093/emboj/cdf629] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hepatocytes are the major epithelial cells of the liver and they display membrane polarity: the sinusoidal membrane representing the basolateral surface, while the bile canalicular membrane is typical of the apical membrane. In polarized HepG2 cells an endosomal organelle, SAC, fulfills a prominent role in the biogenesis of the canalicular membrane, reflected by its ability to sort and redistribute apical and basolateral sphingolipids. Here we show that SAC appears to be a crucial target for a cytokine-induced signal transduction pathway, which stimulates membrane transport exiting from this compartment promoting apical membrane biogenesis. Thus, oncostatin M, an IL-6-type cytokine, stimulates membrane polarity development in HepG2 cells via the gp130 receptor unit, which activates a protein kinase A-dependent and sphingomyelin-marked membrane transport pathway from SAC to the apical membrane. To exert its signal transducing function, gp130 is recruited into detergent-resistant membrane microdomains at the basolateral membrane. These data provide a clue for a molecular mechanism that couples the biogenesis of an apical plasma membrane domain to the regulation of intracellular transport in response to an extracellular, basolaterally localized stimulus.
Collapse
Affiliation(s)
| | | | - Dick Hoekstra
- Department of Membrane Cell Biology, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
Corresponding author e-mail:
| |
Collapse
|
28
|
Abstract
Sphingolipids represent a minor, but highly dynamic subclass of lipids in all eukaryotic cells. They are involved in functions that range from structural protection to signal transduction and protein sorting, and participate in lipid raft assembly. In polarized epithelial cells, which display an asymmetric apical and basolateral membrane surface, rafts have been proposed as a sorting principle for apical resident proteins, following their biosynthesis. However, raft-mediated trafficking is ubiquitous in cells. Also, sphingolipids per se, which are strongly enriched in the apical domain, are subject to sorting in polarity development. Next to the trans Golgi network, a subapical compartment called SAC or common endosome appears instrumental in regulating these sorting events.
Collapse
Affiliation(s)
- Tounsia Aït Slimane
- University of Groningen, Department of Membrane Cell Biology, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | | |
Collapse
|
29
|
Tuma PL, Nyasae LK, Hubbard AL. Nonpolarized cells selectively sort apical proteins from cell surface to a novel compartment, but lack apical retention mechanisms. Mol Biol Cell 2002; 13:3400-15. [PMID: 12388745 PMCID: PMC129954 DOI: 10.1091/mbc.02-04-0054] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2002] [Revised: 06/18/2002] [Accepted: 07/22/2002] [Indexed: 01/21/2023] Open
Abstract
Membrane trafficking is central to establishing and maintaining epithelial cell polarity. One open question is to what extent the mechanisms regulating membrane trafficking are conserved between nonpolarized and polarized cells. To answer this question, we examined the dynamics of domain-specific plasma membrane (PM) proteins in three classes of hepatic cells: polarized and differentiated WIF-B cells, nonpolarized and differentiated Fao cells, and nonpolarized and nondifferentiated Clone 9 cells. In nonpolarized cells, mature apical proteins were uniformly distributed in the PM. Surprisingly, they were also in an intracellular compartment. Double labeling revealed that the compartment contained only apical proteins. By monitoring the dynamics of antibody-labeled molecules in nonpolarized cells, we further found that apical proteins rapidly recycled between the compartment and PM. In contrast, the apical PM residents in polarized cells showed neither internalization nor return to the basolateral PM from which they had originally come. Cytochalasin D treatment of these polarized cells revealed that the retention mechanisms are actin dependent. We conclude from these data that both polarized and nonpolarized cells selectively sort apical proteins from the PM and transport them to specific, but different cellular locations. We propose that the intracellular recycling compartment in nonpolarized cells is an intermediate in apical surface formation.
Collapse
Affiliation(s)
- Pamela L Tuma
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
30
|
Affiliation(s)
- Gerrit van Meer
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, P. O. Box 22700, 1100 DE Amsterdam, The Netherlands.
| | | |
Collapse
|
31
|
Maier O, Oberle V, Hoekstra D. Fluorescent lipid probes: some properties and applications (a review). Chem Phys Lipids 2002; 116:3-18. [PMID: 12093532 DOI: 10.1016/s0009-3084(02)00017-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Odd as it may seem, experimental challenges in lipid research are often hampered by the simplicity of the lipid structure. Since, as in protein research, mutants or overexpression of lipids are not realistic, a considerable amount of lipid research relies on the use of tagged lipid analogues. However, given the size of an average lipid molecule, special care is needed for the selection of probes, since if the size and intramolecular localization of the probe is not specifically taken into account, it may dramatically affect the properties of the lipids. The latter is particularly important in cell biological studies of lipid trafficking and sorting, where the probed lipid should resemble its natural counterpart as closely as possible. On the other hand, for biophysical applications, these considerations may be less critical. Here we provide a brief overview of the application of several lipid probes in cell biological and biophysical research, and critically analyze their validity in the various fields.
