1
|
Yoshie S, Kuriyama M, Maekawa M, Xu W, Niidome T, Futaki S, Hirose H. ATP2B4 is an essential gene for epidermal growth factor-induced macropinocytosis in A431 cells. Genes Cells 2024; 29:512-520. [PMID: 38597132 DOI: 10.1111/gtc.13118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Macropinocytosis (MPC) is a large-scale endocytosis pathway that involves actin-dependent membrane ruffle formation and subsequent ruffle closure to generate macropinosomes for the uptake of fluid-phase cargos. MPC is categorized into two types: constitutive and stimuli-induced. Constitutive MPC in macrophages relies on extracellular Ca2+ sensing by a calcium-sensing receptor. However, the link between stimuli-induced MPC and Ca2+ remains unclear. Here, we find that both intracellular and extracellular Ca2+ are required for epidermal growth factor (EGF)-induced MPC in A431 human epidermoid carcinoma cells. Through investigation of mammalian homologs of coelomocyte uptake defective (CUP) genes, we identify ATP2B4, encoding for a Ca2+ pump called the plasma membrane calcium ATPase 4 (PMCA4), as a Ca2+-related regulator of EGF-induced MPC. Knockout (KO) of ATP2B4, as well as depletion of extracellular/intracellular Ca2+, inhibited ruffle closure and macropinosome formation, without affecting ruffle formation. We demonstrate the importance of PMCA4 activity itself, independent of interactions with other proteins via its C-terminus known as a PDZ domain-binding motif. Additionally, we show that ATP2B4-KO reduces EGF-stimulated Ca2+ oscillation during MPC. Our findings suggest that EGF-induced MPC requires ATP2B4-dependent Ca2+ dynamics.
Collapse
Affiliation(s)
- Shunsuke Yoshie
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | | | - Masashi Maekawa
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Wei Xu
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Takuro Niidome
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Japan
| |
Collapse
|
2
|
Seipin localizes at endoplasmic-reticulum-mitochondria contact sites to control mitochondrial calcium import and metabolism in adipocytes. Cell Rep 2022; 38:110213. [PMID: 35021082 DOI: 10.1016/j.celrep.2021.110213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/11/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022] Open
Abstract
Deficiency of the endoplasmic reticulum (ER) protein seipin results in generalized lipodystrophy by incompletely understood mechanisms. Here, we report mitochondrial abnormalities in seipin-deficient patient cells. A subset of seipin is enriched at ER-mitochondria contact sites (MAMs) in human and mouse cells and localizes in the vicinity of calcium regulators SERCA2, IP3R, and VDAC. Seipin association with MAM calcium regulators is stimulated by fasting-like stimuli, while seipin association with lipid droplets is promoted by lipid loading. Acute seipin removal does not alter ER calcium stores but leads to defective mitochondrial calcium import accompanied by a widespread reduction in Krebs cycle metabolites and ATP levels. In mice, inducible seipin deletion leads to mitochondrial dysfunctions preceding the development of metabolic complications. Together, these data suggest that seipin controls mitochondrial energy metabolism by regulating mitochondrial calcium influx at MAMs. In seipin-deficient adipose tissue, reduced ATP production compromises adipocyte properties, contributing to lipodystrophy pathogenesis.
Collapse
|
3
|
Marquèze-Pouey B, Mailfert S, Rouger V, Goaillard JM, Marguet D. Physiological epidermal growth factor concentrations activate high affinity receptors to elicit calcium oscillations. PLoS One 2014; 9:e106803. [PMID: 25265278 PMCID: PMC4179260 DOI: 10.1371/journal.pone.0106803] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/02/2014] [Indexed: 11/19/2022] Open
Abstract
Signaling mediated by the epidermal growth factor (EGF) is crucial in tissue development, homeostasis and tumorigenesis. EGF is mitogenic at picomolar concentrations and is known to bind its receptor on high affinity binding sites depending of the oligomerization state of the receptor (monomer or dimer). In spite of these observations, the cellular response induced by EGF has been mainly characterized for nanomolar concentrations of the growth factor, and a clear definition of the cellular response to circulating (picomolar) concentrations is still lacking. We investigated Ca2+ signaling, an early event in EGF responses, in response to picomolar doses in COS-7 cells where the monomer/dimer equilibrium is unaltered by the synthesis of exogenous EGFR. Using the fluo5F Ca2+ indicator, we found that picomolar concentrations of EGF induced in 50% of the cells a robust oscillatory Ca2+ signal quantitatively similar to the Ca2+ signal induced by nanomolar concentrations. However, responses to nanomolar and picomolar concentrations differed in their underlying mechanisms as the picomolar EGF response involved essentially plasma membrane Ca2+ channels that are not activated by internal Ca2+ store depletion, while the nanomolar EGF response involved internal Ca2+ release. Moreover, while the picomolar EGF response was modulated by charybdotoxin-sensitive K+ channels, the nanomolar response was insensitive to the blockade of these ion channels.
