1
|
Samardak K, Bâcle J, Moriel-Carretero M. Behind the stoNE wall: A fervent activity for nuclear lipids. Biochimie 2024; 227:53-84. [PMID: 39111564 DOI: 10.1016/j.biochi.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/09/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/27/2024]
Abstract
The four main types of biomolecules are nucleic acids, proteins, carbohydrates and lipids. The knowledge about their respective interactions is as important as the individual understanding of each of them. However, while, for example, the interaction of proteins with the other three groups is extensively studied, that of nucleic acids and lipids is, in comparison, very poorly explored. An iconic paradigm of physical (and likely functional) proximity between DNA and lipids is the case of the genomic DNA in eukaryotes: enclosed within the nucleus by two concentric lipid bilayers, the wealth of implications of this interaction, for example in genome stability, remains underassessed. Nuclear lipid-related phenotypes have been observed for 50 years, yet in most cases kept as mere anecdotical descriptions. In this review, we will bring together the evidence connecting lipids with both the nuclear envelope and the nucleoplasm, and will make critical analyses of these descriptions. Our exploration establishes a scenario in which lipids irrefutably play a role in nuclear homeostasis.
Collapse
Affiliation(s)
- Kseniya Samardak
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France
| | - Janélie Bâcle
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France
| | - María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France.
| |
Collapse
|
2
|
Tsilafakis K, Mavroidis M. Are the Head and Tail Domains of Intermediate Filaments Really Unstructured Regions? Genes (Basel) 2024; 15:633. [PMID: 38790262 PMCID: PMC11121635 DOI: 10.3390/genes15050633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/15/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Intermediate filaments (IFs) are integral components of the cytoskeleton which provide cells with tissue-specific mechanical properties and are involved in a plethora of cellular processes. Unfortunately, due to their intricate architecture, the 3D structure of the complete molecule of IFs has remained unresolved. Even though most of the rod domain structure has been revealed by means of crystallographic analyses, the flanked head and tail domains are still mostly unknown. Only recently have studies shed light on head or tail domains of IFs, revealing certainsecondary structures and conformational changes during IF assembly. Thus, a deeper understanding of their structure could provide insights into their function.
Collapse
Affiliation(s)
- Konstantinos Tsilafakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece;
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Manolis Mavroidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece;
| |
Collapse
|
3
|
England SJ, Rusnock AK, Mujcic A, Kowalchuk A, de Jager S, Hilinski WC, Juárez-Morales JL, Smith ME, Grieb G, Banerjee S, Lewis KE. Molecular analyses of zebrafish V0v spinal interneurons and identification of transcriptional regulators downstream of Evx1 and Evx2 in these cells. Neural Dev 2023; 18:8. [PMID: 38017520 PMCID: PMC10683209 DOI: 10.1186/s13064-023-00176-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/23/2023] [Accepted: 10/12/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND V0v spinal interneurons are highly conserved, glutamatergic, commissural neurons that function in locomotor circuits. We have previously shown that Evx1 and Evx2 are required to specify the neurotransmitter phenotype of these cells. However, we still know very little about the gene regulatory networks that act downstream of these transcription factors in V0v cells. METHODS To identify candidate members of V0v gene regulatory networks, we FAC-sorted wild-type and evx1;evx2 double mutant zebrafish V0v spinal interneurons and expression-profiled them using microarrays and single cell RNA-seq. We also used in situ hybridization to compare expression of a subset of candidate genes in evx1;evx2 double mutants and wild-type siblings. RESULTS Our data reveal two molecularly distinct subtypes of zebrafish V0v spinal interneurons at 48 h and suggest that, by this stage of development, evx1;evx2 double mutant cells transfate into either inhibitory spinal interneurons, or motoneurons. Our results also identify 25 transcriptional regulator genes that require Evx1/2 for their expression in V0v interneurons, plus a further 11 transcriptional regulator genes that are repressed in V0v interneurons by Evx1/2. Two of the latter genes are hmx2 and hmx3a. Intriguingly, we show that Hmx2/3a, repress dI2 interneuron expression of skor1a and nefma, two genes that require Evx1/2 for their expression in V0v interneurons. This suggests that Evx1/2 might regulate skor1a and nefma expression in V0v interneurons by repressing Hmx2/3a expression. CONCLUSIONS This study identifies two molecularly distinct subsets of zebrafish V0v spinal interneurons, as well as multiple transcriptional regulators that are strong candidates for acting downstream of Evx1/2 to specify the essential functional characteristics of these cells. Our data further suggest that in the absence of both Evx1 and Evx2, V0v spinal interneurons initially change their neurotransmitter phenotypes from excitatory to inhibitory and then, later, start to express markers of distinct types of inhibitory spinal interneurons, or motoneurons. Taken together, our findings significantly increase our knowledge of V0v and spinal development and move us closer towards the essential goal of identifying the complete gene regulatory networks that specify this crucial cell type.
Collapse
Affiliation(s)
| | | | - Amra Mujcic
- Biology Department, Syracuse University, Syracuse, NY, USA
| | | | - Sarah de Jager
- Physiology, Development and Neuroscience Department, Cambridge University, Cambridge, UK
| | | | - José L Juárez-Morales
- Biology Department, Syracuse University, Syracuse, NY, USA
- Programa de IxM-CONAHCYT, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), La Paz, Baja California Sur, México
| | | | - Ginny Grieb
- Biology Department, Syracuse University, Syracuse, NY, USA
| | - Santanu Banerjee
- Biological Sciences Department, SUNY-Cortland, Cortland, NY, USA
| | | |
Collapse
|
4
|
England SJ, Woodard AK, Mujcic A, Kowalchuk A, de Jager S, Hilinski WC, Juárez-Morales JL, Smith ME, Grieb G, Banerjee S, Lewis KE. Molecular Analyses of V0v Spinal Interneurons and Identification of Transcriptional Regulators Downstream of Evx1 and Evx2 in these Cells. RESEARCH SQUARE 2023:rs.3.rs-3290462. [PMID: 37693471 PMCID: PMC10491344 DOI: 10.21203/rs.3.rs-3290462/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 09/12/2023]
Abstract
Background V0v spinal interneurons are highly conserved, glutamatergic, commissural neurons that function in locomotor circuits. We have previously shown that Evx1 and Evx2 are required to specify the neurotransmitter phenotype of these cells. However, we still know very little about the gene regulatory networks that act downstream of these transcription factors in V0v cells. Methods To identify candidate members of V0v gene regulatory networks, we FAC-sorted WT and evx1;evx2 double mutant zebrafish V0v spinal interneurons and expression-profiled them using microarrays and single cell RNA-seq. We also used in situ hybridization to compare expression of a subset of candidate genes in evx1;evx2 double mutants and wild-type siblings. Results Our data reveal two molecularly distinct subtypes of V0v spinal interneurons at 48 h and suggest that, by this stage of development, evx1;evx2 double mutant cells transfate into either inhibitory spinal interneurons, or motoneurons. Our results also identify 25 transcriptional regulator genes that require Evx1/2 for their expression in V0v interneurons, plus a further 11 transcriptional regulator genes that are repressed in V0v interneurons by Evx1/2. Two of the latter genes are hmx2 and hmx3a. Intriguingly, we show that Hmx2/3a, repress dI2 interneuronal expression of skor1a and nefma, two genes that require Evx1/2 for their expression in V0v interneurons. This suggests that Evx1/2 might regulate skor1a and nefma expression in V0v interneurons by repressing Hmx2/3a expression. Conclusions This study identifies two molecularly distinct subsets of V0v spinal interneurons, as well as multiple transcriptional regulators that are strong candidates for acting downstream of Evx1/2 to specify the essential functional characteristics of these cells. Our data further suggest that in the absence of both Evx1 and Evx2, V0v spinal interneurons initially change their neurotransmitter phenotypes from excitatory to inhibitory and then, later, start to express markers of distinct types of inhibitory spinal interneurons, or motoneurons. Taken together, our findings significantly increase our knowledge of V0v and spinal development and move us closer towards the essential goal of identifying the complete gene regulatory networks that specify this crucial cell type.