Collapse
Affiliation(s)
- Olaf Maier
- Department of Membrane Cell Biology, Faculty of Medical Sciences, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | |
Collapse
|
32
|
Wüstner D, Mukherjee S, Maxfield FR, Müller P, Herrmann A. Vesicular and nonvesicular transport of phosphatidylcholine in polarized HepG2 cells. Traffic 2001; 2:277-96. [PMID: 11285138 DOI: 10.1034/j.1600-0854.2001.9o135.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have investigated the transport and canalicular enrichment of fluorescent phosphatidylcholine (PC) in HepG2 cells using the fluorescent analogs of PC C6-NBD-PC and beta-BODIPY-PC. Fluorescent PC was efficiently transported to the biliary canaliculus (BC) and became enriched on the lumenal side of the canalicular membrane as shown for C6-NBD-PC. Some fluorescent PC was transported in vesicles to a subapical compartment (SAC) or apical recycling compartment (ARC) in polarized HepG2 cells as shown by colocalization with fluorescent sphingomyelin (C6-NBD-SM) and fluorescent transferrin, respectively. Extensive trafficking of vesicles containing fluorescent PC between the basolateral domain, the SAC/ARC and the BC as well as endocytosis of PC analogs from the canalicular membrane were found. Evidence for nonvesicular transport included enrichment of the PC-analog beta-BODIPY-PC in the BC (t1/2 = 3.54 min) prior to its accumulation in the SAC/ARC (t1/2 = 18.5 min) at 37 degrees C. Transport of fluorescent PC to the canalicular membrane also continued after disruption of the actin or microtubule cytoskeleton and at 2 degrees C. These results indicate that: (i) a nonvesicular transport pathway significantly contributes to the canalicular enrichment of PC in hepatocytic cells, and (ii) vesicular transport of fluorescent PC occurs from both membrane domains via the SAC/ARC.
Collapse
Affiliation(s)
- D Wüstner
- Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, Institut für Biologie/Biophysik, Invalidenstr. 43, D-10115 Berlin, Germany
| | | | | | | | | |
Collapse
|
33
|
Maier O, Aït Slimane T, Hoekstra D. Membrane domains and polarized trafficking of sphingolipids. Semin Cell Dev Biol 2001; 12:149-61. [PMID: 11292381 DOI: 10.1006/scdb.2000.0232] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The plasma membrane of polarized cells consists of distinct domains, the apical and basolateral membrane, that are characterized by a distinct lipid and protein content. Apical protein transport is largely mediated by (glyco)sphingolipid--cholesterol enriched membrane microdomains, so called rafts. In addition changes in the direction of polarized sphingolipid transport appear instrumental in cell polarity development. Knowledge is therefore required of the mechanisms that mediate sphingolipid sorting and the complexity of the trafficking pathways that are involved in polarized transport of both sphingolipids and proteins. Here we summarize specific biophysical properties that underly mechanisms relevant to sphingolipid sorting, cargo recruitment and polarized trafficking, and discuss the central role of a subapical compartment, SAC or common endosome (CE), as a major intracellular site involved in polarized sorting of sphingolipids, and in development and maintenance of membrane polarity.
Collapse
Affiliation(s)
- O Maier
- Department of Membrane Cell Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | |
Collapse
|
34
|
Abstract
Epithelial cells contain apical and basolateral surfaces with distinct compositions. Sorting of certain proteins to the basolateral surface involves the epithelial-specific mu 1b clathrin adaptor subunit. Recent results have shown that targeting to the basolateral surface utilizes the exocyst, whereas traffic to the apical surface uses syntaxin 3. Endocytosis at the apical surface is regulated by ARF6. Transcytosis of IgA is regulated by the p62Yes tyrosine kinase.
Collapse
Affiliation(s)
- K E Mostov
- Department of Anatomy, University of California, San Francisco, 94143-0452, USA.
| | | | | |
Collapse
|
35
|
Hoekstra D, van IJzendoorn SC. Lipid trafficking and sorting: how cholesterol is filling gaps. Curr Opin Cell Biol 2000; 12:496-502. [PMID: 10873825 DOI: 10.1016/s0955-0674(00)00122-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent research has highlighted a role for cholesterol homeostasis in the regulation of trafficking and sorting of sphingolipids. This sorting may dictate the nature of the acyl chain species of phospholipids in the plasma membrane which, in turn, may govern the selective partitioning of these lipids into lateral domains. Recently, several proteins have been identified that play a role in the flow and sorting of all major lipid classes.
Collapse
Affiliation(s)
- D Hoekstra
- Department of Physiological Chemistry, University of Groningen, Groningen, 9713 AV, The Netherlands.
| | | |
Collapse
|