1
|
Xing J, Wang Y, Peng A, Li J, Niu X, Zhang K. The role of actin cytoskeleton CFL1 and ADF/cofilin superfamily in inflammatory response. Front Mol Biosci 2024; 11:1408287. [PMID: 39114368 PMCID: PMC11303188 DOI: 10.3389/fmolb.2024.1408287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
Actin remodeling proteins are important in immune diseases and regulate cell cytoskeletal responses. These responses play a pivotal role in maintaining the delicate balance of biological events, protecting against acute or chronic inflammation in a range of diseases. Cofilin (CFL) and actin depolymerization factor (ADF) are potent actin-binding proteins that cut and depolymerize actin filaments to generate actin cytoskeleton dynamics. Although the molecular mechanism by which actin induces actin cytoskeletal reconstitution has been studied for decades, the regulation of actin in the inflammatory process has only recently become apparent. In this paper, the functions of the actin cytoskeleton and ADF/cofilin superfamily members are briefly introduced, and then focus on the role of CFL1 in inflammatory response.
Collapse
Affiliation(s)
| | | | | | | | | | - Kaiming Zhang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Taiyuan Central Hospital, Dong San Dao Xiang, Taiyuan, China
| |
Collapse
|
2
|
Weng W, Gu X, Yang Y, Zhang Q, Deng Q, Zhou J, Cheng J, Zhu MX, Feng J, Huang O, Li Y. N-terminal α-amino SUMOylation of cofilin-1 is critical for its regulation of actin depolymerization. Nat Commun 2023; 14:5688. [PMID: 37709794 PMCID: PMC10502023 DOI: 10.1038/s41467-023-41520-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO) typically conjugates to target proteins through isopeptide linkage to the ε-amino group of lysine residues. This posttranslational modification (PTM) plays pivotal roles in modulating protein function. Cofilins are key regulators of actin cytoskeleton dynamics and are well-known to undergo several different PTMs. Here, we show that cofilin-1 is conjugated by SUMO1 both in vitro and in vivo. Using mass spectrometry and biochemical and genetic approaches, we identify the N-terminal α-amino group as the SUMO-conjugation site of cofilin-1. Common to conventional SUMOylation is that the N-α-SUMOylation of cofilin-1 is also mediated by SUMO activating (E1), conjugating (E2), and ligating (E3) enzymes and reversed by the SUMO deconjugating enzyme, SENP1. Specific to the N-α-SUMOylation is the physical association of the E1 enzyme to the substrate, cofilin-1. Using F-actin co-sedimentation and actin depolymerization assays in vitro and fluorescence staining of actin filaments in cells, we show that the N-α-SUMOylation promotes cofilin-1 binding to F-actin and cofilin-induced actin depolymerization. This covalent conjugation by SUMO at the N-α amino group of cofilin-1, rather than at an internal lysine(s), serves as an essential PTM to tune cofilin-1 function during regulation of actin dynamics.
Collapse
Affiliation(s)
- Weiji Weng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaokun Gu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yang Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qi Deng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Zhou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Junfeng Feng
- Brain Injury Centre, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Shanghai Institute of Head Trauma, Shanghai, 200127, China.
| | - Ou Huang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yong Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
3
|
Nishinakagawa T, Hazekawa M, Hosokawa M, Ishibashi D. RCAS1 increases cell morphological changes in murine fibroblasts by reducing p38 phosphorylation. Mol Med Rep 2023; 27:62. [PMID: 36734265 PMCID: PMC9926866 DOI: 10.3892/mmr.2023.12949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 12/09/2022] [Indexed: 02/04/2023] Open
Abstract
Receptor‑binding cancer antigen expressed on SiSo cells (RCAS1) is a tumor‑associated antigen that is expressed in a number of human malignancies. RCAS1 acts as a ligand for a putative RCAS1 receptor that is present on various human cells including T and B lymphocytes and natural killer cells, in which it induces cell growth inhibition and apoptosis. It has been suggested that RCAS1 might serve an important role in tumor cell evasion from the host immune system. In fact, RCAS1 expression is related to malignant characteristics including tumor size, invasion depth, clinical stage and poor overall survival. The authors previously established doxycycline‑induced RCAS1 overexpression murine fibroblast L cells to analyze the biological functions of RCAS1 and reported that its expression inhibited cell cycle progression via the downregulation of cyclin D3, which subsequently induced apoptosis. Additionally, it was found that RCAS1 expression induced cell morphological changes prior to caspase‑mediated apoptosis. Thus, the present study examined signaling pathways associated with changes in cell morphology that were induced by RCAS1 expression. The data showed that increased RCAS1 expression caused a reduction in actin stress fibers and decreased cofilin phosphorylation. Recent studies have shown that p38 signaling regulates actin polymerization. The data the present study showed that increased RCAS1 expression significantly decreased p38 phosphorylation.