Collapse
|
5
|
Damane BP, Mulaudzi TV, Kader SS, Naidoo P, Savkovic SD, Dlamini Z, Mkhize-Kwitshana ZL. Unraveling the Complex Interconnection between Specific Inflammatory Signaling Pathways and Mechanisms Involved in HIV-Associated Colorectal Oncogenesis. Cancers (Basel) 2023; 15:748. [PMID: 36765706 PMCID: PMC9913377 DOI: 10.3390/cancers15030748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/26/2022] [Revised: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
The advancement of HIV treatment has led to increased life expectancy. However, people living with HIV (PLWH) are at a higher risk of developing colorectal cancers. Chronic inflammation has a key role in oncogenesis, affecting the initiation, promotion, transformation, and advancement of the disease. PLWH are prone to opportunistic infections that trigger inflammation. It has been documented that 15-20% of cancers are triggered by infections, and this percentage is expected to be increased in HIV co-infections. The incidence of parasitic infections such as helminths, with Ascariasis being the most common, is higher in HIV-infected individuals. Cancer cells and opportunistic infections drive a cascade of inflammatory responses which assist in evading immune surveillance, making them survive longer in the affected individuals. Their survival leads to a chronic inflammatory state which further increases the probability of oncogenesis. This review discusses the key inflammatory signaling pathways involved in disease pathogenesis in HIV-positive patients with colorectal cancers. The possibility of the involvement of co-infections in the advancement of the disease, along with highlights on signaling mechanisms that can potentially be utilized as therapeutic strategies to prevent oncogenesis or halt cancer progression, are addressed.
Collapse
Affiliation(s)
- Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Medical School Campus, College of Health Sciences, University of KwaZulu-Natal-Natal, Durban 4041, South Africa
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Sayed Shakeel Kader
- Department of Surgery, University of KwaZulu Natal, Congella, Durban 4013, South Africa
| | - Pragalathan Naidoo
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Medical School Campus, College of Health Sciences, University of KwaZulu-Natal-Natal, Durban 4041, South Africa
- SAMRC Research Capacity Development Division, South African Medical Research Council, Tygerberg, Cape Town 4091, South Africa
| | - Suzana D. Savkovic
- School of Medicine, Department of Pathology & Laboratory Medicine, 1430 Tulane Ave., SL-79, New Orleans, LA 70112, USA
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Zilungile Lynette Mkhize-Kwitshana
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Medical School Campus, College of Health Sciences, University of KwaZulu-Natal-Natal, Durban 4041, South Africa
- SAMRC Research Capacity Development Division, South African Medical Research Council, Tygerberg, Cape Town 4091, South Africa
| |
Collapse
|
6
|
Abstract
The biggest challenge to immune control of HIV infection is the rapid within-host viral evolution, which allows selection of viral variants that escape from T cell and antibody recognition. Thus, it is impossible to clear HIV infection without targeting "immutable" components of the virus. Unlike the adaptive immune system that recognizes cognate epitopes, the CARD8 inflammasome senses the essential enzymatic activity of the HIV-1 protease, which is immutable for the virus. Hence, all subtypes of HIV clinical isolates can be recognized by CARD8. In HIV-infected cells, the viral protease is expressed as a subunit of the viral Gag-Pol polyprotein and remains functionally inactive prior to viral budding. A class of anti-HIV drugs, the non-nucleoside reverse transcriptase inhibitors (NNRTIs), can promote Gag-pol dimerization and subsequent premature intracellular activation of the viral protease. NNRTI treatment triggers CARD8 inflammasome activation, which leads to pyroptosis of HIV-infected CD4+ T cells and macrophages. Targeting the CARD8 inflammasome can be a potent and broadly effective strategy for HIV eradication.
Collapse
Affiliation(s)
- Kolin M Clark
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Priya Pal
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Josh G Kim
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Qiankun Wang
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Liang Shan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States.
| |
Collapse
|
7
|
Kim JG, Shan L. Beyond Inhibition: A Novel Strategy of Targeting HIV-1 Protease to Eliminate Viral Reservoirs. Viruses 2022; 14:1179. [PMID: 35746649 PMCID: PMC9231271 DOI: 10.3390/v14061179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
HIV-1 protease (PR) is a viral enzyme that cleaves the Gag and Gag-Pol polyprotein precursors to convert them into their functional forms, a process which is essential to generate infectious viral particles. Due to its broad substrate specificity, HIV-1 PR can also cleave certain host cell proteins. Several studies have identified host cell substrates of HIV-1 PR and described the potential impact of their cleavage on HIV-1-infected cells. Of particular interest is the interaction between PR and the caspase recruitment domain-containing protein 8 (CARD8) inflammasome. A recent study demonstrated that CARD8 can sense HIV-1 PR activity and induce cell death. While PR typically has low levels of intracellular activity prior to viral budding, premature PR activation can be achieved using certain non-nucleoside reverse transcriptase inhibitors (NNRTIs), resulting in CARD8 cleavage and downstream pyroptosis. Used together with latency reversal agents, the induction of premature PR activation to trigger CARD8-mediated cell killing may help eliminate latent reservoirs in people living with HIV. This represents a novel strategy of utilizing PR as an antiviral target through premature activation rather than inhibition. In this review, we discuss the viral and host substrates of HIV-1 protease and highlight potential applications and advantages of targeting CARD8 sensing of HIV-1 PR.
Collapse
Affiliation(s)
| | - Liang Shan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA;
| |
Collapse
|
8
|
Rozario AM, Morey A, Elliott C, Russ B, Whelan DR, Turner SJ, Bell TDM. 3D Single Molecule Super-Resolution Microscopy of Whole Nuclear Lamina. Front Chem 2022; 10:863610. [PMID: 35572104 PMCID: PMC9096160 DOI: 10.3389/fchem.2022.863610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/27/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Abstract
Single molecule (SM) super-resolution microscopies bypass the diffraction limit of conventional optical techniques and provide excellent spatial resolutions in the tens of nanometers without overly complex microscope hardware. SM imaging using optical astigmatism is an efficient strategy for visualizing subcellular features in 3D with a z-range of up to ∼1 µm per acquisition. This approach however, places high demands on fluorophore brightness and photoswitching resilience meaning that imaging entire cell volumes in 3D using SM super-resolution remains challenging. Here we employ SM astigmatism together with multiplane acquisition to visualize the whole nuclear lamina of COS-7 and T cells in 3D. Nuclear lamina provides structural support to the nuclear envelope and participates in vital nuclear functions including internuclear transport, chromatin organization and gene regulation. Its position at the periphery of the nucleus provides a visible reference of the nuclear boundary and can be used to quantify the spatial distribution of intranuclear components such as histone modifications and transcription factors. We found Alexa Fluor 647, a popular photoswitchable fluorophore, remained viable for over an hour of continuous high laser power exposure, and provided sufficient brightness detectable up to 8 µm deep into a cell, allowing us to capture the entire nuclear lamina in 3D. Our approach provides sufficient super-resolution detail of nuclear lamina morphology to enable quantification of overall nuclear dimensions and local membrane features.
Collapse
Affiliation(s)
- Ashley M. Rozario
- School of Chemistry, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Alison Morey
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Cade Elliott
- School of Chemistry, Monash University, Clayton, VIC, Australia
| | - Brendan Russ
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Donna R. Whelan
- La Trobe Institute for Molecular Science, Bendigo, VIC, Australia
| | - Stephen J. Turner
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- *Correspondence: Stephen J. Turner, ; Toby D. M. Bell,
| | - Toby D. M. Bell
- School of Chemistry, Monash University, Clayton, VIC, Australia
- *Correspondence: Stephen J. Turner, ; Toby D. M. Bell,
| |
Collapse
|
9
|
Morshedi Rad D, Alsadat Rad M, Razavi Bazaz S, Kashaninejad N, Jin D, Ebrahimi Warkiani M. A Comprehensive Review on Intracellular Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005363. [PMID: 33594744 DOI: 10.1002/adma.202005363] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/07/2020] [Revised: 09/22/2020] [Indexed: 05/22/2023]
Abstract
Intracellular delivery is considered an indispensable process for various studies, ranging from medical applications (cell-based therapy) to fundamental (genome-editing) and industrial (biomanufacture) approaches. Conventional macroscale delivery systems critically suffer from such issues as low cell viability, cytotoxicity, and inconsistent material delivery, which have opened up an interest in the development of more efficient intracellular delivery systems. In line with the advances in microfluidics and nanotechnology, intracellular delivery based on micro- and nanoengineered platforms has progressed rapidly and held great promises owing to their unique features. These approaches have been advanced to introduce a smorgasbord of diverse cargoes into various cell types with the maximum efficiency and the highest precision. This review differentiates macro-, micro-, and nanoengineered approaches for intracellular delivery. The macroengineered delivery platforms are first summarized and then each method is categorized based on whether it employs a carrier- or membrane-disruption-mediated mechanism to load cargoes inside the cells. Second, particular emphasis is placed on the micro- and nanoengineered advances in the delivery of biomolecules inside the cells. Furthermore, the applications and challenges of the established and emerging delivery approaches are summarized. The topic is concluded by evaluating the future perspective of intracellular delivery toward the micro- and nanoengineered approaches.
