1
|
Dias AP, Rehmani T, Salih M, Tuana B. Tail-anchored membrane protein SLMAP3 is essential for targeting centrosomal proteins to the nuclear envelope in skeletal myogenesis. Open Biol 2024; 14:240094. [PMID: 39378988 PMCID: PMC11461071 DOI: 10.1098/rsob.240094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 10/10/2024] Open
Abstract
The positioning and communication between the nucleus and centrosomes are essential in cell division, differentiation and tissue formation. During skeletal myogenesis, the nuclei become evenly spaced with the switch of the microtubule-organizing centre (MTOC) from the centrosome to the nuclear envelope (NE). We report that the tail-anchored sarcolemmal membrane associated protein 3 (SLMAP3), a component of the MTOC and NE, is crucial for myogenesis because its deletion in mice leads to a reduction in the NE-MTOC formation, mislocalization of the nuclei, dysregulation of the myogenic programme and abnormal embryonic myofibres. SLMAP3-/- myoblasts also displayed a similar disorganized distribution of nuclei with an aberrant NE-MTOC and defective myofibre formation and differentiation programming. We identified novel interactors of SLMAP3, including pericentrin, PCM1 (pericentriolar material 1), AKAP9 (A-kinase anchoring protein 9), kinesin-1 members Kif5B (kinesin family member 5B), KCL1 (kinesin light chain 1), KLC2 (kinesin light chain 2) and nuclear lamins, and observed that the distribution of centrosomal proteins at the NE together with Nesprin-1 was significantly altered by the loss of SLMAP3 in differentiating myoblasts. SLMAP3 is believed to negatively regulate Hippo signalling, but its loss was without impact on this pathway in developing muscle. These results reveal that SLMAP3 is essential for skeletal myogenesis through unique mechanisms involving the positioning of nuclei, NE-MTOC dynamics and gene programming.
Collapse
Affiliation(s)
- Ana Paula Dias
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada K1H 8M5
| | - Taha Rehmani
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada K1H 8M5
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada K1H 8M5
| | - Balwant Tuana
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada K1H 8M5
| |
Collapse
|
2
|
White S, Roller R. Herpes simplex virus type-1 cVAC formation in neuronal cells is mediated by dynein motor function and glycoprotein retrieval from the plasma membrane. J Virol 2024; 98:e0071324. [PMID: 38899931 PMCID: PMC11265375 DOI: 10.1128/jvi.00713-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Herpesvirus assembly requires the cytoplasmic association of large macromolecular and membrane structures that derive from both the nucleus and cytoplasmic membrane systems. Results from the study of human cytomegalovirus (HCMV) in cells where it organizes a perinuclear cytoplasmic virus assembly compartment (cVAC) show a clear requirement for the minus-end-directed microtubule motor, dynein, for virus assembly. In contrast, the assembly of herpes simplex virus -1 (HSV-1) in epithelial cells where it forms multiple dispersed, peripheral assembly sites is only mildly inhibited by the microtubule-depolymerizing agent, nocodazole. Here, we make use of a neuronal cell line system in which HSV-1 forms a single cVAC and show that dynein and its co-factor dynactin localize to the cVAC, and dynactin is associated with membranes that contain the virion tegument protein pUL11. We also show that the virus membrane-associated structural proteins pUL51 and the viral envelope glycoprotein gE arrive at the cVAC by different routes. Specifically, gE arrives at the cVAC after retrieval from the plasma membrane, suggesting the need for an intact retrograde transport system. Finally, we demonstrate that inhibition of dynactin function profoundly inhibits cVAC formation and virus production during the cytoplasmic assembly phase of infection.IMPORTANCEMany viruses reorganize cytoplasmic membrane systems and macromolecular transport systems to promote the production of progeny virions. Clarifying the mechanisms by which they accomplish this may reveal novel therapeutic strategies and illustrate mechanisms that are critical for normal cellular organization. Here, we explore the mechanism by which HSV-1 moves macromolecular and membrane cargo to generate a virus assembly compartment in the infected cell. We find that the virus makes use of a well-characterized, microtubule-based transport system that is stabilized against drugs that disrupt microtubules.
Collapse
Affiliation(s)
- Shaowen White
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Richard Roller
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Kroll J, Renkawitz J. Principles of organelle positioning in motile and non-motile cells. EMBO Rep 2024; 25:2172-2187. [PMID: 38627564 PMCID: PMC11094012 DOI: 10.1038/s44319-024-00135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/15/2024] [Accepted: 04/04/2024] [Indexed: 05/16/2024] Open
Abstract
Cells are equipped with asymmetrically localised and functionally specialised components, including cytoskeletal structures and organelles. Positioning these components to specific intracellular locations in an asymmetric manner is critical for their functionality and affects processes like immune responses, tissue maintenance, muscle functionality, and neurobiology. Here, we provide an overview of strategies to actively move, position, and anchor organelles to specific locations. By conceptualizing the cytoskeletal forces and the organelle-to-cytoskeleton connectivity, we present a framework of active positioning of both membrane-enclosed and membrane-less organelles. Using this framework, we discuss how different principles of force generation and organelle anchorage are utilised by different cells, such as mesenchymal and amoeboid cells, and how the microenvironment influences the plasticity of organelle positioning. Given that motile cells face the challenge of coordinating the positioning of their content with cellular motion, we particularly focus on principles of organelle positioning during migration. In this context, we discuss novel findings on organelle positioning by anchorage-independent mechanisms and their advantages and disadvantages in motile as well as stationary cells.
Collapse
Affiliation(s)
- Janina Kroll
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Jörg Renkawitz
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany.
| |
Collapse
|
4
|
Meier SM, Steinmetz MO, Barral Y. Microtubule specialization by +TIP networks: from mechanisms to functional implications. Trends Biochem Sci 2024; 49:318-332. [PMID: 38350804 DOI: 10.1016/j.tibs.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/23/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
To fulfill their actual cellular role, individual microtubules become functionally specialized through a broad range of mechanisms. The 'search and capture' model posits that microtubule dynamics and functions are specified by cellular targets that they capture (i.e., a posteriori), independently of the microtubule-organizing center (MTOC) they emerge from. However, work in budding yeast indicates that MTOCs may impart a functional identity to the microtubules they nucleate, a priori. Key effectors in this process are microtubule plus-end tracking proteins (+TIPs), which track microtubule tips to regulate their dynamics and facilitate their targeted interactions. In this review, we discuss potential mechanisms of a priori microtubule specialization, focusing on recent findings indicating that +TIP networks may undergo liquid biomolecular condensation in different cell types.
Collapse
Affiliation(s)
- Sandro M Meier
- Institute of Biochemistry, Department of Biology, and Bringing Materials to Life Initiative, ETH Zürich, Switzerland; Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland; Bringing Materials to Life Initiative, ETH Zürich, Switzerland
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland; University of Basel, Biozentrum, CH-4056 Basel, Switzerland.
| | - Yves Barral
- Institute of Biochemistry, Department of Biology, and Bringing Materials to Life Initiative, ETH Zürich, Switzerland; Bringing Materials to Life Initiative, ETH Zürich, Switzerland.
| |
Collapse
|
5
|
Chen M, Xu L, Wu Y, Soba P, Hu C. The organization and function of the Golgi apparatus in dendrite development and neurological disorders. Genes Dis 2023; 10:2425-2442. [PMID: 37554209 PMCID: PMC10404969 DOI: 10.1016/j.gendis.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/13/2022] [Accepted: 11/05/2022] [Indexed: 12/24/2022] Open
Abstract
Dendrites are specialized neuronal compartments that sense, integrate and transfer information in the neural network. Their development is tightly controlled and abnormal dendrite morphogenesis is strongly linked to neurological disorders. While dendritic morphology ranges from relatively simple to extremely complex for a specified neuron, either requires a functional secretory pathway to continually replenish proteins and lipids to meet dendritic growth demands. The Golgi apparatus occupies the center of the secretory pathway and is regulating posttranslational modifications, sorting, transport, and signal transduction, as well as acting as a non-centrosomal microtubule organization center. The neuronal Golgi apparatus shares common features with Golgi in other eukaryotic cell types but also forms distinct structures known as Golgi outposts that specifically localize in dendrites. However, the organization and function of Golgi in dendrite development and its impact on neurological disorders is just emerging and so far lacks a systematic summary. We describe the organization of the Golgi apparatus in neurons, review the current understanding of Golgi function in dendritic morphogenesis, and discuss the current challenges and future directions.
Collapse
Affiliation(s)
- Meilan Chen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education Institute for Brain, Science and Rehabilitation, South China Normal University, Guangzhou, Guangdong 510631, China
- Department of Ophthalmology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510320, China
| | - Lu Xu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education Institute for Brain, Science and Rehabilitation, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Yi Wu
- Department of Ophthalmology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510320, China
| | - Peter Soba
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Bonn 53115, Germany
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Chun Hu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education Institute for Brain, Science and Rehabilitation, South China Normal University, Guangzhou, Guangdong 510631, China
| |
Collapse
|
6
|
Nakagawa N, Iwasato T. Golgi polarity shift instructs dendritic refinement in the neonatal cortex by mediating NMDA receptor signaling. Cell Rep 2023; 42:112843. [PMID: 37516101 DOI: 10.1016/j.celrep.2023.112843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/15/2023] [Accepted: 07/05/2023] [Indexed: 07/31/2023] Open
Abstract
Dendritic refinement is a critical component of activity-dependent neuronal circuit maturation, through which individual neurons establish specific connectivity with their target axons. Here, we demonstrate that the developmental shift of Golgi polarity is a key process in dendritic refinement. During neonatal development, the Golgi apparatus in layer 4 spiny stellate (SS) neurons in the mouse barrel cortex lose their original apical positioning and acquire laterally polarized distributions. This lateral Golgi polarity, which is oriented toward the barrel center, peaks on postnatal days 5-7 (P5-P7) and disappears by P15, which aligns with the developmental time course of SS neuron dendritic refinement. Genetic ablation of N-methyl-D-aspartate (NMDA) receptors, key players in dendritic refinement, disturbs the lateral Golgi polarity. Golgi polarity manipulation disrupts the asymmetric dendritic projection pattern and the primary-whisker-specific response of SS neurons. Our results elucidate activity-dependent Golgi dynamics and their critical role in developmental neuronal circuit refinement.
