1
|
Kors S, Schlaitz AL. Dynamic remodelling of the endoplasmic reticulum for mitosis. J Cell Sci 2024; 137:jcs261444. [PMID: 39584405 DOI: 10.1242/jcs.261444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
The endoplasmic reticulum (ER) is a dynamic and continuous membrane network with roles in many cellular processes. The importance and maintenance of ER structure and function have been extensively studied in interphase cells, yet recent findings also indicate crucial roles of the ER in mitosis. During mitosis, the ER is remodelled significantly with respect to composition and morphology but persists as a continuous network. The ER interacts with microtubules, actin and intermediate filaments, and concomitant with the mitotic restructuring of all cytoskeletal systems, ER dynamics and distribution change. The ER is a metabolic hub and several examples of altered ER functions during mitosis have been described. However, we lack an overall understanding of the ER metabolic pathways and functions that are active during mitosis. In this Review, we will discuss mitotic changes to the ER at different organizational levels to explore how the mitotic ER, with its distinct properties, might support cell division.
Collapse
Affiliation(s)
- Suzan Kors
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Anne-Lore Schlaitz
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Chandra S. The restriction of calcium influx in metaphase and post-metaphase stages of cell division revealed by imaging secondary ion mass spectrometry (SIMS). J Microsc 2023; 290:125-133. [PMID: 36864642 PMCID: PMC10133040 DOI: 10.1111/jmi.13182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
A secondary ion mass spectrometry (SIMS)-based isotopic imaging technique of ion microscopy was used for observing calcium influx in single renal epithelial LLC-PK1 cells. The CAMECA IMS-3f SIMS instrument, used in the study, is capable of producing isotopic images of single cells at 500 nm spatial resolution. Due to the high-vacuum requirements of the instrument the cells were prepared cryogenically with a freeze-fracture method and frozen freeze-dried cells were used for SIMS analysis. The influx of calcium was imaged directly by exposure of cells to 44 Ca stable isotope in the extracellular buffer for 10 min. The 44 Ca influx was measured at mass 44 and the distribution of endogenous calcium at mass 40 (40 Ca) in the same cell. A direct comparison of interphase cells to cells undergoing division revealed that calcium influx is restricted in metaphase and post-metaphase stages of cell division. This restriction is lifted in late cytokinesis. The net influx of 44 Ca in 10 min was approximately half under calcium influx restriction in comparison to interphase cells. Under calcium influx restriction the 44 Ca concentration was the same between the mitotic chromosome and the cytoplasm. These observations indicate that the endoplasmic reticulum (ER) calcium uptake is compromised under calcium influx restriction in cells undergoing division.
Collapse
Affiliation(s)
- Subhash Chandra
- Department of Biomedical Engineering, Cornell SIMS Laboratory, Cornell University, Ithaca, New York
| |
Collapse
|
3
|
Yu F, Machaca K. The STIM1 Phosphorylation Saga. Cell Calcium 2022; 103:102551. [DOI: 10.1016/j.ceca.2022.102551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 01/11/2023]
|
4
|
Hammad AS, Yu F, Botheju WS, Elmi A, Alcantara-Adap E, Machaca K. Phosphorylation of STIM1 at ERK/CDK sites is dispensable for cell migration and ER partitioning in mitosis. Cell Calcium 2021; 100:102496. [PMID: 34715400 DOI: 10.1016/j.ceca.2021.102496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/20/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022]
Abstract
Store-operated Ca2+ entry (SOCE) is a ubiquitous Ca2+ influx pathway required for multiple physiological functions including cell motility. SOCE is triggered in response to depletion of intracellular Ca2+ stores following the activation of the endoplasmic reticulum (ER) Ca2+ sensor STIM1, which recruits the plasma membrane (PM) Ca2+ channel Orai1 at ER-PM junctions. STIM1 is phosphorylated dynamically, and this phosphorylation has been implicated in several processes including SOCE inactivation during M-phase, maximal SOCE activation, ER segregation during mitosis, and cell migration. Human STIM1 has 10 Ser/Thr residues in its cytosolic domain that match the ERK/CDK consensus phosphorylation. We recently generated a mouse knock-in line where wild-type STIM1 was replaced by a non-phosphorylatable STIM1 with all ten S/Ts mutated to Ala (STIM1-10A). Here, we generate mouse embryonic fibroblasts (MEF) from the STIM1-10A mouse line and a control MEF line (WT) that express wild-type STIM1 from a congenic mouse strain. These lines offer a unique model to address the role of STIM1 phosphorylation at endogenous expression levels in contrast to previous studies that relied mostly on overexpression. We show that STIM1 phosphorylation at ERK/CDK sites is not required for SOCE activation, cell migration, or ER partitioning during mitosis. These results rule out STIM1 phosphorylation as a regulator of SOCE, migration, and ER distribution in mitosis.
Collapse
Affiliation(s)
- Ayat S Hammad
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar; College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Fang Yu
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar; Department of Physiology & Biophysicis, Weill Cornell Medicine, New York, USA
| | | | - Asha Elmi
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar; College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Ethel Alcantara-Adap
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar; Department of Physiology & Biophysicis, Weill Cornell Medicine, New York, USA
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar; Department of Physiology & Biophysicis, Weill Cornell Medicine, New York, USA.
| |
Collapse
|
5
|
Rosendo-Pineda MJ, Vicente JJ, Vivas O, Pacheco J, Loza-Huerta A, Sampieri A, Wordeman L, Moreno C, Vaca L. Phosphorylation of NMDA receptors by cyclin B/CDK1 modulates calcium dynamics and mitosis. Commun Biol 2020; 3:665. [PMID: 33184446 PMCID: PMC7665045 DOI: 10.1038/s42003-020-01393-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/15/2020] [Indexed: 12/02/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDAR) are glutamate-gated calcium channels named after their artificial agonist. NMDAR are implicated in cell proliferation under normal and pathophysiological conditions. However, the role of NMDAR during mitosis has not yet been explored in individual cells. We found that neurotransmitter-evoked calcium entry via endogenous NMDAR in cortical astrocytes was transient during mitosis. The same occurred in HEK293 cells transfected with the NR1/NR2A subunits of NMDAR. This transient calcium entry during mitosis was due to phosphorylation of the first intracellular loop of NMDAR (S584 of NR1 and S580 of NR2A) by cyclin B/CDK1. Expression of phosphomimetic mutants resulted in transient calcium influx and enhanced NMDAR inactivation independent of the cell cycle phase. Phosphomimetic mutants increased entry of calcium in interphase and generated several alterations during mitosis: increased mitotic index, increased number of cells with lagging chromosomes and fragmentation of pericentriolar material. In summary, by controlling cytosolic calcium, NMDAR modulate mitosis and probably cell differentiation/proliferation. Our results suggest that phosphorylation of NMDAR by cyclin B/CDK1 during mitosis is required to preserve mitotic fidelity. Altering the modulation of the NMDAR by cyclin B/CDK1 may conduct to aneuploidy and cancer.
Collapse
Affiliation(s)
| | - Juan Jesus Vicente
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Oscar Vivas
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Jonathan Pacheco
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, DF, 04510, Mexico
| | - Arlet Loza-Huerta
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, DF, 04510, Mexico
| | - Alicia Sampieri
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, DF, 04510, Mexico
| | - Linda Wordeman
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Claudia Moreno
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Luis Vaca
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, DF, 04510, Mexico.
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, 98195, USA.
| |
Collapse
|
6
|
Rosendo-Pineda MJ, Moreno CM, Vaca L. Role of ion channels during cell division. Cell Calcium 2020; 91:102258. [PMID: 32736154 DOI: 10.1016/j.ceca.2020.102258] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
Ion channels are transmembrane proteins whose canonical function is the transport of ions across the plasma membrane to regulate cell membrane potential and play an essential role in neural communication, nerve conduction, and muscle contraction. However, over the last few years, non-canonical functions have been identified for many channels, having active roles in phagocytosis, invasiveness, proliferation, among others. The participation of some channels in cell proliferation has raised the question of whether they may play an active role in mitosis. There are several reports showing the participation of channels during interphase, however, the direct participation of ion channels in mitosis has received less attention. In this article, we summarize the current evidence on the participation of ion channels in mitosis. We also summarize some tools that would allow the study of ion channels and cell cycle regulatory molecules in individual cells during mitosis.