Collapse
Affiliation(s)
- Dorsa Morshedi Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Maryam Alsadat Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Navid Kashaninejad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute of Molecular Medicine, Sechenov University, Moscow, 119991, Russia
| |
Collapse
|
10
|
De Conto F, Conversano F, Razin SV, Belletti S, Arcangeletti MC, Chezzi C, Calderaro A. Host-cell dependent role of phosphorylated keratin 8 during influenza A/NWS/33 virus (H1N1) infection in mammalian cells. Virus Res 2021; 295:198333. [PMID: 33556415 DOI: 10.1016/j.virusres.2021.198333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/27/2020] [Revised: 01/20/2021] [Accepted: 02/02/2021] [Indexed: 01/22/2023]
Abstract
In this study, we investigated the involvement of keratin 8 during human influenza A/NWS/33 virus (H1N1) infection in semi-permissive rhesus monkey-kidney (LLC-MK2) and permissive human type II alveolar epithelial (A549) cells. In A549 cells, keratin 8 showed major expression and phosphorylation levels. Influenza A/NWS/33 virus was able to subvert keratin 8 structural organization at late stages of infection in both cell models, promoting keratin 8 phosphorylation in A549 cells at early phases of infection. Accordingly, partial colocalizations of the viral nucleoprotein with keratin 8 and its phosphorylated form were assessed by confocal microscopy at early stages of infection in A549 cells. The employment of chemical activators of phosphorylation resulted in structural changes as well as increased phosphorylation of keratin 8 in both cell models, favoring the influenza A/NWS/33 virus's replicative efficiency in A549 but not in LLC-MK2 cells. In A549 and human larynx epidermoid carcinoma (HEp-2) cells inoculated with respiratory secretions from pediatric patients positive for, respectively, influenza A virus or respiratory syncytial virus, the keratin 8 phosphorylation level had increased only in the case of influenza A virus infection. The results obtained suggest that in A549 cells the influenza virus is able to induce keratin 8 phosphorylation thereby enhancing its replicative efficiency.
Collapse
Affiliation(s)
- Flora De Conto
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | | | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences and Lomonosov Moscow State University, Moscow, Russia
| | - Silvana Belletti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Carlo Chezzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Adriana Calderaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
11
|
Zhang Y, Wen Z, Shi X, Liu YJ, Eriksson JE, Jiu Y. The diverse roles and dynamic rearrangement of vimentin during viral infection. J Cell Sci 2020; 134:134/5/jcs250597. [PMID: 33154171 DOI: 10.1242/jcs.250597] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022] Open
Abstract
Epidemics caused by viral infections pose a significant global threat. Cytoskeletal vimentin is a major intermediate filament (IF) protein, and is involved in numerous functions, including cell signaling, epithelial-mesenchymal transition, intracellular organization and cell migration. Vimentin has important roles for the life cycle of particular viruses; it can act as a co-receptor to enable effective virus invasion and guide efficient transport of the virus to the replication site. Furthermore, vimentin has been shown to rearrange into cage-like structures that facilitate virus replication, and to recruit viral components to the location of assembly and egress. Surprisingly, vimentin can also inhibit virus entry or egress, as well as participate in host-cell defense. Although vimentin can facilitate viral infection, how this function is regulated is still poorly understood. In particular, information is lacking on its interaction sites, regulation of expression, post-translational modifications and cooperation with other host factors. This Review recapitulates the different functions of vimentin in the virus life cycle and discusses how they influence host-cell tropism, virulence of the pathogens and the consequent pathological outcomes. These insights into vimentin-virus interactions emphasize the importance of cytoskeletal functions in viral cell biology and their potential for the identification of novel antiviral targets.
Collapse
Affiliation(s)
- Yue Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Zeyu Wen
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Xuemeng Shi
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan-Jun Liu
- Shanghai Institute of Cardiovascular Diseases, and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku FI-20520, Finland .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FI-20520, Finland
| | - Yaming Jiu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China .,University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| |
Collapse
|
12
|
Khmelinskii I, Makarov V. Electric field modulation of light energy transmission along intermediate filaments isolated from porcine retina. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
|
13
|
Klymkowsky MW. Filaments and phenotypes: cellular roles and orphan effects associated with mutations in cytoplasmic intermediate filament proteins. F1000Res 2019; 8. [PMID: 31602295 PMCID: PMC6774051 DOI: 10.12688/f1000research.19950.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
Cytoplasmic intermediate filaments (IFs) surround the nucleus and are often anchored at membrane sites to form effectively transcellular networks. Mutations in IF proteins (IFps) have revealed mechanical roles in epidermis, muscle, liver, and neurons. At the same time, there have been phenotypic surprises, illustrated by the ability to generate viable and fertile mice null for a number of IFp-encoding genes, including vimentin. Yet in humans, the vimentin ( VIM) gene displays a high probability of intolerance to loss-of-function mutations, indicating an essential role. A number of subtle and not so subtle IF-associated phenotypes have been identified, often linked to mechanical or metabolic stresses, some of which have been found to be ameliorated by the over-expression of molecular chaperones, suggesting that such phenotypes arise from what might be termed "orphan" effects as opposed to the absence of the IF network per se, an idea originally suggested by Toivola et al. and Pekny and Lane.
Collapse
Affiliation(s)
- Michael W Klymkowsky
- Molecular, Cellular & Developmental Biology, University of Colorado, Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
14
|
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
15
|
Maintenance of the HIV Reservoir Is Antagonized by Selective BCL2 Inhibition. J Virol 2017; 91:JVI.00012-17. [PMID: 28331083 DOI: 10.1128/jvi.00012-17] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/03/2017] [Accepted: 03/17/2017] [Indexed: 11/20/2022] Open
Abstract
Decay of the HIV reservoir is slowed over time in part by expansion of the pool of HIV-infected cells. This expansion reflects homeostatic proliferation of infected cells by interleukin-7 (IL-7) or antigenic stimulation, as well as new rounds of infection of susceptible target cells. As novel therapies are being developed to accelerate the decay of the latent HIV reservoir, it will be important to identify interventions that prevent expansion and/or repopulation of the latent HIV reservoir. Our previous studies showed that HIV protease cleaves the host protein procaspase 8 to generate Casp8p41, which can bind and activate Bak to induce apoptosis of infected cells. In circumstances where expression of the anti-apoptotic protein BCL2 is high, Casp8p41 instead binds BCL2, and cell death does not occur. This effect can be overcome by treating cells with the clinically approved BCL2 antagonist venetoclax, which prevents Casp8p41 from binding BCL2, thereby allowing Casp8p41 to bind Bak and kill the infected cell. Here we assess whether the events that maintain the HIV reservoir are also antagonized by venetoclax. Using the J-Lat 10.6 model of persistent infection, we demonstrate that proliferation and HIV expression are countered by the use of venetoclax, which causes preferential killing of the HIV-expressing cells. Similarly, during new rounds of infection of primary CD4 T cells, venetoclax causes selective killing of HIV-infected cells, resulting in decreased numbers of HIV DNA-containing cells.IMPORTANCE Cure of HIV infection requires an intervention that reduces the HIV reservoir size. A variety of approaches are being tested for their ability to impact HIV reservoir size. Even if successful, however, these approaches will need to be combined with additional complementary approaches that prevent replenishment or repopulation of the HIV reservoir. Our previous studies have shown that the FDA-approved BCL2 antagonist venetoclax has a beneficial effect on the HIV reservoir size following HIV reactivation. Here we demonstrate that venetoclax also has a beneficial effect on HIV reservoir size in a model of homeostatic proliferation of HIV as well as in acute spreading infection of HIV in primary CD4 T cells. These results suggest that venetoclax, either alone or in combination with other approaches to reducing HIV reservoir size, is a compound worthy of further study for its effects on HIV reservoir size.