Collapse
Affiliation(s)
- Naoki Nakagawa
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics (NIG), Mishima, Shizuoka 411-8540, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan.
| | - Takuji Iwasato
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics (NIG), Mishima, Shizuoka 411-8540, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
7
|
Carmona B, Marinho HS, Matos CL, Nolasco S, Soares H. Tubulin Post-Translational Modifications: The Elusive Roles of Acetylation. BIOLOGY 2023; 12:biology12040561. [PMID: 37106761 PMCID: PMC10136095 DOI: 10.3390/biology12040561] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
Microtubules (MTs), dynamic polymers of α/β-tubulin heterodimers found in all eukaryotes, are involved in cytoplasm spatial organization, intracellular transport, cell polarity, migration and division, and in cilia biology. MTs functional diversity depends on the differential expression of distinct tubulin isotypes and is amplified by a vast number of different post-translational modifications (PTMs). The addition/removal of PTMs to α- or β-tubulins is catalyzed by specific enzymes and allows combinatory patterns largely enriching the distinct biochemical and biophysical properties of MTs, creating a code read by distinct proteins, including microtubule-associated proteins (MAPs), which allow cellular responses. This review is focused on tubulin-acetylation, whose cellular roles continue to generate debate. We travel through the experimental data pointing to α-tubulin Lys40 acetylation role as being a MT stabilizer and a typical PTM of long lived MTs, to the most recent data, suggesting that Lys40 acetylation enhances MT flexibility and alters the mechanical properties of MTs, preventing MTs from mechanical aging characterized by structural damage. Additionally, we discuss the regulation of tubulin acetyltransferases/desacetylases and their impacts on cell physiology. Finally, we analyze how changes in MT acetylation levels have been found to be a general response to stress and how they are associated with several human pathologies.
Collapse
Affiliation(s)
- Bruno Carmona
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
| | - H Susana Marinho
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Catarina Lopes Matos
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Sofia Nolasco
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Helena Soares
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
| |
Collapse
|
8
|
Au FKC, Le KTD, Qi RZ. Detection and Analysis of Microtubule Nucleator γ-Tubulin Ring Complex. Methods Mol Biol 2023; 2557:543-558. [PMID: 36512236 DOI: 10.1007/978-1-0716-2639-9_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Golgi-derived microtubules constitute an asymmetrical microtubule network that drives polarized transport of vesicles to support cell polarization and directional migration. Golgi-based microtubule nucleation requires the γ-tubulin ring complex (γTuRC), the principal microtubule nucleator in animal cells. In this chapter, we present methods for detecting γTuRC components and associated proteins on the Golgi, examining Golgi-based microtubule nucleation, and measuring the microtubule-nucleating activity of isolated γTuRCs. These approaches have been demonstrated to be effective for assessing the microtubule-organizing function of the Golgi complex.
Collapse
Affiliation(s)
- Franco K C Au
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Khoi T D Le
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Robert Z Qi
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China.
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China.
| |
Collapse
|
9
|
Divergent Contribution of the Golgi Apparatus to Microtubule Organization in Related Cell Lines. Int J Mol Sci 2022; 23:ijms232416178. [PMID: 36555819 PMCID: PMC9782006 DOI: 10.3390/ijms232416178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Membrane trafficking in interphase animal cells is accomplished mostly along the microtubules. Microtubules are often organized radially by the microtubule-organizing center to coordinate intracellular transport. Along with the centrosome, the Golgi often serves as a microtubule-organizing center, capable of nucleating and retaining microtubules. Recent studies revealed the role of a special subset of Golgi-derived microtubules, which facilitates vesicular traffic from this central transport hub of the cell. However, proteins essential for microtubule organization onto the Golgi might be differentially expressed in different cell lines, while many potential participants remain undiscovered. In the current work, we analyzed the involvement of the Golgi complex in microtubule organization in related cell lines. We studied two cell lines, both originating from green monkey renal epithelium, and found that they relied either on the centrosome or on the Golgi as a main microtubule-organizing center. We demonstrated that the difference in their Golgi microtubule-organizing activity was not associated with the well-studied proteins, such as CAMSAP3, CLASP2, GCC185, and GMAP210, but revealed several potential candidates involved in this process.
Collapse
|
10
|
Shankar S, Hsu ZT, Ezquerra A, Li CC, Huang TL, Coyaud E, Viais R, Grauffel C, Raught B, Lim C, Lüders J, Tsai SY, Hsia KC. Α γ-tubulin complex-dependent pathway suppresses ciliogenesis by promoting cilia disassembly. Cell Rep 2022; 41:111642. [DOI: 10.1016/j.celrep.2022.111642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/30/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
|
11
|
Moore RE, Pop S, Alleyne C, Clarke JDW. Microtubules are not required to generate a nascent axon in embryonic spinal neurons
in vivo. EMBO Rep 2022; 23:e52493. [DOI: 10.15252/embr.202152493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Rachel E Moore
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience King's College London London UK
| | - Sînziana Pop
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience King's College London London UK
- The Francis Crick Institute London UK
| | - Caché Alleyne
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience King's College London London UK
| | - Jonathan D W Clarke
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience King's College London London UK
| |
Collapse
|
12
|
Ramírez-Cota R, Espino-Vazquez AN, Carolina Rodriguez-Vega T, Evelyn Macias-Díaz R, Alicia Callejas-Negrete O, Freitag M, Fischer R, Roberson RW, Mouriño-Pérez RR. The cytoplasmic microtubule array in Neurospora crassa depends on microtubule-organizing centers at spindle pole bodies and microtubule +end-depending pseudo-MTOCs at septa. Fungal Genet Biol 2022; 162:103729. [DOI: 10.1016/j.fgb.2022.103729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
|
13
|
Khuntia P, Rawal S, Marwaha R, Das T. Actin-driven Golgi apparatus dispersal during collective migration of epithelial cells. Proc Natl Acad Sci U S A 2022; 119:e2204808119. [PMID: 35749357 PMCID: PMC9245705 DOI: 10.1073/pnas.2204808119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/20/2022] [Indexed: 12/26/2022] Open
Abstract
As a sedentary epithelium turns motile during wound healing, morphogenesis, and metastasis, the Golgi apparatus moves from an apical position, above the nucleus, to a basal position. This apical-to-basal repositioning of Golgi is critical for epithelial cell migration. Yet the molecular mechanism underlying it remains elusive, although microtubules are believed to play a role. Using live-cell and super-resolution imaging, we show that at the onset of collective migration of epithelial cells, Golgi stacks get dispersed to create an unpolarized transitional structure, and surprisingly, this dispersal process depends not on microtubules but on actin cytoskeleton. Golgi-actin interaction involves Arp2/3-driven actin projections emanating from the actin cortex, and a Golgi-localized actin elongation factor, MENA. While in sedentary epithelial cells, actin projections intermittently interact with the apically located Golgi, and the frequency of this event increases before the dispersion of Golgi stacks, at the onset of cell migration. Preventing Golgi-actin interaction with MENA-mutants eliminates Golgi dispersion and reduces the persistence of cell migration. Taken together, we show a process of actin-driven Golgi dispersion that is mechanistically different from the well-known Golgi apparatus fragmentation during mitosis and is essential for collective migration of epithelial cells.
