1
|
Ghasempour Dabaghi G, Rabiee Rad M, Amani-Beni R, Darouei B. The role of p130Cas/BCAR1 adaptor protein in the pathogenesis of cardiovascular diseases: A literature review. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 44:100416. [PMID: 39036012 PMCID: PMC11259988 DOI: 10.1016/j.ahjo.2024.100416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/22/2024] [Accepted: 06/23/2024] [Indexed: 07/23/2024]
Abstract
Breast cancer anti-estrogen resistance-1 (p130Cas/BCAR1) is an adaptor protein of the cas(Cas) family. This protein regulates multiple complex pathways in different organs including bones, pancreas, and immune and cardiovascular systems. Although previous research well demonstrated the role of p130Cas/BCAR1 in different diseases especially cancers, a precise review study on the various effects of p130Cas/BCAR1 on cardiovascular diseases is missing. In this study, we reviewed mechanisms of action for p130Cas/BCAR1 impact, on cardiac embryonic development defects, hypertrophy and remodeling, pulmonary artery hypertension (PAH), and atherosclerosis. Also, we suggest feature direction for research and potential therapeutic implications. This study showed that p130Cas/BCAR1 can affect cardiovascular diseases in various mechanisms including actin stress fiber formation, attachment to focal adhesion kinase (FAK) and angiotensin II (Ang II), generation of reactive oxygen species (ROS), and growth factor signaling through amplifying receptor tyrosine kinase (RTKs).
Collapse
Affiliation(s)
- Ghazal Ghasempour Dabaghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrdad Rabiee Rad
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Amani-Beni
- School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Bahar Darouei
- School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
2
|
Aung N, Lopes LR, van Duijvenboden S, Harper AR, Goel A, Grace C, Ho CY, Weintraub WS, Kramer CM, Neubauer S, Watkins HC, Petersen SE, Munroe PB. Genome-Wide Analysis of Left Ventricular Maximum Wall Thickness in the UK Biobank Cohort Reveals a Shared Genetic Background With Hypertrophic Cardiomyopathy. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:e003716. [PMID: 36598836 PMCID: PMC9946169 DOI: 10.1161/circgen.122.003716] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 10/13/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Left ventricular maximum wall thickness (LVMWT) is an important biomarker of left ventricular hypertrophy and provides diagnostic and prognostic information in hypertrophic cardiomyopathy (HCM). Limited information is available on the genetic determinants of LVMWT. METHODS We performed a genome-wide association study of LVMWT measured from the cardiovascular magnetic resonance examinations of 42 176 European individuals. We evaluated the genetic relationship between LVMWT and HCM by performing pairwise analysis using the data from the Hypertrophic Cardiomyopathy Registry in which the controls were randomly selected from UK Biobank individuals not included in the cardiovascular magnetic resonance sub-study. RESULTS Twenty-one genetic loci were discovered at P<5×10-8. Several novel candidate genes were identified including PROX1, PXN, and PTK2, with known functional roles in myocardial growth and sarcomere organization. The LVMWT genetic risk score is predictive of HCM in the Hypertrophic Cardiomyopathy Registry (odds ratio per SD: 1.18 [95% CI, 1.13-1.23]) with pairwise analyses demonstrating a moderate genetic correlation (rg=0.53) and substantial loci overlap (19/21). CONCLUSIONS Our findings provide novel insights into the genetic underpinning of LVMWT and highlight its shared genetic background with HCM, supporting future endeavours to elucidate the genetic etiology of HCM.
Collapse
Affiliation(s)
- Nay Aung
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (N.A., S.v.D., S.E.P., P.B.M.)
- National Institute for Health and Care Research, Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London (N.A., S.v.D., S.E.P., P.B.M.)
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield (N.A., L.R.L., S.E.P.)
| | - Luis R. Lopes
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield (N.A., L.R.L., S.E.P.)
- Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London (L.R.L.)
| | - Stefan van Duijvenboden
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (N.A., S.v.D., S.E.P., P.B.M.)
- National Institute for Health and Care Research, Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London (N.A., S.v.D., S.E.P., P.B.M.)
| | - Andrew R. Harper
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine (A.R.H., A.G., C.G., S.N., H.C.W.)
- Wellcome Centre for Human Genetics, University of Oxford, United Kingdom (A.R.H., A.G., C.G., H.C.W.)
| | - Anuj Goel
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine (A.R.H., A.G., C.G., S.N., H.C.W.)
- Wellcome Centre for Human Genetics, University of Oxford, United Kingdom (A.R.H., A.G., C.G., H.C.W.)
| | - Christopher Grace
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine (A.R.H., A.G., C.G., S.N., H.C.W.)
- Wellcome Centre for Human Genetics, University of Oxford, United Kingdom (A.R.H., A.G., C.G., H.C.W.)
| | - Carolyn Y. Ho
- Cardiovascular Division, Department of Medicine and Department of Radiology, Brigham and Women’s Hospital, Boston, MA (C.Y.H.)
| | | | - Christopher M. Kramer
- Cardiovascular Division, University of Virginia Health System, Charlottesville (C.M.K.)
| | - Stefan Neubauer
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine (A.R.H., A.G., C.G., S.N., H.C.W.)
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, United Kingdom (S.N., H.C.W.)
| | - Hugh C. Watkins
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine (A.R.H., A.G., C.G., S.N., H.C.W.)
- Wellcome Centre for Human Genetics, University of Oxford, United Kingdom (A.R.H., A.G., C.G., H.C.W.)
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, United Kingdom (S.N., H.C.W.)
| | - Steffen E. Petersen
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (N.A., S.v.D., S.E.P., P.B.M.)
- National Institute for Health and Care Research, Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London (N.A., S.v.D., S.E.P., P.B.M.)
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield (N.A., L.R.L., S.E.P.)
| | - Patricia B. Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (N.A., S.v.D., S.E.P., P.B.M.)
- National Institute for Health and Care Research, Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London (N.A., S.v.D., S.E.P., P.B.M.)
| |
Collapse
|
3
|
Cardiac Differentiation Promotes Focal Adhesions Assembly through Vinculin Recruitment. Int J Mol Sci 2023; 24:ijms24032444. [PMID: 36768766 PMCID: PMC9916732 DOI: 10.3390/ijms24032444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Cells of the cardiovascular system are physiologically exposed to a variety of mechanical forces fundamental for both cardiac development and functions. In this context, forces generated by actomyosin networks and those transmitted through focal adhesion (FA) complexes represent the key regulators of cellular behaviors in terms of cytoskeleton dynamism, cell adhesion, migration, differentiation, and tissue organization. In this study, we investigated the involvement of FAs on cardiomyocyte differentiation. In particular, vinculin and focal adhesion kinase (FAK) family, which are known to be involved in cardiac differentiation, were studied. Results revealed that differentiation conditions induce an upregulation of both FAK-Tyr397 and vinculin, resulting also in the translocation to the cell membrane. Moreover, the role of mechanical stress in contractile phenotype expression was investigated by applying a uniaxial mechanical stretching (5% substrate deformation, 1 Hz frequency). Morphological evaluation revealed that the cell shape showed a spindle shape and reoriented following the stretching direction. Substrate deformation resulted also in modification of the length and the number of vinculin-positive FAs. We can, therefore, suggest that mechanotransductive pathways, activated through FAs, are highly involved in cardiomyocyte differentiation, thus confirming their role during cytoskeleton rearrangement and cardiac myofilament maturation.
Collapse
|
4
|
Peña B, Gao S, Borin D, Del Favero G, Abdel-Hafiz M, Farahzad N, Lorenzon P, Sinagra G, Taylor MRG, Mestroni L, Sbaizero O. Cellular Biomechanic Impairment in Cardiomyocytes Carrying the Progeria Mutation: An Atomic Force Microscopy Investigation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14928-14940. [PMID: 36420863 PMCID: PMC9730902 DOI: 10.1021/acs.langmuir.2c02623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Given the clinical effect of progeria syndrome, understanding the cell mechanical behavior of this pathology could benefit the patient's treatment. Progeria patients show a point mutation in the lamin A/C gene (LMNA), which could change the cell's biomechanical properties. This paper reports a mechano-dynamic analysis of a progeria mutation (c.1824 C > T, p.Gly608Gly) in neonatal rat ventricular myocytes (NRVMs) using cell indentation by atomic force microscopy to measure alterations in beating force, frequency, and contractile amplitude of selected cells within cell clusters. Furthermore, we examined the beating rate variability using a time-domain method that produces a Poincaré plot because beat-to-beat changes can shed light on the causes of arrhythmias. Our data have been further related to our cell phenotype findings, using immunofluorescence and calcium transient analysis, showing that mutant NRVMs display changes in both beating force and frequency. These changes were associated with a decreased gap junction localization (Connexin 43) in the mutant NRVMs even in the presence of a stable cytoskeletal structure (microtubules and actin filaments) when compared with controls (wild type and non-treated cells). These data emphasize the kindred between nucleoskeleton (LMNA), cytoskeleton, and the sarcolemmal structures in NRVM with the progeria Gly608Gly mutation, prompting future mechanistic and therapeutic investigations.