Collapse
|
16
|
Trypsteen W, Mohammadi P, Van Hecke C, Mestdagh P, Lefever S, Saeys Y, De Bleser P, Vandesompele J, Ciuffi A, Vandekerckhove L, De Spiegelaere W. Differential expression of lncRNAs during the HIV replication cycle: an underestimated layer in the HIV-host interplay. Sci Rep 2016; 6:36111. [PMID: 27782208 PMCID: PMC5080576 DOI: 10.1038/srep36111] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/03/2015] [Accepted: 10/10/2016] [Indexed: 12/21/2022] Open
Abstract
Studying the effects of HIV infection on the host transcriptome has typically focused on protein-coding genes. However, recent advances in the field of RNA sequencing revealed that long non-coding RNAs (lncRNAs) add an extensive additional layer to the cell’s molecular network. Here, we performed transcriptome profiling throughout a primary HIV infection in vitro to investigate lncRNA expression at the different HIV replication cycle processes (reverse transcription, integration and particle production). Subsequently, guilt-by-association, transcription factor and co-expression analysis were performed to infer biological roles for the lncRNAs identified in the HIV-host interplay. Many lncRNAs were suggested to play a role in mechanisms relying on proteasomal and ubiquitination pathways, apoptosis, DNA damage responses and cell cycle regulation. Through transcription factor binding analysis, we found that lncRNAs display a distinct transcriptional regulation profile as compared to protein coding mRNAs, suggesting that mRNAs and lncRNAs are independently modulated. In addition, we identified five differentially expressed lncRNA-mRNA pairs with mRNA involvement in HIV pathogenesis with possible cis regulatory lncRNAs that control nearby mRNA expression and function. Altogether, the present study demonstrates that lncRNAs add a new dimension to the HIV-host interplay and should be further investigated as they may represent targets for controlling HIV replication.
Collapse
Affiliation(s)
- Wim Trypsteen
- Department of Internal Medicine, HIV Cure Research Centre, Ghent University, Ghent, Belgium
| | - Pejman Mohammadi
- Institute of Microbiology (IMUL), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Clarissa Van Hecke
- Department of Internal Medicine, HIV Cure Research Centre, Ghent University, Ghent, Belgium
| | | | | | - Yvan Saeys
- Inflammation Research Center, Flanders Institute of Biotechnology (VIB), Ghent, Belgium.,Department of Biomedical Molecular Biology Ghent University, Ghent, Belgium
| | - Pieter De Bleser
- Inflammation Research Center, Flanders Institute of Biotechnology (VIB), Ghent, Belgium.,Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | | | - Angela Ciuffi
- Institute of Microbiology (IMUL), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Linos Vandekerckhove
- Department of Internal Medicine, HIV Cure Research Centre, Ghent University, Ghent, Belgium
| | - Ward De Spiegelaere
- Department of Internal Medicine, HIV Cure Research Centre, Ghent University, Ghent, Belgium.,Department of Morphology, Ghent University, Belgium
| |
Collapse
|
17
|
Identification of Vimentin as a Potential Therapeutic Target against HIV Infection. Viruses 2016; 8:v8060098. [PMID: 27314381 PMCID: PMC4926169 DOI: 10.3390/v8060098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2015] [Revised: 04/01/2016] [Accepted: 04/06/2016] [Indexed: 12/22/2022] Open
Abstract
A combination of antiviral drugs known as antiretroviral therapy (ART) has shown effectiveness against the human immunodeficiency virus (HIV). ART has markedly decreased mortality and morbidity among HIV-infected patients, having even reduced HIV transmission. However, an important current disadvantage, resistance development, remains to be solved. Hope is focused on developing drugs against cellular targets. This strategy is expected to prevent the emergence of viral resistance. In this study, using a comparative proteomic approach in MT4 cells treated with an anti-HIV leukocyte extract, we identified vimentin, a molecule forming intermediate filaments in the cell, as a possible target against HIV infection. We demonstrated a strong reduction of an HIV-1 based lentivirus expressing the enhanced green fluorescent protein (eGFP) in vimentin knockdown cells, and a noteworthy decrease of HIV-1 capsid protein antigen (CAp24) in those cells using a multiround infectivity assay. Electron micrographs showed changes in the structure of intermediate filaments when MT4 cells were treated with an anti-HIV leukocyte extract. Changes in the structure of intermediate filaments were also observed in vimentin knockdown MT4 cells. A synthetic peptide derived from a cytoskeleton protein showed potent inhibitory activity on HIV-1 infection, and low cytotoxicity. Our data suggest that vimentin can be a suitable target to inhibit HIV-1.
Collapse
|
18
|
Mbita Z, Hull R, Dlamini Z. Human immunodeficiency virus-1 (HIV-1)-mediated apoptosis: new therapeutic targets. Viruses 2014; 6:3181-227. [PMID: 25196285 PMCID: PMC4147692 DOI: 10.3390/v6083181] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/13/2014] [Revised: 06/12/2014] [Accepted: 07/08/2014] [Indexed: 12/18/2022] Open
Abstract
HIV has posed a significant challenge due to the ability of the virus to both impair and evade the host’s immune system. One of the most important mechanisms it has employed to do so is the modulation of the host’s native apoptotic pathways and mechanisms. Viral proteins alter normal apoptotic signaling resulting in increased viral load and the formation of viral reservoirs which ultimately increase infectivity. Both the host’s pro- and anti-apoptotic responses are regulated by the interactions of viral proteins with cell surface receptors or apoptotic pathway components. This dynamic has led to the development of therapies aimed at altering the ability of the virus to modulate apoptotic pathways. These therapies are aimed at preventing or inhibiting viral infection, or treating viral associated pathologies. These drugs target both the viral proteins and the apoptotic pathways of the host. This review will examine the cell types targeted by HIV, the surface receptors exploited by the virus and the mechanisms whereby HIV encoded proteins influence the apoptotic pathways. The viral manipulation of the hosts’ cell type to evade the immune system, establish viral reservoirs and enhance viral proliferation will be reviewed. The pathologies associated with the ability of HIV to alter apoptotic signaling and the drugs and therapies currently under development that target the ability of apoptotic signaling within HIV infection will also be discussed.
Collapse
Affiliation(s)
- Zukile Mbita
- College of Agriculture and Environmental Sciences, University of South Africa, Florida Science Campus, C/o Christiaan de Wet and Pioneer Avenue P/Bag X6, Johannesburg 1710, South Africa.
| | - Rodney Hull
- College of Agriculture and Environmental Sciences, University of South Africa, Florida Science Campus, C/o Christiaan de Wet and Pioneer Avenue P/Bag X6, Johannesburg 1710, South Africa.
| | - Zodwa Dlamini
- College of Agriculture and Environmental Sciences, University of South Africa, Florida Science Campus, C/o Christiaan de Wet and Pioneer Avenue P/Bag X6, Johannesburg 1710, South Africa.
| |
Collapse
|
19
|
Rögnvaldsson T, You L, Garwicz D. Bioinformatic approaches for modeling the substrate specificity of HIV-1 protease: an overview. Expert Rev Mol Diagn 2014; 7:435-51. [PMID: 17620050 DOI: 10.1586/14737159.7.4.435] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
Abstract
HIV-1 protease has a broad and complex substrate specificity, which hitherto has escaped a simple comprehensive definition. This, and the relatively high mutation rate of the retroviral protease, makes it challenging to design effective protease inhibitors. Several attempts have been made during the last two decades to elucidate the enigmatic cleavage specificity of HIV-1 protease and to predict cleavage of novel substrates using bioinformatic analysis methods. This review describes the methods that have been utilized to date to address this important problem and the results achieved. The data sets used are also reviewed and important aspects of these are highlighted.