Collapse
Affiliation(s)
- Purnati Khuntia
- Tata Institute of Fundamental Research Hyderabad, Hyderabad 500 046, India
| | - Simran Rawal
- Tata Institute of Fundamental Research Hyderabad, Hyderabad 500 046, India
| | - Rituraj Marwaha
- Tata Institute of Fundamental Research Hyderabad, Hyderabad 500 046, India
| | - Tamal Das
- Tata Institute of Fundamental Research Hyderabad, Hyderabad 500 046, India
| |
Collapse
|
14
|
Nadkarni AV, Heald R. Reconstitution of muscle cell microtubule organization in vitro. Cytoskeleton (Hoboken) 2022; 78:492-502. [PMID: 35666041 DOI: 10.1002/cm.21710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/06/2022]
Abstract
Skeletal muscle differentiation occurs as muscle precursor cells (myoblasts) elongate and fuse to form multinucleated syncytial myotubes in which the highly-organized actomyosin sarcomeres of muscle fibers assemble. Although less well characterized, the microtubule cytoskeleton also undergoes dramatic rearrangement during myogenesis. The centrosome-nucleated microtubule array found in myoblasts is lost as the nuclear membrane acquires microtubule nucleating activity and microtubules emerge from multiple sites in the cell, eventually rearranging into a grid-like pattern in myotubes. In order to characterize perinuclear microtubule organization using a biochemically tractable system, we isolated nuclei from mouse C2C12 skeletal muscle cells during the course of differentiation and incubated them in cytoplasmic extracts prepared from eggs of the frog Xenopus laevis. Whereas centrosomes associated with myoblast nuclei gave rise to radial microtubule arrays in extracts, myotube nuclei produced a sun-like pattern with microtubules transiently nucleating from the entire nuclear envelope. Perinuclear microtubule growth was suppressed by inhibition of Aurora A kinase or by degradation of RNA, treatments that also inhibited microtubule growth from sperm centrosomes. Myotube nuclei displayed microtubule motor-based movements leading to their separation, as occurs in myotubes. This in vitro assay therefore recapitulates key features of microtubule organization and nuclear movement observed during muscle cell differentiation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ambika V Nadkarni
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA
| | - Rebecca Heald
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
15
|
Matsuoka R, Miki M, Mizuno S, Ito Y, Yamada C, Suzuki A. MTCL2 promotes asymmetric microtubule organization by crosslinking microtubules on the Golgi membrane. J Cell Sci 2022; 135:275616. [PMID: 35543016 DOI: 10.1242/jcs.259374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
The Golgi complex plays an active role in organizing asymmetric microtubule arrays essential for polarized vesicle transport. The coiled-coil protein MTCL1 stabilizes microtubules nucleated from the Golgi membrane. Here, we report an MTCL1 paralog, MTCL2, which preferentially acts on the perinuclear microtubules accumulated around the Golgi. MTCL2 associates with the Golgi membrane through the N-terminal coiled-coil region and directly binds microtubules through the conserved C-terminal domain without promoting microtubule stabilization. Knockdown of MTCL2 significantly impaired microtubule accumulation around the Golgi as well as the compactness of the Golgi ribbon assembly structure. Given that MTCL2 forms parallel oligomers through homo-interaction of the central coiled-coil motifs, our results indicate that MTCL2 promotes asymmetric microtubule organization by crosslinking microtubules on the Golgi membrane. Results of in vitro wound healing assays further suggest that this function of MTCL2 enables integration of the centrosomal and Golgi-associated microtubules on the Golgi membrane, supporting directional migration. Additionally, the results demonstrated the involvement of CLASPs and giantin in mediating the Golgi association of MTCL2.
Collapse
Affiliation(s)
- Risa Matsuoka
- Molecular Cellular Biology Laboratory, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Masateru Miki
- Molecular Cellular Biology Laboratory, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Sonoko Mizuno
- Molecular Cellular Biology Laboratory, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yurina Ito
- Molecular Cellular Biology Laboratory, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Chihiro Yamada
- Molecular Cellular Biology Laboratory, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Atsushi Suzuki
- Molecular Cellular Biology Laboratory, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
16
|
Wang GF, Dong Q, Bai Y, Gu J, Tao Q, Yue J, Zhou R, Niu X, Zhu L, Song C, Zheng T, Wang D, Jin Y, Liu H, Cao C, Liu X. c-Abl kinase-mediated phosphorylation of γ-tubulin promotes γ-tubulin ring complexes assembly and microtubule nucleation. J Biol Chem 2022; 298:101778. [PMID: 35231444 PMCID: PMC8980629 DOI: 10.1016/j.jbc.2022.101778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 11/29/2022] Open
Abstract
Cytoskeletal microtubules (MTs) are nucleated from γ-tubulin ring complexes (γTuRCs) located at MT organizing centers (MTOCs), such as the centrosome. However, the exact regulatory mechanism of γTuRC assembly is not fully understood. Here, we showed that the nonreceptor tyrosine kinase c-Abl was associated with and phosphorylated γ-tubulin, the essential component of the γTuRC, mainly on the Y443 residue by in vivo (immunofluorescence and immunoprecipitation) or in vitro (surface plasmon resonance) detection. We further demonstrated that phosphorylation deficiency significantly impaired γTuRC assembly, centrosome construction, and MT nucleation. c-Abl/Arg deletion and γ-tubulin Y443F mutation resulted in an abnormal morphology and compromised spindle function during mitosis, eventually causing uneven chromosome segregation. Our findings reveal that γTuRC assembly and nucleation function are regulated by Abl kinase-mediated γ-tubulin phosphorylation, revealing a fundamental mechanism that contributes to the maintenance of MT function.
Collapse
Affiliation(s)
- Guang-Fei Wang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Qincai Dong
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yu Bai
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Jing Gu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Qingping Tao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Junjie Yue
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Rui Zhou
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Xiayang Niu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Lin Zhu
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Caiwei Song
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Tong Zheng
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Di Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Yanwen Jin
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Hainan Liu
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China.
| | - Cheng Cao
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China.
| | - Xuan Liu
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China.
| |
Collapse
|
17
|
Schatten H. The Centrosome Cycle within the Cell Cycle. THE CENTROSOME AND ITS FUNCTIONS AND DYSFUNCTIONS 2022; 235:17-35. [DOI: 10.1007/978-3-031-20848-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Branched Actin Maintains Acetylated Microtubule Network in the Early Secretory Pathway. Cells 2021; 11:cells11010015. [PMID: 35011578 PMCID: PMC8750537 DOI: 10.3390/cells11010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
In the early secretory pathway, the delivery of anterograde cargoes from the endoplasmic reticulum (ER) exit sites (ERES) to the Golgi apparatus is a multi-step transport process occurring via the ER-Golgi intermediate compartment (IC, also called ERGIC). While the role microtubules in ER-to-Golgi transport has been well established, how the actin cytoskeleton contributes to this process remains poorly understood. Here, we report that Arp2/3 inhibition affects the network of acetylated microtubules around the Golgi and induces the accumulation of unusually long RAB1/GM130-positive carriers around the centrosome. These long carriers are less prone to reach the Golgi apparatus, and arrival of anterograde cargoes to the Golgi is decreased upon Arp2/3 inhibition. Our data suggest that Arp2/3-dependent actin polymerization maintains a stable network of acetylated microtubules, which ensures efficient cargo trafficking at the late stage of ER to Golgi transport.
Collapse
|
19
|
Dráber P, Dráberová E. Dysregulation of Microtubule Nucleating Proteins in Cancer Cells. Cancers (Basel) 2021; 13:cancers13225638. [PMID: 34830792 PMCID: PMC8616210 DOI: 10.3390/cancers13225638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The dysfunction of microtubule nucleation in cancer cells changes the overall cytoskeleton organization and cellular physiology. This review focuses on the dysregulation of the γ-tubulin ring complex (γ-TuRC) proteins that are essential for microtubule nucleation. Recent research on the high-resolution structure of γ-TuRC has brought new insight into the microtubule nucleation mechanism. We discuss the effect of γ-TuRC protein overexpression on cancer cell behavior and new drugs directed to γ-tubulin that may offer a viable alternative to microtubule-targeting agents currently used in cancer chemotherapy. Abstract In cells, microtubules typically nucleate from microtubule organizing centers, such as centrosomes. γ-Tubulin, which forms multiprotein complexes, is essential for nucleation. The γ-tubulin ring complex (γ-TuRC) is an efficient microtubule nucleator that requires additional centrosomal proteins for its activation and targeting. Evidence suggests that there is a dysfunction of centrosomal microtubule nucleation in cancer cells. Despite decades of molecular analysis of γ-TuRC and its interacting factors, the mechanisms of microtubule nucleation in normal and cancer cells remains obscure. Here, we review recent work on the high-resolution structure of γ-TuRC, which brings new insight into the mechanism of microtubule nucleation. We discuss the effects of γ-TuRC protein dysregulation on cancer cell behavior and new compounds targeting γ-tubulin. Drugs inhibiting γ-TuRC functions could represent an alternative to microtubule targeting agents in cancer chemotherapy.
Collapse
|
20
|
Chatterjee S, Som S, Varshney N, Satyadev P, Sanyal K, Paul R. Mechanics of microtubule organizing center clustering and spindle positioning in budding yeast Cryptococcus neoformans. Phys Rev E 2021; 104:034402. [PMID: 34654156 DOI: 10.1103/physreve.104.034402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/09/2021] [Indexed: 11/07/2022]
Abstract
The dynamic process of mitotic spindle assembly depends on multitudes of inter-dependent interactions involving kinetochores (KTs), microtubules (MTs), spindle pole bodies (SPBs), and molecular motors. Before forming the mitotic spindle, multiple visible microtubule organizing centers (MTOCs) coalesce into a single focus to serve as an SPB in the pathogenic budding yeast, Cryptococcus neoformans. To explain this unusual phenomenon in the fungal kingdom, we propose a "search and capture" model, in which cytoplasmic MTs (cMTs) nucleated by MTOCs grow and capture each other to promote MTOC clustering. Our quantitative modeling identifies multiple redundant mechanisms mediated by a combination of cMT-cell cortex interactions and inter-cMT coupling to facilitate MTOC clustering within the physiological time limit as determined by time-lapse live-cell microscopy. Besides, we screen various possible mechanisms by computational modeling and propose optimal conditions that favor proper spindle positioning-a critical determinant for timely chromosome segregation. These analyses also reveal that a combined effect of MT buckling, dynein pull, and cortical push maintains spatiotemporal spindle localization.