Collapse
Affiliation(s)
- Brisa Peña
- Cardiovascular
Institute & Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado80045, United States
- Bioengineering
Department, University of Colorado Denver
Anschutz Medical Campus, 12705 E. Montview Avenue, Suite 100, Aurora, Colorado80045, United States
| | - Shanshan Gao
- Cardiovascular
Institute & Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado80045, United States
| | - Daniele Borin
- Department
of Engineering and Architecture, University
of Trieste, Trieste34127, Italy
| | - Giorgia Del Favero
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38-42, 1090Vienna, Austria
- Core
Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Wien, Währinger Straße 38-42, 1090Vienna, Austria
| | - Mostafa Abdel-Hafiz
- Bioengineering
Department, University of Colorado Denver
Anschutz Medical Campus, 12705 E. Montview Avenue, Suite 100, Aurora, Colorado80045, United States
| | - Nasim Farahzad
- Bioengineering
Department, University of Colorado Denver
Anschutz Medical Campus, 12705 E. Montview Avenue, Suite 100, Aurora, Colorado80045, United States
| | - Paola Lorenzon
- Department
F of Life Sciences, University of Trieste, Trieste34127, Italy
| | - Gianfranco Sinagra
- Polo
Cardiologico, Azienda Sanitaria Universitaria
Integrata di Trieste, Strada di Fiume 447, Trieste34127, Italy
| | - Matthew R. G. Taylor
- Cardiovascular
Institute & Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado80045, United States
| | - Luisa Mestroni
- Cardiovascular
Institute & Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado80045, United States
| | - Orfeo Sbaizero
- Cardiovascular
Institute & Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado80045, United States
- Department
of Engineering and Architecture, University
of Trieste, Trieste34127, Italy
| |
Collapse
|
5
|
Shi H, Wang C, Gao BZ, Henderson JH, Ma Z. Cooperation between myofibril growth and costamere maturation in human cardiomyocytes. Front Bioeng Biotechnol 2022; 10:1049523. [PMID: 36394013 PMCID: PMC9663467 DOI: 10.3389/fbioe.2022.1049523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022] Open
Abstract
Costameres, as striated muscle-specific cell adhesions, anchor both M-lines and Z-lines of the sarcomeres to the extracellular matrix. Previous studies have demonstrated that costameres intimately participate in the initial assembly of myofibrils. However, how costamere maturation cooperates with myofibril growth is still underexplored. In this work, we analyzed zyxin (costameres), α-actinin (Z-lines) and myomesin (M-lines) to track the behaviors of costameres and myofibrils within the cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs). We quantified the assembly and maturation of costameres associated with the process of myofibril growth within the hiPSC-CMs in a time-dependent manner. We found that asynchrony existed not only between the maturation of myofibrils and costameres, but also between the formation of Z-costameres and M-costameres that associated with different structural components of the sarcomeres. This study helps us gain more understanding of how costameres assemble and incorporate into the cardiomyocyte sarcomeres, which sheds a light on cardiomyocyte mechanobiology.
Collapse
Affiliation(s)
- Huaiyu Shi
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, United States,BioInspired Institute for Materials and Living Systems, Syracuse University, Syracuse, NY, United States
| | - Chenyan Wang
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, United States,BioInspired Institute for Materials and Living Systems, Syracuse University, Syracuse, NY, United States
| | - Bruce Z. Gao
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - James H. Henderson
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, United States,BioInspired Institute for Materials and Living Systems, Syracuse University, Syracuse, NY, United States
| | - Zhen Ma
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, United States,BioInspired Institute for Materials and Living Systems, Syracuse University, Syracuse, NY, United States,*Correspondence: Zhen Ma,
| |
Collapse
|
6
|
Neuregulins: protective and reparative growth factors in multiple forms of cardiovascular disease. Clin Sci (Lond) 2021; 134:2623-2643. [PMID: 33063822 PMCID: PMC7557502 DOI: 10.1042/cs20200230] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Neuregulins (NRGs) are protein ligands that act through ErbB receptor tyrosine kinases to regulate tissue morphogenesis, plasticity, and adaptive responses to physiologic needs in multiple tissues, including the heart and circulatory system. The role of NRG/ErbB signaling in cardiovascular biology, and how it responds to physiologic and pathologic stresses is a rapidly evolving field. While initial concepts focused on the role that NRG may play in regulating cardiac myocyte responses, including cell survival, growth, adaptation to stress, and proliferation, emerging data support a broader role for NRGs in the regulation of metabolism, inflammation, and fibrosis in response to injury. The constellation of effects modulated by NRGs may account for the findings that two distinct forms of recombinant NRG-1 have beneficial effects on cardiac function in humans with systolic heart failure. NRG-4 has recently emerged as an adipokine with similar potential to regulate cardiovascular responses to inflammation and injury. Beyond systolic heart failure, NRGs appear to have beneficial effects in diastolic heart failure, prevention of atherosclerosis, preventing adverse effects on diabetes on the heart and vasculature, including atherosclerosis, as well as the cardiac dysfunction associated with sepsis. Collectively, this literature supports the further examination of how this developmentally critical signaling system functions and how it might be leveraged to treat cardiovascular disease.
Collapse
|
7
|
Taneja N, Neininger AC, Burnette DT. Coupling to substrate adhesions drives the maturation of muscle stress fibers into myofibrils within cardiomyocytes. Mol Biol Cell 2020; 31:1273-1288. [PMID: 32267210 PMCID: PMC7353145 DOI: 10.1091/mbc.e19-11-0652] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Forces generated by heart muscle contraction must be balanced by adhesion to the extracellular matrix (ECM) and to other cells for proper heart function. Decades of data have suggested that cell-ECM adhesions are important for sarcomere assembly. However, the relationship between cell-ECM adhesions and sarcomeres assembling de novo remains untested. Sarcomeres arise from muscle stress fibers (MSFs) that are translocating on the top (dorsal) surface of cultured cardiomyocytes. Using an array of tools to modulate cell-ECM adhesion, we established a strong positive correlation between the extent of cell-ECM adhesion and sarcomere assembly. On the other hand, we found a strong negative correlation between the extent of cell-ECM adhesion and the rate of MSF translocation, a phenomenon also observed in nonmuscle cells. We further find a conserved network architecture that also exists in nonmuscle cells. Taken together, our results show that cell-ECM adhesions mediate coupling between the substrate and MSFs, allowing their maturation into sarcomere-containing myofibrils.
Collapse
Affiliation(s)
- Nilay Taneja
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232
| | - Abigail C Neininger
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232
| | - Dylan T Burnette
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
8
|
Saucerman JJ, Tan PM, Buchholz KS, McCulloch AD, Omens JH. Mechanical regulation of gene expression in cardiac myocytes and fibroblasts. Nat Rev Cardiol 2019; 16:361-378. [PMID: 30683889 PMCID: PMC6525041 DOI: 10.1038/s41569-019-0155-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intact heart undergoes complex and multiscale remodelling processes in response to altered mechanical cues. Remodelling of the myocardium is regulated by a combination of myocyte and non-myocyte responses to mechanosensitive pathways, which can alter gene expression and therefore function in these cells. Cellular mechanotransduction and its downstream effects on gene expression are initially compensatory mechanisms during adaptations to the altered mechanical environment, but under prolonged and abnormal loading conditions, they can become maladaptive, leading to impaired function and cardiac pathologies. In this Review, we summarize mechanoregulated pathways in cardiac myocytes and fibroblasts that lead to altered gene expression and cell remodelling under physiological and pathophysiological conditions. Developments in systems modelling of the networks that regulate gene expression in response to mechanical stimuli should improve integrative understanding of their roles in vivo and help to discover new combinations of drugs and device therapies targeting mechanosignalling in heart disease.
Collapse
Affiliation(s)
- Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Philip M Tan
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Kyle S Buchholz
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrew D McCulloch
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Jeffrey H Omens
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
9
|
Antoniou CK, Manolakou P, Magkas N, Konstantinou K, Chrysohoou C, Dilaveris P, Gatzoulis KA, Tousoulis D. Cardiac Resynchronisation Therapy and Cellular Bioenergetics: Effects Beyond Chamber Mechanics. Eur Cardiol 2019; 14:33-44. [PMID: 31131035 PMCID: PMC6523053 DOI: 10.15420/ecr.2019.2.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cardiac resynchronisation therapy is a cornerstone in the treatment of advanced dyssynchronous heart failure. However, despite its widespread clinical application, precise mechanisms through which it exerts its beneficial effects remain elusive. Several studies have pointed to a metabolic component suggesting that, both in concert with alterations in chamber mechanics and independently of them, resynchronisation reverses detrimental changes to cellular metabolism, increasing energy efficiency and metabolic reserve. These actions could partially account for the existence of responders that improve functionally but not echocardiographically. This article will attempt to summarise key components of cardiomyocyte metabolism in health and heart failure, with a focus on the dyssynchronous variant. Both chamber mechanics-related and -unrelated pathways of resynchronisation effects on bioenergetics – stemming from the ultramicroscopic level – and a possible common underlying mechanism relating mechanosensing to metabolism through the cytoskeleton will be presented. Improved insights regarding the cellular and molecular effects of resynchronisation on bioenergetics will promote our understanding of non-response, optimal device programming and lead to better patient care.
Collapse
Affiliation(s)
| | - Panagiota Manolakou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Nikolaos Magkas
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Konstantinos Konstantinou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Christina Chrysohoou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Polychronis Dilaveris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Konstantinos A Gatzoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Dimitrios Tousoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| |
Collapse
|
10
|
Lanzicher T, Martinelli V, Long CS, Del Favero G, Puzzi L, Borelli M, Mestroni L, Taylor MRG, Sbaizero O. AFM single-cell force spectroscopy links altered nuclear and cytoskeletal mechanics to defective cell adhesion in cardiac myocytes with a nuclear lamin mutation. Nucleus 2016; 6:394-407. [PMID: 26309016 DOI: 10.1080/19491034.2015.1084453] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Previous investigations suggested that lamin A/C gene (LMNA) mutations, which cause a variety of human diseases including muscular dystrophies and cardiomyopathies, alter the nuclear mechanical properties. We hypothesized that biomechanical changes may extend beyond the nucleus.