Collapse
Affiliation(s)
- Thorsteinn Rögnvaldsson
- Halmstad University, School of Information Science, Computer & Electrical Engineering, Halmstad, Sweden.
| | | | | |
Collapse
|
20
|
Fay N, Panté N. The intermediate filament network protein, vimentin, is required for parvoviral infection. Virology 2013; 444:181-90. [PMID: 23838001 DOI: 10.1016/j.virol.2013.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/10/2013] [Revised: 03/21/2013] [Accepted: 06/07/2013] [Indexed: 12/27/2022]
Abstract
Intermediate filaments (IFs) have recently been shown to serve novel roles during infection by many viruses. Here we have begun to study the role of IFs during the early steps of infection by the parvovirus minute virus of mice (MVM). We found that during early infection with MVM, after endosomal escape, the vimentin IF network was considerably altered, yielding collapsed immunofluorescence staining near the nuclear periphery. Furthermore, we found that vimentin plays an important role in the life cycle of MVM. The number of cells, which successfully replicated MVM, was reduced in infected cells in which the vimentin network was genetically or pharmacologically modified; viral endocytosis, however, remained unaltered. Perinuclear accumulation of MVM-containing vesicles was reduced in cells lacking vimentin. Our data suggests that vimentin is required for the MVM life cycle, presenting possibly a dual role: (1) following MVM escape from endosomes and (2) during endosomal trafficking of MVM.
Collapse
Affiliation(s)
- Nikta Fay
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| | | |
Collapse
|
21
|
Low-dose etoposide-treatment induces endoreplication and cell death accompanied by cytoskeletal alterations in A549 cells: Does the response involve senescence? The possible role of vimentin. Cancer Cell Int 2013; 13:9. [PMID: 23383739 PMCID: PMC3599314 DOI: 10.1186/1475-2867-13-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2012] [Accepted: 01/30/2013] [Indexed: 02/07/2023] Open
Abstract
Background Senescence in the population of cells is often described as a program of restricted proliferative capacity, which is manifested by broad morphological and biochemical changes including a metabolic shift towards an autophagic-like response and a genotoxic-stress related induction of polyploidy. Concomitantly, the cell cycle progression of a senescent cell is believed to be irreversibly arrested. Recent reports suggest that this phenomenon may have an influence on the therapeutic outcome of anticancer treatment. The aim of this study was to verify the possible involvement of this program in the response to the treatment of the A549 cell population with low doses of etoposide, as well as to describe accompanying cytoskeletal alterations. Methods After treatment with etoposide, selected biochemical and morphological parameters were examined, including: the activity of senescence-associated ß-galactosidase, SAHF formation, cell cycle progression, the induction of p21Cip1/Waf1/Sdi1 and cyclin D1, DNA strand breaks, the disruption of cell membrane asymmetry/integrity and ultrastructural alterations. Vimentin and G-actin cytoskeleton was evaluated both cytometrically and microscopically. Results and conclusions Etoposide induced a senescence-like phenotype in the population of A549 cells. Morphological alterations were nevertheless not directly coupled with other senescence markers including a stable cell cycle arrest, SAHF formation or p21Cip1/Waf1/Sdi1 induction. Instead, a polyploid, TUNEL-positive fraction of cells visibly grew in number. Also upregulation of cyclin D1 was observed. Here we present preliminary evidence, based on microscopic analyses, that suggest a possible role of vimentin in nuclear alterations accompanying polyploidization-depolyploidization events following genotoxic insults.
Collapse
|
22
|
Yang H, Nkeze J, Zhao RY. Effects of HIV-1 protease on cellular functions and their potential applications in antiretroviral therapy. Cell Biosci 2012; 2:32. [PMID: 22971934 PMCID: PMC3490751 DOI: 10.1186/2045-3701-2-32] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/10/2012] [Accepted: 08/31/2012] [Indexed: 11/10/2022] Open
Abstract
Human Immunodeficiency Virus Type 1 (HIV-1) protease inhibitors (PIs) are the most potent class of drugs in antiretroviral therapies. However, viral drug resistance to PIs could emerge rapidly thus reducing the effectiveness of those drugs. Of note, all current FDA-approved PIs are competitive inhibitors, i.e., inhibitors that compete with substrates for the active enzymatic site. This common inhibitory approach increases the likelihood of developing drug resistant HIV-1 strains that are resistant to many or all current PIs. Hence, new PIs that move away from the current target of the active enzymatic site are needed. Specifically, allosteric inhibitors, inhibitors that prohibit PR enzymatic activities through non-competitive binding to PR, should be sought. Another common feature of current PIs is they were all developed based on the structure-based design. Drugs derived from a structure-based strategy may generate target specific and potent inhibitors. However, this type of drug design can only target one site at a time and drugs discovered by this method are often associated with strong side effects such as cellular toxicity, limiting its number of target choices, efficacy, and applicability. In contrast, a cell-based system may provide a useful alternative strategy that can overcome many of the inherited shortcomings associated with structure-based drug designs. For example, allosteric PIs can be sought using a cell-based system without considering the site or mechanism of inhibition. In addition, a cell-based system can eliminate those PIs that have strong cytotoxic effect. Most importantly, a simple, economical, and easy-to-maintained eukaryotic cellular system such as yeast will allow us to search for potential PIs in a large-scaled high throughput screening (HTS) system, thus increasing the chances of success. Based on our many years of experience in using fission yeast as a model system to study HIV-1 Vpr, we propose the use of fission yeast as a possible surrogate system to study the effects of HIV-1 protease on cellular functions and to explore its utility as a HTS system to search for new PIs to battle HIV-1 resistant strains.
Collapse
Affiliation(s)
- Hailiu Yang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | |
Collapse
|
23
|
Nucleocytoplasmic shuttling of cytoskeletal proteins: molecular mechanism and biological significance. Int J Cell Biol 2011; 2012:494902. [PMID: 22229032 PMCID: PMC3249633 DOI: 10.1155/2012/494902] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2011] [Revised: 10/03/2011] [Accepted: 10/06/2011] [Indexed: 01/04/2023] Open
Abstract
Various nuclear functional complexes contain cytoskeletal proteins as regulatory subunits; for example, nuclear actin participates in transcriptional complexes, and actin-related proteins are integral to chromatin remodeling complexes. Nuclear complexes such as these are involved in both basal and adaptive nuclear functions. In addition to nuclear import via classical nuclear transport pathways or passive diffusion, some large cytoskeletal proteins spontaneously migrate into the nucleus in a karyopherin-independent manner. The balance of nucleocytoplasmic distribution of such proteins can be altered by several factors, such as import versus export, or capture and release by complexes. The resulting accumulation or depletion of the nuclear populations thereby enhances or attenuates their nuclear functions. We propose that such molecular dynamics constitute a form of cytoskeleton-modulated regulation of nuclear functions which is mediated by the translocation of cytoskeletal components in and out of the nucleus.
Collapse
|
24
|
Graziano F, Elia C, Laudanna C, Poli G, Alfano M. Urokinase plasminogen activator inhibits HIV virion release from macrophage-differentiated chronically infected cells via activation of RhoA and PKCε. PLoS One 2011; 6:e23674. [PMID: 21858203 PMCID: PMC3157461 DOI: 10.1371/journal.pone.0023674] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2010] [Accepted: 07/25/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND HIV replication in mononuclear phagocytes is a multi-step process regulated by viral and cellular proteins with the peculiar feature of virion budding and accumulation in intra-cytoplasmic vesicles. Interaction of urokinase-type plasminogen activator (uPA) with its cell surface receptor (uPAR) has been shown to favor virion accumulation in such sub-cellular compartment in primary monocyte-derived macrophages and chronically infected promonocytic U1 cells differentiated into macrophage-like cells by stimulation with phorbol myristate acetate (PMA). By adopting this latter model system, we have here investigated which intracellular signaling pathways were triggered by uPA/uPAR interaction leading the redirection of virion accumulation in intra-cytoplasmic vesicles. RESULTS uPA induced activation of RhoA, PKCδ and PKCε in PMA-differentiated U1 cells. In the same conditions, RhoA, PKCδ and PKCε modulated uPA-induced cell adhesion and polarization, whereas only RhoA and PKCε were also responsible for the redirection of virions in intracellular vesicles. Distribution of G and F actin revealed that uPA reorganized the cytoskeleton in both adherent and polarized cells. The role of G and F actin isoforms was unveiled by the use of cytochalasin D, a cell-permeable fungal toxin that prevents F actin polymerization. Receptor-independent cytoskeleton remodeling by Cytochalasin D resulted in cell adhesion, polarization and intracellular accumulation of HIV virions similar to the effects gained with uPA. CONCLUSIONS These findings illustrate the potential contribution of the uPA/uPAR system in the generation and/or maintenance of intra-cytoplasmic vesicles that actively accumulate virions, thus sustaining the presence of HIV reservoirs of macrophage origin. In addition, our observations also provide evidences that pathways controlling cytoskeleton remodeling and activation of PKCε bear relevance for the design of new antiviral strategies aimed at interfering with the partitioning of virion budding between intra-cytoplasmic vesicles and plasma membrane in infected human macrophages.