Collapse
Affiliation(s)
- Béatrice Marquèze-Pouey
- Centre d’Immunologie de Marseille-Luminy, UM2 Aix Marseille Université, Marseille, France
- INSERM, U1104, Marseille, France
- CNRS, UMR7280, Marseille, France
- * E-mail:
| | - Sébastien Mailfert
- Centre d’Immunologie de Marseille-Luminy, UM2 Aix Marseille Université, Marseille, France
- INSERM, U1104, Marseille, France
- CNRS, UMR7280, Marseille, France
| | - Vincent Rouger
- Centre d’Immunologie de Marseille-Luminy, UM2 Aix Marseille Université, Marseille, France
- INSERM, U1104, Marseille, France
- CNRS, UMR7280, Marseille, France
| | - Jean-Marc Goaillard
- INSERM, UMR_S 1072, Marseille, France
- Aix-Marseille Université, UNIS, Marseille, France
| | - Didier Marguet
- Centre d’Immunologie de Marseille-Luminy, UM2 Aix Marseille Université, Marseille, France
- INSERM, U1104, Marseille, France
- CNRS, UMR7280, Marseille, France
| |
Collapse
|
4
|
Reversal of Murine Epidermal Atrophy by Topical Modulation of Calcium Signaling. J Invest Dermatol 2014; 134:1599-1608. [DOI: 10.1038/jid.2013.524] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 11/08/2022]
|
5
|
Dragoni S, Laforenza U, Bonetti E, Lodola F, Bottino C, Guerra G, Borghesi A, Stronati M, Rosti V, Tanzi F, Moccia F. Canonical transient receptor potential 3 channel triggers vascular endothelial growth factor-induced intracellular Ca2+ oscillations in endothelial progenitor cells isolated from umbilical cord blood. Stem Cells Dev 2013; 22:2561-80. [PMID: 23682725 DOI: 10.1089/scd.2013.0032] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Endothelial colony-forming cells (ECFCs) are the only endothelial progenitor cells (EPCs) that are capable of acquiring a mature endothelial phenotype. ECFCs are mainly mobilized from bone marrow to promote vascularization and represent a promising tool for cell-based therapy of severe ischemic diseases. Vascular endothelial growth factor (VEGF) stimulates the proliferation of peripheral blood-derived ECFCs (PB-ECFCs) through oscillations in intracellular Ca(2+) concentration ([Ca(2+)]i). VEGF-induced Ca(2+) spikes are driven by the interplay between inositol-1,4,5-trisphosphate (InsP3)-dependent Ca(2+) release and store-operated Ca(2+) entry (SOCE). The therapeutic potential of umbilical cord blood-derived ECFCs (UCB-ECFCs) has also been shown in recent studies. However, VEGF-induced proliferation of UCB-ECFCs is faster compared with their peripheral counterpart. Unlike PB-ECFCs, UCB-ECFCs express canonical transient receptor potential channel 3 (TRPC3) that mediates diacylglycerol-dependent Ca(2+) entry. The present study aimed at investigating whether the higher proliferative potential of UCB-ECFCs was associated to any difference in the molecular underpinnings of their Ca(2+) response to VEGF. We found that VEGF induces oscillations in [Ca(2+)]i that are patterned by the interaction between InsP3-dependent Ca(2+) release and SOCE. Unlike PB-ECFCs, VEGF-evoked Ca(2+) oscillations do not arise in the absence of extracellular Ca(2+) entry and after pharmacological (with Pyr3 and flufenamic acid) and genetic (by employing selective small interference RNA) suppression of TRPC3. VEGF-induced UCB-ECFC proliferation is abrogated on inhibition of the intracellular Ca(2+) spikes. Therefore, the Ca(2+) response to VEGF in UCB-ECFCs is shaped by a different Ca(2+) machinery as compared with PB-ECFCs, and TRPC3 stands out as a promising target in EPC-based treatment of ischemic pathologies.