Collapse
Affiliation(s)
- Thomas Lanzicher
- a Department of Engineering and Architecture ; University of Trieste ; Trieste Italy
| | - Valentina Martinelli
- a Department of Engineering and Architecture ; University of Trieste ; Trieste Italy.,b International Center for Genetic Engineering and Biotechnology ; Trieste Italy
| | - Carlin S Long
- c Cardiovascular Institute & Adult Medical Genetics; University of Colorado Denver Anschutz Medical Campus ; CO USA
| | - Giorgia Del Favero
- d Department of Food Chemistry and Toxicology ; University of Vienna ; Waehringer Str. 38A-1090 Vienna Austria
| | - Luca Puzzi
- a Department of Engineering and Architecture ; University of Trieste ; Trieste Italy
| | - Massimo Borelli
- e Department of Life Sciences ; University of Trieste ; Trieste Italy
| | - Luisa Mestroni
- c Cardiovascular Institute & Adult Medical Genetics; University of Colorado Denver Anschutz Medical Campus ; CO USA
| | - Matthew R G Taylor
- c Cardiovascular Institute & Adult Medical Genetics; University of Colorado Denver Anschutz Medical Campus ; CO USA
| | - Orfeo Sbaizero
- a Department of Engineering and Architecture ; University of Trieste ; Trieste Italy.,c Cardiovascular Institute & Adult Medical Genetics; University of Colorado Denver Anschutz Medical Campus ; CO USA
| |
Collapse
|
11
|
Mohanty P, Bhatnagar S. Structural basis of focal adhesion targeting domain-mediated signaling in cardiac hypertrophy. J Recept Signal Transduct Res 2016; 37:38-50. [DOI: 10.3109/10799893.2016.1155067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Pallavi Mohanty
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India
| |
Collapse
|
12
|
The Cardiomyopathy Lamin A/C D192G Mutation Disrupts Whole-Cell Biomechanics in Cardiomyocytes as Measured by Atomic Force Microscopy Loading-Unloading Curve Analysis. Sci Rep 2015; 5:13388. [PMID: 26323789 PMCID: PMC4555041 DOI: 10.1038/srep13388] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 07/23/2015] [Indexed: 12/30/2022] Open
Abstract
Atomic force microscopy (AFM) cell loading/unloading curves were used to provide comprehensive insights into biomechanical behavior of cardiomyocytes carrying the lamin A/C (LMNA) D192G mutation known to cause defective nuclear wall, myopathy and severe cardiomyopathy. Our results suggested that the LMNA D192G mutation increased maximum nuclear deformation load, nuclear stiffness and fragility as compared to controls. Furthermore, there seems to be a connection between this lamin nuclear mutation and cell adhesion behavior since LMNA D192G cardiomyocytes displayed loss of AFM probe-to-cell membrane adhesion. We believe that this loss of adhesion involves the cytoskeletal architecture since our microscopic analyses highlighted that mutant LMNA may also lead to a morphological alteration in the cytoskeleton. Furthermore, chemical disruption of the actin cytoskeleton by cytochalasin D in control cardiomyocytes mirrored the alterations in the mechanical properties seen in mutant cells, suggesting a defect in the connection between the nucleoskeleton, cytoskeleton and cell adhesion molecules in cells expressing the mutant protein. These data add to our understanding of potential mechanisms responsible for this fatal cardiomyopathy, and show that the biomechanical effects of mutant lamin extend beyond nuclear mechanics to include interference of whole-cell biomechanical properties.
Collapse
|
13
|
Lyon RC, Zanella F, Omens JH, Sheikh F. Mechanotransduction in cardiac hypertrophy and failure. Circ Res 2015; 116:1462-1476. [PMID: 25858069 PMCID: PMC4394185 DOI: 10.1161/circresaha.116.304937] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/13/2015] [Indexed: 01/10/2023]
Abstract
Cardiac muscle cells have an intrinsic ability to sense and respond to mechanical load through a process known as mechanotransduction. In the heart, this process involves the conversion of mechanical stimuli into biochemical events that induce changes in myocardial structure and function. Mechanotransduction and its downstream effects function initially as adaptive responses that serve as compensatory mechanisms during adaptation to the initial load. However, under prolonged and abnormal loading conditions, the remodeling processes can become maladaptive, leading to altered physiological function and the development of pathological cardiac hypertrophy and heart failure. Although the mechanisms underlying mechanotransduction are far from being fully elucidated, human and mouse genetic studies have highlighted various cytoskeletal and sarcolemmal structures in cardiac myocytes as the likely candidates for load transducers, based on their link to signaling molecules and architectural components important in disease pathogenesis. In this review, we summarize recent developments that have uncovered specific protein complexes linked to mechanotransduction and mechanotransmission within the sarcomere, the intercalated disc, and at the sarcolemma. The protein structures acting as mechanotransducers are the first step in the process that drives physiological and pathological cardiac hypertrophy and remodeling, as well as the transition to heart failure, and may provide better insights into mechanisms driving mechanotransduction-based diseases.
Collapse
Affiliation(s)
- Robert C. Lyon
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Fabian Zanella
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jeffrey H. Omens
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Farah Sheikh
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
14
|
Paxillin and focal adhesion kinase colocalise in human skeletal muscle and its associated microvasculature. Histochem Cell Biol 2014; 142:245-56. [PMID: 24671495 DOI: 10.1007/s00418-014-1212-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2014] [Indexed: 01/15/2023]
Abstract
Focal adhesion kinase (FAK) and paxillin are functionally linked hormonal- and mechano-sensitive proteins. We aimed to describe paxillin's subcellular distribution using widefield and confocal immunofluorescence microscopy and test the hypothesis that FAK and paxillin colocalise in human skeletal muscle and its associated microvasculature. Percutaneous muscle biopsies were collected from the m. vastus lateralis of seven healthy males, and 5-μm cryosections were stained with anti-paxillin co-incubated with anti-dystrophin to identify the sarcolemma, anti-myosin heavy chain type I for fibre-type differentiation, anti-dihydropyridine receptor to identify T-tubules, lectin UEA-I to identify the endothelium of microvessels and anti-α-smooth muscle actin to identify vascular smooth muscle cells (VSMC). Colocalisation of anti-paxillin with anti-dystrophin or anti-FAK was quantified using Pearson's correlation coefficient on confocal microscopy images. Paxillin was primarily present in (sub)sarcolemmal regions of skeletal muscle fibres where it colocalised with dystrophin (r = 0.414 ± 0.026). The (sub)sarcolemmal paxillin immunofluorescence intensity was ~2.4-fold higher than in sarcoplasmic regions (P < 0.001) with sarcoplasmic paxillin immunofluorescence intensity ~10 % higher in type I than in type II fibres (P < 0.01). In some longitudinally orientated fibres, paxillin formed striations that corresponded to the I-band region. Paxillin immunostaining was highest in endothelial and VSMC and distributed heterogeneously in both cell types. FAK and paxillin colocalised at (sub)sarcolemmal regions and within the microvasculature (r = 0.367 ± 0.036). The first images of paxillin in human skeletal muscle suggest paxillin is present in (sub)sarcolemmal and I-band regions of muscle fibres and within the microvascular endothelium and VSMC. Colocalisation of FAK and paxillin supports their suggested role in hormonal and mechano-sensitive signalling.
Collapse
|
15
|
Kirk JA, Holewinski RJ, Kooij V, Agnetti G, Tunin RS, Witayavanitkul N, de Tombe PP, Gao WD, Van Eyk J, Kass DA. Cardiac resynchronization sensitizes the sarcomere to calcium by reactivating GSK-3β. J Clin Invest 2014; 124:129-38. [PMID: 24292707 DOI: 10.1172/jci69253] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 09/19/2013] [Indexed: 01/10/2023] Open
Abstract
Cardiac resynchronization therapy (CRT), the application of biventricular stimulation to correct discoordinate contraction, is the only heart failure treatment that enhances acute and chronic systolic function, increases cardiac work, and reduces mortality. Resting myocyte function also increases after CRT despite only modest improvement in calcium transients, suggesting that CRT may enhance myofilament calcium responsiveness. To test this hypothesis, we examined adult dogs subjected to tachypacing-induced heart failure for 6 weeks, concurrent with ventricular dyssynchrony (HF(dys)) or CRT. Myofilament force-calcium relationships were measured in skinned trabeculae and/or myocytes. Compared with control, maximal calcium-activated force and calcium sensitivity declined globally in HF(dys); however, CRT restored both. Phosphatase PP1 induced calcium desensitization in control and CRT-treated cells, while HF(dys) cells were unaffected, implying that CRT enhances myofilament phosphorylation. Proteomics revealed phosphorylation sites on Z-disk and M-band proteins, which were predicted to be targets of glycogen synthase kinase-3β (GSK-3β). We found that GSK-3β was deactivated in HF(dys) and reactivated by CRT. Mass spectrometry of myofilament proteins from HF(dys) animals incubated with GSK-3β confirmed GSK-3β–dependent phosphorylation at many of the same sites observed with CRT. GSK-3β restored calcium sensitivity in HF(dys), but did not affect control or CRT cells. These data indicate that CRT improves calcium responsiveness of myofilaments following HF(dys) through GSK-3β reactivation, identifying a therapeutic approach to enhancing contractile function
Collapse
|
16
|
Samarel AM. Focal adhesion signaling in heart failure. Pflugers Arch 2014; 466:1101-11. [PMID: 24515292 DOI: 10.1007/s00424-014-1456-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 11/28/2022]
Abstract
In this brief review, recent evidence is presented to indicate a role for specific components of the cardiomyocyte costamere (and its related structure the focal adhesion complex of cultured cardiomyocytes) in initiating and sustaining the aberrant signal transduction that contributes to myocardial remodeling and the progression to heart failure (HF). Special attention is devoted to the focal adhesion kinase family of nonreceptor protein tyrosine kinases in bidirectional signal transduction during cardiac remodeling and HF progression. Finally, some speculations and directions for future study are provided for this rapidly developing field of research.