Collapse
Affiliation(s)
| | - Claudia M Moreno
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Luis Vaca
- Instituto de Fisiología Celular. Universidad Nacional Autónoma de México. Ciudad Universitaria, Coyoacán, DF, 04510, Mexico; Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, 98195, USA.
| |
Collapse
|
7
|
Remodeling of ER-plasma membrane contact sites but not STIM1 phosphorylation inhibits Ca 2+ influx in mitosis. Proc Natl Acad Sci U S A 2019; 116:10392-10401. [PMID: 31064875 PMCID: PMC6535005 DOI: 10.1073/pnas.1821399116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mechanisms blocking Ca2+ influx in mitosis are complex and involve a decrease in stable endoplasmic reticulum (ER)–plasma membrane (PM) contact sites and degradation of the ER Ca2+ sensor stromal interaction molecule 1 (STIM1) but not its phosphorylation. This challenges the current view that STIM1 phosphorylation is essential for mitotic store-operated Ca2+ entry inhibition and sheds light on the dynamics of ER–PM contact sites and of Ca2+ influx in mitosis. Store-operated Ca2+ entry (SOCE), mediated by the endoplasmic reticulum (ER) Ca2+ sensor stromal interaction molecule 1 (STIM1) and the plasma membrane (PM) channel Orai1, is inhibited during mitosis. STIM1 phosphorylation has been suggested to mediate this inhibition, but it is unclear whether additional pathways are involved. Here, we demonstrate using various approaches, including a nonphosphorylatable STIM1 knock-in mouse, that STIM1 phosphorylation is not required for SOCE inhibition in mitosis. Rather, multiple pathways converge to inhibit Ca2+ influx in mitosis. STIM1 interacts with the cochaperone BAG3 and localizes to autophagosomes in mitosis, and STIM1 protein levels are reduced. The density of ER–PM contact sites (CSs) is also dramatically reduced in mitosis, thus physically preventing STIM1 and Orai1 from interacting to activate SOCE. Our findings provide insights into ER–PM CS remodeling during mitosis and a mechanistic explanation of the inhibition of Ca2+ influx that is required for cell cycle progression.
Collapse
|
8
|
Bohineust A, Garcia Z, Beuneu H, Lemaître F, Bousso P. Termination of T cell priming relies on a phase of unresponsiveness promoting disengagement from APCs and T cell division. J Exp Med 2018; 215:1481-1492. [PMID: 29588347 PMCID: PMC5940264 DOI: 10.1084/jem.20171708] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/31/2018] [Accepted: 03/07/2018] [Indexed: 01/28/2023] Open
Abstract
Bohineust et al. establish that recently activated T cells exhibit a phase of unresponsiveness associated with a defect in calcium entry. This stage was essential to terminate priming, distracting T cells from APCs, and favoring their clonal expansion. T cells are primed in secondary lymphoid organs by establishing stable interactions with antigen-presenting cells (APCs). However, the cellular mechanisms underlying the termination of T cell priming and the initiation of clonal expansion remain largely unknown. Using intravital imaging, we observed that T cells typically divide without being associated to APCs. Supporting these findings, we demonstrate that recently activated T cells have an intrinsic defect in establishing stable contacts with APCs, a feature that was reflected by a blunted capacity to stop upon T cell receptor (TCR) engagement. T cell unresponsiveness was caused, in part, by a general block in extracellular calcium entry. Forcing TCR signals in activated T cells antagonized cell division, suggesting that T cell hyporesponsiveness acts as a safeguard mechanism against signals detrimental to mitosis. We propose that transient unresponsiveness represents an essential phase of T cell priming that promotes T cell disengagement from APCs and favors effective clonal expansion.
Collapse
Affiliation(s)
- Armelle Bohineust
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Medicale, U1223, Paris, France
| | - Zacarias Garcia
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Medicale, U1223, Paris, France
| | - Hélène Beuneu
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Medicale, U1223, Paris, France
| | - Fabrice Lemaître
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Medicale, U1223, Paris, France
| | - Philippe Bousso
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, Paris, France .,Institut National de la Santé et de la Recherche Medicale, U1223, Paris, France
| |
Collapse
|
9
|
Putney JW. Forms and functions of store-operated calcium entry mediators, STIM and Orai. Adv Biol Regul 2017; 68:88-96. [PMID: 29217255 DOI: 10.1016/j.jbior.2017.11.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 12/31/2022]
Abstract
Calcium signals arise by multiple mechanisms, including mechanisms of release of intracellular stored Ca2+, and the influx of Ca2+ through channels in the plasma membrane. One mechanism that links these two sources of Ca2+ is store-operated Ca2+ entry, the most commonly encountered version of which involves the extensively studied calcium-release-activated Ca2+ (CRAC) channel. The minimal and essential molecular components of the CRAC channel are the STIM proteins that function as Ca2+ sensors in the endoplasmic reticulum, and the Orai proteins that comprise the pore forming subunits of the CRAC channel. CRAC channels are known to play significant roles in a wide variety of physiological functions. This review discusses the multiple forms of STIM and Orai proteins encountered in mammalian cells, and discusses some specific examples of how these proteins modulate or mediate important physiological processes.
Collapse
Affiliation(s)
- James W Putney
- National Institute of Environmental Health Sciences - NIH, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
10
|
Bernhardt ML, Padilla-Banks E, Stein P, Zhang Y, Williams CJ. Store-operated Ca 2+ entry is not required for fertilization-induced Ca 2+ signaling in mouse eggs. Cell Calcium 2017; 65:63-72. [PMID: 28222911 DOI: 10.1016/j.ceca.2017.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 01/01/2023]
Abstract
Repetitive oscillations in cytoplasmic Ca2+ due to periodic Ca2+ release from the endoplasmic reticulum (ER) drive mammalian embryo development following fertilization. Influx of extracellular Ca2+ to support the refilling of ER stores is required for sustained Ca2+ oscillations, but the mechanisms underlying this Ca2+ influx are controversial. Although store-operated Ca2+ entry (SOCE) is an appealing candidate mechanism, several groups have arrived at contradictory conclusions regarding the importance of SOCE in oocytes and eggs. To definitively address this question, Ca2+ influx was assessed in oocytes and eggs lacking the major components of SOCE, the ER Ca2+ sensor STIM proteins, and the plasma membrane Ca2+ channel ORAI1. We generated oocyte-specific conditional knockout (cKO) mice for Stim1 and Stim2, and also generated Stim1/2 double cKO mice. Females lacking one or both STIM proteins were fertile and their ovulated eggs displayed normal patterns of Ca2+ oscillations following fertilization. In addition, no impairment was observed in ER Ca2+ stores or Ca2+ influx following store depletion. Similar studies were performed on eggs from mice globally lacking ORAI1; no abnormalities were observed. Furthermore, spontaneous Ca2+ influx was normal in oocytes from Stim1/2 cKO and ORAI1-null mice. Finally, we tested if TRPM7-like channels could support spontaneous Ca2+ influx, and found that it was largely prevented by NS8593, a TRPM7-specific inhibitor. Fertilization-induced Ca2+ oscillations were also impaired by NS8593. Combined, these data robustly show that SOCE is not required to support appropriate Ca2+ signaling in mouse oocytes and eggs, and that TRPM7-like channels may contribute to Ca2+ influx that was previously attributed to SOCE.
Collapse
Affiliation(s)
- Miranda L Bernhardt
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Elizabeth Padilla-Banks
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Paula Stein
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Yingpei Zhang
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
11
|
Pacheco J, Vaca L. STIM-TRP Pathways and Microdomain Organization: Auxiliary Proteins of the STIM/Orai Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:189-210. [DOI: 10.1007/978-3-319-57732-6_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
SOCE proteins, STIM1 and Orai1, are localized to the cleavage furrow during cytokinesis of the first and second cell division cycles in zebrafish embryos. ZYGOTE 2016; 24:880-889. [PMID: 27702423 DOI: 10.1017/s0967199416000216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In zebrafish embryos, distinct Ca2+ transients are localized to the early cleavage furrows during the first few cell division cycles. These transients are generated mainly by release via IP3Rs in the endoplasmic reticulum, and they are necessary for furrow positioning, propagation, deepening and apposition. We previously showed, via the use of inhibitors, that store-operated Ca2+ entry (SOCE) also appears to be essential for maintaining the IP3R-mediated elevated levels of [Ca2+]i for the extended periods required for the completion of successful furrow deepening and daughter cell apposition in these large embryonic cells. Here, newly fertilized, dechorionated embryos were fixed at various times during the first and second cell division cycles and immunolabelled with antibodies to STIM1 and/or Orai1 (key components of SOCE). We show that both of these proteins have a dynamic pattern of localization during cytokinesis of the first two cell division cycles. These new data help to support our previous inhibitor results, and provide additional evidence that SOCE contributes to the maintenance of the sustained elevated Ca2+ that is required for the successful completion of cytokinesis in the large cells of embryonic zebrafish.