Collapse
Affiliation(s)
- Francesca Graziano
- AIDS Immunophatogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Elia
- AIDS Immunophatogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Carlo Laudanna
- Department of Pathology & Diagnostic, Faculty of Medicine and Surgery, Verona, Italy
| | - Guido Poli
- AIDS Immunophatogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| | - Massimo Alfano
- AIDS Immunophatogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
25
|
Malhas A, Goulbourne C, Vaux DJ. The nucleoplasmic reticulum: form and function. Trends Cell Biol 2011; 21:362-73. [DOI: 10.1016/j.tcb.2011.03.008] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/10/2011] [Revised: 03/17/2011] [Accepted: 03/23/2011] [Indexed: 11/29/2022]
|
26
|
Zeindl-Eberhart E, Liebmann S, Jungblut PR, Mattow J, Schmid M, Kerler R, Rabes HM. Influence of RET/PTC1 and RET/PTC3 oncoproteins in radiation-induced papillary thyroid carcinomas on amounts of cytoskeletal protein species. Amino Acids 2010; 41:415-25. [PMID: 20839015 DOI: 10.1007/s00726-010-0733-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2010] [Accepted: 08/26/2010] [Indexed: 10/19/2022]
Abstract
Radiation-induced human papillary thyroid carcinomas (PTCs) show a high prevalence of fusions of the RET proto-oncogene to heterologous genes H4 (RET/PTC1) and ELE1 (RET/PTC3), respectively. In contrast to the normal membrane-bound RET protein, aberrant RET fusion proteins are constitutively active oncogenic cytosolic proteins that can lead to malignant transformation of thyroid epithelia. To detect specific tumor-associated protein changes that reflect the effect of RET/PTC fusion proteins, we analyzed normal thyroid tissues, thyroid tumors of the RET/PTC1 and RET/PTC3 type and their respective lymph node metastases by a combination of high-resolution two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-mass spectrometry. PTCs without RET rearrangements served as controls. Several cytoskeletal protein species showed quantitative changes in tumors and lymph node metastases harboring RET/PTC1 or RET/PTC3. We observed prominent C-terminal actin fragments assumedly generated by protease cleavages induced due to enhanced amounts of the active actin-binding protein cofilin-1. In addition, three truncated vimentin species, one of which was proven to be headless, were shown to be highly abundant in tumors and metastases of both RET/PTC types. The observed protein changes are closely connected with the constitutive activation of RET-rearranged oncoproteins and reflect the importance to elucidate disease-related typical signatures on the protein species level.
Collapse
Affiliation(s)
- Evelyn Zeindl-Eberhart
- Institute of Pathology, Ludwig-Maximilians-University of Munich, Thalkirchner Strasse 36, 80337, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
27
|
Mähönen AJ, Makkonen KE, Laakkonen JP, Ihalainen TO, Kukkonen SP, Kaikkonen MU, Vihinen-Ranta M, Ylä-Herttuala S, Airenne KJ. Culture medium induced vimentin reorganization associates with enhanced baculovirus-mediated gene delivery. J Biotechnol 2009; 145:111-9. [PMID: 19903502 DOI: 10.1016/j.jbiotec.2009.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/17/2009] [Revised: 09/16/2009] [Accepted: 11/03/2009] [Indexed: 01/04/2023]
Abstract
Baculoviruses can express transgenes under mammalian promoters in a wide range of vertebrate cells. However, the success of transgene expression is dependent on both the appropriate cell type and culture conditions. We studied the mechanism behind the substantial effect of the cell culture medium on efficiency of the baculovirus transduction in different cell lines. We tested six cell culture mediums; the highest transduction efficiency was detected in the presence of RPMI 1640 medium. Vimentin, a major component of type III intermediate filaments, was reorganized in the optimized medium, which associated with enhanced nuclear entry of baculoviruses. Accordingly, the phosphorylation pattern of vimentin was changed in the studied cell lines. These results suggest that vimentin has an important role in baculovirus entry into vertebrate cells. Enhanced gene delivery in the optimized medium was observed also with adenoviruses and lentiviruses. The results highlight the general importance of the culture medium in the assembly of the cytoskeleton network and in viral gene delivery.
Collapse
Affiliation(s)
- Anssi J Mähönen
- A.I. Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Kuopio Kuopio, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Reynolds JL, Mahajan SD, Aalinkeel R, Nair B, Sykes DE, Agosto-Mujica A, Hsiao CB, Schwartz SA. Modulation of the proteome of peripheral blood mononuclear cells from HIV-1-infected patients by drugs of abuse. J Clin Immunol 2009; 29:646-56. [PMID: 19543960 DOI: 10.1007/s10875-009-9309-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2009] [Accepted: 05/28/2009] [Indexed: 01/13/2023]
Abstract
INTRODUCTION We used proteomic analyses to assess how drug abuse modulates immunologic responses to infections with the human immunodeficiency virus type 1 (HIV-1). METHODS Two-dimensional difference gel electrophoresis was utilized to determine changes in the proteome of peripheral blood mononuclear cells (PBMC) isolated from HIV-1-positive donors that occurred after treatment with cocaine or methamphetamine. Both drugs differentially regulated the expression of several functional classes of proteins. We further isolated specific subpopulations of PBMC to determine which subpopulations were selectively affected by treatment with drugs of abuse. Monocytes, B cells, and T cells were positively or negatively selected from PBMC isolated from HIV-1-positive donors. RESULTS Our results demonstrate that cocaine and methamphetamine modulate gene expression primarily in monocytes and T cells, the primary targets of HIV-1 infection. Proteomic data were validated with quantitative, real-time polymerase chain reaction. These studies elucidate the molecular mechanisms underlying the effects of drugs of abuse on HIV-1 infections. Several functionally relevant classes of proteins were identified as potential mediators of HIV-1 pathogenesis and disease progression associated with drug abuse.
Collapse
Affiliation(s)
- Jessica L Reynolds
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Buffalo General Hospital, University at Buffalo, State University of New York at Buffalo, 311 MultiLab Research Building, Buffalo, NY,14203, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Onset of human cytomegalovirus replication in fibroblasts requires the presence of an intact vimentin cytoskeleton. J Virol 2009; 83:7015-28. [PMID: 19403668 DOI: 10.1128/jvi.00398-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023] Open
Abstract
Like all viruses, herpesviruses extensively interact with the host cytoskeleton during entry. While microtubules and microfilaments appear to facilitate viral capsid transport toward the nucleus, evidence for a role of intermediate filaments in herpesvirus entry is lacking. Here, we examined the function of vimentin intermediate filaments in fibroblasts during the initial phase of infection of two genotypically distinct strains of human cytomegalovirus (CMV), one with narrow (AD169) and one with broad (TB40/E) cell tropism. Chemical disruption of the vimentin network with acrylamide, intermediate filament bundling in cells from a patient with giant axonal neuropathy, and absence of vimentin in fibroblasts from vimentin(-/-) mice severely reduced entry of either strain. In vimentin null cells, viral particles remained in the cytoplasm longer than in vimentin(+/+) cells. TB40/E infection was consistently slower than that of AD169 and was more negatively affected by the disruption or absence of vimentin. These findings demonstrate that an intact vimentin network is required for CMV infection onset, that intermediate filaments may function during viral entry to facilitate capsid trafficking and/or docking to the nuclear envelope, and that maintenance of a broader cell tropism is associated with a higher degree of dependence on the vimentin cytoskeleton.