Collapse
Affiliation(s)
- Allen M Samarel
- The Cardiovascular Institute and the Department of Medicine, Loyola University Chicago Stritch School of Medicine, Building 110, Rm 5222, 2160 South First Avenue, Maywood, IL, 60153, USA,
| |
Collapse
|
17
|
Vinexin-β protects against cardiac hypertrophy by blocking the Akt-dependent signalling pathway. Basic Res Cardiol 2013; 108:338. [PMID: 23429936 DOI: 10.1007/s00395-013-0338-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 01/15/2013] [Accepted: 02/05/2013] [Indexed: 12/20/2022]
Abstract
Cardiac hypertrophy is the heart's response to hypertrophic stimuli and is associated with increased mortality. Vinexin-β is a vinculin-binding protein that belongs to a family of adaptor proteins and mediates signal transduction and actin cytoskeleton organisation. A previous study has shown that Vinexin-β is ubiquitously expressed and that it is highly expressed in the heart. However, a critical role for Vinexin-β in cardiac hypertrophy has not been investigated. Therefore, to examine the role of Vinexin-β in pathological cardiac hypertrophy, we used Vinexin-β knockout mice and transgenic mice that overexpress human Vinexin-β in the heart. Cardiac hypertrophy was induced by aortic banding (AB). The extent of cardiac hypertrophy was quantitated by echocardiography and pathological and molecular analyses of heart samples. Our results demonstrated that Vinexin-β overexpression in the heart markedly attenuated cardiac hypertrophy, fibrosis, and cardiac dysfunction, whereas loss of Vinexin-β exaggerated the pathological cardiac remodelling and fibrosis response to pressure overload. Further analysis of the in vitro and in vivo signalling events indicated that beneficial Vinexin-β effects were associated with AKT signalling abrogation. Our findings demonstrate for the first time that Vinexin-β is a novel mediator that protects against cardiac hypertrophy by blocking the AKT signalling pathway.
Collapse
|
18
|
Lu J, Bian ZY, Zhang R, Zhang Y, Liu C, Yan L, Zhang SM, Jiang DS, Wei X, Zhu XH, Chen M, Wang AB, Chen Y, Yang Q, Liu PP, Li H. Interferon regulatory factor 3 is a negative regulator of pathological cardiac hypertrophy. Basic Res Cardiol 2013; 108:326. [PMID: 23307144 DOI: 10.1007/s00395-012-0326-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 12/13/2012] [Accepted: 12/20/2012] [Indexed: 11/25/2022]
Abstract
Interferon regulatory factor (IRF) 3, a member of the highly conserved IRF family transcription factors, plays a pivotal role in innate immune response, apoptosis, and oncogenesis. Recent studies have implicated IRF3 in a wide range of host defense. However, whether IRF3 induces defensive responses to hypertrophic stresses such as biomechanical stress and neurohumoral factors remains unclear. Herein, we employed an IRF3-deficient mouse model, cardiac-specific IRF3-overexpression mouse model and isolated cardiomyocytes to investigate the role of IRF3 in cardiac hypertrophy induced by aortic banding (AB) or isoproterenol (ISO). The extent of cardiac hypertrophy was quantitated by echocardiography as well as by pathological and molecular analysis. Our results demonstrate that IRF3 deficiency profoundly exacerbated cardiac hypertrophy, whereas overexpression of IRF3 in the heart significantly blunted pathological cardiac remodeling induced by pressure overload. Similar results were also observed in cultured cardiomyocytes upon the treatment with ISO. Mechanistically, we discovered that IRF3 interacted with ERK2 and thereby inhibited the ERK1/2 signaling. Furthermore, inactivation of ERK1/2 by U0126 offset the IRF3-deficient-mediated hypertrophic response induced by aortic banding. Altogether, these data demonstrate that IRF3 plays a protective role in AB-induced hypertrophic response by inactivating ERK1/2 in the heart. Therefore, IRF3 could be a new target for the prevention and therapy of cardiac hypertrophy and failure.
Collapse
Affiliation(s)
- Jing Lu
- Department of Cardiology, Renmin Hospital, Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Biophysical Forces Modulate the Costamere and Z-Disc for Sarcomere Remodeling in Heart Failure. BIOPHYSICS OF THE FAILING HEART 2013. [DOI: 10.1007/978-1-4614-7678-8_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Barrett A, Pellet-Many C, Zachary IC, Evans IM, Frankel P. p130Cas: a key signalling node in health and disease. Cell Signal 2012; 25:766-77. [PMID: 23277200 DOI: 10.1016/j.cellsig.2012.12.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 12/21/2012] [Indexed: 01/08/2023]
Abstract
p130Cas/breast cancer anti-oestrogen resistance 1 (BCAR1) is a member of the Cas (Crk-associated substrate) family of adaptor proteins, which have emerged as key signalling nodes capable of interactions with multiple proteins, with important regulatory roles in normal and pathological cell function. The Cas family of proteins is characterised by the presence of multiple conserved motifs for protein-protein interactions, and by extensive tyrosine and serine phosphorylations. Recent studies show that p130Cas contributes to migration, cell cycle control and apoptosis. p130Cas is essential during early embryogenesis, with a critical role in cardiovascular development. Furthermore, p130Cas has been reported to be involved in the development and progression of several human cancers. p130Cas is able to perform roles in multiple processes due to its capacity to regulate a diverse array of signalling pathways, transducing signals from growth factor receptor tyrosine kinases, non-receptor tyrosine kinases, and integrins. In this review we summarise the current understanding of the structure, function, and regulation of p130Cas, and discuss the importance of p130Cas in both physiological and pathophysiological settings, with a focus on the cardiovascular system and cancer.
Collapse
Affiliation(s)
- Angela Barrett
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, University College London, London WC1E 6JJ, United Kingdom.
| | | | | | | | | |
Collapse
|
21
|
Pentassuglia L, Sawyer DB. ErbB/integrin signaling interactions in regulation of myocardial cell-cell and cell-matrix interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:909-16. [PMID: 23261977 DOI: 10.1016/j.bbamcr.2012.12.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 12/02/2012] [Accepted: 12/03/2012] [Indexed: 12/17/2022]
Abstract
Neuregulin (Nrg)/ErbB and integrin signaling pathways are critical for the normal function of the embryonic and adult heart. Both systems activate several downstream signaling pathways, with different physiological outputs: cell survival, fibrosis, excitation-contraction coupling, myofilament structure, cell-cell and cell-matrix interaction. Activation of ErbB2 by Nrg1β in cardiomycytes or its overexpression in cancer cells induces phosphorylation of FAK (Focal Adhesion Kinase) at specific sites with modulation of survival, invasion and cell-cell contacts. FAK is also a critical mediator of integrin receptors, converting extracellular matrix alterations into intracellular signaling. Systemic FAK deletion is lethal and is associated with left ventricular non-compaction whereas cardiac restriction in adult hearts is well tolerated. Nevertheless, these hearts are more susceptible to stress conditions like trans-aortic constriction, hypertrophy, and ischemic injury. As FAK is both downstream and specifically activated by integrins and Nrg-1β, here we will explore the role of FAK in the heart as a protective factor and as possible mediator of the crosstalk between the ErbB and Integrin receptors. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Collapse
|
22
|
Riehl BD, Park JH, Kwon IK, Lim JY. Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:288-300. [PMID: 22335794 DOI: 10.1089/ten.teb.2011.0465] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols.
Collapse
Affiliation(s)
- Brandon D Riehl
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | | | | | | |
Collapse
|
23
|
Koshman YE, Chu M, Engman SJ, Kim T, Iyengar R, Robia SL, Samarel AM. Focal adhesion kinase-related nonkinase inhibits vascular smooth muscle cell invasion by focal adhesion targeting, tyrosine 168 phosphorylation, and competition for p130(Cas) binding. Arterioscler Thromb Vasc Biol 2012; 31:2432-40. [PMID: 21852560 DOI: 10.1161/atvbaha.111.235549] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Focal adhesion kinase-related nonkinase (FRNK), the C-terminal domain of focal adhesion kinase (FAK), is a tyrosine-phosphorylated, vascular smooth muscle cell (VSMC)-specific inhibitor of cell migration. FRNK inhibits both FAK and proline-rich tyrosine kinase 2 (PYK2) in cultured VSMCs, and both kinases may be involved in VSMC invasion during vascular remodeling. METHODS AND RESULTS Adenovirally mediated gene transfer of green fluorescent protein-tagged, wild-type (wt) FRNK into balloon-injured rat carotid arteries confirmed that FRNK overexpression inhibited both FAK and PYK2 phosphorylation and downstream signaling in vivo. To identify which kinase was involved in regulating VSMC invasion, adenovirally mediated expression of specific short hairpin RNAs was used to knock down FAK versus PYK2 in cultured VSMCs, but only FAK short hairpin RNA was effective in reducing VSMC invasion. The role of FRNK tyrosine phosphorylation was then examined using adenoviruses expressing nonphosphorylatable (Tyr168Phe-, Tyr232Phe-, and Tyr168,232Phe-) green fluorescent protein-FRNK mutants. wtFRNK and all FRNK mutants localized to FAs, but only Tyr168 phosphorylation was required for FRNK to inhibit invasion. Preventing Tyr168 phosphorylation also increased FRNK-paxillin interaction, as determined by coimmunoprecipitation, total internal reflection fluorescence microscopy, and fluorescence recovery after photobleaching. Furthermore, wtFRNK competed with FAK for binding to p130(Cas) (a critically important regulator of cell migration) and prevented its phosphorylation. However, Tyr168Phe-FRNK was unable to bind p130(Cas). CONCLUSION We propose a 3-stage mechanism for FRNK inhibition: focal adhesion targeting, Tyr168 phosphorylation, and competition with FAK for p130 binding and phosphorylation, which are all required for FRNK to inhibit VSMC invasion.