Collapse
|
13
|
Extracellular Calcium Has Multiple Targets to Control Cell Proliferation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:133-56. [DOI: 10.1007/978-3-319-26974-0_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Abstract
Store-operated calcium channels (SOCs) are a major pathway for calcium signaling in virtually all metozoan cells and serve a wide variety of functions ranging from gene expression, motility, and secretion to tissue and organ development and the immune response. SOCs are activated by the depletion of Ca(2+) from the endoplasmic reticulum (ER), triggered physiologically through stimulation of a diverse set of surface receptors. Over 15 years after the first characterization of SOCs through electrophysiology, the identification of the STIM proteins as ER Ca(2+) sensors and the Orai proteins as store-operated channels has enabled rapid progress in understanding the unique mechanism of store-operate calcium entry (SOCE). Depletion of Ca(2+) from the ER causes STIM to accumulate at ER-plasma membrane (PM) junctions where it traps and activates Orai channels diffusing in the closely apposed PM. Mutagenesis studies combined with recent structural insights about STIM and Orai proteins are now beginning to reveal the molecular underpinnings of these choreographic events. This review describes the major experimental advances underlying our current understanding of how ER Ca(2+) depletion is coupled to the activation of SOCs. Particular emphasis is placed on the molecular mechanisms of STIM and Orai activation, Orai channel properties, modulation of STIM and Orai function, pharmacological inhibitors of SOCE, and the functions of STIM and Orai in physiology and disease.
Collapse
Affiliation(s)
- Murali Prakriya
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California
| | - Richard S Lewis
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
15
|
Serrano-Flores B, Garay E, Vázquez-Cuevas FG, Arellano RO. Differential role of STIM1 and STIM2 during transient inward (T in) current generation and the maturation process in the Xenopus oocyte. BMC PHYSIOLOGY 2014; 14:9. [PMID: 25399338 PMCID: PMC4236480 DOI: 10.1186/s12899-014-0009-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/29/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND The Xenopus oocyte is a useful cell model to study Ca2+ homeostasis and cell cycle regulation, two highly interrelated processes. Here, we used antisense oligonucleotides to investigate the role in the oocyte of stromal interaction molecule (STIM) proteins that are fundamental elements of the store-operated calcium-entry (SOCE) phenomenon, as they are both sensors for Ca2+ concentration in the intracellular reservoirs as well as activators of the membrane channels that allow Ca2+ influx. RESULTS Endogenous STIM1 and STIM2 expression was demonstrated, and their synthesis was knocked down 48-72 h after injecting oocytes with specific antisense sequences. Selective elimination of their mRNA and protein expression was confirmed by PCR and Western blot analysis, and we then evaluated the effect of their absence on two endogenous responses: the opening of SOC channels elicited by G protein-coupled receptor (GPCR)-activated Ca2+ release, and the process of maturation stimulated by progesterone. Activation of SOC channels was monitored electrically by measuring the T in response, a Ca2+-influx-dependent Cl- current, while maturation was assessed by germinal vesicle breakdown (GVBD) scoring and electrophysiology. CONCLUSIONS It was found that STIM2, but not STIM1, was essential in both responses, and T in currents and GVBD were strongly reduced or eliminated in cells devoid of STIM2; STIM1 knockdown had no effect on the maturation process, but it reduced the T in response by 15 to 70%. Thus, the endogenous SOCE response in Xenopus oocytes depended mainly on STIM2, and its expression was necessary for entry into meiosis induced by progesterone.
Collapse
|
16
|
Borowiec AS, Bidaux G, Pigat N, Goffin V, Bernichtein S, Capiod T. Calcium channels, external calcium concentration and cell proliferation. Eur J Pharmacol 2013; 739:19-25. [PMID: 24291106 DOI: 10.1016/j.ejphar.2013.10.072] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/28/2013] [Accepted: 10/17/2013] [Indexed: 11/16/2022]
Abstract
Evidence for a role for calcium channel proteins in cell proliferation is numerous suggesting that calcium influx is essential in this physiological process. Several studies in the past thirty years have demonstrated that calcium channel expression levels are determinant in cell proliferation. Voltage-gated, store-operated, second messengers and receptor-operated calcium channels have been associated to cell proliferation. However, the relationship between calcium influx and cell proliferation can be uncoupled in transformed and cancer cells, resulting in an external calcium-independent proliferation. Thus, protein expression could be more important than channel function to trigger cell proliferation suggesting that additional channel functions may be responsible to reconcile calcium channel expression and cell proliferation. When needed, external calcium concentration is obviously important for calcium channel function but it also regulates calcium sensing receptor (CaSR) activity. CaSR can up- or down-regulate cell proliferation depending on physiological conditions. CaSR sensitivity to external calcium is within the 0.5 to 5 mM range and therefore, the role of these receptors in cell proliferation must be taken into account. We therefore suggest here that cell proliferation rates could depend on the relative balance between calcium influx and CaSR activation.
Collapse
Affiliation(s)
| | - Gabriel Bidaux
- INSERM U1003, LabEx ICST, Université Lille 1, Villeneuve d'Ascq F-59655, France
| | - Natascha Pigat
- INSERM U845, Research Center Growth and Signalling Research Center, Paris Descartes University, Sorbonne Paris Cité, Faculty of Medicine, Bâtiment Leriche, 96 rue Didot, Paris F-75993, France
| | - Vincent Goffin
- INSERM U845, Research Center Growth and Signalling Research Center, Paris Descartes University, Sorbonne Paris Cité, Faculty of Medicine, Bâtiment Leriche, 96 rue Didot, Paris F-75993, France
| | - Sophie Bernichtein
- INSERM U845, Research Center Growth and Signalling Research Center, Paris Descartes University, Sorbonne Paris Cité, Faculty of Medicine, Bâtiment Leriche, 96 rue Didot, Paris F-75993, France
| | - Thierry Capiod
- INSERM U845, Research Center Growth and Signalling Research Center, Paris Descartes University, Sorbonne Paris Cité, Faculty of Medicine, Bâtiment Leriche, 96 rue Didot, Paris F-75993, France.
| |
Collapse
|
17
|
Pozo-Guisado E, Martin-Romero FJ. The regulation of STIM1 by phosphorylation. Commun Integr Biol 2013; 6:e26283. [PMID: 24505502 PMCID: PMC3914909 DOI: 10.4161/cib.26283] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 12/31/2022] Open
Abstract
Calcium ion (Ca(2+)) concentration plays a key role in cell signaling in eukaryotic cells. At the cellular level, Ca(2+) directly participates in such diverse cellular events as adhesion and migration, differentiation, contraction, secretion, synaptic transmission, fertilization, and cell death. As a consequence of these diverse actions, the cytosolic concentration of free Ca(2+) is tightly regulated by the coordinated activity of Ca(2+) channels, Ca(2+) pumps, and Ca(2+)-binding proteins. Although many of these regulators have been studied in depth, other proteins have been described recently, and naturally far less is known about their contribution to cell physiology. Within this last group of proteins, STIM1 has emerged as a major contributor to Ca(2+) signaling by means of its activity as Ca(2+) channel regulator. STIM1 is a protein resident mainly, but not exclusively, in the endoplasmic reticulum (ER), and activates a set of plasma membrane Ca(2+) channels termed store-operated calcium channels (SOCs) when the concentration of free Ca(2+) within the ER drops transiently as a result of Ca(2+) release from this compartment. Knowledge regarding the molecular architecture of STIM1 has grown considerably during the last years, and several structural domains within STIM1 have been reported to be required for the specific molecular interactions with other important players in Ca(2+) signaling, such as Ca(2+) channels and microtubules. Within the modulators of STIM1, phosphorylation has been shown to both activate and inactivate STIM1-dependent Ca(2+) entry depending on the cell type, cell cycle phase, and the specific residue that becomes modified. Here we shall review current knowledge regarding the modulation of STIM1 by phosphorylation.
Collapse
Affiliation(s)
- Eulalia Pozo-Guisado
- Department of Biochemistry and Molecular Biology; School of Life Sciences; University of Extremadura; Badajoz, Spain
| | | |
Collapse
|
18
|
Lee B, Palermo G, Machaca K. Downregulation of store-operated Ca2+ entry during mammalian meiosis is required for the egg-to-embryo transition. J Cell Sci 2013; 126:1672-81. [PMID: 23424198 DOI: 10.1242/jcs.121335] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A specialized Ca(2+) transient at fertilization represents the universal driver for the egg-to-embryo transition. Ca(2+) signaling remodels during oocyte maturation to endow the egg with the capacity to produce the specialized Ca(2+) transient at fertilization, which takes the form of a single (e.g. Xenopus) or multiple (e.g. mouse) Ca(2+) spikes depending on the species. Store-operated Ca(2+) entry (SOCE) is the predominant Ca(2+) influx pathway in vertebrate oocytes, and in Xenopus SOCE completely inactivates during meiosis. Here, we show that SOCE is downregulated during mouse meiosis, but remains active in mature metaphase II eggs. SOCE inhibition is due to a decreased ability of the Ca(2+) sensor STIM1 to translocate to the cortical endoplasmic reticulum domain and due to internalization of Orai1. Reversing SOCE downregulation by overexpression of STIM1 and Orai1 prolongs the Ca(2+) oscillations at egg activation and disrupts the egg-to-embryo transition. Thus, SOCE downregulation during mammalian oocyte maturation is a crucial determinant of the fertilization-specific Ca(2+) transient, egg activation and early embryonic development.