Collapse
Affiliation(s)
- Silvia Dragoni
- 1 Department of Biology and Biotechnology "Lazzaro Spallanzani,", University of Pavia , Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Dragoni S, Laforenza U, Bonetti E, Lodola F, Bottino C, Berra-Romani R, Carlo Bongio G, Cinelli MP, Guerra G, Pedrazzoli P, Rosti V, Tanzi F, Moccia F. Vascular endothelial growth factor stimulates endothelial colony forming cells proliferation and tubulogenesis by inducing oscillations in intracellular Ca2+ concentration. Stem Cells 2012; 29:1898-907. [PMID: 21905169 DOI: 10.1002/stem.734] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Endothelial progenitor cells (EPCs) home from the bone marrow to the site of tissue regeneration and sustain neovascularization after acute vascular injury and upon the angiogenic switch in solid tumors. Therefore, they represent a suitable tool for cell-based therapy (CBT) in regenerative medicine and provide a novel promising target in the fight against cancer. Intracellular Ca(2+) signals regulate numerous endothelial functions, such as proliferation and tubulogenesis. The growth of endothelial colony forming cells (ECFCs), which are EPCs capable of acquiring a mature endothelial phenotype, is governed by store-dependent Ca(2+) entry (SOCE). This study aimed at investigating the nature and the role of VEGF-elicited Ca(2+) signals in ECFCs. VEGF induced asynchronous Ca(2+) oscillations, whose latency, amplitude, and frequency were correlated to the growth factor dose. Removal of external Ca(2+) (0Ca(2+)) and SOCE inhibition with N-(4-[3,5-bis(trifluoromethyl)-1H-pyrazol-1-yl]phenyl)-4-methyl-1,2,3-thiadiazole-5-carboxamide (BTP-2) reduced the duration of the oscillatory signal. Blockade of phospholipase C-γ with U73122, emptying the inositol-1,4,5-trisphosphate (InsP(3))-sensitive Ca(2+) pools with cyclopiazonic acid (CPA), and inhibition of InsP(3) receptors with 2-APB prevented the Ca(2+) response to VEGF. VEGF-induced ECFC proliferation and tubulogenesis were inhibited by the Ca(2+)-chelant, BAPTA, and BTP-2. NF-κB activation by VEGF was impaired by BAPTA, BTP-2, and its selective blocker, thymoquinone. Thymoquinone, in turn, suppressed VEGF-dependent ECFC proliferation and tubulogenesis. These data indicate that VEGF-induced Ca(2+) oscillations require the interplay between InsP(3)-dependent Ca(2+) release and SOCE, and promote ECFC growth and tubulogenesis by engaging NF-κB. This novel signaling pathway might be exploited to enhance the outcome of CBT and chemotherapy.
Collapse
Affiliation(s)
- Silvia Dragoni
- Department of Physiology, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Tajeddine N, Gailly P. TRPC1 protein channel is major regulator of epidermal growth factor receptor signaling. J Biol Chem 2012; 287:16146-57. [PMID: 22451676 DOI: 10.1074/jbc.m112.340034] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
TRP channels have been associated with cell proliferation and aggressiveness in several cancers. In particular, TRPC1 regulates cell proliferation and motility, two processes underlying cancer progression. We and others have described the mechanisms of TRPC1-dependent cell migration. However, the involvement of TRPC1 in cell proliferation remains unexplained. In this study, we show that siRNA-mediated TRPC1 depletion in non small cell lung carcinoma cell lines induced G(0)/G(1) cell cycle arrest resulting in dramatic decrease in cell growth. The expression of cyclins D1 and D3 was reduced after TRPC1 knockdown, pointing out the role of TRPC1 in G(1)/S transition. This was associated with a decreased phosphorylation and activation of EGFR and with a subsequent disruption of PI3K/Akt and MAPK downstream pathways. Stimulation of EGFR by its natural ligand, EGF, induced Ca(2+) release from the endoplasmic reticulum and Ca(2+) entry through TRPC1. Ca(2+) entry through TRPC1 conversely activated EGFR, suggesting that TRPC1 is a component of a Ca(2+)-dependent amplification of EGF-dependent cell proliferation.
Collapse
Affiliation(s)
- Nicolas Tajeddine
- Laboratory of Cell Physiology, Institute of Neuroscience, Université Catholique de Louvain, Brussels 1200, Belgium
| | | |
Collapse
|
8
|
Sánchez-González P, Jellali K, Villalobo A. Calmodulin-mediated regulation of the epidermal growth factor receptor. FEBS J 2009; 277:327-42. [PMID: 19951361 DOI: 10.1111/j.1742-4658.2009.07469.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this review, we first describe the mechanisms by which the epidermal growth factor receptor generates a Ca(2+) signal and, subsequently, we compile the available experimental evidence regarding the role that the Ca(2+)/calmodulin complex, formed after the rise in cytosolic free Ca(2+) concentration, exerts on the receptor. We focus not only on the indirect action that Ca(2+)/calmodulin exerts on the epidermal growth factor receptor, as a result of the activation of distinct calmodulin-dependent kinases, but also, and more extensively, on the direct interaction of Ca(2+)/calmodulin with the receptor. We also describe several mechanistic models that could account for the Ca(2+)/calmodulin-mediated regulation of epidermal growth factor receptor activity. The control exerted by calmodulin on distinct epidermal growth factor receptor-mediated cellular functions is also discussed. Finally, the phosphorylation of this Ca(2+) sensor by the epidermal growth factor receptor is highlighted.