Collapse
Affiliation(s)
| | - Subhendu Som
- Indian Association for the Cultivation of Science, Kolkata-700032, India
| | - Neha Varshney
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Pvs Satyadev
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Raja Paul
- Indian Association for the Cultivation of Science, Kolkata-700032, India
| |
Collapse
|
21
|
Chiu SC, Huang YRJ, Wei TYW, Chen JMM, Kuo YC, Huang YTJ, Liao YTA, Yu CTR. The PRMT5/HURP axis retards Golgi repositioning by stabilizing acetyl-tubulin and Golgi apparatus during cell migration. J Cell Physiol 2021; 237:1033-1043. [PMID: 34541678 DOI: 10.1002/jcp.30589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 11/10/2022]
Abstract
The Golgi apparatus (GA) translocates to the cell leading end during directional migration, thereby determining cell polarity and transporting essential factors to the migration apparatus. The study provides mechanistic insights into how GA repositioning (GR) is regulated. We show that the methyltransferase PRMT5 methylates the microtubule regulator HURP at R122. The HURP methylation mimicking mutant 122F impairs GR and cell migration. Mechanistic studies revealed that HURP 122F or endogenous methylated HURP, that is, HURP m122, interacts with acetyl-tubulin. Overexpression of HURP 122F stabilizes the bundling pattern of acetyl-tubulin by decreasing the sensitivity of the latter to a microtubule disrupting agent nocodazole. HURP 122F also rigidifies GA via desensitizing the organelle to several GA disrupting chemicals. Similarly, the acetyl-tubulin mimicking mutant 40Q or tubulin acetyltransferase αTAT1 can rigidify GA, impair GR, and retard cell migration. Reversal of HURP 122F-induced GA rigidification, by knocking down GA assembly factors such as GRASP65 or GM130, attenuates 122F-triggered GR and cell migration. Remarkably, PRMT5 is found downregulated and the level of HURP m122 is decreased during the early hours of wound healing-based cell migration, collectively implying that the PRMT5-HURP-acetyl-tubulin axis plays the role of brake, preventing GR and cell migration before cells reach empty space.
Collapse
Affiliation(s)
- Shao-Chih Chiu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | | | - Tong-You Wade Wei
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jo-Mei Maureen Chen
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Yi-Chun Kuo
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou, Taiwan
| | - Yu-Ting Jenny Huang
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Yu-Ting Amber Liao
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Chang-Tze Ricky Yu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan.,Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou, Taiwan
| |
Collapse
|
22
|
Chia S, Leung T, Tan I. Cyclical phosphorylation of LRAP35a and CLASP2 by GSK3β and CK1δ regulates EB1-dependent MT dynamics in cell migration. Cell Rep 2021; 36:109687. [PMID: 34525355 DOI: 10.1016/j.celrep.2021.109687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 07/02/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022] Open
Abstract
Mammalian cell cytoskeletal reorganization for efficient directional movement requires tight coordination of actomyosin and microtubule networks. In this study, we show that LRAP35a potentiates microtubule stabilization by promoting CLASP2/EB1 interaction besides its complex formation with MRCK/MYO18A for retrograde actin flow. The alternate regulation of these two networks by LRAP35a is tightly regulated by a series of phosphorylation events that dictated its specificity. Sequential phosphorylation of LRAP35a by Protein Kinase A (PKA) and Glycogen Synthase Kinase-3β (GSK3β) initiates the association of LRAP35a with CLASP2, while subsequent binding and further phosphorylation by Casein Kinase 1δ (CK1δ) induce their dissociation, which facilitates LRAP35a/MRCK association in driving lamellar actomyosin flow. Importantly, microtubule dynamics is directly moderated by CK1δ activity on CLASP2 to regulate GSK3β phosphorylation of the SxIP motifs that blocks EB1 binding, an event countered by LRAP35a interaction and its competition for CK1δ activity. Overall this study reveals an essential role for LRAP35a in coordinating lamellar contractility and microtubule polarization in cell migration.
Collapse
Affiliation(s)
- Shumei Chia
- Institute of Molecular and Cell Biology, A(∗)STAR, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Genome Institute of Singapore, A(∗)STAR, 60 Biopolis Street, #02-01 Genome, Singapore 138672, Singapore; Department of Anatomy, Yong Loo Lin School of Medicine, MD10, 4 Medical Drive, Singapore 117594, Singapore.
| | - Thomas Leung
- Institute of Molecular and Cell Biology, A(∗)STAR, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Anatomy, Yong Loo Lin School of Medicine, MD10, 4 Medical Drive, Singapore 117594, Singapore
| | - Ivan Tan
- Institute of Molecular and Cell Biology, A(∗)STAR, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Bioprocessing Technology Institute, A(∗)STAR, 20 Biopolis Way, #06-01, Centros, Singapore 138668, Singapore.
| |
Collapse
|
23
|
Klemm LC, Denu RA, Hind LE, Rocha-Gregg BL, Burkard ME, Huttenlocher A. Centriole and Golgi microtubule nucleation are dispensable for the migration of human neutrophil-like cells. Mol Biol Cell 2021; 32:1545-1556. [PMID: 34191538 PMCID: PMC8351748 DOI: 10.1091/mbc.e21-02-0060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/27/2021] [Accepted: 06/11/2021] [Indexed: 11/19/2022] Open
Abstract
Neutrophils migrate in response to chemoattractants to mediate host defense. Chemoattractants drive rapid intracellular cytoskeletal rearrangements including the radiation of microtubules from the microtubule-organizing center (MTOC) toward the rear of polarized neutrophils. Microtubules regulate neutrophil polarity and motility, but little is known about the specific role of MTOCs. To characterize the role of MTOCs on neutrophil motility, we depleted centrioles in a well-established neutrophil-like cell line. Surprisingly, both chemical and genetic centriole depletion increased neutrophil speed and chemotactic motility, suggesting an inhibitory role for centrioles during directed migration. We also found that depletion of both centrioles and GM130-mediated Golgi microtubule nucleation did not impair neutrophil directed migration. Taken together, our findings demonstrate an inhibitory role for centrioles and a resilient MTOC system in motile human neutrophil-like cells.
Collapse
Affiliation(s)
- Lucas C. Klemm
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Ryan A. Denu
- Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI 53706
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison, Madison, WI 53706
| | - Laurel E. Hind
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Briana L. Rocha-Gregg
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Mark E. Burkard
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison, Madison, WI 53706
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
24
|
Abstract
As one of four filament types, microtubules are a core component of the cytoskeleton and are essential for cell function. Yet how microtubules are nucleated from their building blocks, the αβ-tubulin heterodimer, has remained a fundamental open question since the discovery of tubulin 50 years ago. Recent structural studies have shed light on how γ-tubulin and the γ-tubulin complex proteins (GCPs) GCP2 to GCP6 form the γ-tubulin ring complex (γ-TuRC). In parallel, functional and single-molecule studies have informed on how the γ-TuRC nucleates microtubules in real time, how this process is regulated in the cell and how it compares to other modes of nucleation. Another recent surprise has been the identification of a second essential nucleation factor, which turns out to be the well-characterized microtubule polymerase XMAP215 (also known as CKAP5, a homolog of chTOG, Stu2 and Alp14). This discovery helps to explain why the observed nucleation activity of the γ-TuRC in vitro is relatively low. Taken together, research in recent years has afforded important insight into how microtubules are made in the cell and provides a basis for an exciting era in the cytoskeleton field.
Collapse
Affiliation(s)
- Akanksha Thawani
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
25
|
Angerani S, Lindberg E, Klena N, Bleck CKE, Aumeier C, Winssinger N. Kinesin-1 activity recorded in living cells with a precipitating dye. Nat Commun 2021; 12:1463. [PMID: 33674590 PMCID: PMC7935933 DOI: 10.1038/s41467-021-21626-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/03/2021] [Indexed: 01/15/2023] Open
Abstract
Kinesin-1 is a processive motor protein that uses ATP-derived energy to transport a variety of intracellular cargoes toward the cell periphery. The ability to visualize and monitor kinesin transport in live cells is critical to study the myriad of functions associated with cargo trafficking. Herein we report the discovery of a fluorogenic small molecule substrate (QPD-OTf) for kinesin-1 that yields a precipitating dye along its walking path on microtubules (MTs). QPD-OTf enables to monitor native kinesin-1 transport activity in cellulo without external modifications. In vitro assays show that kinesin-1 and MTs are sufficient to yield fluorescent crystals; in cells, kinesin-1 specific transport of cargo from the Golgi appears as trails of fluorescence over time. These findings are further supported by docking studies, which suggest the binding of the activity-based substrate in the nucleotide binding site of kinesin-1.
Collapse
Affiliation(s)
- Simona Angerani
- School of Chemistry and Biochemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Eric Lindberg
- School of Chemistry and Biochemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Nikolai Klena
- Department of Cell Biology, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Christopher K E Bleck
- Electron Microscopy Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charlotte Aumeier
- School of Chemistry and Biochemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, Geneva, Switzerland.
| | - Nicolas Winssinger
- School of Chemistry and Biochemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
26
|
Spriggs CC, Badieyan S, Verhey KJ, Cianfrocco MA, Tsai B. Golgi-associated BICD adaptors couple ER membrane penetration and disassembly of a viral cargo. J Cell Biol 2021; 219:151622. [PMID: 32259203 PMCID: PMC7199864 DOI: 10.1083/jcb.201908099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/04/2019] [Accepted: 02/21/2020] [Indexed: 12/22/2022] Open
Abstract
During entry, viruses must navigate through the host endomembrane system, penetrate cellular membranes, and undergo capsid disassembly to reach an intracellular destination that supports infection. How these events are coordinated is unclear. Here, we reveal an unexpected function of a cellular motor adaptor that coordinates virus membrane penetration and disassembly. Polyomavirus SV40 traffics to the endoplasmic reticulum (ER) and penetrates a virus-induced structure in the ER membrane called “focus” to reach the cytosol, where it disassembles before nuclear entry to promote infection. We now demonstrate that the ER focus is constructed proximal to the Golgi-associated BICD2 and BICDR1 dynein motor adaptors; this juxtaposition enables the adaptors to directly bind to and disassemble SV40 upon arrival to the cytosol. Our findings demonstrate that positioning of the virus membrane penetration site couples two decisive infection events, cytosol arrival and disassembly, and suggest cargo remodeling as a novel function of dynein adaptors.