Collapse
|
30
|
Adenosine triggers the nuclear translocation of protein kinase C epsilon in H9c2 cardiomyoblasts with the loss of phosphorylation at Ser729. J Cell Biochem 2009; 106:633-42. [DOI: 10.1002/jcb.22043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
|
31
|
Hofner M, Höllrigl A, Puz S, Stary M, Weitzer G. Desmin stimulates differentiation of cardiomyocytes and up-regulation of brachyury and nkx2.5. Differentiation 2007; 75:605-15. [PMID: 17381547 PMCID: PMC7615841 DOI: 10.1111/j.1432-0436.2007.00162.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
Desmin contributes to structural integrity and function of the myocardium but its function seems to be redundant in early cardiomyogenesis in the desmin null mouse model. To test the hypothesis that desmin also plays a supportive role in cardiomyogenic commitment and early differentiation of cardiomyocytes we investigated cardiomyogenesis in embryoid bodies expressing different desmin alleles. Constitutive expression of desmin and increased synthesis during mesoderm formation led to the up-regulation of brachyury and nkx2.5 genes, accelerated early cardiomyogenesis and resulted in the development of large, proliferating, highly interconnected, and synchronously beating cardiomyocyte clusters, whereas desmin null cardiomyocytes featured an opposite phenotype. In contrast, constitutive expression of amino-terminally truncated desmin(Delta1-48) interfered with the beginning of cardiomyogenesis, caused down-regulation of mesodermal and myocardial transcription factors, and hampered myofibrillogenesis and survival of cardiomyocytes. These results provide first evidence that a type III intermediate filament protein takes part in regulating the differentiation of mesoderm to cardiomyocytes at the very beginning of cardiomyogenesis.
Collapse
Affiliation(s)
- Manuela Hofner
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohrgasse 9, A1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
32
|
|
33
|
Marceau N, Schutte B, Gilbert S, Loranger A, Henfling MER, Broers JLV, Mathew J, Ramaekers FCS. Dual roles of intermediate filaments in apoptosis. Exp Cell Res 2007; 313:2265-81. [PMID: 17498695 DOI: 10.1016/j.yexcr.2007.03.038] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2007] [Revised: 03/05/2007] [Accepted: 03/12/2007] [Indexed: 02/06/2023]
Abstract
New roles have emerged recently for intermediate filaments (IFs), namely in modulating cell adhesion and growth, and providing resistance to various forms of stress and to apoptosis. In this context, we first summarize findings on the IF association with the cell response to mechanical stress and growth stimulation, in light of growth-related signaling events that are relevant to death-receptor engagement. We then address the molecular mechanisms by which IFs can provide cell resistance to apoptosis initiated by death-receptor stimulation and to necrosis triggered by excessive oxidative stress. In the same way, we examine IF involvement, along with cytolinker participation, in sequential caspase-mediated protein cleavages that are part of the overall cell death execution, particularly those that generate new functional IF protein fragments and uncover neoantigen markers. Finally, we report on the usefulness of these markers as diagnostic tools for disease-related aspects of apoptosis in humans. Clearly, the data accumulated in recent years provide new and significant insights into the multiple functions of IFs, particularly their dual roles in cell response to apoptotic insults.
Collapse
Affiliation(s)
- Normand Marceau
- Centre de recherche en cancérologie de l'Université Laval and L'Hôtel-Dieu de Québec (CHUQ), Québec, Canada G1R 2J6
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ferens WA, Hovde CJ. The non-toxic A subunit of Shiga toxin type 1 prevents replication of bovine immunodeficiency virus in infected cells. Virus Res 2007; 125:29-41. [PMID: 17197048 DOI: 10.1016/j.virusres.2006.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/23/2006] [Revised: 11/18/2006] [Accepted: 12/05/2006] [Indexed: 11/30/2022]
Abstract
Shiga toxins are ribosome-inactivating proteins many of which are antiviral. Shiga toxin-producing Escherichia coli (STEC) may be pathogenic to humans, but are carried without ill effects by ruminants. We hypothesize that STEC have antiviral activity in ruminants, and showed previously that the non-toxic subunit A of Shiga toxin 1 (StxA1) acts selectively on cells infected with bovine leukemia virus, without harming normal cells, and that the numbers of intestinal STEC are inversely correlated with viral load in bovine leukemia virus-infected sheep. The purpose of the present study was to characterize StxA1 activity against a second bovine retrovirus, bovine immunodeficiency virus (BIV). Flow cytometry showed that StxA1 treatment induced apoptosis in BIV-infected cells but not in uninfected cells and immunoblot analysis showed that StxA1 curtailed synthesis of Gag p26 protein. A systematic electron microscopy description of BIV infection in fetal bovine lung fibroblasts showed an orderly sequence of changes in cell membrane, endoplasmic reticulum, Golgi, nucleus, and mitochondria, and suggested that the infected cells produce the virus within multivesicular bodies (MVBs). StxA1 interfered with all manifestations of BIV-induced transformation of infected cells into BIV-producing units. BIV-infected cells provided a suitable experimental system for investigation of the mechanism of Stx-antiviral activity.
Collapse
Affiliation(s)
- Witold A Ferens
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | | |
Collapse
|
35
|
Abstract
Development of potent inhibitors of HIV protease has revolutionized the treatment of HIV infection. HIV protease inhibitors (PI) have caused more dramatic improvements in CD4 T-cell numbers than in other therapies that were available previously, prompting investigators to assess whether PI possess intrinsic immunomodulatory effects. An emerging body of data indicates that HIV PIs are antiapoptotic, although the exact molecular target responsible for this antiapoptotic effect remains to be defined in vitro and in vivo. Paradoxically, high-dose PI also may have proapoptotic effects, particularly when assessed in vitro in transformed cell lines and implanted mouse models. Future research will define molecular targets of PI that are responsible for their apoptotis modulatory effects (both pro- and anti-apoptotic). In addition, evaluation of the clinical utility of PI-based therapy in those non-HIV disease states that are characterized by excessive apoptotis will reveal the full clinical potential of this intriguing class of drugs.
Collapse
Affiliation(s)
- A D Badley
- Translational, Immunology and Biodefense Program, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
36
|
Pocernich CB, Boyd-Kimball D, Poon HF, Thongboonkerd V, Lynn BC, Klein JB, Calebrese V, Nath A, Butterfield DA. Proteomics analysis of human astrocytes expressing the HIV protein Tat. ACTA ACUST UNITED AC 2005; 133:307-16. [PMID: 15710248 DOI: 10.1016/j.molbrainres.2004.10.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 10/20/2004] [Indexed: 10/26/2022]
Abstract
Astrocyte infection in HIV has been associated with rapid progression of dementia in a subset of HIV/AIDS patients. Astrogliosis and microglial activation are observed in areas of axonal and dendritic damage in HIVD. In HIV-infected astrocytes, the regulatory gene tat is over expressed and mRNA levels for Tat are elevated in brain extracts from individuals with HIV-1 dementia. Tat can be detected in HIV-infected astrocytes in vivo. The HIV-1 protein Tat transactivates viral and cellular gene expression, is actively secreted mainly from astrocytes, microglia and macrophages, into the extracellular environment, and is taken up by neighboring uninfected cells such as neurons. The HIV-1 protein Tat released from astrocytes reportedly produces trimming of neurites, mitochondrial dysfunction and cell death in neurons, while protecting its host, the astrocyte. We utilized proteomics to investigate protein expression changes in human astrocytes intracellularly expressing Tat (SVGA-Tat). By coupling 2D fingerprinting and identification of proteins by mass spectrometry, we identified phosphatase 2A, isocitrate dehydrogenase, nuclear ribonucleoprotein A1, Rho GDP dissociation inhibitor alpha, beta-tubulin, crocalbin like protein/calumenin, and vimentin/alpha-tubulin to have decreased protein expression levels in SVGA-Tat cells compared to the SVGA-pcDNA cells. Heat shock protein 70, heme oxygenase-1, and inducible nitric oxide synthase were found to have increased protein expression in SVGA-Tat cells compared to controls by slotblot technique. These findings are discussed with reference to astrocytes serving as a reservoir for the HIV virus and how Tat promotes survival of the astrocytic host.