Collapse
Affiliation(s)
- Pablo Sánchez-González
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | |
Collapse
|
9
|
Lee HY, Yea K, Kim J, Lee BD, Chae YC, Kim HS, Lee DW, Kim SH, Cho JH, Jin CJ, Koh DS, Park KS, Suh PG, Ryu SH. Epidermal growth factor increases insulin secretion and lowers blood glucose in diabetic mice. J Cell Mol Med 2007; 12:1593-604. [PMID: 18053093 PMCID: PMC3918075 DOI: 10.1111/j.1582-4934.2007.00169.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Epidermal growth factor (EGF) is synthesized in the pancreas and diabetic animals have low levels of EGF. However, the role of EGF in regulating the major function of the pancreas, insulin secretion, has not been studied. Here, we show that EGF rapidly increased insulin secretion in mouse pancreatic islets, as well as in a pancreatic β-cell line. These events were dependent on a Ca2+ influx and phospholipase D (PLD) activity, particularly PLD2, as determined using pharmacological blockers and molecular manipulations such as over-expression and siRNA of PLD isozymes. In addition, EGF also increased plasma insulin levels and mediated glucose lowering in normal and diabetic mice. Here, for the first time, we provide evidence that EGF is a novel secretagogue that regulates plasma glucose levels and a candidate for the development of therapeutics for diabetes.
Collapse
Affiliation(s)
- H Y Lee
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sengupta P, Ruano MJ, Tebar F, Golebiewska U, Zaitseva I, Enrich C, McLaughlin S, Villalobo A. Membrane-permeable calmodulin inhibitors (e.g. W-7/W-13) bind to membranes, changing the electrostatic surface potential: dual effect of W-13 on epidermal growth factor receptor activation. J Biol Chem 2007; 282:8474-86. [PMID: 17227773 DOI: 10.1074/jbc.m607211200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Membrane-permeable calmodulin inhibitors, such as the napthalenesulfonamide derivatives W-7/W-13, trifluoperazine, and calmidazolium, are used widely to investigate the role of calcium/calmodulin (Ca2+/CaM) in living cells. If two chemically different inhibitors (e.g. W-7 and trifluoperazine) produce similar effects, investigators often assume the effects are due to CaM inhibition. Zeta potential measurements, however, show that these amphipathic weak bases bind to phospholipid vesicles at the same concentrations as they inhibit Ca2+/CaM; this suggests that they also bind to the inner leaflet of the plasma membrane, reducing its negative electrostatic surface potential. This change will cause electrostatically bound clusters of basic residues on peripheral (e.g. Src and K-Ras4B) and integral (e.g. epidermal growth factor receptor (EGFR)) proteins to translocate from the membrane to the cytoplasm. We measured inhibitor-mediated translocation of a simple basic peptide corresponding to the calmodulin-binding juxtamembrane region of the EGFR on model membranes; W-7/W-13 causes translocation of this peptide from membrane to solution, suggesting that caution must be exercised when interpreting the results obtained with these inhibitors in living cells. We present evidence that they exert dual effects on autophosphorylation of EGFR; W-13 inhibits epidermal growth factor-dependent EGFR autophosphorylation under different experimental conditions, but in the absence of epidermal growth factor, W-13 stimulates autophosphorylation of the receptor in four different cell types. Our interpretation is that the former effect is due to W-13 inhibition of Ca2+/CaM, but the latter results could be due to binding of W-13 to the plasma membrane.
Collapse
Affiliation(s)
- Parijat Sengupta
- Department of Physiology and Biophysics, Health Science Center, State University of New York at Stony Brook, Stony Brook, New York 11794-8661, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhao Z, Garbett D, Hill JL, Gross DJ. Epidermal growth factor receptor downregulation in cultured bovine cumulus cells: reconstitution of calcium signaling and stimulated membrane permeabilization. Reproduction 2006; 130:517-28. [PMID: 16183869 DOI: 10.1530/rep.1.00420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cumulus cell-oocyte complexes (COCs), cultured in vitro, are competent for maturation and fertilization. Inclusion of epidermal growth factor (EGF) in the COC culture medium enhances in vitro maturation and subsequent embryonic development. It has been shown that isolated COCs exposed to EGF respond with a prolonged and pulsatile release of Ca2+ into the extra-cellular medium and that cumulus cells (CCs) of complexes exhibit both a slow rise in intracellular [Ca2+] ([Ca2+]i) and plasma membrane permeabilization in response to EGF. These unusual signaling responses were examined in isolated, cultured bovine CCs. Few individual CCs showed [Ca2+]i increases; the lack of response was found to be due to decrease of expression of endogenous EGF receptors after dissociation. CCs transfected with a human EGF receptor-GFP fusion protein showed robust, prolonged, EGF-stimulated [Ca2+]i elevations characteristic of CC responses in intact COCs. Many CCs that responded to EGF stimulation with a [Ca2+]i rise also released entrapped fura-2 dye at the peak of the [Ca2+]i response, suggesting that CC permeabilization and death follows activation of the EGF receptor. The [Ca2+]i elevation due to EGF stimulation and subsequent membrane permeabilization was shown to be mediated by the inositol triphosphate signaling pathway.