Collapse
Affiliation(s)
- Chelsey C Spriggs
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Somayesadat Badieyan
- Department of Biological Chemistry and the Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Michael A Cianfrocco
- Department of Biological Chemistry and the Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
27
|
Müller A, Schmidt D, Xu CS, Pang S, D’Costa JV, Kretschmar S, Münster C, Kurth T, Jug F, Weigert M, Hess HF, Solimena M. 3D FIB-SEM reconstruction of microtubule-organelle interaction in whole primary mouse β cells. J Cell Biol 2021; 220:e202010039. [PMID: 33326005 PMCID: PMC7748794 DOI: 10.1083/jcb.202010039] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 11/22/2022] Open
Abstract
Microtubules play a major role in intracellular trafficking of vesicles in endocrine cells. Detailed knowledge of microtubule organization and their relation to other cell constituents is crucial for understanding cell function. However, their role in insulin transport and secretion is under debate. Here, we use FIB-SEM to image islet β cells in their entirety with unprecedented resolution. We reconstruct mitochondria, Golgi apparati, centrioles, insulin secretory granules, and microtubules of seven β cells, and generate a comprehensive spatial map of microtubule-organelle interactions. We find that microtubules form nonradial networks that are predominantly not connected to either centrioles or endomembranes. Microtubule number and length, but not microtubule polymer density, vary with glucose stimulation. Furthermore, insulin secretory granules are enriched near the plasma membrane, where they associate with microtubules. In summary, we provide the first 3D reconstructions of complete microtubule networks in primary mammalian cells together with evidence regarding their importance for insulin secretory granule positioning and thus their supportive role in insulin secretion.
Collapse
Affiliation(s)
- Andreas Müller
- Molecular Diabetology, University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Deborah Schmidt
- Center for Systems Biology Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - C. Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Song Pang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Joyson Verner D’Costa
- Molecular Diabetology, University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Susanne Kretschmar
- Center for Molecular and Cellular Bioengineering, Technology Platform, Technische Universität Dresden, Dresden, Germany
| | - Carla Münster
- Molecular Diabetology, University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering, Technology Platform, Technische Universität Dresden, Dresden, Germany
| | - Florian Jug
- Center for Systems Biology Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Fondazione Human Technopole, Milano, Italy
| | - Martin Weigert
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Harald F. Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
28
|
Furey C, Jovasevic V, Walsh D. TACC3 Regulates Microtubule Plus-End Dynamics and Cargo Transport in Interphase Cells. Cell Rep 2021; 30:269-283.e6. [PMID: 31914393 PMCID: PMC6980831 DOI: 10.1016/j.celrep.2019.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/13/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022] Open
Abstract
End-binding proteins (EBs) are widely viewed as master regulators of microtubule dynamics and function. Here, we show that while EB1 mediates the dynamic microtubule capture of herpes simplex virus type 1 (HSV-1) in fibroblasts, in neuronal cells, infection occurs independently of EBs through stable microtubules. Prompted by this, we find that transforming acid coiled-coil protein 3 (TACC3), widely studied in mitotic spindle formation, regulates the cytoplasmic localization of the microtubule polymerizing factor chTOG and influences microtubule plus-end dynamics during interphase to control infection in distinct cell types. Furthermore, perturbing TACC3 function in neuronal cells resulted in the formation of disorganized stable, detyrosinated microtubule networks and changes in cellular morphology, as well as impaired trafficking of both HSV-1 and transferrin. These trafficking defects in TACC3-depleted cells were reversed by the depletion of kinesin-1 heavy chains. As such, TACC3 is a critical regulator of interphase microtubule dynamics and stability that influences kinesin-1-based cargo trafficking. While EB proteins are widely studied as master regulators of microtubule plus-end dynamics, Furey et al. report EB-independent regulation of microtubule arrays and cargo trafficking by the transforming acid coiled-coil-containing protein, TACC3. By controlling the formation of detyrosinated stable microtubule networks, TACC3 influences kinesin-1-based sorting of both host and pathogenic cargoes.
Collapse
Affiliation(s)
- Colleen Furey
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Vladimir Jovasevic
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
29
|
Vergarajauregui S, Becker R, Steffen U, Sharkova M, Esser T, Petzold J, Billing F, Kapiloff MS, Schett G, Thievessen I, Engel FB. AKAP6 orchestrates the nuclear envelope microtubule-organizing center by linking golgi and nucleus via AKAP9. eLife 2020; 9:61669. [PMID: 33295871 PMCID: PMC7725499 DOI: 10.7554/elife.61669] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/03/2020] [Indexed: 12/31/2022] Open
Abstract
The switch from centrosomal microtubule-organizing centers (MTOCs) to non-centrosomal MTOCs during differentiation is poorly understood. Here, we identify AKAP6 as key component of the nuclear envelope MTOC. In rat cardiomyocytes, AKAP6 anchors centrosomal proteins to the nuclear envelope through its spectrin repeats, acting as an adaptor between nesprin-1α and Pcnt or AKAP9. In addition, AKAP6 and AKAP9 form a protein platform tethering the Golgi to the nucleus. Both Golgi and nuclear envelope exhibit MTOC activity utilizing either AKAP9, or Pcnt-AKAP9, respectively. AKAP6 is also required for formation and activity of the nuclear envelope MTOC in human osteoclasts. Moreover, ectopic expression of AKAP6 in epithelial cells is sufficient to recruit endogenous centrosomal proteins. Finally, AKAP6 is required for cardiomyocyte hypertrophy and osteoclast bone resorption activity. Collectively, we decipher the MTOC at the nuclear envelope as a bi-layered structure generating two pools of microtubules with AKAP6 as a key organizer.
Collapse
Affiliation(s)
- Silvia Vergarajauregui
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Robert Becker
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ulrike Steffen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Maria Sharkova
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tilman Esser
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jana Petzold
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Florian Billing
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael S Kapiloff
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, United States
| | - George Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ingo Thievessen
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Muscle Research Center Erlangen (MURCE), Erlangen, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Muscle Research Center Erlangen (MURCE), Erlangen, Germany
| |
Collapse
|
30
|
Zupa E, Liu P, Würtz M, Schiebel E, Pfeffer S. The structure of the γ-TuRC: a 25-years-old molecular puzzle. Curr Opin Struct Biol 2020; 66:15-21. [PMID: 33002806 DOI: 10.1016/j.sbi.2020.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
The nucleation of microtubules from αβ-tubulin dimers is an essential cellular process dependent on γ-tubulin complexes. Mechanistic understanding of the nucleation reaction was hampered by the lack of γ-tubulin complex structures at sufficiently high resolution. The recent technical developments in cryo-electron microscopy have allowed resolving the vertebrate γ-tubulin ring complex (γ-TuRC) structure at near-atomic resolution. These studies clarified the arrangement and stoichiometry of gamma-tubulin complex proteins in the γ-TuRC, characterized the surprisingly versatile integration of the small proteins MZT1/2 into the complex, and identified actin as an integral component of the γ-TuRC. In this review, we summarize the structural insights into the molecular architecture, the assembly pathway, and the regulation of the microtubule nucleation reaction.
Collapse
Affiliation(s)
- Erik Zupa
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Peng Liu
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Martin Würtz
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| | - Stefan Pfeffer
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| |
Collapse
|
31
|
Valenzuela A, Meservey L, Nguyen H, Fu MM. Golgi Outposts Nucleate Microtubules in Cells with Specialized Shapes. Trends Cell Biol 2020; 30:792-804. [PMID: 32863092 DOI: 10.1016/j.tcb.2020.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022]
Abstract
Classically, animal cells nucleate or form new microtubules off the perinuclear centrosome. In recent years, the Golgi outpost has emerged as a satellite organelle that can function as an acentrosomal microtubule-organizing center (MTOC), nucleating new microtubules at distances far from the nucleus or cell body. Golgi outposts can nucleate new microtubules in specialized cells with unique cytoarchitectures, including Drosophila neurons, mouse muscle cells, and rodent oligodendrocytes. This review compares and contrasts topics of functional relevance, including Golgi outpost heterogeneity, formation and transport, as well as regulation of microtubule polarity and branching. Golgi outposts have also been implicated in the pathology of diseases including muscular dystrophy, and neurodegenerative diseases, such as Parkinson's disease (PD). Since Golgi outposts are relatively understudied, many outstanding questions regarding their function and roles in disease remain.
Collapse
Affiliation(s)
- Alex Valenzuela
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lindsey Meservey
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Huy Nguyen
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Meng-Meng Fu
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA; National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| |
Collapse
|
32
|
Turn RE, East MP, Prekeris R, Kahn RA. The ARF GAP ELMOD2 acts with different GTPases to regulate centrosomal microtubule nucleation and cytokinesis. Mol Biol Cell 2020; 31:2070-2091. [PMID: 32614697 PMCID: PMC7543072 DOI: 10.1091/mbc.e20-01-0012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
ELMOD2 is a ∼32 kDa protein first purified by its GTPase-activating protein (GAP) activity toward ARL2 and later shown to have uniquely broad specificity toward ARF family GTPases in in vitro assays. To begin the task of defining its functions in cells, we deleted ELMOD2 in immortalized mouse embryonic fibroblasts and discovered a number of cellular defects, which are reversed upon expression of ELMOD2-myc. We show that these defects, resulting from the loss of ELMOD2, are linked to two different pathways and two different GTPases: with ARL2 and TBCD to support microtubule nucleation from centrosomes and with ARF6 in cytokinesis. These data highlight key aspects of signaling by ARF family GAPs that contribute to previously underappreciated sources of complexity, including GAPs acting from multiple sites in cells, working with multiple GTPases, and contributing to the spatial and temporal control of regulatory GTPases by serving as both GAPs and effectors.