Collapse
Affiliation(s)
- Bora Lee
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10021, USA
| | | | | |
Collapse
|
19
|
Alternative Forms of the Store-Operated Calcium Entry Mediators, STIM1 and Orai1. CURRENT TOPICS IN MEMBRANES 2013; 71:109-23. [DOI: 10.1016/b978-0-12-407870-3.00005-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Effects of cisplatin on lymphocyte structure and functions in mice with ehrlich ascitic carcinoma. Bull Exp Biol Med 2012; 151:62-5. [PMID: 22442804 DOI: 10.1007/s10517-011-1260-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of cisplatin on [Ca2+]in, pHin, NAD(P)H level, and lymphocyte membrane microviscosity were studied in mice with Ehrlich ascitic carcinoma. The level of free [Ca2+]in in lymphocytes from mice with Ehrlich ascitic carcinoma was 4-fold reduced compared to that in intact animals on day 13 of tumor development, while [H+]in level was elevated. Cisplatin caused no changes in the level of free Ca2+, but reduced cytosol acidification. Lymphocyte membrane fluidity in mice with tumors was increased in the lipid bilayer and in the protein-lipid contact zone and did not depend on cisplatin treatment. The level of NAD(P)H was low in mice with tumors, but increased sharply after cisplatin treatment. It seems that functional activity of lymphocytes decreased at the stage of well-developed tumor, which promoted inhibition of the lymphocyte defense properties. Cisplatin did not modify the structure and functions of lymphocytes and presumably even improved their energy status.
Collapse
|
21
|
Lee K, Wang C, Machaty Z. STIM1 is required for Ca2+ signaling during mammalian fertilization. Dev Biol 2012; 367:154-62. [PMID: 22565091 DOI: 10.1016/j.ydbio.2012.04.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 04/25/2012] [Indexed: 11/30/2022]
Abstract
During fertilization in mammals, a series of oscillations in the oocyte's intracellular free Ca(2+) concentration is responsible for oocyte activation and stimulation of embryonic development. The oscillations are associated with influx of Ca(2+) across the plasma membrane that is probably triggered by the depletion of the intracellular stores, a mechanism known as store-operated Ca(2+) entry. Recently, STIM1 has been identified in oocytes as a key component of the machinery that generates the Ca(2+) influx after store depletion. In this study, the involvement of STIM1 in the sperm-induced Ca(2+) oscillations and its significance in supporting subsequent embryo development were investigated. Downregulation of STIM1 levels in pig oocytes by siRNA completely inhibited the repetitive Ca(2+) signal triggered by the fertilizing sperm. In addition, a significantly lower percentage of oocytes cleaved or formed blastocysts when STIM1 was downregulated prior to fertilization compared to the control groups. Restoring STIM1 levels after fertilization in such oocytes by means of mRNA injection could not rescue embryonic development that in most cases was arrested at the 2-cell stage. On the other hand, STIM1 overexpression prior to fertilization did not alter the pattern of sperm-induced Ca(2+) oscillations and development of these fertilized oocytes up to the blastocyst stage was also similar to that registered in the control group. Finally, downregulation of STIM1 had no effect on oocyte activation when activation was stimulated artificially by inducing a single large elevation in the oocyte's intracellular free Ca(2+) concentration. These findings suggest that STIM1 is essential for normal fertilization as it is involved in the maintenance of the long-lasting repetitive Ca(2+) signal.
Collapse
Affiliation(s)
- Kiho Lee
- Division of Animal Sciences, University of Missouri-Columbia, Columbia, MO 65201, USA
| | | | | |
Collapse
|
22
|
Wang C, Lee K, Gajdócsi E, Papp ÁB, Machaty Z. Orai1 mediates store-operated Ca2+ entry during fertilization in mammalian oocytes. Dev Biol 2012; 365:414-23. [DOI: 10.1016/j.ydbio.2012.03.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 02/23/2012] [Accepted: 03/07/2012] [Indexed: 11/26/2022]
|
23
|
Ercan E, Chung SH, Bhardwaj R, Seedorf M. Di-Arginine Signals and the K-Rich Domain Retain the Ca2+Sensor STIM1 in the Endoplasmic Reticulum. Traffic 2012; 13:992-1003. [DOI: 10.1111/j.1600-0854.2012.01359.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/28/2012] [Accepted: 04/12/2012] [Indexed: 11/30/2022]
Affiliation(s)
| | - Shan-Hua Chung
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH); DKFZ-ZMBH Alliance; Im Neuenheimer Feld 282; 69120; Heidelberg; Germany
| | - Rajesh Bhardwaj
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH); DKFZ-ZMBH Alliance; Im Neuenheimer Feld 282; 69120; Heidelberg; Germany
| | - Matthias Seedorf
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH); DKFZ-ZMBH Alliance; Im Neuenheimer Feld 282; 69120; Heidelberg; Germany
| |
Collapse
|
24
|
Abstract
Store-operate Ca2+ channels gate Ca2+ entry into the cytoplasm in response to the depletion of Ca2+ from endoplasmic reticulum Ca2+ stores. The major molecular components of store-operated Ca2+ entry are STIM (stromal-interacting molecule) 1 (and in some instances STIM2) that serves as the endoplasmic reticulum Ca2+ sensor, and Orai (Orai1, Orai2 and Orai3) which function as pore-forming subunits of the store-operated channel. It has been known for some time that store-operated Ca2+ entry is shut down during cell division. Recent work has revealed complex mechanisms regulating the functions and locations of both STIM1 and Orai1 in dividing cells.
Collapse
Affiliation(s)
- Jeremy T Smyth
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute-NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
25
|
Marin M. Calcium Signaling in Xenopus oocyte. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:1073-94. [DOI: 10.1007/978-94-007-2888-2_49] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
26
|
Martín-Romero FJ, López-Guerrero AM, Álvarez IS, Pozo-Guisado E. Role of Store-Operated Calcium Entry During Meiotic Progression and Fertilization of Mammalian Oocytes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:291-328. [DOI: 10.1016/b978-0-12-394306-4.00014-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Capiod T. Cell proliferation, calcium influx and calcium channels. Biochimie 2011; 93:2075-9. [PMID: 21802482 DOI: 10.1016/j.biochi.2011.07.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 07/12/2011] [Indexed: 01/14/2023]
Abstract
Both increases in the basal cytosolic calcium concentration ([Ca(2+)](cyt)) and [Ca(2+)](cyt) transients play major roles in cell cycle progression, cell proliferation and division. Calcium transients are observed at various stages of cell cycle and more specifically during late G(1) phase, before and during mitosis. These calcium transients are mainly due to calcium release and reuptake by the endoplasmic reticulum (ER) and are observed over periods of hours in oocytes and mammalian cells. Calcium entry sustains the ER Ca(2+) load and thereby helps to maintain these calcium transients for such a long period. Calcium influx also controls cell growth and proliferation in several cell types. Various calcium channels are involved in this process and the tight relation between the expression and activity of cyclins and calcium channels also suggests that calcium entry may be needed only at particular stages of the cell cycle. Consistent with this idea, the expression of l-type and T-type calcium channels and SOCE amplitude fluctuate along the cell cycle. But, as calcium influx regulates several other transduction pathways, the presence of a specific connection to trigger activation of proliferation and cell division in mammalian cells will be discussed in this review.
Collapse
Affiliation(s)
- Thierry Capiod
- INSERM U807, Faculté de Médecine, 156 rue de Vaugirard, Paris, France.
| |
Collapse
|
28
|
Ca2+ signaling during mammalian fertilization: requirements, players, and adaptations. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a006767. [PMID: 21441584 DOI: 10.1101/cshperspect.a006767] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Changes in the intracellular concentration of calcium ([Ca(2+)](i)) represent a vital signaling mechanism enabling communication among cells and between cells and the environment. The initiation of embryo development depends on a [Ca(2+)](i) increase(s) in the egg, which is generally induced during fertilization. The [Ca(2+)](i) increase signals egg activation, which is the first stage in embryo development, and that consist of biochemical and structural changes that transform eggs into zygotes. The spatiotemporal patterns of [Ca(2+)](i) at fertilization show variability, most likely reflecting adaptations to fertilizing conditions and to the duration of embryonic cell cycles. In mammals, the focus of this review, the fertilization [Ca(2+)](i) signal displays unique properties in that it is initiated after gamete fusion by release of a sperm-derived factor and by periodic and extended [Ca(2+)](i) responses. Here, we will discuss the events of egg activation regulated by increases in [Ca(2+)](i), the possible downstream targets that effect these egg activation events, and the property and identity of molecules both in sperm and eggs that underpin the initiation and persistence of the [Ca(2+)](i) responses in these species.