Collapse
Affiliation(s)
- Chava B Pocernich
- Department of Chemistry and Center of Membrane Sciences, 125 Chemistry-Physics Building, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Xu TR, Rumsby MG. Phorbol ester-induced translocation of PKC epsilon to the nucleus in fibroblasts: identification of nuclear PKC epsilon-associating proteins. FEBS Lett 2004; 570:20-4. [PMID: 15251432 DOI: 10.1016/j.febslet.2004.05.080] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/15/2004] [Revised: 05/21/2004] [Accepted: 05/27/2004] [Indexed: 10/26/2022]
Abstract
We show that phorbol ester treatment of NIH 3T3 fibroblasts induces rapid translocation of PKC from a perinuclear site to the nucleus, extending findings in PC12 and NG108-15 cells and in myocytes. We have immunoprecipitated the PKC from nuclei isolated from phorbol ester-treated fibroblasts and identified six proteins which associate with nuclear PKC. These have been characterised as matrin 3, transferrin, Rac GTPase activating protein 1, vimentin, beta-actin and annexin II by MALDI-TOF-MS. We have confirmed that these proteins associate with PKC by gel overlay and/or dot blotting assays. The role of these PKC-associating proteins in the nucleus and their interaction with PKC are considered.
Collapse
Affiliation(s)
- Tian-Rui Xu
- Department of Biology, University of York, York YO10 5DD, UK
| | | |
Collapse
|
38
|
Cordelier P, Strayer DS. Mechanisms of alpha1-antitrypsin inhibition of cellular serine proteases and HIV-1 protease that are essential for HIV-1 morphogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1638:197-207. [PMID: 12878320 DOI: 10.1016/s0925-4439(03)00084-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/27/2022]
Abstract
Proprotein processing is essential for HIV infectivity. Cellular trans-Golgi network (TGN) serine proteases (e.g., furin) are required to cleave HIV envelope gp160 to gp120. In addition, HIV protease (PR), an aspartyl protease, cleaves p55(Gag) to p24, etc., in budding virions. alpha1-Antitrypsin (alpha(1)AT) is cleaved by serine proteases, causing a conformational change in alpha(1)AT that sequesters and so inactivates the protease. alpha(1)AT blocks both gp160 and p55 processing, and so is a powerful inhibitor of HIV replication. We hypothesized that alpha(1)AT inhibited gp160 and p55 processing via different mechanisms, and that in both cases, alpha(1)AT bound and was itself cleaved by the proteases whose activities were blocked. alpha(1)AT delivered by SV(AT), a recombinant, Tag-deleted SV40-derived vector, localized to the TGN, co-precipitated with furin, and depleted furin from the TGN. After SV(AT) transduction and HIV challenge, alpha(1)AT was detected in resulting nascent immature HIV-1 virions. alpha(1)AT also blocked incorporation of the enzymatically active dimeric form of PR into HIV virions. Western analysis using recombinant proteins showed that alpha(1)AT directly bound HIV PR, and was cleaved by it. The simultaneous inhibition of two different steps in HIV morphogenesis both increases alpha(1)AT antilentiviral activity and decreases the possibility that HIV mutations will allow escape from inhibition.
Collapse
Affiliation(s)
- Pierre Cordelier
- Department of Pathology and Cell Biology, Jefferson Medical College, 1020 Locust Street, Room 251, Philadelphia, PA 19107, USA
| | | |
Collapse
|
39
|
Abstract
The human immunodeficiency virus protease (HIV-1 PR) was expressed both in the yeast Saccharomyces cerevisiae and in mammalian cells. Inducible expression of HIV-1 PR arrested yeast growth, which was followed by cell lysis. The lytic phenotype included loss of plasma membrane integrity and cell wall breakage leading to the release of cell content to the medium. Given that neither poliovirus 2A protease nor 2BC protein, both being highly toxic for S. cerevisiae, were able to produce similar effects, it seems that this lytic phenotype is specific of HIV-1 PR. Drastic alterations in membrane permeability preceded the lysis in yeast expressing HIV-1 PR. Cell killing and lysis provoked by HIV-1 PR were also observed in mammalian cells. Thus, COS7 cells expressing the protease showed increased plasma membrane permeability and underwent lysis by necrosis with no signs of apoptosis. Strikingly, the morphological alterations induced by HIV-1 PR in yeast and mammalian cells were similar in many aspects. To our knowledge, this is the first report of a viral protein with such an activity. These findings contribute to the present knowledge on HIV-1-induced cytopathogenesis.
Collapse
Affiliation(s)
- Raquel Blanco
- Centro de Biologia Molecular Severo Ochoa Consejo Superior Investigaciones Cientificas-Universidad Autónoma de Madrid, Spain
| | | | | |
Collapse
|
40
|
Shoeman RL, Hartig R, Berthel M, Traub P. Deletion Mutagenesis of the Amino-Terminal Head Domain of Vimentin Reveals Dispensability of Large Internal Regions for Intermediate Filament Assembly and Stability. Exp Cell Res 2002; 279:344-53. [PMID: 12243759 DOI: 10.1006/excr.2002.5618] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that the non-alpha-helical head domain of vimentin is required for polymerization of intermediate filaments (IFs) and, furthermore, a nonapeptide highly conserved among type III IF subunit proteins at their extreme amino-terminus is essential for this process. Recombinant DNA technology was employed to produce specific vimentin deletion mutant proteins (for in vitro studies) or vimentin protein expression plasmids (for in vivo studies), which were used to identify other regions of the vimentin head domain important for polymerization. Various vimentin proteins lacking either residues 25-38, 44-95, or 40-95 polymerized into wild-type or largely normal IFs, both in vitro and in vivo. Vimentin proteins lacking residues 44-69 or 25-63 failed to form IFs in vitro, but assembled into IFs in vivo. Vimentin proteins lacking residues 25-68, 44-103, or 88-103 failed to form IFs in vitro or in vivo. Taken together with previous results, these data demonstrate that the middle of the vimentin non-alpha-helical head domain, which is known to be the site of nucleic acid binding, is completely dispensable for IF formation, whereas both ends of the vimentin non-alpha-helical head domain are required for IF formation. The simplest explanation for these results is that the middle of the vimentin non-alpha-helical head domain loops out, thereby permitting the juxtaposition of the ends of the head domain and their productive interaction with other protein domains (probably the C-terminus of the rod domain) during IF polymerization. The ability of some of the mutant proteins to form IFs in vivo, but not in vitro, suggests that as-yet-unknown cellular proteins may interact with and, in some cases, enable polymerization of IFs, even though they are not absolutely required for IF formation by wild-type vimentin.
Collapse
Affiliation(s)
- Robert L Shoeman
- Max-Planck-Institut für Zellbiologie, Schriesheimerstrasse 101, Rosenhof, 68526, Ladenburg, Germany
| | | | | | | |
Collapse
|
41
|
Wang Q, Tolstonog GV, Shoeman R, Traub P. Sites of nucleic acid binding in type I-IV intermediate filament subunit proteins. Biochemistry 2001; 40:10342-9. [PMID: 11513613 DOI: 10.1021/bi0108305] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
A combination of enzymatic and chemical ladder sequencing of photo-cross-linked protein-single-stranded oligodeoxyribonucleotide complexes and analysis by MALDI-TOF mass spectrometry was employed to identify the amino acid residues responsible for the stable binding of nucleic acids in several intermediate filament (IF) subunit proteins. The IF proteins studied included the type I and type II cytokeratins K8, K18, and K19; the type III proteins desmin, glial fibrillary acidic protein (GFAP), peripherin, and vimentin; and the type IV neurofilament triplet protein L (NF-L). The site of nucleic acid binding was localized to the non-alpha-helical, amino-terminal head domain of all of the IF proteins tested. GFAP, which has the shortest head domain of the proteins tested, cross-linked via only two amino acid residues. One of these residues was located within a conserved nonapeptide domain that has been shown to be required for filament formation. One or more cross-linked residues were found in a similar location in the other proteins studied. The major binding site for nucleic acids for most of the proteins appears to be localized within the middle of the head domain. The two exceptions to this generalization are GFAP, which lacks these residues, and NF-L, in which a large number of cross-linked residues were found scattered throughout the first half of the head domain. Control experiments were also done with two bacteriophage ssDNA-binding proteins, as well as actin and tubulin. The single sites of cross-linkage observed with the bacteriophage proteins, Phe(183) for the T4 gene 32 protein and Phe(73) for the M13 gene 5 protein, were in good agreement with literature data. Actin and tubulin could not be cross-linked to the oligonucleotide. Aside from the insight into the biological activity of IF proteins that these data provide, they also demonstrate that this analytical method can be employed to study a variety of protein-nucleic acid interactions.
Collapse
Affiliation(s)
- Q Wang
- Max-Planck-Institut für Zellbiologie, Rosenhof, 68526 Ladenburg, Germany
| | | | | | | |
Collapse
|