Collapse
Affiliation(s)
- Yevgeniya E Koshman
- Cardiovascular Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Chu M, Iyengar R, Koshman YE, Kim T, Russell B, Martin JL, Heroux AL, Robia SL, Samarel AM. Serine-910 phosphorylation of focal adhesion kinase is critical for sarcomere reorganization in cardiomyocyte hypertrophy. Cardiovasc Res 2011; 92:409-19. [PMID: 21937583 DOI: 10.1093/cvr/cvr247] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIMS Tyrosine-phosphorylated focal adhesion kinase (FAK) is required for the hypertrophic response of cardiomyocytes to growth factors and mechanical load, but the role of FAK serine phosphorylation in this process is unknown. The aims of the present study were to characterize FAK serine phosphorylation in cultured neonatal rat ventricular myocytes (NRVM), analyse its functional significance during hypertrophic signalling, and examine its potential role in the pathogenesis of human dilated cardiomyopathy (DCM). METHODS AND RESULTS Endothelin-1 (ET-1) and other hypertrophic factors induced a time- and dose-dependent increase in FAK-S910 phosphorylation. ET-1-induced FAK-S910 phosphorylation required ET(A)R-dependent activation of PKCδ and Src via parallel Raf-1 → MEK1/2 → ERK1/2 and MEK5 → ERK5 signalling pathways. Replication-deficient adenoviruses expressing wild-type (WT) FAK and a non-phosphorylatable, S910A-FAK mutant were then used to examine the functional significance of FAK-S910 phosphorylation. Unlike WT-FAK, S910A-FAK increased the half-life of GFP-tagged paxillin within costameres (as determined by total internal reflection fluorescence microscopy and fluorescence recovery after photobleaching) and increased the steady-state FAK-paxillin interaction (as determined by co-immunoprecipitation and western blotting). These alterations resulted in reduced NRVM sarcomere reorganization and cell spreading. Finally, we found that FAK was serine-phosphorylated at multiple sites in non-failing, human left ventricular tissue. FAK-S910 phosphorylation and ERK5 expression were dramatically reduced in patients undergoing heart transplantation for end-stage DCM. CONCLUSION FAK undergoes S910 phosphorylation via PKCδ and Src-dependent pathways that are important for cell spreading and sarcomere reorganization. Reduced FAK-S910 phosphorylation may contribute to sarcomere disorganization in DCM.
Collapse
Affiliation(s)
- Miensheng Chu
- Department of Physiology, Loyola University Medical Center, Maywood, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Franchini KG. Focal adhesion kinase -- the basis of local hypertrophic signaling domains. J Mol Cell Cardiol 2011; 52:485-92. [PMID: 21749874 DOI: 10.1016/j.yjmcc.2011.06.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/21/2011] [Accepted: 06/24/2011] [Indexed: 10/18/2022]
Abstract
Focal adhesion kinase (FAK), a broadly expressed non-receptor tyrosine kinase which transduces signals from integrins, growth and hormonal factors, is a key player in many fundamental biological processes and functions, including cell adhesion, migration, proliferation and survival. The involvement of FAK in this range of functions supports its role in important aspects of organismal development and disease, such as central nervous system and cardiovascular development, cancer, cardiac hypertrophy and tissue fibrosis. Many functions of FAK are correlated with its tyrosine kinase activity, which is temporally and spatially controlled by complex intra-molecular autoinhibitory conformation and inter-molecular interactions with protein and lipid partners. The inactivation of FAK in mice results in embryonic lethality attributed to the lack of proper development and function of the heart. Accordingly, embryonic FAK myocyte-specific knockout mice display lethal cardiac defects such as thin ventricle wall and ventricular septum defects. Emerging data also support a role for FAK in the reactive hypertrophy and failure of adult hearts. Moreover, the mechanisms that regulate FAK in differentiated cardiac myocytes to biomechanical stress and soluble factors are beginning to be revealed and are discussed here together with data that connect FAK to its downstream effectors. This article is part of a Special Issue entitled "Local Signaling in Myocytes".
Collapse
Affiliation(s)
- K G Franchini
- Department of Internal Medicine, School of Medicine, State University of Campinas, Campinas, Campinas, SP, Brazil.
| |
Collapse
|
26
|
Abstract
Neuregulin-1 (NRG-1), a ligand of receptor tyrosine kinases of the ErbB family, plays a critical role in cardiovascular development and maintenance of adult heart function. Results from cellular, animal, and clinical experiments have shown NRG-1 to be a promising drug candidate for restoring cardiac function after cardiac injury. Various mechanisms have been suggested to be involved in this process, such as improving sarcomeric structure or cell-cell adhesion, promoting proliferation and survival of cardiac myocytes, balancing Ca(2+) homeostasis, modulating inotropic effects, promoting angiogenesis, and preventing atherosclerosis. However, the contribution of these effects to the restoration of cardiac function remains to be estimated, and it may depend on the specific events that led to heart failure. Meanwhile, distinct and crossed signaling pathways downstream of NRG-1 may play a role in these underlying mechanisms, resulting in a complicated network of signaling mediating the function of NRG-1.
Collapse
Affiliation(s)
- Zhenggang Jiang
- Zensun (Shanghai) Sci & Tech Ltd, No. 68 Ju Li Road, Zhangjiang Hi-Tech Park, Pudong District, Shanghai, 201203, China
| | | |
Collapse
|
27
|
Schussler O, Chachques JC, Mesana TG, Suuronen EJ, Lecarpentier Y, Ruel M. 3-dimensional structures to enhance cell therapy and engineer contractile tissue. Asian Cardiovasc Thorac Ann 2010; 18:188-98. [PMID: 20304859 DOI: 10.1177/0218492310361531] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Experimental studies in animals and recent human clinical trials have revealed the current limitations of cellular transplantation, which include poor cell survival, lack of cell engraftment, and poor differentiation. Evidence in animals suggests that use of a 3-dimensional scaffold may enhance cell therapy and engineer myocardial tissue by improving initial cell retention, survival, differentiation, and integration. Several scaffolds of synthetic or natural origin are under development. Until now, contractility has been demonstrated in vitro only in biological scaffolds prepared from decellularized organs or tissue, or in collagenic porous scaffold obtained by crosslinking collagen fibers. While contractility of a cellularized collagen construct is poor, it can be greatly enhanced by tumor basement membrane extract. Recent advances in biochemistry have shown improved cell-matrix interactions by coupling adhesion molecules to achieve an efficient and safe bioartificial myocardium with no tumoral component. Fixation of adhesion molecules may also be a way to enhance cell homing and/or differentiation to increase local angiogenesis. Whatever the clinically successful combination ultimately proves to be, it is likely that cell therapy will require providing a supportive biochemical, physical, and spatial environment that will allow the cells to optimally differentiate and integrate within the target myocardial tissue.
Collapse
Affiliation(s)
- Olivier Schussler
- Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Suite 3403, Ottawa, ON, K1Y 4W7, Canada.
| | | | | | | | | | | |
Collapse
|
28
|
Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 2010; 128:191-227. [PMID: 20438756 DOI: 10.1016/j.pharmthera.2010.04.005] [Citation(s) in RCA: 604] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiac hypertrophy can be defined as an increase in heart mass. Pathological cardiac hypertrophy (heart growth that occurs in settings of disease, e.g. hypertension) is a key risk factor for heart failure. Pathological hypertrophy is associated with increased interstitial fibrosis, cell death and cardiac dysfunction. In contrast, physiological cardiac hypertrophy (heart growth that occurs in response to chronic exercise training, i.e. the 'athlete's heart') is reversible and is characterized by normal cardiac morphology (i.e. no fibrosis or apoptosis) and normal or enhanced cardiac function. Given that there are clear functional, structural, metabolic and molecular differences between pathological and physiological hypertrophy, a key question in cardiovascular medicine is whether mechanisms responsible for enhancing function of the athlete's heart can be exploited to benefit patients with pathological hypertrophy and heart failure. This review summarizes key experimental findings that have contributed to our understanding of pathological and physiological heart growth. In particular, we focus on signaling pathways that play a causal role in the development of pathological and physiological hypertrophy. We discuss molecular mechanisms associated with features of cardiac hypertrophy, including protein synthesis, sarcomeric organization, fibrosis, cell death and energy metabolism and provide a summary of profiling studies that have examined genes, microRNAs and proteins that are differentially expressed in models of pathological and physiological hypertrophy. How gender and sex hormones affect cardiac hypertrophy is also discussed. Finally, we explore how knowledge of molecular mechanisms underlying pathological and physiological hypertrophy may influence therapeutic strategies for the treatment of cardiovascular disease and heart failure.
Collapse
|
29
|
Tikhmyanova N, Little JL, Golemis EA. CAS proteins in normal and pathological cell growth control. Cell Mol Life Sci 2010; 67:1025-48. [PMID: 19937461 PMCID: PMC2836406 DOI: 10.1007/s00018-009-0213-1] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 11/03/2009] [Accepted: 11/09/2009] [Indexed: 12/20/2022]
Abstract
Proteins of the CAS (Crk-associated substrate) family (BCAR1/p130Cas, NEDD9/HEF1/Cas-L, EFS/SIN and CASS4/HEPL) are integral players in normal and pathological cell biology. CAS proteins act as scaffolds to regulate protein complexes controlling migration and chemotaxis, apoptosis, cell cycle, and differentiation, and have more recently been linked to a role in progenitor cell function. Reflecting these complex functions, over-expression of CAS proteins has now been strongly linked to poor prognosis and increased metastasis in cancer, as well as resistance to first-line chemotherapeutics in multiple tumor types including breast and lung cancers, glioblastoma, and melanoma. Further, CAS proteins have also been linked to additional pathological conditions including inflammatory disorders, Alzheimer's and Parkinson's disease, as well as developmental defects. This review will explore the roles of the CAS proteins in normal and pathological states in the context of the many mechanistic insights into CAS protein function that have emerged in the past decade.
Collapse
Affiliation(s)
- Nadezhda Tikhmyanova
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19111 USA
- Department of Biochemistry, Drexel University Medical School, Philadelphia, PA 19102 USA
| | - Joy L. Little
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19111 USA
| | - Erica A. Golemis
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19111 USA
| |
Collapse
|
30
|
Hao HF, Naomoto Y, Bao XH, Watanabe N, Sakurama K, Noma K, Tomono Y, Fukazawa T, Shirakawa Y, Yamatsuji T, Matsuoka J, Takaoka M. Progress in researches about focal adhesion kinase in gastrointestinal tract. World J Gastroenterol 2009; 15:5916-23. [PMID: 20014455 PMCID: PMC2795178 DOI: 10.3748/wjg.15.5916] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Focal adhesion kinase (FAK) is a 125-kDa non-receptor protein tyrosine. Growth factors or the clustering of integrins facilitate the rapid phosphorylation of FAK at Tyr-397 and this in turn recruits Src-family protein tyrosine kinases, resulting in the phosphorylation of Tyr-576 and Tyr-577 in the FAK activation loop and full catalytic FAK activation. FAK plays a critical role in the biological processes of normal and cancer cells including the gastrointestinal tract. FAK also plays an important role in the restitution, cell survival and apoptosis and carcinogenesis of the gastrointestinal tract. FAK is over-expressed in cancer cells and its over-expression and elevated activities are associated with motility and invasion of cancer cells. FAK has been proposed as a potential target in cancer therapy. Small molecule inhibitors effectively inhibit the kinase activity of FAK and show a potent inhibitory effect for the proliferation and migration of tumor cells, indicating a high potential for application in cancer therapy.