Collapse
|
29
|
Smyth JT, Hwang SY, Tomita T, DeHaven WI, Mercer JC, Putney JW. Activation and regulation of store-operated calcium entry. J Cell Mol Med 2011; 14:2337-49. [PMID: 20807283 PMCID: PMC3074973 DOI: 10.1111/j.1582-4934.2010.01168.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The process of store-operated Ca2+ entry (SOCE), whereby Ca2+ influx across the plasma membrane is activated in response to depletion of intracellular Ca2+ stores in the endoplasmic reticulum (ER), has been under investigation for greater than 25 years; however, only in the past 5 years have we come to understand this mechanism at the molecular level. A surge of recent experimentation indicates that STIM molecules function as Ca2+ sensors within the ER that, upon Ca2+ store depletion, rearrange to sites very near to the plasma membrane. At these plasma membrane-ER junctions, STIM interacts with and activates SOCE channels of the Orai family. The molecular and biophysical data that have led to these findings are discussed in this review, as are several controversies within this rapidly expanding field.
Collapse
Affiliation(s)
- Jeremy T Smyth
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences-NIH, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
30
|
Woo JS, Cho CH, Kim DH, Lee EH. TRPC3 cation channel plays an important role in proliferation and differentiation of skeletal muscle myoblasts. Exp Mol Med 2011; 42:614-27. [PMID: 20644344 DOI: 10.3858/emm.2010.42.9.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During membrane depolarization associated with skeletal excitation-contraction (EC) coupling, dihydropyridine receptor [DHPR, a L-type Ca(2+) channel in the transverse (t)-tubule membrane] undergoes conformational changes that are transmitted to ryanodine receptor 1 [RyR1, an internal Ca(2+)-release channel in the sarcoplasmic reticulum (SR) membrane] causing Ca(2+) release from the SR. Canonical-type transient receptor potential cation channel 3 (TRPC3), an extracellular Ca(2+)-entry channel in the t-tubule and plasma membrane, is required for full-gain of skeletal EC coupling. To examine additional role(s) for TRPC3 in skeletal muscle other than mediation of EC coupling, in the present study, we created a stable myoblast line with reduced TRPC3 expression and without alpha1((S))DHPR (MDG/TRPC3 KD myoblast) by knock-down of TRPC3 in alpha1((S))DHPR-null muscular dysgenic (MDG) myoblasts using retrovirus-delivered small interference RNAs in order to eliminate any DHPR-associated EC coupling-related events. Unlike wild-type or alpha1((S))DHPR-null MDG myoblasts, MDG/TRPC3 KD myoblasts exhibited dramatic changes in cellular morphology (e.g., unusual expansion of both cell volume and the plasma membrane, and multi-nuclei) and failed to differentiate into myotubes possibly due to increased Ca(2+) content in the SR. These results suggest that TRPC3 plays an important role in the maintenance of skeletal muscle myoblasts and myotubes.
Collapse
Affiliation(s)
- Jin Seok Woo
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | | | | | | |
Collapse
|
31
|
Yu F, Sun L, Machaca K. Constitutive recycling of the store-operated Ca2+ channel Orai1 and its internalization during meiosis. ACTA ACUST UNITED AC 2010; 191:523-35. [PMID: 21041445 PMCID: PMC3003315 DOI: 10.1083/jcb.201006022] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The egg's competency to activate at fertilization and transition to embryogenesis is dependent on its ability to generate a fertilization-specific Ca(2+) transient. To endow the egg with this capacity, Ca(2+) signals remodel during oocyte maturation, including inactivation of the primary Ca(2+) influx pathway store-operated Ca(2+) entry (SOCE). SOCE inactivation is coupled to internalization of the SOCE channel, Orai1. In this study, we show that Orai1 internalizes during meiosis through a caveolin (Cav)- and dynamin-dependent endocytic pathway. Cav binds to Orai1, and we map a Cav consensus-binding site in the Orai1 N terminus, which is required for Orai1 internalization. Furthermore, at rest, Orai1 actively recycles between an endosomal compartment and the cell membrane through a Rho-dependent endocytic pathway. A significant percentage of total Orai1 is intracellular at steady state. Store depletion completely shifts endosomal Orai1 to the cell membrane. These results define vesicular trafficking mechanisms in the oocyte that control Orai1 subcellular localization at steady state, during meiosis, and after store depletion.
Collapse
Affiliation(s)
- Fang Yu
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar
| | | | | |
Collapse
|
32
|
Arredouani A, Yu F, Sun L, Machaca K. Regulation of store-operated Ca2+ entry during the cell cycle. J Cell Sci 2010; 123:2155-62. [PMID: 20554894 DOI: 10.1242/jcs.069690] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytoplasmic Ca(2+) signals are central to numerous cell physiological processes, including cellular proliferation. Historically, much of the research effort in this area has focused on the role of Ca(2+) signals in cell-cycle progression. It is becoming clear, however, that the relationship between Ca(2+) signaling and the cell cycle is a 'two-way street'. Specifically, Ca(2+)-signaling pathways are remodeled during M phase, leading to altered Ca(2+) dynamics. Such remodeling probably better serves the large variety of functions that cells must perform during cell division compared with during interphase. This is clearly the case during oocyte meiosis, because remodeling of Ca(2+) signals partially defines the competence of the egg to activate at fertilization. Store-operated Ca(2+) entry (SOCE) is a ubiquitous Ca(2+)-signaling pathway that is regulated during M phase. In this Commentary, we discuss the latest advances in our understanding of how SOCE is regulated during cell division.
Collapse
Affiliation(s)
- Abdelilah Arredouani
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Education City, Qatar Foundation, Doha, Qatar
| | | | | | | |
Collapse
|
33
|
Smyth JT, Petranka JG, Boyles RR, DeHaven WI, Fukushima M, Johnson KL, Williams JG, Putney JW. Phosphorylation of STIM1 underlies suppression of store-operated calcium entry during mitosis. Nat Cell Biol 2009; 11:1465-72. [PMID: 19881501 PMCID: PMC3552519 DOI: 10.1038/ncb1995] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 08/21/2009] [Indexed: 12/13/2022]
Abstract
Store-operated Ca(2+) entry (SOCE) and Ca(2+) release-activated Ca(2+) currents (I(crac)) are strongly suppressed during cell division, the only known physiological situation in which Ca(2+) store depletion is uncoupled from the activation of Ca(2+) influx [corrected]. We found that the endoplasmic reticulum (ER) Ca(2+) sensor STIM1 failed to rearrange into near-plasma membrane puncta in mitotic cells, a critical step in the SOCE-activation pathway. We also found that STIM1 from mitotic cells is recognized by the phospho-specific MPM-2 antibody, suggesting that STIM1 is phosphorylated during mitosis. Removal of ten MPM-2 recognition sites by truncation at amino acid 482 abolished MPM-2 recognition of mitotic STIM1, and significantly rescued STIM1 rearrangement and SOCE response in mitosis. We identified Ser 486 and Ser 668 as mitosis-specific phosphorylation sites, and STIM1 containing mutations of these sites to alanine also significantly rescued mitotic SOCE. Therefore, phosphorylation of STIM1 at Ser 486 and Ser 668, and possibly other sites, underlies suppression of SOCE during mitosis.
Collapse
Affiliation(s)
- Jeremy T Smyth
- Laboratory of Signal Transduction and National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Russa AD, Maesawa C, Satoh YI. Spontaneous [Ca2+]i oscillations in G1/S phase-synchronized cells. JOURNAL OF ELECTRON MICROSCOPY 2009; 58:321-329. [PMID: 19460967 DOI: 10.1093/jmicro/dfp023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Ca(2+) signaling controls a wide range of cellular functions such as division, fertilization, apoptosis and necrosis. Specifically, calcium signaling is thought to play a crucial role in driving cells through the different stages of the cell-division cycle. In most cells, however, this fact is far from being established. Few studies have examined this question from a different perspective: whether cells exhibit some characteristic cell cycle-dependent intracellular calcium-signaling patterns. This approach is effective in discerning the causal relationship between Ca(2+) signaling and the cell cycle. Through synchronization of the cell cycle, flow cytometry and confocal scanning microscopic intracellular calcium ion concentration ([Ca(2+)](i)) imaging, the present study shows that the G1/S phase transition is uniquely characterized by spontaneous [Ca(2+)](i) oscillations that last for up to 40 min. Most likely, these oscillations emanate from the [Ca(2+)](i) signaling that accompanies DNA replication as the cell prepares for the next division cycle. These temporal signals further affirm the significance of Ca(2+) in the cell cycle.