Collapse
Affiliation(s)
- Zhong Zhao
- Molecular and Cellular Biology Program and Department of Biochemistry and Molecular Biology, University of Massachusetts, 710 N. Pleasant St, Amherst, Massachusetts 01003, USA
| | | | | | | |
Collapse
|
12
|
McLaughlin S, Smith SO, Hayman MJ, Murray D. An electrostatic engine model for autoinhibition and activation of the epidermal growth factor receptor (EGFR/ErbB) family. ACTA ACUST UNITED AC 2005; 126:41-53. [PMID: 15955874 PMCID: PMC2266615 DOI: 10.1085/jgp.200509274] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We propose a new mechanism to explain autoinhibition of the epidermal growth factor receptor (EGFR/ErbB) family of receptor tyrosine kinases based on a structural model that postulates both their juxtamembrane and protein tyrosine kinase domains bind electrostatically to acidic lipids in the plasma membrane, restricting access of the kinase domain to substrate tyrosines. Ligand-induced dimerization promotes partial trans autophosphorylation of ErbB1, leading to a rapid rise in intracellular [Ca2+] that can activate calmodulin. We postulate the Ca2+/calmodulin complex binds rapidly to residues 645–660 of the juxtamembrane domain, reversing its net charge from +8 to −8 and repelling it from the negatively charged inner leaflet of the membrane. The repulsion has two consequences: it releases electrostatically sequestered phosphatidylinositol 4,5-bisphosphate (PIP2), and it disengages the kinase domain from the membrane, allowing it to become fully active and phosphorylate an adjacent ErbB molecule or other substrate. We tested various aspects of the model by measuring ErbB juxtamembrane peptide binding to phospholipid vesicles using both a centrifugation assay and fluorescence correlation spectroscopy; analyzing the kinetics of interactions between ErbB peptides, membranes, and Ca2+/calmodulin using fluorescence stop flow; assessing ErbB1 activation in Cos1 cells; measuring fluorescence resonance energy transfer between ErbB peptides and PIP2; and making theoretical electrostatic calculations on atomic models of membranes and ErbB juxtamembrane and kinase domains.
Collapse
Affiliation(s)
- Stuart McLaughlin
- Department of Physiology and Biophysics, HSC, Stony Brook University, Stony Brook, NY 11794, USA.
| | | | | | | |
Collapse
|
13
|
O'Donnell JB, Hill JL, Gross DJ. Epidermal growth factor activates cytosolic [Ca2+] elevations and subsequent membrane permeabilization in mouse cumulus-oocyte complexes. Reproduction 2004; 127:207-20. [PMID: 15056787 DOI: 10.1530/rep.1.00027] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The role of epidermal growth factor (EGF) in the maturation of mammalian oocytes is well known but not well characterized. It is known that EGF enhances oocyte maturation in vitro and that EGF stimulation of cumulus-oocyte complexes (COCs) induces pulsatile Ca(2+) efflux from the cell complex. By use of quantitative Fura-2 imaging, EGF-stimulated changes in intracellular [Ca(2+)] in germinal vesicle stage murine COCs are shown to occur in a subpopulation of cumulus cells that interact cooperatively within individual COCs. Oocytes fail to respond to EGF stimulus. In many of the cumulus cells responding with a rise in intracellular [Ca(2+)], a concomitant permeabilization of the plasma membrane is found. Neither cumulus cells of control COCs nor those that show a rise in intracellular [Ca(2+)] in response to calcium ionophore treatment display a similar membrane permeabilization, although those cells responding with a prolonged [Ca(2+)] increase in response to thimerosal or thapsigargin do display plasma membrane permeabilization. Thus, EGF stimulation of mammalian COCs activates release of Ca(2+) from intracellular stores of cumulus cells, the depletion of which activates permeabilization of the plasma membrane. This membrane permeabilization leads to loss of cell contents and presumptive cumulus cell death. This catastrophic EGF-induced plasma membrane permeabilization of individual cumulus cells within a COC leads to pulsatile Ca(2+) efflux as previously seen, and may lead to improved cumulus cell expansion during COC maturation.
Collapse
Affiliation(s)
- John B O'Donnell
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Lederle GRC, 710 N. Pleasant Street, Amherst, Massachusetts 01003, USA
| | | | | |
Collapse
|
14
|
Abstract
Changes in intracellular Ca2+ correlate with specific events in the cell cycle. Here we investigated the role of Ca2+ in the G1 phase. HEK 293 cells were arrested in mitosis and subjected to short-term treatments that alter Ca2+ homeostasis prior to their release into G1. Treatment with thapsigargin (TG), an irreversible inhibitor of the sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) lengthened the G1 phase. Moreover, TG treatment also resulted in a dramatic alteration in cellular morphology and attachment and in the reduction of MAPK activity and lower levels of cyclin D1 and cyclin E proteins. Treatments with reagents that transiently increase or decrease cytosolic Ca2+ or that temporarily inactivate SERCA did not alter any of the above parameters. Cells expressing a TG-resistant form of SERCA progressed normally through the G1/S transition after TG treatment. These results suggest that long-term SERCA inactivation affects cell cycle-dependent events and compromises progression through G1/S.