Collapse
|
31
|
Jani K, Schöck F. Molecular mechanisms of mechanosensing in muscle development. Dev Dyn 2009; 238:1526-34. [DOI: 10.1002/dvdy.21972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
32
|
Durieux AC, D'Antona G, Desplanches D, Freyssenet D, Klossner S, Bottinelli R, Flück M. Focal adhesion kinase is a load-dependent governor of the slow contractile and oxidative muscle phenotype. J Physiol 2009; 587:3703-17. [PMID: 19470782 DOI: 10.1113/jphysiol.2009.171355] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Striated muscle exhibits a pronounced structural-functional plasticity in response to chronic alterations in loading. We assessed the implication of focal adhesion kinase (FAK) signalling in mechano-regulated differentiation of slow-oxidative muscle. Load-dependent consequences of FAK signal modulation were identified using a multi-level approach after electrotransfer of rat soleus muscle with FAK-expression plasmid vs. empty plasmid-transfected contralateral controls. Muscle fibre-targeted over-expression of FAK in anti-gravitational muscle for 9 days up-regulated transcript levels of gene ontologies underpinning mitochondrial metabolism and contraction in the transfected belly portion. Concomitantly, mRNA expression of the major fast-type myosin heavy chain (MHC) isoform, MHC2A, was reduced. The promotion of the slow-oxidative expression programme by FAK was abolished after co-expression of the FAK inhibitor FAK-related non-kinase (FRNK). Elevated protein content of MHC1 (+9%) and proteins of mitochondrial respiration (+165-610%) with FAK overexpression demonstrated the translation of transcript differentiation in targeted muscle fibres towards a slow-oxidative muscle phenotype. Coincidentally MHC2A protein was reduced by 50% due to protection of muscle from de-differentiation with electrotransfer. Fibre cross section in FAK-transfected muscle was elevated by 6%. The FAK-modulated muscle transcriptome was load-dependent and regulated in correspondence to tyrosine 397 phosphorylation of FAK. In the context of overload, the FAK-induced gene expression became manifest at the level of contraction by a slow transformation and the re-establishment of normal muscle force from the lowered levels with transfection. These results highlight the analytic power of a systematic somatic transgene approach by mapping a role of FAK in the dominant mechano-regulation of muscular motor performance via control of gene expression.
Collapse
|
33
|
Menashi EB, Loftus JC. Differential effects of Pyk2 and FAK on the hypertrophic response of cardiac myocytes. Cell Tissue Res 2009; 337:243-55. [PMID: 19484266 DOI: 10.1007/s00441-009-0807-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 04/08/2009] [Indexed: 11/26/2022]
Abstract
The related cytoplasmic non-receptor tyrosine kinases Pyk2 (proline-rich tyrosine kinase 2) and FAK (focal adhesion kinase) have been implicated in phenylephrine-induced G-protein-coupled receptor-mediated signaling mechanisms leading to cardiomyocyte hypertrophy. We report that, in phenylephrine-stimulated neonatal rat ventricular myocytes (NRVM), Pyk2 augments expression of the hypertrophic marker atrial natriuretic factor (ANF) but reduces cytoskeletal organization and cell spreading. In contrast, FAK attenuates ANF production but does not alter cytoskeletal organization and cell spreading. Pyk2 and FAK exhibit differential localization in both unstimulated and phenylephrine-stimulated myocytes. Pyk2 catalytic activity is required for Pyk2 to augment ANF secretion but is not necessary to reduce cell spreading. Pyk2 autophosphorylation is required but not sufficient for Pyk2 to augment ANF secretion. Expression of the Pyk2 FERM domain as an autonomous fragment inhibits phenylephrine-mediated ANF secretion and reduces cell spreading. In addition, expression of the Pyk2 FERM domain inhibits the ability of Pyk2 to augment ANF secretion; this is correlated with reduced Pyk2 autophosphorylation. These data indicate that Pyk2 and FAK have different roles and occupy different positions in signaling pathways leading to the development of cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Emmanuel B Menashi
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, 85259, USA
| | | |
Collapse
|
34
|
Bigarella CL, Borges L, Costa FF, Saad STO. ARHGAP21 modulates FAK activity and impairs glioblastoma cell migration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:806-16. [DOI: 10.1016/j.bbamcr.2009.02.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 01/08/2009] [Accepted: 02/13/2009] [Indexed: 11/27/2022]
|
35
|
Lee KS, Park JH, Lee S, Lim HJ, Park HY. PPARδ activation inhibits angiotensin II induced cardiomyocyte hypertrophy by suppressing intracellular Ca2+signaling pathway. J Cell Biochem 2009; 106:823-34. [DOI: 10.1002/jcb.22038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
TGFbeta1 antagonistic peptides inhibit TGFbeta1-dependent angiogenesis. Biochem Pharmacol 2008; 77:813-25. [PMID: 19041849 DOI: 10.1016/j.bcp.2008.10.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 10/24/2008] [Accepted: 10/31/2008] [Indexed: 11/21/2022]
Abstract
The role of transforming growth factor beta (TGFbeta) in tumor promotion and in angiogenesis is context-dependent. While TGFbeta prevents tumor growth and angiogenesis in early phases of tumor development, evidence is accumulating about its pro-angiogenic and tumor promotion activities in late-stages of tumor progression. Here we have studied, in an experimental context previously reported to disclose the pro-angiogenic effects of TGFbeta, the blocking activity of TGFbeta antagonist peptides. In agreement with previous results, we have observed that TGFbeta exerts a powerful pro-angiogenic activity on human normal dermal microvascular endothelial cells (MVEC), by promoting invasion and capillary morphogenesis in Matrigel. No apoptotic activity of TGFbeta was observed. By RT-PCR we have shown that TGFbeta up-regulates expression not only of plasminogen activator inhibitor type-1 (PAI-1), but also of the urokinase-type plasminogen activator receptor (uPAR), whose inhibition by specific antibodies blunted the TGFbeta angiogenic response in vitro. The SMAD2/3 and FAK signaling pathways were activated by TGFbeta in MVEC, as an early and late response, respectively. The use of two different TGFbeta1 antagonist peptides, derived from TGFbeta type III receptor sequence and 15-mer phage display technology, inhibited the signaling and pro-angiogenic response in vitro, as well as uPAR and PAI-1 up-regulation of MVEC following TGFbeta challenge. The anti-angiogenic properties of both inhibitors were evident also in the in vivo TGFbeta Matrigel Sponge Assay. These results may be relevant to develop a potentially fruitful strategy for the therapy of late-stage-associated tumor angiogenesis.
Collapse
|
37
|
Integrin stimulation-induced hypertrophy in neonatal rat cardiomyocytes is NO-dependent. Mol Cell Biochem 2008; 320:75-84. [PMID: 18690413 DOI: 10.1007/s11010-008-9900-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 07/25/2008] [Indexed: 12/22/2022]
Abstract
Prolonged myocardial stretch typically leads to hypertrophy of cardiomyocytes. As integrins are cellular receptors of stretch, we hypothesize that integrin stimulation induces cardiomyocyte hypertrophy. Integrins of neonatal rat cardiomyocytes (NRCMs) were stimulated with a peptide containing the Arg-Gly-Asp (RGD) sequence for 24 h. For comparison, alpha(1)-adrenergic stimulation by phenylephrine (PE) for 24 h was applied. Saline-treated NRCMs were used as control. The hypertrophic response was quantified by measuring cell surface area (CSA). Phosphorylation of NO-synthase-1 (NOS1) was assessed by immunocytochemistry. CSA was increased by 38% (IQR 31-44%) with RGD and by 68% (IQR 64-84%) with PE versus control (both P < 0.001). NOS-1 phosphorylation was increased by 61% with RGD and by 21% with PE versus control (both P < 0.01). A general NOS-inhibitor (L-NAME) inhibited RGD-induced hypertrophy completely, but had no significant effect on PE-induced hypertrophy. Administration of NO-donor to NRCMs co-incubated with RGD + L-NAME partly restored hypertrophy (to 62% of the hypertrophic effect of RGD alone), but had no effect if incubated with PE + L-NAME. Ryanodine and BAPTA-AM inhibited RGD-induced hypertrophy completely but not that induced by PE. Integrin stimulation of NRCMs by RGD leads to hypertrophy, likely by activation of NOS-1. Abrogation of RGD-induced hypertrophic response upon NOS-inhibition and rescue of this hypertrophic effect by NO-donor suggest that integrin stimulation-induced hypertrophy of NRCMs is NO-dependent.
Collapse
|
38
|
Walsh MF, Ampasala DR, Hatfield J, Vander Heide R, Suer S, Rishi AK, Basson MD. Transforming growth factor-beta stimulates intestinal epithelial focal adhesion kinase synthesis via Smad- and p38-dependent mechanisms. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:385-99. [PMID: 18583311 DOI: 10.2353/ajpath.2008.070729] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Focal adhesion kinase (FAK) regulates cell migration, proliferation, and apoptosis. FAK protein is reduced at the edge of migrating gut epithelial sheets in vitro, but it has not been characterized in restitutive gut mucosa in vivo. Here we show that FAK and activated phospho-FAK (FAK(397)) immunoreactivity was lower in epithelial cells immediately adjacent to human gastric and colonic ulcers in vivo, but dramatically increased in epithelia near the ulcers, possibly reflecting stimulation by growth factors absent in vitro. Transforming growth factor (TGF)-beta, but not fibroblast growth factor, platelet-derived growth factor, or vascular endothelial growth factor, increased FAK levels in Caco-2 and IEC-6 cells. Epithelial immunoreactivity to TGF-beta and phospho-Smad3 was also higher near the ulcers, varying in parallel with FAK. The TGF-beta receptor antagonist SB431542 completely blocked TGF-beta-induced Smad2/3 and p38 activation in IEC-6 cells. SB431542, the p38 antagonist SB203580, and siRNA-mediated reduction of Smad2 and p38alpha prevented TGF-beta stimulation of both FAK transcription and translation (as measured via a FAK promoter-luciferase construct). FAK(397) levels were directly related to total FAK protein expression. Although gut epithelial motility is associated with direct inhibition of FAK protein adjacent to mucosal wounds, TGF-beta may increase FAK protein near but not bordering mucosal ulcers via Smad2/3 and p38 signals. Our results show that regulation of FAK expression may be as important as FAK phosphorylation in critically influencing gut epithelial cell migration after mucosal injury.