Collapse
|
35
|
Orai1 internalization and STIM1 clustering inhibition modulate SOCE inactivation during meiosis. Proc Natl Acad Sci U S A 2009; 106:17401-6. [PMID: 19805124 DOI: 10.1073/pnas.0904651106] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Store-operated Ca(2+) entry (SOCE) is a ubiquitous Ca(2+) influx pathway activated in response to depletion of intracellular Ca(2+) stores. SOCE is a primary modulator of intracellular Ca(2+) dynamics, which specify cellular responses. Interestingly, SOCE inactivates during M phase but the mechanisms involved remain unclear. SOCE is mediated by clustering of the ER Ca(2+) sensor STIM1 in response to Ca(2+) store depletion, leading to gating of the plasma membrane SOCE channel Orai1. Here we show that SOCE inactivation in meiosis is the result of internalization of Orai1 into an intracellular vesicular compartment and to the inability of STIM1 to cluster in response to store depletion. At rest, Orai1 continuously recycles between the cell membrane and an endosomal compartment. We further show that STIM1-STIM1 interactions are inhibited during meiosis, which appears to mediate the inability of STIM1 to form puncta following store depletion. In contrast, STIM1-Orai1 interactions remain functional during meiosis. Combined, the removal of Orai1 from the cell membrane and STIM1 clustering inhibition effectively uncouple store depletion from SOCE activation in meiosis. Although STIM1 is phosphorylated during meiosis, phosphomimetic and alanine substitution mutations do not modulate STIM1 clustering, arguing that phosphorylation does not mediate STIM1 clustering inhibition during meiosis.
Collapse
|
36
|
Russa AD, Ishikita N, Masu K, Akutsu H, Saino T, Satoh YI. Microtubule remodeling mediates the inhibition of store-operated calcium entry (SOCE) during mitosis in COS-7 cells. ACTA ACUST UNITED AC 2009; 71:249-63. [PMID: 19359807 DOI: 10.1679/aohc.71.249] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Regulation of the intracellular calcium ion concentration ([Ca(2+)](i)) is critical, because calcium signaling controls diverse and vital cellular processes such as secretion, proliferation, division, gene transcription, and apoptosis. Store-operated calcium entry (SOCE) is the main mechanism through which non-excitable cells replenish and thus maintain this delicate balance. There is limited evidence which indicates that SOCE may be inhibited during mitosis, and the mechanisms leading to the presumed inhibition has not been elucidated. In the present study, we examined and compared the [Ca(2+)](i) dynamics of COS-7 cells in mitotic and non-mitotic phases with special reference paid to SOCE. Laser scanning confocal microscopy to monitor [Ca(2+)](i) dynamics revealed that SOCE was progressively inhibited in mitosis and became virtually absent during the metaphase. We used various cytoskeletal modifying drugs and immunofluorescence to assess the contribution of microtubule and actin filaments in SOCE signaling. Nocodazole treatment caused microtubule reorganization and retraction from the cell periphery that mimicked the natural mitotic microtubule remodeling that was also accompanied by SOCE inhibition. Short exposure to paclitaxel, a microtubule-stabilizing drug, bolstered SOCE, whereas long exposure resulted in microtubule disruption and SOCE inhibition. Actin-modifying drugs did not affect SOCE. These findings indicate that mitotic microtubule remodeling plays a significant role in the inhibition of SOCE during mitosis.
Collapse
Affiliation(s)
- Afadhali Denis Russa
- Department of Anatomy (Cell Biology Group), Iwate Medical University School of Medicine, Uchimaru, Morioka, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Oocyte maturation is an essential cellular differentiation pathway that prepares the egg for activation at fertilization leading to the initiation of embryogenesis. An integral attribute of oocyte maturation is the remodeling of Ca2+ signaling pathways endowing the egg with the capacity to produce a specialized Ca2+ transient at fertilization that is necessary and sufficient for egg activation. Consequently, mechanistic elucidation of Ca2+ signaling differentiation during oocyte maturation is fundamental to our understanding of egg activation, and offers a glimpse into Ca2+ signaling regulation during the cell cycle.
Collapse
Affiliation(s)
- Khaled Machaca
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| |
Collapse
|
38
|
Abstract
In electrically nonexcitable cells, Ca2+influx is essential for regulating a host of kinetically distinct processes involving exocytosis, enzyme control, gene regulation, cell growth and proliferation, and apoptosis. The major Ca2+entry pathway in these cells is the store-operated one, in which the emptying of intracellular Ca2+stores activates Ca2+influx (store-operated Ca2+entry, or capacitative Ca2+entry). Several biophysically distinct store-operated currents have been reported, but the best characterized is the Ca2+release-activated Ca2+current, ICRAC. Although it was initially considered to function only in nonexcitable cells, growing evidence now points towards a central role for ICRAC-like currents in excitable cells too. In spite of intense research, the signal that relays the store Ca2+content to CRAC channels in the plasma membrane, as well as the molecular identity of the Ca2+sensor within the stores, remains elusive. Resolution of these issues would be greatly helped by the identification of the CRAC channel gene. In some systems, evidence suggests that store-operated channels might be related to TRP homologs, although no consensus has yet been reached. Better understood are mechanisms that inactivate store-operated entry and hence control the overall duration of Ca2+entry. Recent work has revealed a central role for mitochondria in the regulation of ICRAC, and this is particularly prominent under physiological conditions. ICRACtherefore represents a dynamic interplay between endoplasmic reticulum, mitochondria, and plasma membrane. In this review, we describe the key electrophysiological features of ICRACand other store-operated Ca2+currents and how they are regulated, and we consider recent advances that have shed insight into the molecular mechanisms involved in this ubiquitous and vital Ca2+entry pathway.
Collapse
Affiliation(s)
- Anant B Parekh
- Department of Physiology, University of Oxford, United Kingdom.
| | | |
Collapse
|
39
|
Peluso JJ, Fernandez G, Pappalardo A, White BA. Membrane-initiated events account for progesterone's ability to regulate intracellular free calcium levels and inhibit rat granulosa cell mitosis. Biol Reprod 2002; 67:379-85. [PMID: 12135870 DOI: 10.1095/biolreprod67.2.379] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
It has been proposed that the antimitogenic action of progesterone (P(4)) is mediated through a membrane receptor that has GABA(A) receptor-like characteristics. To test this hypothesis, studies were designed to compare the antimitogenic effects of P(4) with its gamma amino butyric acid(A) (GABA(A)) receptor-activating metabolite, 5alpha-pregnane-3alpha-21-diol-20-one (5alpha3alpha). These studies revealed that P(4) was more effective than 5alpha3alpha in blocking mitogen-dependent mitosis of both small granulosa cells (GCs) and spontaneously immortalized granulosa cells (SIGCs). Ligand binding studies illustrated that P(4) bound to SIGCs with an apparent dissociation constant (K(d)) of 0.32 +/- 0.09 microM, whereas 5alpha3alpha bound with an apparent K(d) of 40 +/- 19 microM. Further, the GABA(A) antagonist, bicuculline, did not attenuate P(4)'s antimitotic action in SIGCs. Finally, reverse transcriptase-polymerase chain reaction (RT-PCR) studies demonstrated that none of the 6 known alpha chains of the GABA(A) receptors to which bicuculline binds were detected in SIGCs. Taken together, these studies suggest that P(4) does not mediate its action via a GABA(A)-like receptor. Additional studies revealed that P(4) regulated intracellular free calcium levels ([Ca(2+)](i)) as part of its antimitotic action. Specifically, P(4) maintained a basal [Ca(2+)](i) level that was slightly lower than normal. Increasing extracellular calcium not only increased basal [Ca(2+)](i) but also attenuated P(4)'s antimitogenic effect. P(4)'s actions appeared to be initiated at the membrane, since horseradish peroxidase conjugated-P(4) (HP-P(4)), which is cell impermeable, was as effective in blocking mitosis as P(4). Progesterone receptor (PR) mRNA was not detected in SIGCs by RT-PCR analysis, which is consistent with the findings in GCs. However, a 60-kDa protein was detected within crude membrane fractions of both GCs and SIGCs using an antibody directed against the ligand binding domain of the PR (C-262). This antibody was also used in immunocytochemical studies to detect a protein that was associated with the plasma membrane of SIGCs. It is proposed that this 60-kDa protein mediates P(4)'s membrane-initiated actions.
Collapse
Affiliation(s)
- John J Peluso
- Department of Physiology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | | | | | | |
Collapse
|
40
|
Machaca K, Haun S. Induction of maturation-promoting factor during Xenopus oocyte maturation uncouples Ca(2+) store depletion from store-operated Ca(2+) entry. J Cell Biol 2002; 156:75-85. [PMID: 11781335 PMCID: PMC1307503 DOI: 10.1083/jcb.200110059] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2001] [Revised: 11/15/2001] [Accepted: 11/19/2001] [Indexed: 11/22/2022] Open
Abstract
During oocyte maturation, eggs acquire the ability to generate specialized Ca(2+) signals in response to sperm entry. Such Ca(2+) signals are crucial for egg activation and the initiation of embryonic development. We examined the regulation during Xenopus oocyte maturation of store-operated Ca(2+) entry (SOCE), an important Ca(2+) influx pathway in oocytes and other nonexcitable cells. We have previously shown that SOCE inactivates during Xenopus oocyte meiosis. SOCE inactivation may be important in preventing premature egg activation. In this study, we investigated the correlation between SOCE inactivation and the Mos-mitogen-activated protein kinase (MAPK)-maturation-promoting factor (MPF) kinase cascade, which drives Xenopus oocyte maturation. SOCE inactivation at germinal vesicle breakdown coincides with an increase in the levels of MAPK and MPF. By differentially inducing Mos, MAPK, and MPF, we demonstrate that the activation of MPF is necessary for SOCE inactivation during oocyte maturation. In contrast, sustained high levels of Mos kinase and the MAPK cascade have no effect on SOCE activation. We further show that preactivated SOCE is not inactivated by MPF, suggesting that MPF does not block Ca(2+) influx through SOCE channels, but rather inhibits coupling between store depletion and SOCE activation.