Collapse
Affiliation(s)
- Rachel E Turn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322.,Biochemistry, Cell & Developmental Biology Graduate Program, Laney Graduate School, Emory University, Atlanta, GA 30307
| | - Michael P East
- Department of Pharmacology, University of North Carolina Chapel Hill, Chapel Hill, NC 27599
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado, Aurora, CO 80045
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
33
|
Microtubule Organization in Striated Muscle Cells. Cells 2020; 9:cells9061395. [PMID: 32503326 PMCID: PMC7349303 DOI: 10.3390/cells9061395] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Distinctly organized microtubule networks contribute to the function of differentiated cell types such as neurons, epithelial cells, skeletal myotubes, and cardiomyocytes. In striated (i.e., skeletal and cardiac) muscle cells, the nuclear envelope acts as the dominant microtubule-organizing center (MTOC) and the function of the centrosome—the canonical MTOC of mammalian cells—is attenuated, a common feature of differentiated cell types. We summarize the mechanisms known to underlie MTOC formation at the nuclear envelope, discuss the significance of the nuclear envelope MTOC for muscle function and cell cycle progression, and outline potential mechanisms of centrosome attenuation.
Collapse
|
34
|
Lüders J. Nucleating microtubules in neurons: Challenges and solutions. Dev Neurobiol 2020; 81:273-283. [PMID: 32324945 DOI: 10.1002/dneu.22751] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/08/2020] [Accepted: 04/20/2020] [Indexed: 11/08/2022]
Abstract
The highly polarized morphology of neurons is crucial for their function and involves formation of two distinct types of cellular extensions, the axonal and dendritic compartments. An important effector required for the morphogenesis and maintenance and thus the identity of axons and dendrites is the microtubule cytoskeleton. Microtubules in axons and dendrites are arranged with distinct polarities, to allow motor-dependent, compartment-specific sorting of cargo. Despite the importance of the microtubule cytoskeleton in neurons, the molecular mechanisms that generate the intricate compartment-specific microtubule configurations remain largely obscure. Work in other cell types has identified microtubule nucleation, the de novo formation of microtubules, and its spatio-temporal regulation as essential for the proper organization of the microtubule cytoskeleton. Whereas regulation of microtubule nucleation usually involves microtubule organizing centers such as the centrosome, neurons seem to rely largely on decentralized nucleation mechanisms. In this review, I will discuss recent advances in deciphering nucleation mechanisms in neurons, how they contribute to the arrangement of microtubules with specific polarities, and how this affects neuron morphogenesis. While this work has shed some light on these important processes, we are far from a comprehensive understanding. Thus, to provide a coherent model, my discussion will include both well-established mechanisms and mechanisms with more limited supporting data. Finally, I will also highlight important outstanding questions for future investigation.
Collapse
Affiliation(s)
- Jens Lüders
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| |
Collapse
|
35
|
Riparbelli MG, Persico V, Dallai R, Callaini G. Centrioles and Ciliary Structures during Male Gametogenesis in Hexapoda: Discovery of New Models. Cells 2020; 9:E744. [PMID: 32197383 PMCID: PMC7140630 DOI: 10.3390/cells9030744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Centrioles are-widely conserved barrel-shaped organelles present in most organisms. They are indirectly involved in the organization of the cytoplasmic microtubules both in interphase and during the cell division by recruiting the molecules needed for microtubule nucleation. Moreover, the centrioles are required to assemble cilia and flagella by the direct elongation of their microtubule wall. Due to the importance of the cytoplasmic microtubules in several aspects of the cell life, any defect in centriole structure can lead to cell abnormalities that in humans may result in significant diseases. Many aspects of the centriole dynamics and function have been clarified in the last years, but little attention has been paid to the exceptions in centriole structure that occasionally appeared within the animal kingdom. Here, we focused our attention on non-canonical aspects of centriole architecture within the Hexapoda. The Hexapoda is one of the major animal groups and represents a good laboratory in which to examine the evolution and the organization of the centrioles. Although these findings represent obvious exceptions to the established rules of centriole organization, they may contribute to advance our understanding of the formation and the function of these organelles.
Collapse
Affiliation(s)
- Maria Giovanna Riparbelli
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.G.R.); (V.P.); (R.D.)
| | - Veronica Persico
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.G.R.); (V.P.); (R.D.)
| | - Romano Dallai
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.G.R.); (V.P.); (R.D.)
| | - Giuliano Callaini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.G.R.); (V.P.); (R.D.)
- Department of Medical Biotechnologies, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
36
|
Meka DP, Scharrenberg R, Calderon de Anda F. Emerging roles of the centrosome in neuronal development. Cytoskeleton (Hoboken) 2020; 77:84-96. [DOI: 10.1002/cm.21593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/16/2019] [Accepted: 01/04/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Durga Praveen Meka
- RG Neuronal Development, Center for Molecular Neurobiology Hamburg (ZMNH)University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Robin Scharrenberg
- RG Neuronal Development, Center for Molecular Neurobiology Hamburg (ZMNH)University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Froylan Calderon de Anda
- RG Neuronal Development, Center for Molecular Neurobiology Hamburg (ZMNH)University Medical Center Hamburg‐Eppendorf Hamburg Germany
| |
Collapse
|
37
|
Fourriere L, Jimenez AJ, Perez F, Boncompain G. The role of microtubules in secretory protein transport. J Cell Sci 2020; 133:133/2/jcs237016. [PMID: 31996399 DOI: 10.1242/jcs.237016] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Microtubules are part of the dynamic cytoskeleton network and composed of tubulin dimers. They are the main tracks used in cells to organize organelle positioning and trafficking of cargos. In this Review, we compile recent findings on the involvement of microtubules in anterograde protein transport. First, we highlight the importance of microtubules in organelle positioning. Second, we discuss the involvement of microtubules within different trafficking steps, in particular between the endoplasmic reticulum and the Golgi complex, traffic through the Golgi complex itself and in post-Golgi processes. A large number of studies have assessed the involvement of microtubules in transport of cargo from the Golgi complex to the cell surface. We focus here on the role of kinesin motor proteins and protein interactions in post-Golgi transport, as well as the impact of tubulin post-translational modifications. Last, in light of recent findings, we highlight the role microtubules have in exocytosis, the final step of secretory protein transport, occurring close to focal adhesions.
Collapse
Affiliation(s)
- Lou Fourriere
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, CNRS UMR 144, Sorbonne Université, 75005 Paris, France
| | - Ana Joaquina Jimenez
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, CNRS UMR 144, Sorbonne Université, 75005 Paris, France
| | - Franck Perez
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, CNRS UMR 144, Sorbonne Université, 75005 Paris, France
| | - Gaelle Boncompain
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, CNRS UMR 144, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
38
|
Microtubules in Influenza Virus Entry and Egress. Viruses 2020; 12:v12010117. [PMID: 31963544 PMCID: PMC7020094 DOI: 10.3390/v12010117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
Influenza viruses are respiratory pathogens that represent a significant threat to public health, despite the large-scale implementation of vaccination programs. It is necessary to understand the detailed and complex interactions between influenza virus and its host cells in order to identify successful strategies for therapeutic intervention. During viral entry, the cellular microenvironment presents invading pathogens with a series of obstacles that must be overcome to infect permissive cells. Influenza hijacks numerous host cell proteins and associated biological pathways during its journey into the cell, responding to environmental cues in order to successfully replicate. The cellular cytoskeleton and its constituent microtubules represent a heavily exploited network during viral infection. Cytoskeletal filaments provide a dynamic scaffold for subcellular viral trafficking, as well as virus-host interactions with cellular machineries that are essential for efficient uncoating, replication, and egress. In addition, influenza virus infection results in structural changes in the microtubule network, which itself has consequences for viral replication. Microtubules, their functional roles in normal cell biology, and their exploitation by influenza viruses will be the focus of this review.
Collapse
|
39
|
Ravichandran Y, Goud B, Manneville JB. The Golgi apparatus and cell polarity: Roles of the cytoskeleton, the Golgi matrix, and Golgi membranes. Curr Opin Cell Biol 2019; 62:104-113. [PMID: 31751898 DOI: 10.1016/j.ceb.2019.10.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/02/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Abstract
Membrane trafficking plays a crucial role in cell polarity by directing lipids and proteins to specific subcellular locations in the cell and sustaining a polarized state. The Golgi apparatus, the master organizer of membrane trafficking, can be subdivided into three layers that play different mechanical roles: a cytoskeletal layer, the so-called Golgi matrix, and the Golgi membranes. First, the outer regions of the Golgi apparatus interact with cytoskeletal elements, mainly actin and microtubules, which shape, position, and orient the organelle. Closer to the Golgi membranes, a matrix of long coiled-coiled proteins not only selectively captures transport intermediates but also participates in signaling events during polarization of membrane trafficking. Finally, the Golgi membranes themselves serve as active signaling platforms during cell polarity events. We review here the recent findings that link the Golgi apparatus to cell polarity, focusing on the roles of the cytoskeleton, the Golgi matrix, and the Golgi membranes.