Collapse
Affiliation(s)
- V R Simon
- Banting and Best Department of Medical Research, University of Toronto, ON, Canada.
| | | |
Collapse
|
15
|
Pe�a C, Pilar G. Early morphologic alterations in trophically deprived neuronal death in vitro occur without alterations in cytoplasmic Ca2+. J Comp Neurol 2000. [DOI: 10.1002/1096-9861(20000828)424:3<377::aid-cne1>3.0.co;2-f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
16
|
Todd DG, Mikkelsen RB, Rorrer WK, Valerie K, Schmidt-Ullrich RK. Ionizing radiation stimulates existing signal transduction pathways involving the activation of epidermal growth factor receptor and ERBB-3, and changes of intracellular calcium in A431 human squamous carcinoma cells. J Recept Signal Transduct Res 1999; 19:885-908. [PMID: 10533979 DOI: 10.3109/10799899909038430] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Previous studies demonstrated that ionizing radiation activates the epidermal growth factor receptor (EGFR), as measured by Tyr autophosphorylation, and induces transient increases in cytosolic free [Ca2+], [Ca2+]f. The mechanistic linkage between these events has been investigated in A431 squamous carcinoma cells with the EGFR Tyr kinase inhibitor, AG1478. EGFR autophosphorylation induced by radiation at doses of 0.5-5 Gy or EGF concentrations of 1-10 ng/ml is inhibited by >75% at 100 nM AG1478. Activation of EGFR enhances IP3 production as a result of phospholipase C (PLC) activation. At the doses used, radiation stimulates Tyr phosphorylation of both, PLCgamma and erbB-3, and also mediates the association between erbB-3 and PLCgamma not previously described. The increased erbB-3 Tyr phosphorylation is to a significant extent due to transactivation by EGFR as >70% of radiation- and EGF-induced erbB-3 Tyr phosphorylation is inhibited by AG 1478. The radiation-induced changes in [Ca2+]f are dependent upon EGFR, erbB-3 and PLCgamma activation since radiation stimulated IP3 formation and Ca2+ oscillations are inhibited by AG1478, the PLCgamma inhibitor U73122 or neutralizing antibody against an extracellular epitope of erbB-3. These results demonstrate that radiation induces qualitatively and quantitatively similar responses to EGF in stimulation of the plasma membrane-associated receptor Tyr kinases and immediate downstream effectors, such as PLCgamma and Ca2+.
Collapse
Affiliation(s)
- D G Todd
- Department of Radiation Oncology, Medical College of Virginia/Virginia Commonwealth University, Richmond 23298-0058, USA
| | | | | | | | | |
Collapse
|
17
|
Fleet A, Ashworth R, Kubista H, Edwards H, Bolsover S, Mobbs P, Moss SE. Inhibition of EGF-dependent calcium influx by annexin VI is splice form-specific. Biochem Biophys Res Commun 1999; 260:540-6. [PMID: 10403803 DOI: 10.1006/bbrc.1999.0915] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Annexin VI is a widely expressed calcium- and phospholipid-binding protein that lacks a clear physiological role. We now report that A431 cells expressing annexin VI are defective in their ability to sustain elevated levels of cytosolic Ca(2+) following stimulation with EGF. Other aspects of EGF receptor signaling, such as protein tyrosine phosphorylation and induction of c-fos are normal in these cells. However, EGF-mediated membrane hyperpolarization is attenuated and Ca(2+) entry abolished in cells expressing annexin VI. This effect of annexin VI was only observed for the larger of the two annexin VI splice forms, the smaller splice variant had no discernable effect on either cellular phenotype or growth rate. Inhibition of Ca(2+) influx was specific for the EGF-induced pathway; capacitative Ca(2+) influx initiated by emptying of intracellular stores was unaffected. These results provide the first evidence that the two splice forms of annexin VI have different functions.
Collapse
Affiliation(s)
- A Fleet
- Department of Physiology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Epidermal growth factor (EGF) has received much attention recently for its positive effects on mammalian oocyte maturation and embryo development and its potential importance in cytoplasmic maturation of oocytes. Calcium (Ca2+) homeostasis in germinal vesicle stage oocytes has also been suggested to play a role in cytoplasmic maturation. This study examined the effects of EGF on Ca2+ mobilization as measured by its efflux from mouse oocytes at three time periods throughout maturation (0-4 hr, 4-8 hr, and 12 hr). Immature cumulus oocyte complexes (COCs) removed from the ovary for less than 4 hr exhibit oscillations in Ca2+ efflux that initiated 5-30 min following EGF stimulation. This response was not observed in COCs matured for 4-8 hr or 12 hr or in unstimulated 0-4 hr COCs. Denuded oocytes and cumulus cells did not show the same response to EGF (8.2 nM and 16.4 nM). Immunohistochemistry for detection of the EGF receptor along with EGF internalization studies showed that receptors are present both on cumulus cells and the oocyte but EGF appears to be internalized mainly by the cumulus cells. These data demonstrate that EGF induces oscillations in Ca2+ efflux in COCs 0-4 hr old and this response is mediated by the cumulus cells.