Collapse
Affiliation(s)
- Mary F Walsh
- Departments of Surgery and Pathology, John D. Dingell VA Medical Center, Wayne State University, 4646 John R Detroit, MI 48201-1932, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Clemente CFMZ, Tornatore TF, Theizen TH, Deckmann AC, Pereira TC, Lopes-Cendes I, Souza JRM, Franchini KG. Targeting focal adhesion kinase with small interfering RNA prevents and reverses load-induced cardiac hypertrophy in mice. Circ Res 2007; 101:1339-48. [PMID: 17947798 DOI: 10.1161/circresaha.107.160978] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypertrophy is a critical event in the onset of failure in chronically overloaded hearts. Focal adhesion kinase (FAK) has attracted particular attention as a mediator of hypertrophy induced by increased load. Here, we demonstrate increased expression and phosphorylation of FAK in the hypertrophic left ventricles (LVs) of aortic-banded mice. We used an RNA interference strategy to examine whether FAK signaling plays a role in the pathophysiology of load-induced LV hypertrophy and failure. Intrajugular delivery of specific small interfering RNA induced prolonged FAK silencing ( approximately 70%) in both normal and hypertrophic LVs. Myocardial FAK silencing was accompanied by prevention, as well as reversal, of load-induced left ventricular hypertrophy. The function of LVs was preserved and the survival rate was higher in banded mice treated with small interfering RNA targeted to FAK, despite the persistent pressure overload. Studies in cardiac myocytes and fibroblasts harvested from LVs confirmed the ability of the systemically administered specific small interfering RNA to silence FAK in both cell types. Further analysis indicated attenuation of cardiac myocyte hypertrophic growth and of the rise in the expression of beta-myosin heavy chain in overloaded LVs. Moreover, FAK silencing was demonstrated to attenuate the rise in the fibrosis, collagen content, and activity of matrix metalloproteinase-2 in overloaded LVs, as well as the rise of matrix metalloproteinase-2 protein expression in fibroblasts harvested from overloaded LVs. This study provides novel evidence that FAK may be involved in multiple aspects of the pathophysiology of cardiac hypertrophy and failure induced by pressure overload.
Collapse
Affiliation(s)
- Carolina F M Z Clemente
- Department of Internal Medicine, School of Medicine, State University of Campinas, Sao Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- David G Gardner
- Diabetes Center, University of California at San Francisco, San Francisco, CA 94143-0540, USA.
| | | | | | | |
Collapse
|
41
|
Nahirney PC, Forbes JG, Morris HD, Chock SC, Wang K. What the buzz was all about: superfast song muscles rattle the tymbals of male periodical cicadas. FASEB J 2006; 20:2017-26. [PMID: 17012254 DOI: 10.1096/fj.06-5991com] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Male cicadas produce mating calls by oscillating a pair of superfast tymbal muscles in their anterior abdominal cavity that pull on and buckle stiff-ribbed cuticular tymbal membranes located beneath the folded wings. The functional anatomy and rattling of the tymbal organ in 17 yr periodical cicada, Magicicada cassini (Brood X), were revealed by high-resolution microcomputed tomography, magnetic resonance imaging, electron microscopy, and laser vibrometry to understand the mechanism of sound production in these insects. Each 50 Hz muscle contraction yielded five to six stages of rib buckling in the tymbal, and a small release of muscle tension resulted in a rapid recovery due to the spring-loaded nature of the stiff ribs in the resilin-rich tymbal. The tymbal muscle sarcomeres have thick and thin filaments that are 30% shorter than those in flight muscles, with Z-bands that were thicker and configured into novel perforated hexagonal lattices. Caffeine-treated fibers supercontracted by allowing thick filaments to traverse the Z-band through its open lattice. This superfast sonic muscle illustrates design features, especially the matching hexagonal symmetry of the myofilaments and the perforated Z-band that contribute to high-speed contractions, long endurance, and potentially supercontraction needed for producing enduring mating songs and choruses.
Collapse
Affiliation(s)
- Patrick C Nahirney
- Laboratory of Muscle Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892-8024, USA
| | | | | | | | | |
Collapse
|
42
|
DiMichele LA, Doherty JT, Rojas M, Beggs HE, Reichardt LF, Mack CP, Taylor JM. Myocyte-restricted focal adhesion kinase deletion attenuates pressure overload-induced hypertrophy. Circ Res 2006; 99:636-45. [PMID: 16902179 PMCID: PMC2693055 DOI: 10.1161/01.res.0000240498.44752.d6] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Focal adhesion kinase (FAK) is a ubiquitously expressed cytoplasmic tyrosine kinase strongly activated by integrins and neurohumoral factors. Previous studies have shown that cardiac FAK activity is enhanced by hypertrophic stimuli before the onset of overt hypertrophy. Herein, we report that conditional deletion of FAK from the myocardium of adult mice did not affect basal cardiac performance, myocyte viability, or myofibrillar architecture. However, deletion of FAK abolished the increase in left ventricular posterior wall thickness, myocyte cross-sectional area, and hypertrophy-associated atrial natriuretic factor induction following pressure overload. Myocyte-restricted deletion of FAK attenuated the initial wave of extracellular signal-regulated kinase activation and cFos expression induced by adrenergic agonists and biomechanical stress. In addition, we found that persistent challenge of mice with myocyte-restricted FAK inactivation leads to enhanced cardiac fibrosis and cardiac dysfunction in comparison to challenged genetic controls. These studies show that loss of FAK impairs normal compensatory hypertrophic remodeling without a concomitant increase in apoptosis in response to cardiac pressure overload and highlight the possibility that FAK activation may be a common requirement for the initiation of this compensatory response.
Collapse
Affiliation(s)
- Laura A DiMichele
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Kuramochi Y, Guo X, Sawyer DB. Neuregulin activates erbB2-dependent src/FAK signaling and cytoskeletal remodeling in isolated adult rat cardiac myocytes. J Mol Cell Cardiol 2006; 41:228-35. [PMID: 16769082 PMCID: PMC1847613 DOI: 10.1016/j.yjmcc.2006.04.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 03/14/2006] [Accepted: 04/11/2006] [Indexed: 02/01/2023]
Abstract
Cardiac myocyte erbB2 expression is required for maintenance of normal cardiac structure and function, though its role in cardiac cellular physiology is incompletely understood. We tested the hypothesis that erbB2 signaling modulates focal adhesion formation via activation of a src/FAK pathway using adult rat ventricular myocytes in primary culture. The erbB ligand neuregulin-1Beta (NRG-1Beta) induced phosphorylation of Src at Y416 and Y215, and FAK at Y861. Using antibody and pharmacological inhibitor strategies, we found that FAK activation was erbB2- and Src-dependent, but independent of PI3-kinase/Akt pathway. Furthermore, NRG-1Beta stimulated the formation of a multiprotein complex between erbB2, FAK, p130(CAS) and paxillin within 30 min, and induced lamellipodia with longitudinal elongation of the myocytes within days. The extension of lamellipodia resulted in restoration of cell-to-cell contact between isolated myocytes, allowing for synchronous beating. These effects of NRG-1Beta were prevented by a src inhibitor as well as an antibody to erbB2. These results suggest the potential role of NRG-1Beta/erbB2/Src/FAK signaling in the maintenance and repair of electrical and mechanical coupling in cardiomyocytes.
Collapse
Affiliation(s)
- Yukio Kuramochi
- Center for Molecular Stress Response, Whitaker Cardiovascular Institute, Department of Medicine, Boston University Medical Center, EBRC Room 329, 650 Albany Street, Boston, MA 02118, USA
| | - Xinxin Guo
- Center for Molecular Stress Response, Whitaker Cardiovascular Institute, Department of Medicine, Boston University Medical Center, EBRC Room 329, 650 Albany Street, Boston, MA 02118, USA
| | - Douglas B. Sawyer
- Center for Molecular Stress Response, Whitaker Cardiovascular Institute, Department of Medicine, Boston University Medical Center, EBRC Room 329, 650 Albany Street, Boston, MA 02118, USA
| |
Collapse
|
44
|
|
45
|
Rafiq K, Kolpakov MA, Abdelfettah M, Streblow DN, Hassid A, Dell'Italia LJ, Sabri A. Role of protein-tyrosine phosphatase SHP2 in focal adhesion kinase down-regulation during neutrophil cathepsin G-induced cardiomyocytes anoikis. J Biol Chem 2006; 281:19781-92. [PMID: 16690621 DOI: 10.1074/jbc.m513040200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inflammatory cells and their proteases contribute to tissue reparation at site of inflammation. Although beneficial at early stages, excessive inflammatory reaction leads to cell death and tissue damage. Cathepsin G (Cat.G), a neutrophil-derived serine protease, has been shown to induce neonatal rat cardiomyocyte detachment and apoptosis by anoikis through caspase-3 dependent pathway. However the early mechanisms that trigger Cat.G-induced caspase-3 activation are not known. This study identifies focal adhesion kinase (FAK) tyrosine dephosphorylation as an early mechanism that regulates Cat.G-induced anoikis in cardiomyocytes. Both FAK tyrosine phosphorylation at Tyr-397 and kinase activity decrease rapidly upon Cat.G treatment and was associated with a decrease of FAK association with adapter and cytoskeletal proteins, p130(Cas) and paxillin, respectively. FAK-decreased tyrosine phosphorylation is required for Cat.G-induced myocyte anoikis as concurrent expression of phosphorylation-deficient FAK mutated at Tyr-397 or pretreatment with a protein-tyrosine phosphatase (PTP) inhibitor, pervanadate, blocks Cat.G-induced FAK tyrosine dephosphorylation, caspase-3 activation and DNA fragmentation. Analysis of PTPs activation shows that Cat.G treatment induces an increase of SHP2 and PTEN phosphorylation; however, only SHP2 forms a complex with FAK in response to Cat.G. Expression of dominant negative SHP2 mutant markedly attenuates FAK tyrosine dephosphorylation induced by Cat.G and protects myocytes to undergo apoptosis. In contrast, increased SHP2 expression exacerbates Cat.G-induced FAK tyrosine dephosphorylation and myocyte apoptosis. Taken together, these results show that Cat.G induces SHP2 activation that leads to FAK tyrosine dephosphorylation and promotes cardiomyocyte anoikis.