Collapse
Affiliation(s)
- Khaled Machaca
- Department of Physiology and Biophysics, University of Arkansas Medical Science, Little Rock, 72205, USA.
| | | |
Collapse
|
41
|
Bödding M. Reduced store-operated Ca(2+) currents in rat basophilic leukaemia cells cultured under serum-free conditions. Cell Calcium 2001; 30:141-50. [PMID: 11440471 DOI: 10.1054/ceca.2001.0222] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Influx of Ca(2+) represents an important regulatory signal in the process of cell proliferation. However, little is known about how Ca(2+) entry changes during the cell-cycle. Patch-clamp experiments and microfluorimetry show that store-operated Ca(2+) entry was substantially reduced in rat basophilic leukaemia cells cultured for 24h under serum-free conditions. Likewise, retinoic acid treatment blocked Ca(2+) influx activated by store depletion via inositol 1,4,5-trisphosphate. Both procedures are known to arrest cells at the G0/G1 boundary of the cell-cycle and induced a reduction in 5-bromo 2'-deoxyuridine incorporation into DNA. Ca(2+) release from the stores remained unaltered and two types of K(+) currents were not affected in cells after serum starvation. The specific reduction in Ca(2+) entry was not detected when using aphidicolin, 5-fluorouracil or thymidine to synchronise the cell-cycle. These data suggest that store-operated Ca(2+) influx changed during cell-cycle progression which might have important implications for cell growth.
Collapse
Affiliation(s)
- M Bödding
- University Laboratory of Physiology, Parks Road, Oxford, UK.
| |
Collapse
|
42
|
Machaca K, Haun S. Store-operated calcium entry inactivates at the germinal vesicle breakdown stage of Xenopus meiosis. J Biol Chem 2000; 275:38710-5. [PMID: 10991950 PMCID: PMC1201341 DOI: 10.1074/jbc.m007887200] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Store-operated calcium entry (SOCE) is the predominant Ca(2+) influx pathway in non-excitable cells and is activated in response to depletion of intracellular Ca(2+) stores. We have studied SOCE regulation during Xenopus oocyte meiosis. SOCE can be measured readily in stage VI Xenopus oocytes arrested at the G(2)-M transition of the cell cycle, either by Ca(2+) imaging or by recording the SOCE current. However, following meiotic maturation, SOCE can no longer be activated by store depletion. We have characterized the time course of SOCE inactivation during oocyte maturation, and show that SOCE inactivates almost completely, in a very short time period, at the germinal vesicle breakdown stage of meiosis. This acute inactivation offers an opportunity to better understand SOCE regulation.
Collapse
Affiliation(s)
- K Machaca
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | |
Collapse
|
43
|
Tokuda H, Kozawa O, Uematsu T. Basic fibroblast growth factor stimulates vascular endothelial growth factor release in osteoblasts: divergent regulation by p42/p44 mitogen-activated protein kinase and p38 mitogen-activated protein kinase. J Bone Miner Res 2000; 15:2371-9. [PMID: 11127202 DOI: 10.1359/jbmr.2000.15.12.2371] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We previously showed that basic fibroblast growth factor (bFGF) activates p38 mitogen-activated protein (MAP) kinase via Ca2+ mobilization, resulting in interleukin-6 (IL-6) synthesis in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of bFGF on the release of vascular endothelial growth factor (VEGF) in these cells. bFGF stimulated VEGF release dose dependently in the range between 10 and 100 ng/ml. SB203580, an inhibitor of p38 MAP kinase, markedly enhanced the bFGF-induced VEGF release. bFGF induced the phosphorylation of both p42/p44 MAP kinase and p38 MAP kinase. PD98059, an inhibitor of upstream kinase of p42/p44 MAP kinase, reduced the VEGF release. SB203580 enhanced the phosphorylation of p42/p44 MAP kinase induced by bFGF. The enhancement by SB203580 of the bFGF-stimulated VEGF release was suppressed by PD98059. The depletion of extracellular Ca2+ by [ethylenebis(oxyethylenenitrilo)]tetracetic acid (EGTA) or 1,2-bis-(O-aminophinoxy)-ethane-N,N,N,N-tetracetic acid tetracetoxymethyl ester (BAPTA/AM), a chelator of intracellular Ca2+, suppressed the bFGF-induced VEGF release. A23187, a Ca ionophore, or thapsigargin, known to induce Ca2+ release from intracellular Ca2+ store, stimulated the release of VEGF by itself. A23187 induced the phosphorylation of p42/p44 MAP kinase and p38 MAP kinase. PD98059 suppressed the VEGF release induced by A23187. SB203580 had little effect on either A23187-induced VEGF release or the phosphorylation of p42/p44 MAP kinase by A23187. These results strongly suggest that bFGF stimulates VEGF release through p42/p44 MAP kinase in osteoblasts and that the VEGF release is negatively regulated by bFGF-activated p38 MAP kinase.
Collapse
Affiliation(s)
- H Tokuda
- Department of Internal Medicine, Chubu National Hospital, National Institute for Longevity Sciences, Obu, Aichi Japan
| | | | | |
Collapse
|
44
|
Terasaki M. Dynamics of the endoplasmic reticulum and golgi apparatus during early sea urchin development. Mol Biol Cell 2000; 11:897-914. [PMID: 10712508 PMCID: PMC14819 DOI: 10.1091/mbc.11.3.897] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/1999] [Revised: 11/18/1999] [Accepted: 12/29/1999] [Indexed: 11/11/2022] Open
Abstract
The endoplasmic reticulum (ER) and Golgi were labeled by green fluorescent protein chimeras and observed by time-lapse confocal microscopy during the rapid cell cycles of sea urchin embryos. The ER undergoes a cyclical microtubule-dependent accumulation at the mitotic poles and by photobleaching experiments remains continuous through the cell cycle. Finger-like indentations of the nuclear envelope near the mitotic poles appear 2-3 min before the permeability barrier of the nuclear envelope begins to change. This permeability change in turn is approximately 30 s before nuclear envelope breakdown. During interphase, there are many scattered, disconnected Golgi stacks throughout the cytoplasm, which appear as 1- to 2-microm fluorescent spots. The number of Golgi spots begins to decline soon after nuclear envelope breakdown, reaches a minimum soon after cytokinesis, and then rapidly increases. At higher magnification, smaller spots are seen, along with increased fluorescence in the ER. Quantitative measurements, along with nocodazole and photobleaching experiments, are consistent with a redistribution of some of the Golgi to the ER during mitosis. The scattered Golgi coalesce into a single large aggregate during the interphase after the ninth embryonic cleavage; this is likely to be preparatory for secretion of the hatching enzyme during the following cleavage cycle.
Collapse
Affiliation(s)
- M Terasaki
- Department of Physiology, University of Connecticut Health Center, Farmington, Connecticut 06032, USA.
| |
Collapse
|
45
|
Kaida T, Kozawa O, Ito T, Tanabe K, Ito H, Matsuno H, Niwa M, Miyata H, Uematsu T, Kato K. Vasopressin stimulates the induction of heat shock protein 27 and alphaB-crystallin via protein kinase C activation in vascular smooth muscle cells. Exp Cell Res 1999; 246:327-37. [PMID: 9925748 DOI: 10.1006/excr.1998.4277] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, we examined the effect of vasopressin on the induction of the low-molecular-weight heat shock proteins heat shock protein 27 (HSP27) and alphaB-crystallin in an aortic smooth muscle cell line, A10 cells. Vasopressin induced a time-dependent accumulation of HSP27 and alphaB-crystallin. The stimulatory effects of vasopressin were dose-dependent over the range 0.1 nmol/L to 0.1 micromol/L. The EC50 values for vasopressin were 2 (HSP27) and 4 nmol/L (alphaB-crystallin). Vasopressin induced increases in the levels of the mRNAs for HSP27 and alphaB-crystallin. 12-O-Tetradecanoylphorbol 13-acetate (TPA), a protein kinase C (PKC)-activating phorbol ester, induced an accumulation of HSP27 (EC50, 20 nmol/L) and alphaB-crystallin (EC50, 2 nmol/L). In contrast, 4alpha-phorbol 12,13-didecanoate, a non-PKC-activating phorbol ester, had no such effect. Staurosporine and calphostin C, inhibitors of PKC, significantly reduced the vasopressin-induced accumulation of HSP27 and alphaB-crystallin as well as that induced by TPA. BAPTA/AM and TMB-8, inhibitors of intracellular Ca2+ mobilization, significantly reduced the vasopressin-induced accumulation of HSP27 and alphaB-crystallin. These results strongly suggest that vasopressin stimulates the induction of HSP27 and alphaB-crystallin via PKC activation in vascular smooth muscle cells and that this effect of vasopressin is dependent on intracellular Ca2+ mobilization.