Collapse
Affiliation(s)
- J L Hill
- Department of Biochemistry and Molecular Biology, Lederle Graduate Research Center, University of Massachusetts, Amherst 01003, USA
| | | | | | | |
Collapse
|
19
|
Mahoney MG, Slakey LL, Benham CD, Gross DJ. Time course of the initial [Ca2+]i response to extracellular ATP in smooth muscle depends on [Ca2+]e and ATP concentration. Biophys J 1998; 75:2050-8. [PMID: 9746547 PMCID: PMC1299877 DOI: 10.1016/s0006-3495(98)77647-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In response to extracellular application of 50 microM ATP, all individual porcine aortic smooth muscle cells respond with rapid rises from basal [Ca2+]i to peak [Ca2+]i within 5 s. The time from stimulus to the peak of the [Ca2+]i response increases with decreasing concentration of ATP. At ATP concentrations of 0.5 microM and below, the time to the [Ca2+]i peak varies more significantly from cell to cell than at higher concentrations, and each cell shows complicated initiation and decay kinetics. For any individual cell, the lag phase before a response decreases with increasing concentration of ATP. An increase in lag time with decreasing ATP concentration is also observed in the absence of extracellular Ca2+, but the lag phase is more pronounced, especially at concentrations of ATP below 0.5 microM. Whole-cell patch-clamp electrophysiology shows that in porcine aortic smooth muscle cells, ATP stimulates an inward current carried mainly by Cl- ion efflux with a time course similar to the [Ca2+]i changes and no detectable current from an ATP-gated cation channel. A simple signal cascade initiation kinetics model, starting with nucleotide receptor activation leading to IP3-mediated Ca2+ release from IP3-sensitive internal stores, fits the data and suggests that the kinetics of the Ca2+ response are dominated by upstream signal cascade components.
Collapse
Affiliation(s)
- M G Mahoney
- Program in Molecular and Cellular Biology and Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | |
Collapse
|
20
|
Chung JC, Sciaky N, Gross DJ. Heterogeneity of epidermal growth factor binding kinetics on individual cells. Biophys J 1997; 73:1089-102. [PMID: 9251825 PMCID: PMC1181005 DOI: 10.1016/s0006-3495(97)78141-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Binding of fluorescein-conjugated epidermal growth factor (EGF) to individual A431 cells at 4 degrees C is measured by a quantitative fluorescence imaging technique. After background fluorescence and cell autofluorescence photobleaching corrections, the kinetic data are fit to simple models of one monovalent site and two independent monovalent sites, both of which include a first-order dye photobleaching process. Model simulations and the results from data analysis indicate that the one-monovalent-site model does not describe EGF binding kinetics at the single-cell level, whereas the two-site model is consistent with, but not proved by, the single-cell binding data. In addition, the kinetics of binding of fluorescein-EGF to different cells from the same coverslip often differ significantly from each other, indicating cell-to-cell variations in the binding properties of the EGF receptor.
Collapse
Affiliation(s)
- J C Chung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst 01003-4505, USA
| | | | | |
Collapse
|
21
|
Zeng FY, Benguría A, Kafert S, André S, Gabius HJ, Villalobo A. Differential response of the epidermal growth factor receptor tyrosine kinase activity to several plant and mammalian lectins. Mol Cell Biochem 1995; 142:117-24. [PMID: 7770063 DOI: 10.1007/bf00928932] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Biosignalling via lectins may involve modulation of protein kinase activities. This aspect of the biological action of mammalian and plant lectins has been investigated for their effect on the activity of the isolated epidermal growth factor receptor (EGFR). The constitutive tyrosine kinase activity of the epidermal growth factor receptor from rat liver, isolated by calmodulin-affinity chromatography, was activated by concanvalin A (ConA), and wheat germ agglutinin (WGA) to a similar extent as the measured enhancement induced by EGF. In contrast, two mannose-specific lectins, the mannan-binding protein (MBP) and serum amyloid P component (SAP), isolated from human serum, have inhibitory effects, both in the absence and presence of EGF. The differential effects of these lectins were tested using as phosphorylatable substrates a co-polymer of glutamic acid-tyrosine, as well as calmodulin. However, two galactoside-specific lectins, the laminin-binding beta-galactoside-binding 14 kDa lectin, isolated from bovine heart (14K-BHL), and the alpha/beta-galactoside-binding lectin, isolated from mistletoe (Viscum album L.) leaves (VAA), do not inhibit the EGFR tyrosine kinase activity. The sugar dependence of the lectin-mediated action was studied by inhibition assays. Mannose and a mannose-containing neoglycoprotein prevent the activating effect of ConA, and N-acetyl-D-glucosamine partially prevents the activation produced by WGA. However, mannose and mannose-containing neoglycoprotein were ineffective to reduce the inhibitory effect of MBP or SAP.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- F Y Zeng
- Institut für Physiologische Chemie, Tierärztlichen Fakultät, Ludwig-Maximilians-Universität, München, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Mahoney MG, Slakey LL, Hepler PK, Gross DJ. Independent modes of propagation of calcium waves in smooth muscle cells. J Cell Sci 1993; 104 ( Pt 4):1101-7. [PMID: 8314894 DOI: 10.1242/jcs.104.4.1101] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purinergic agonist adenosine triphosphate (ATP) stimulates an initial transient followed by subsequent oscillations in cytosolic calcium ion concentration ([Ca2+]i) in individual porcine aortic smooth muscle cells. Using microinjection of fura-2 covalently coupled to dextran, we have analyzed in detail the spatial and temporal features of the oscillations. We have observed both cytoplasmic calcium waves and gradients within single cells. Single cells can contain multiple loci of initiation of oscillations. Independent oscillations in a single cell can have independent frequencies and these oscillations can propagate without interference across the same region of the cell, suggesting that they arise either from separately regulated stores of Ca2+ or a single Ca2+ store operated by two separate release mechanisms. The shape of the wave front and the manner of the waye's decay can vary from one oscillation to the next. Ca2+ signaling in individual arterial smooth muscle cells thus displays complex spatial and temporal organization.