Collapse
Affiliation(s)
- Yamini Ravichandran
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France; Sorbonne Université, UPMC University Paris 06, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France; Institut Pasteur, CNRS, UMR 3691, 25 rue du Docteur Roux F-75014, Paris, France
| | - Bruno Goud
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France; Sorbonne Université, UPMC University Paris 06, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France
| | - Jean-Baptiste Manneville
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France; Sorbonne Université, UPMC University Paris 06, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France.
| |
Collapse
|
40
|
The organization of Golgi in Drosophila bristles requires microtubule motor protein function and a properly organized microtubule array. PLoS One 2019; 14:e0223174. [PMID: 31577833 PMCID: PMC6774520 DOI: 10.1371/journal.pone.0223174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 09/16/2019] [Indexed: 11/20/2022] Open
Abstract
In the present report, we used highly elongated Drosophila bristle cells to dissect the role of dynein heavy chain (Dhc64C) in Golgi organization. We demonstrated that whereas in the bristle "somal" region Golgi units are composed of cis-, medial, and trans-Golgi compartments ("complete Golgi"), the bristle shaft contains Golgi satellites that lack the trans-Golgi compartment (hereafter referred to as "incomplete Golgi") and which are static and localized at the base area. However, in Dhc64C mutants, the entire bristle shaft was filled with complete Golgi units containing ectopic trans-Golgi components. To further understand Golgi bristle organization, we tested the roles of microtubule (MT) polarity and the Dhc-opposing motor, kinesin heavy chain (Khc). For our surprise, we found that in Khc and Ik2Dominant-negative (DN) flies in which the polarized organization of MTs is affected, the bristle shaft was filled with complete Golgi, similarly to what is seen in Dhc64C flies. Thus, we demonstrated that MTs and the motor proteins Dhc and Khc are required for bristle Golgi organization. However, the fact that both Dhc64C and Khc flies showed similar Golgi defects calls for an additional work to elucidate the molecular mechanism describing why these factors are required for bristle Golgi organization.
Collapse
|
41
|
The Golgi Outpost Protein TPPP Nucleates Microtubules and Is Critical for Myelination. Cell 2019; 179:132-146.e14. [PMID: 31522887 DOI: 10.1016/j.cell.2019.08.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 05/19/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022]
Abstract
Oligodendrocytes extend elaborate microtubule arbors that contact up to 50 axon segments per cell, then spiral around myelin sheaths, penetrating from outer to inner layers. However, how they establish this complex cytoarchitecture is unclear. Here, we show that oligodendrocytes contain Golgi outposts, an organelle that can function as an acentrosomal microtubule-organizing center (MTOC). We identify a specific marker for Golgi outposts-TPPP (tubulin polymerization promoting protein)-that we use to purify this organelle and characterize its proteome. In in vitro cell-free assays, recombinant TPPP nucleates microtubules. Primary oligodendrocytes from Tppp knockout (KO) mice have aberrant microtubule branching, mixed microtubule polarity, and shorter myelin sheaths when cultured on 3-dimensional (3D) microfibers. Tppp KO mice exhibit hypomyelination with shorter, thinner myelin sheaths and motor coordination deficits. Together, our data demonstrate that microtubule nucleation outside the cell body at Golgi outposts by TPPP is critical for elongation of the myelin sheath.
Collapse
|
42
|
Ayala I, Crispino R, Colanzi A. GRASP65 controls Golgi position and structure during G2/M transition by regulating the stability of microtubules. Traffic 2019; 20:785-802. [DOI: 10.1111/tra.12682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Inmaculada Ayala
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council (CNR) Naples Italy
| | - Roberta Crispino
- Telethon Institute of Genetics and Medicine (TIGEM) Pozzuoli Italy
| | - Antonino Colanzi
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council (CNR) Naples Italy
| |
Collapse
|
43
|
Saraste J, Prydz K. A New Look at the Functional Organization of the Golgi Ribbon. Front Cell Dev Biol 2019; 7:171. [PMID: 31497600 PMCID: PMC6713163 DOI: 10.3389/fcell.2019.00171] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022] Open
Abstract
A characteristic feature of vertebrate cells is a Golgi ribbon consisting of multiple cisternal stacks connected into a single-copy organelle next to the centrosome. Despite numerous studies, the mechanisms that link the stacks together and the functional significance of ribbon formation remain poorly understood. Nevertheless, these questions are of considerable interest, since there is increasing evidence that Golgi fragmentation – the unlinking of the stacks in the ribbon – is intimately connected not only to normal physiological processes, such as cell division and migration, but also to pathological states, including neurodegeneration and cancer. Challenging a commonly held view that ribbon architecture involves the formation of homotypic tubular bridges between the Golgi stacks, we present an alternative model, based on direct interaction between the biosynthetic (pre-Golgi) and endocytic (post-Golgi) membrane networks and their connection with the centrosome. We propose that the central domains of these permanent pre- and post-Golgi networks function together in the biogenesis and maintenance of the more transient Golgi stacks, and thereby establish “linker compartments” that dynamically join the stacks together. This model provides insight into the reversible fragmentation of the Golgi ribbon that takes place in dividing and migrating cells and its regulation along a cell surface – Golgi – centrosome axis. Moreover, it helps to understand transport pathways that either traverse or bypass the Golgi stacks and the positioning of the Golgi apparatus in differentiated neuronal, epithelial, and muscle cells.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center, University of Bergen, Bergen, Norway
| | - Kristian Prydz
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
44
|
Liu S, Majeed W, Grigaitis P, Betts MJ, Climer LK, Starkuviene V, Storrie B. Epistatic Analysis of the Contribution of Rabs and Kifs to CATCHR Family Dependent Golgi Organization. Front Cell Dev Biol 2019; 7:126. [PMID: 31428608 PMCID: PMC6687757 DOI: 10.3389/fcell.2019.00126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/26/2019] [Indexed: 01/05/2023] Open
Abstract
Multisubunit members of the CATCHR family: COG and NRZ complexes, mediate intra-Golgi and Golgi to ER vesicle tethering, respectively. We systematically addressed the genetic and functional interrelationships between Rabs, Kifs, and the retrograde CATCHR family proteins: COG3 and ZW10, which are necessary to maintain the organization of the Golgi complex. We scored the ability of siRNAs targeting 19 Golgi-associated Rab proteins and all 44 human Kifs, microtubule-dependent motor proteins, to suppress CATCHR-dependent Golgi fragmentation in an epistatic fluorescent microscopy-based assay. We found that co-depletion of Rab6A, Rab6A’, Rab27A, Rab39A and two minus-end Kifs, namely KIFC3 and KIF25, suppressed both COG3- and ZW10-depletion-induced Golgi fragmentation. ZW10-dependent Golgi fragmentation was suppressed selectively by a separate set of Rabs: Rab11A, Rab33B and the little characterized Rab29. 10 Kifs were identified as hits in ZW10-depletion-induced Golgi fragmentation, and, in contrast to the double suppressive Kifs, these were predominantly plus-end motors. No Rabs or Kifs selectively suppressed COG3-depletion-induced Golgi fragmentation. Protein-protein interaction network analysis indicated putative direct and indirect links between suppressive Rabs and tether function. Validation of the suppressive hits by EM confirmed a restored organization of the Golgi cisternal stack. Based on these outcomes, we propose a three-way competitive model of Golgi organization in which Rabs, Kifs and tethers modulate sequentially the balance between Golgi-derived vesicle formation, consumption, and off-Golgi transport.
Collapse
Affiliation(s)
- Shijie Liu
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Waqar Majeed
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Pranas Grigaitis
- Centre for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University, Heidelberg, Germany
| | - Matthew J Betts
- Centre for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University, Heidelberg, Germany
| | - Leslie K Climer
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Vytaute Starkuviene
- Centre for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University, Heidelberg, Germany.,Institute of Pharmacology and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany.,Institute of Biosciences, Vilnius University Life Sciences Centre, Vilnius, Lithuania
| | - Brian Storrie
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
45
|
Yamase K, Tanigawa Y, Yamamoto Y, Tanaka H, Komiya T. Mouse TMCO5 is localized to the manchette microtubules involved in vesicle transfer in the elongating spermatids. PLoS One 2019; 14:e0220917. [PMID: 31393949 PMCID: PMC6687282 DOI: 10.1371/journal.pone.0220917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022] Open
Abstract
As a result of a high-throughput in situ hybridization screening for adult mouse testes, we found that the mRNA for Tmco5 is expressed in round and elongating spermatids. Tmco5 belongs to the Tmco (Transmembrane and coiled-coil domains) gene family and has a coiled-coil domain in the N-terminal and a transmembrane domain in the C-terminal region. A monoclonal antibody raised against recombinant TMCO5 revealed that the protein is expressed exclusively in the elongating spermatids of step 9 to 12 and is localized to the manchette, a transiently emerging construction, which predominantly consists of cytoskeleton microtubules and actin filaments. This structure serves in the transport of Golgi-derived non-acrosomal vesicles. Moreover, induced expression of TMCO5 in CHO cells resulted in the co-localization of TMCO5 with β-tubulin besides the reorganization of the Golgi apparatus. Judging from the results and considering the domain structure of TMCO5, we assume that Tmco5 may have a role in vesicle transport along the manchette.