Collapse
Affiliation(s)
- T Kaida
- Department of Pharmacology, Gifu University School of Medicine, Gifu, 500-8705, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Somasundaram B, Mason MJ, Mahaut-Smith MP. Thrombin-dependent calcium signalling in single human erythroleukaemia cells. J Physiol 1997; 501 ( Pt 3):485-95. [PMID: 9218209 PMCID: PMC1159450 DOI: 10.1111/j.1469-7793.1997.485bm.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. A combination of single cell fluorescence and patch clamp techniques were used to study the mechanisms underlying thrombin-evoked Ca2+ signals in human erythroleukaemia (HEL) cells, a leukaemic cell line of platelet-megakaryocyte lineage. 2. Thrombin caused a transient increase in intracellular Ca2+ ([Ca2+]i), consisting of both release of Ca2+ from intracellular stores and influx of extracellular Ca2+. Mn2+ quench studies indicated that the thrombin-evoked divalent cation-permeable pathway was activated during, but not prior to, release from internal stores. 3. Thapsigargin (1 microM) irreversibly released internal Ca2+ from the same store as that released by thrombin and continuously activated a Ca(2+)-influx mechanism. The amplitude of the thrombin- and thapsigargin-induced Ca2+ influx displayed a marked single cell heterogeneity which showed no correlation with the size of the store Ca2+ transient. 4. In whole-cell patch clamp recordings, both thrombin and thapsigargin evoked an inwardly rectifying Ca2+ current which developed with little or no increase in current noise, showed no reversal in the voltage range -110 to +60 mV and was blocked by 1 mM Zn2+. The apparent divalent cation permeability sequence of this pathway was Ca2+ > > Ba2+ > Mn2+, Mg2+. The thapsigargin-evoked current density at -100 mV varied between 0.42 and 2.1 pA pF-1 in different cells. Thrombin failed to activate additional Ca2+ current if it was added after the thapsigargin-induced inward current had fully developed. 5. These studies indicate that thrombin activates Ca2+ influx in HEL cells entirely via a Ca(2+)-store-release-activated Ca2+ current (Icrac) rather than via receptor-operated or second messenger-dependent Ca2+ channels. The level of expression of Icrac appears to be a major factor in determining the duration of the thrombin-evoked [Ca2+]i response and therefore represents a means by which cells can exert control over [Ca2+]i-dependent events.
Collapse
|
47
|
Tokuda H, Suzuki A, Watanabe-Tomita Y, Shinoda J, Imamura Y, Oiso Y, Igata A, Kozawa O. Function of Ca2+ in phosphatidylcholine-hydrolyzing phospholipase D activation in osteoblast-like cells. Bone 1996; 19:347-52. [PMID: 8894140 DOI: 10.1016/s8756-3282(96)00185-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We investigated the function of Ca2+ in the activation of phosphatidylcholine (PC)-hydrolyzing phospholipase D (PLD) in osteoblast-like MC3T3-E1 cells. Fetal calf serum (FCS) stimulated the formation of choline in a dose-dependent manner in the range between 0.6% and 10%. The effect of a combination of FCS and 12-O-tetradecanoylphorbol-13-acetate, a protein kinase C (PKC) activator, on the formation of choline was additive. Staurosporine, an inhibitor of protein kinases, enhanced the formation of choline induced by FCS. BAPTA/AM, a chelator of intracellular Ca2+, inhibited the formation of choline induced by FCS. The depletion of extracellular Ca2+ by EGTA markedly reduced the FCS-induced formation of choline. SK&F 96365, an inhibitor of receptor-operated Ca2+ entry, significantly inhibited the choline formation induced by FCS. On the other hand, nifedipine, an inhibitor of L-type voltage-dependent Ca2+ channels, had little effect on the choline formation. TMB-8, an inhibitor of Ca2+ mobilization from intracellular Ca2+ store, significantly inhibited FCS-induced choline formation. These results strongly suggest that Ca2+ mobilization, through both the influx via receptor-operated Ca2+ channel and the release from intracellular Ca2+ store, plays an important role in the activation of PLD in osteoblast-like cells.
Collapse
Affiliation(s)
- H Tokuda
- Department of Internal Medicine, Chubu National Hospital, National Institute for Longevity Sciences, Aichi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Floto RA, Mahaut-Smith MP, Allen JM, Somasundaram B. Differentiation of the human monocytic cell line U937 results in an upregulation of the calcium release-activated current, ICRAC. J Physiol 1996; 495 ( Pt 2):331-8. [PMID: 8887747 PMCID: PMC1160795 DOI: 10.1113/jphysiol.1996.sp021597] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. Single cell fura-2 fluorescence measurements and whole-cell patch clamp recordings were used to investigate the effects of macrophage-like differentiation, induced by dibutyryl cAMP (dbcAMP), on Ca2+ influx triggered by Ca2+ store depletion in the human monocytic cell line, U937. 2. In differentiated cells, the rise in intracellular [Ca2+] following store depletion by thapsigargin (TG) in nominally Ca(2+)-free solution was 94% greater and the [Ca2+]i rise on subsequent re-addition of external Ca2+ (2 mM) was 292% greater than in undifferentiated cells. 3. Under conditions where [Ca2+]i was buffered by BAPTA, TG-induced store depletion failed to activate a detectable inward Ca2+ current in undifferentiated U937 cells. Under identical conditions, store depletion of differentiated U937 cells generated an inwardly rectifying Ca(2+)-selective current which showed no reversal from -140 to +30 mV and was blocked by 1 microM external La3+; characteristics of the calcium release-activated Ca2+ current (ICRAC) identified in other cells. 4. We conclude that U937 cells show a differentiation-dependent upregulation of a store-mediated Ca2+ entry pathway, identified as ICRAC, which is not correlated with the small associated increase in the size of TG-sensitive Ca2+ pools.
Collapse
Affiliation(s)
- R A Floto
- Physiological Laboratory, University of Cambridge, UK.
| | | | | | | |
Collapse
|
49
|
Affiliation(s)
- M J Berridge
- Babraham Institute Laboratory of Molecular Signalling, Department of Zoology, University of Cambridge, U.K
| |
Collapse
|
50
|
Fanger CM, Hoth M, Crabtree GR, Lewis RS. Characterization of T cell mutants with defects in capacitative calcium entry: genetic evidence for the physiological roles of CRAC channels. J Cell Biol 1995; 131:655-67. [PMID: 7593187 PMCID: PMC2120614 DOI: 10.1083/jcb.131.3.655] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Prolonged Ca2+ influx is an essential signal for the activation of T lymphocytes by antigen. This influx is thought to occur through highly selective Ca2+ release-activated Ca2+ (CRAC) channels that are activated by the depletion of intracellular Ca2+ stores. We have isolated mutants of the Jurkat human T cell line NZdipA to explore the molecular mechanisms that underlie capacitative Ca2+ entry and to allow a genetic test of the functions of CRAC channels in T cells. Five mutant cell lines (CJ-1 through CJ-5) were selected based on their failure to express a lethal diphtheria toxin A chain gene and a lacZ reporter gene driven by NF-AT, a Ca(2+)- and protein kinase C-dependent transcription factor. The rate of Ca2+ influx evoked by thapsigargin was reduced to varying degrees in the mutant cells whereas the dependence of NF-AT/lacZ gene transcription on [Ca2+]i was unaltered, suggesting that the transcriptional defect in these cells is caused by a reduced level of capacitative Ca2+ entry. We examined several factors that determine the rate of Ca2+ entry, including CRAC channel activity, K(+)-channel activity, and Ca2+ clearance mechanisms. The only parameter found to be dramatically altered in most of the mutant lines was the amplitude of the Ca2+ current (ICRAC), which ranged from 1 to 41% of that seen in parental control cells. In each case, the severity of the ICRAC defect was closely correlated with deficits in Ca2+ influx rate and Ca(2-)-dependent gene transcription. Behavior of the mutant cells provides genetic evidence for several roles of ICRAC in T cells. First, mitogenic doses of ionomycin appear to elevate [Ca2+]i primarily by activating CRAC channels. Second, ICRAC promotes the refilling of empty Ca2+ stores. Finally, CRAC channels are solely responsible for the Ca2+ influx that underlies antigen-mediated T cell activation. These mutant cell lines may provide a useful system for isolating, expressing, and exploring the functions of genes involved in capacitative Ca2+ entry.
Collapse
Affiliation(s)
- C M Fanger
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, California 94305-5426, USA
| | | | | | | |
Collapse
|