Collapse
Affiliation(s)
- M G Mahoney
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst 01003
| | | | | | | |
Collapse
|
23
|
Abstract
Numerous peptides are known that have specific functions as growth factors in different tissues. These bioactive peptides are characterized by their ability to bind to high-affinity receptors, by their classification into superfamilies that share homology and function and by their synthesis as large precursor molecules that are processed to active forms. In some cases the precursors themselves also have biological activity. Modulation of growth factor activity at the level of the receptor or effector molecules has great therapeutic potential. This article will outline some of the strategies that have been successful in detecting and identifying growth factors and demonstrating their biological activity.
Collapse
Affiliation(s)
- J M Siegfried
- Department of Pharmacology, University of Pittsburgh, PA 15261
| |
Collapse
|
24
|
Mahoney MG, Randall CJ, Linderman JJ, Gross DJ, Slakey LL. Independent pathways regulate the cytosolic [Ca2+] initial transient and subsequent oscillations in individual cultured arterial smooth muscle cells responding to extracellular ATP. Mol Biol Cell 1992; 3:493-505. [PMID: 1319242 PMCID: PMC275603 DOI: 10.1091/mbc.3.5.493] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Stimulation with extracellular ATP causes a rapid initial transient rise followed by asynchronous periodic oscillations in cytosolic calcium ion activity ([Ca2+]i) in individual aortic smooth muscle cells in either HEPES-buffered or HCO3(-)-buffered saline. The dose at which one-half of the cells display an initial rise in cytosolic calcium is 0.11 microM ATP in the presence of external Ca2+ and 0.88 microM ATP in the absence of external Ca2+; the corresponding value for oscillations in the presence of external Ca2+ is 2.6 microM ATP. While the initial transient displays rapid desensitization, the oscillations persist for greater than 30 min in the continuous presence of ATP. The presence of the agonist ATP is also absolutely required for the maintenance of the oscillations, presumably to provide continuous activation of P2 purinoceptors. The average frequency of oscillation is approximately 0.9 min-1. The frequency depends only slightly on the concentration of ATP, and oscillations do not collapse into a prolonged elevated [Ca2+]i at high concentrations of ATP. Both Ca2+ influx and release from internal stores participate in the initial transient. Oscillations are not produced in the absence of external Ca2+ but are initiated upon the addition of external Ca2+ in the continued presence of ATP. Oscillations in progress are abolished by the removal of extracellular Ca2+ with one additional peak occurring after the Ca2+ removal. These data suggest that extracellular Ca2+ influx is required for the maintenance of the posttransient oscillations, presumably to provide the Ca2+ necessary for refilling intracellular Ca2+ pools that are the source of the oscillating [Ca2+]i. The Ca2+ influx is not regulated by voltage-gated Ca2+ channels. The data in this report are consistent with the view that the initial transient has contributions from two receptor-mediated pathways, and the oscillations are controlled either by a mechanism separate from the ones that control the initial transient or by steps whose control diverges before the point of desensitization.
Collapse
Affiliation(s)
- M G Mahoney
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst 01003
| | | | | | | | | |
Collapse
|
25
|
Abstract
Increases in cytosolic Ca2+ are believed to be a pivotal signal in the regulation of cell injury, cell death, cell proliferation, cellular differentiation and cellular aging. Changes in the concentration of cytosolic Ca2+ are involved in both acute and chronic cell injury, as well as in accidental or programmed cell death. Signalling in all of these phenomena is dependent on mediated activities of a number of intracellular factors, including phospholipases, proteases and endonucleases. The coordinate regulation of these factors, as well as of oncogene activation, seems to play a role both in the processes of cell injury and cell death, and in the recovery from injury in sublethally injured cells.
Collapse
|