Collapse
Affiliation(s)
- Kenya Yamase
- Department of Biological Function, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, Japan
| | - Yoko Tanigawa
- Department of Biological Function, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, Japan
| | - Yasufumi Yamamoto
- Department of Biological Function, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, Japan
| | - Hiromitsu Tanaka
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki, Japan
| | - Tohru Komiya
- Department of Biological Function, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, Japan
- * E-mail:
| |
Collapse
|
46
|
Mascanzoni F, Ayala I, Colanzi A. Organelle Inheritance Control of Mitotic Entry and Progression: Implications for Tissue Homeostasis and Disease. Front Cell Dev Biol 2019; 7:133. [PMID: 31396510 PMCID: PMC6664238 DOI: 10.3389/fcell.2019.00133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
The Golgi complex (GC), in addition to its well-known role in membrane traffic, is also actively involved in the regulation of mitotic entry and progression. In particular, during the G2 phase of the cell cycle, the Golgi ribbon is unlinked into isolated stacks. Importantly, this ribbon cleavage is required for G2/M transition, indicating that a "Golgi mitotic checkpoint" controls the correct segregation of this organelle. Then, during mitosis, the isolated Golgi stacks are disassembled, and this process is required for spindle formation. Moreover, recent evidence indicates that also proper mitotic segregation of other organelles, such as mitochondria, endosomes, and peroxisomes, is required for correct mitotic progression and/or spindle formation. Collectively, these observations imply that in addition to the control of chromosomes segregation, which is required to preserve the genetic information, the cells actively monitor the disassembly and redistribution of subcellular organelles in mitosis. Here, we provide an overview of the major structural reorganization of the GC and other organelles during G2/M transition and of their regulatory mechanisms, focusing on novel findings that have shed light on the basic processes that link organelle inheritance to mitotic progression and spindle formation, and discussing their implications for tissue homeostasis and diseases.
Collapse
Affiliation(s)
| | | | - Antonino Colanzi
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
47
|
Chen Y, Frost S, Khushi M, Cantrill LC, Yu H, Arthur JW, Bright RK, Groblewski GE, Byrne JA. Delayed recruiting of TPD52 to lipid droplets - evidence for a "second wave" of lipid droplet-associated proteins that respond to altered lipid storage induced by Brefeldin A treatment. Sci Rep 2019; 9:9790. [PMID: 31278300 PMCID: PMC6611826 DOI: 10.1038/s41598-019-46156-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 06/18/2019] [Indexed: 12/27/2022] Open
Abstract
Tumor protein D52 (TPD52) is amplified and overexpressed in breast and prostate cancers which are frequently characterised by dysregulated lipid storage and metabolism. TPD52 expression increases lipid storage in mouse 3T3 fibroblasts, and co-distributes with the Golgi marker GM130 and lipid droplets (LDs). We examined the effects of Brefeldin A (BFA), a fungal metabolite known to disrupt the Golgi structure, in TPD52-expressing 3T3 cells, and in human AU565 and HMC-1-8 breast cancer cells that endogenously express TPD52. Five-hour BFA treatment reduced median LD numbers, but increased LD sizes. TPD52 knockdown decreased both LD sizes and numbers, and blunted BFA's effects on LD numbers. Following BFA treatment for 1-3 hours, TPD52 co-localised with the trans-Golgi network protein syntaxin 6, but after 5 hours BFA treatment, TPD52 showed increased co-localisation with LDs, which was disrupted by microtubule depolymerising agent nocodazole. BFA treatment also increased perilipin (PLIN) family protein PLIN3 but reduced PLIN2 detection at LDs in TPD52-expressing 3T3 cells, with PLIN3 recruitment to LDs preceding that of TPD52. An N-terminally deleted HA-TPD52 mutant (residues 40-184) almost exclusively targeted to LDs in both vehicle and BFA treated cells. In summary, delayed recruitment of TPD52 to LDs suggests that TPD52 participates in a temporal hierarchy of LD-associated proteins that responds to altered LD packaging requirements induced by BFA treatment.
Collapse
Affiliation(s)
- Yuyan Chen
- Molecular Oncology Laboratory, Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia.
- The University of Sydney Discipline of Child and Adolescent Health, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia.
| | - Sarah Frost
- Molecular Oncology Laboratory, Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
- The University of Sydney Discipline of Child and Adolescent Health, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
| | - Matloob Khushi
- Bioinformatics Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, 2145, Australia
- The University of Sydney School of Information Technologies, Darlington, NSW, 2008, Australia
| | - Laurence C Cantrill
- The University of Sydney Discipline of Child and Adolescent Health, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
- Kids Research Microscope Facility, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
| | - Hong Yu
- Cell Imaging Facility, Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia
| | - Jonathan W Arthur
- Bioinformatics Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Robert K Bright
- Department of Immunology and Molecular Microbiology and TTUHSC Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, USA
| | - Guy E Groblewski
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Jennifer A Byrne
- Molecular Oncology Laboratory, Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia.
- The University of Sydney Discipline of Child and Adolescent Health, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia.
| |
Collapse
|
48
|
Mani M, Thao DT, Kim BC, Lee UH, Kim DJ, Jang SH, Back SH, Lee BJ, Cho WJ, Han IS, Park JW. DRG2 knockdown induces Golgi fragmentation via GSK3β phosphorylation and microtubule stabilization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1463-1474. [PMID: 31199931 DOI: 10.1016/j.bbamcr.2019.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/19/2019] [Accepted: 06/04/2019] [Indexed: 01/01/2023]
Abstract
The perinuclear stacks of the Golgi apparatus maintained by dynamic microtubules are essential for cell migration. Activation of Akt (protein kinase B, PKB) negatively regulates glycogen synthase kinase 3β (GSK3β)-mediated tau phosphorylation, which enhances tau binding to microtubules and microtubule stability. In this study, experiments were performed on developmentally regulated GTP-binding protein 2 (DRG2)-stably knockdown HeLa cells to determine whether knockdown of DRG2 in HeLa cells treated with epidermal growth factor (EGF) affects microtubule dynamics, perinuclear Golgi stacking, and cell migration. Here, we show that DRG2 plays a key role in regulating microtubule stability, perinuclear Golgi stack formation, and cell migration. DRG2 knockdown prolonged the EGF receptor (EGFR) localization in endosome, enhanced Akt activity and inhibitory phosphorylation of GSK3β. Tau, a target of GSK3β, was hypo-phosphorylated in DRG2-knockdown cells and showed greater association with microtubules, resulting in microtubule stabilization. DRG2-knockdown cells showed defects in microtubule growth and microtubule organizing centers (MTOC), Golgi fragmentation, and loss of directional cell migration. These results reveal a previously unappreciated role for DRG2 in the regulation of perinuclear Golgi stacking and cell migration via its effects on GSK3β phosphorylation, and microtubule stability.
Collapse
Affiliation(s)
- Muralidharan Mani
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Dang Thi Thao
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Beom Chang Kim
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Unn Hwa Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Dong Jun Kim
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Soo Hwa Jang
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Sung Hoon Back
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Wha Ja Cho
- Metainflammation Research Center, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - In-Seob Han
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea.
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea.
| |
Collapse
|
49
|
Chumová J, Kourová H, Trögelová L, Halada P, Binarová P. Microtubular and Nuclear Functions of γ-Tubulin: Are They LINCed? Cells 2019; 8:cells8030259. [PMID: 30893853 PMCID: PMC6468392 DOI: 10.3390/cells8030259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 01/02/2023] Open
Abstract
γ-Tubulin is a conserved member of the tubulin superfamily with a function in microtubule nucleation. Proteins of γ-tubulin complexes serve as nucleation templates as well as a majority of other proteins contributing to centrosomal and non-centrosomal nucleation, conserved across eukaryotes. There is a growing amount of evidence of γ-tubulin functions besides microtubule nucleation in transcription, DNA damage response, chromatin remodeling, and on its interactions with tumor suppressors. However, the molecular mechanisms are not well understood. Furthermore, interactions with lamin and SUN proteins of the LINC complex suggest the role of γ-tubulin in the coupling of nuclear organization with cytoskeletons. γ-Tubulin that belongs to the clade of eukaryotic tubulins shows characteristics of both prokaryotic and eukaryotic tubulins. Both human and plant γ-tubulins preserve the ability of prokaryotic tubulins to assemble filaments and higher-order fibrillar networks. γ-Tubulin filaments, with bundling and aggregating capacity, are suggested to perform complex scaffolding and sequestration functions. In this review, we discuss a plethora of γ-tubulin molecular interactions and cellular functions, as well as recent advances in understanding the molecular mechanisms behind them.
Collapse
Affiliation(s)
- Jana Chumová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Hana Kourová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Lucie Trögelová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Petr Halada
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Pavla Binarová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
50
|
Pruski M, Lang B. Primary Cilia-An Underexplored Topic in Major Mental Illness. Front Psychiatry 2019; 10:104. [PMID: 30886591 PMCID: PMC6409319 DOI: 10.3389/fpsyt.2019.00104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/12/2019] [Indexed: 12/20/2022] Open
Abstract
Though much progress has been made in recent years towards understanding the function and physiology of primary cilia, they remain a somewhat elusive organelle. Some studies have explored the role of primary cilia in the developing nervous system, and their dysfunction has been linked with several neurosensory deficits. Yet, very little has been written on their potential role in psychiatric disorders. This article provides an overview of some of the functions of primary cilia in signalling pathways, and demonstrates that they are a worthy candidate in psychiatric research. The links between primary cilia and major mental illness have been demonstrated to exist at several levels, spanning genetics, signalling pathways, and pharmacology as well as cell division and migration. The primary focus of this review is on the sensory role of the primary cilium and the neurodevelopmental hypothesis of psychiatric disease. As such, the primary cilium is demonstrated to be a key link between the cellular environment and cell behaviour, and hence of key importance in the considerations of the nature and nurture debate in psychiatric research.
Collapse
Affiliation(s)
- Michal Pruski
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Critical Care Laboratory, Critical Care Directorate, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Bing Lang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|