Collapse
Affiliation(s)
- Khadija Rafiq
- Cardiovascular Research Center, Department of Anatomy and Cell Biology, Temple University, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Madhusoodanan KS, Guo D, McGarrigle DK, Maack T, Huang XY. Csk mediates G-protein-coupled lysophosphatidic acid receptor-induced inhibition of membrane-bound guanylyl cyclase activity. Biochemistry 2006; 45:3396-403. [PMID: 16519534 PMCID: PMC2519153 DOI: 10.1021/bi052513u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Natriuretic peptides (NPs) are involved in many physiological processes, including the regulation of vascular tone, sodium excretion, pressure-volume homeostasis, inflammatory responses, and cellular growth. The two main receptors of NP, membrane-bound guanylyl cyclases A and B (GC-A and GC-B), mediate the effects of NPs via the generation of cGMP. NP-stimulated generation of cGMP can be modulated by intracellular processes, whose exact nature remains to be elucidated. Thus, serum and lysophosphatidic acid (LPA), by unknown pathways, have been shown to inhibit the NP-induced generation of cGMP. Here we report that the nonreceptor-tyrosine-kinase Csk is an essential component of the intracellular modulation of atrial natriuretic peptide (ANP)-stimulated activation of GC-A. The genetic deletion of Csk (Csk(-)(/)(-)) in mouse embryonic fibroblasts blocked the inhibitory effect of both serum and LPA on the ANP-stimulated generation of cGMP. Moreover, using a chemical rescue approach, we also demonstrate that the catalytic activity of Csk is required for its modulatory function. Our data demonstrate that Csk is involved in the control of cGMP levels and that membrane-bound guanylyl cyclases can be critically modulated by other receptor-initiated intracellular signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | - Xin-Yun Huang
- *X.-Y. H.: To whom correspondence should be addressed, Tel: (212) 746-6362; Fax: (212) 746-8690, E-mail:
| |
Collapse
|
47
|
Essayem S, Kovacic-Milivojevic B, Baumbusch C, McDonagh S, Dolganov G, Howerton K, Larocque N, Mauro T, Ramirez A, Ramos DM, Fisher SJ, Jorcano JL, Beggs HE, Reichardt LF, Ilic D. Hair cycle and wound healing in mice with a keratinocyte-restricted deletion of FAK. Oncogene 2006; 25:1081-9. [PMID: 16247468 PMCID: PMC2710133 DOI: 10.1038/sj.onc.1209130] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Focal adhesion kinase (FAK) is a critical component in transducing signals downstream of both integrins and growth factor receptors. To determine how the loss of FAK affects the epidermis in vivo, we have generated a mouse model with a keratinocyte-restricted deletion of fak (FAKK5 KO mice). FAK(K5 KO) mice displayed three major phenotypes--irregularities of hair cycle, sebaceous glands hypoplasia, and a thinner epidermis--pointing to defects in the proliferative capacity of multipotent stem cells found in the bulge. FAK-null keratinocytes in conventional primary culture undergo massive apoptosis hindering further analyses, whereas the defects observed in vivo do not shorten the mouse lifespan. These results suggest that the structure and the signaling environment of the native tissue may overcome the lack of signaling through FAK. Our findings point to the importance of in vivo and three-dimensional in vitro models in analyses of cell migration, proliferation, and survival. Surprisingly, the difference between FAKloxP/+ and FAKK5 KO mice in wound closure was not statistically significant, suggesting that in vivo loss of FAK does not affect migration/proliferation of basal keratinocytes in the same way as it affects multipotent stem cells of the skin.
Collapse
Affiliation(s)
- S Essayem
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - B Kovacic-Milivojevic
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - C Baumbusch
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - S McDonagh
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - G Dolganov
- Department of Pulmonary, University of California San Francisco, San Francisco, CA, USA
| | - K Howerton
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - N Larocque
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - T Mauro
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - A Ramirez
- Department of Epithelial Damage, Repair and Tissue Engineering Program, CIEMAT, Madrid, Spain
| | - DM Ramos
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
| | - SJ Fisher
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - JL Jorcano
- Department of Epithelial Damage, Repair and Tissue Engineering Program, CIEMAT, Madrid, Spain
| | - HE Beggs
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - LF Reichardt
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - D Ilic
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
48
|
Quach NL, Rando TA. Focal adhesion kinase is essential for costamerogenesis in cultured skeletal muscle cells. Dev Biol 2006; 293:38-52. [PMID: 16533505 DOI: 10.1016/j.ydbio.2005.12.040] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 12/12/2005] [Accepted: 12/14/2005] [Indexed: 02/03/2023]
Abstract
A central question in muscle biology is how costameres are formed and become aligned with underlying myofibrils in mature tissues. Costameres are composed of focal adhesion proteins, including vinculin and paxillin, and anchor myofibril Z-bands to the sarcolemma. In the present study, we investigated the process of costamere formation ("costamerogenesis") in differentiating primary mouse myoblasts. Using vinculin and paxillin as costameric markers, we found that two additional focal adhesion components, alpha5beta1 integrin and focal adhesion kinase (FAK), are associated with costameres. We have characterized costamerogenesis as occurring in three distinct stages based on the organizational pattern of these costameric proteins. We show that both costamerogenesis and myofibrillogenesis are initiated at sites of membrane contacts with the extracellular matrix and that their maturation is tightly coupled. To test the importance of FAK signaling in these processes, we analyzed cells expressing a dominant negative form of FAK (dnFAK). When cells expressing dnFAK were induced to differentiate, both costamerogenesis and myofibrillogenesis were disrupted although the expression of constituent proteins was not inhibited. Likewise, inhibiting FAK activity by reducing FAK levels using an siRNA approach also resulted in an inhibition of costamerogenesis and myofibrillogenesis. The relationship between costamere and myofibril formation was tested further by treating myotube cultures with potassium or tetrodotoxin to block contraction and disrupt myofibril organization. This also resulted in inhibition of costamere maturation. We present a model of costamerogenesis whereby signaling through FAK is essential for both normal costamerogenesis and normal myofibrillogenesis which are tightly coupled during skeletal myogenesis.
Collapse
Affiliation(s)
- Navaline L Quach
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
49
|
Abstract
Mechanotransduction refers to the cellular mechanisms by which load-bearing cells sense physical forces, transduce the forces into biochemical signals, and generate appropriate responses leading to alterations in cellular structure and function. This process affects the beat-to-beat regulation of cardiac performance but also affects the proliferation, differentiation, growth, and survival of the cellular components that comprise the human myocardium. This review focuses on the experimental evidence indicating that the costamere and its structurally related structure the focal adhesion complex are critical cytoskeletal elements involved in cardiomyocyte mechanotransduction. Biochemical signals originating from the extracellular matrix-integrin-costameric protein complex share many common features with those signals generated by growth factor receptors. The roles of key regulatory kinases and other muscle-specific proteins involved in mechanotransduction and growth factor signaling are discussed, and issues requiring further study in this field are outlined.
Collapse
Affiliation(s)
- Allen M Samarel
- Cardiovascular Institute, Loyola Univ. Medical Center, Bldg. 110, Rm. 5222, 2160 South First Ave., Maywood, IL 60153, USA.
| |
Collapse
|
50
|
Peng X, Kraus MS, Wei H, Shen TL, Pariaut R, Alcaraz A, Ji G, Cheng L, Yang Q, Kotlikoff MI, Chen J, Chien K, Gu H, Guan JL. Inactivation of focal adhesion kinase in cardiomyocytes promotes eccentric cardiac hypertrophy and fibrosis in mice. J Clin Invest 2006; 116:217-27. [PMID: 16374517 PMCID: PMC1319217 DOI: 10.1172/jci24497] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 10/24/2005] [Indexed: 12/12/2022] Open
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that plays a major role in integrin signaling pathways. Although cardiovascular defects were observed in FAK total KO mice, the embryonic lethality prevented investigation of FAK function in the hearts of adult animals. To circumvent these problems, we created mice in which FAK is selectively inactivated in cardiomyocytes (CFKO mice). We found that CFKO mice develop eccentric cardiac hypertrophy (normal LV wall thickness and increased left chamber dimension) upon stimulation with angiotensin II or pressure overload by transverse aortic constriction as measured by echocardiography. We also found increased heart/body weight ratios, elevated markers of cardiac hypertrophy, multifocal interstitial fibrosis, and increased collagen I and VI expression in CFKO mice compared with control littermates. Spontaneous cardiac chamber dilation and increased expression of hypertrophy markers were found in the older CFKO mice. Analysis of cardiomyocytes isolated from CFKO mice showed increased length but not width. The myocardium of CFKO mice exhibited disorganized myofibrils with increased nonmyofibrillar space filled with swelled mitochondria. Last, decreased tyrosine phosphorylation of FAK substrates p130Cas and paxillin were observed in CFKO mice compared with the control littermates. Together, these results provide strong evidence for a role of FAK in the regulation of heart hypertrophy in vivo.
Collapse
Affiliation(s)
- Xu Peng
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|