Collapse
Affiliation(s)
- Takuya Nishinakagawa
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Science, Fukuoka University, Fukuoka 814-0180, Japan,Correspondence to: Dr Takuya Nishinakagawa or Professor Daisuke Ishibashi, Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan, E-mail:
| | - Mai Hazekawa
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Science, Fukuoka University, Fukuoka 814-0180, Japan
| | - Masato Hosokawa
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Science, Fukuoka University, Fukuoka 814-0180, Japan
| | - Daisuke Ishibashi
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Science, Fukuoka University, Fukuoka 814-0180, Japan,Correspondence to: Dr Takuya Nishinakagawa or Professor Daisuke Ishibashi, Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan, E-mail:
| |
Collapse
|
4
|
Sun J, Zhong X, Fu X, Miller H, Lee P, Yu B, Liu C. The Actin Regulators Involved in the Function and Related Diseases of Lymphocytes. Front Immunol 2022; 13:799309. [PMID: 35371070 PMCID: PMC8965893 DOI: 10.3389/fimmu.2022.799309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Actin is an important cytoskeletal protein involved in signal transduction, cell structure and motility. Actin regulators include actin-monomer-binding proteins, Wiskott-Aldrich syndrome (WAS) family of proteins, nucleation proteins, actin filament polymerases and severing proteins. This group of proteins regulate the dynamic changes in actin assembly/disassembly, thus playing an important role in cell motility, intracellular transport, cell division and other basic cellular activities. Lymphocytes are important components of the human immune system, consisting of T-lymphocytes (T cells), B-lymphocytes (B cells) and natural killer cells (NK cells). Lymphocytes are indispensable for both innate and adaptive immunity and cannot function normally without various actin regulators. In this review, we first briefly introduce the structure and fundamental functions of a variety of well-known and newly discovered actin regulators, then we highlight the role of actin regulators in T cell, B cell and NK cell, and finally provide a landscape of various diseases associated with them. This review provides new directions in exploring actin regulators and promotes more precise and effective treatments for related diseases.
Collapse
Affiliation(s)
- Jianxuan Sun
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Zhong
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Fu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Bing Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Gao J, Nakamura F. Actin-Associated Proteins and Small Molecules Targeting the Actin Cytoskeleton. Int J Mol Sci 2022; 23:2118. [PMID: 35216237 PMCID: PMC8880164 DOI: 10.3390/ijms23042118] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
Actin-associated proteins (AAPs) act on monomeric globular actin (G-actin) and polymerized filamentous actin (F-actin) to regulate their dynamics and architectures which ultimately control cell movement, shape change, division; organelle localization and trafficking. Actin-binding proteins (ABPs) are a subset of AAPs. Since actin was discovered as a myosin-activating protein (hence named actin) in 1942, the protein has also been found to be expressed in non-muscle cells, and numerous AAPs continue to be discovered. This review article lists all of the AAPs discovered so far while also allowing readers to sort the list based on the names, sizes, functions, related human diseases, and the dates of discovery. The list also contains links to the UniProt and Protein Atlas databases for accessing further, related details such as protein structures, associated proteins, subcellular localization, the expression levels in cells and tissues, mutations, and pathology. Because the actin cytoskeleton is involved in many pathological processes such as tumorigenesis, invasion, and developmental diseases, small molecules that target actin and AAPs which hold potential to treat these diseases are also listed.
Collapse
Affiliation(s)
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
6
|
LIM Kinases in Osteosarcoma Development. Cells 2021; 10:cells10123542. [PMID: 34944050 PMCID: PMC8699892 DOI: 10.3390/cells10123542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
Tumorigenesis is a long-term and multistage process that often leads to the formation of metastases. During this pathological course, two major events appear to be crucial: primary tumour growth and metastatic expansion. In this context, despite research and clinical advances during the past decades, bone cancers remain a leading cause of death worldwide among paediatric cancer patients. Osteosarcomas are the most common malignant bone tumours in children and adolescents. Notwithstanding advances in therapeutic treatments, many patients succumb to these diseases. In particular, less than 30% of patients who demonstrate metastases at diagnosis or are poor responders to chemotherapy survive 5 years after initial diagnosis. LIM kinases (LIMKs), comprising LIMK1 and LIMK2, are common downstream effectors of several signalization pathways, and function as a signalling node that controls cytoskeleton dynamics through the phosphorylation of the cofilin family proteins. In recent decades, several reports have indicated that the functions of LIMKs are mainly implicated in the regulation of actin microfilament and the control of microtubule dynamics. Previous studies have thus identified LIMKs as cancer-promoting regulators in multiple organ cancers, such as breast cancer or prostate cancer. This review updates the current understanding of LIMK involvement in osteosarcoma progression.
Collapse
|
7
|
Bamburg JR, Minamide LS, Wiggan O, Tahtamouni LH, Kuhn TB. Cofilin and Actin Dynamics: Multiple Modes of Regulation and Their Impacts in Neuronal Development and Degeneration. Cells 2021; 10:cells10102726. [PMID: 34685706 PMCID: PMC8534876 DOI: 10.3390/cells10102726] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023] Open
Abstract
Proteins of the actin depolymerizing factor (ADF)/cofilin family are ubiquitous among eukaryotes and are essential regulators of actin dynamics and function. Mammalian neurons express cofilin-1 as the major isoform, but ADF and cofilin-2 are also expressed. All isoforms bind preferentially and cooperatively along ADP-subunits in F-actin, affecting the filament helical rotation, and when either alone or when enhanced by other proteins, promotes filament severing and subunit turnover. Although self-regulating cofilin-mediated actin dynamics can drive motility without post-translational regulation, cells utilize many mechanisms to locally control cofilin, including cooperation/competition with other proteins. Newly identified post-translational modifications function with or are independent from the well-established phosphorylation of serine 3 and provide unexplored avenues for isoform specific regulation. Cofilin modulates actin transport and function in the nucleus as well as actin organization associated with mitochondrial fission and mitophagy. Under neuronal stress conditions, cofilin-saturated F-actin fragments can undergo oxidative cross-linking and bundle together to form cofilin-actin rods. Rods form in abundance within neurons around brain ischemic lesions and can be rapidly induced in neurites of most hippocampal and cortical neurons through energy depletion or glutamate-induced excitotoxicity. In ~20% of rodent hippocampal neurons, rods form more slowly in a receptor-mediated process triggered by factors intimately connected to disease-related dementias, e.g., amyloid-β in Alzheimer’s disease. This rod-inducing pathway requires a cellular prion protein, NADPH oxidase, and G-protein coupled receptors, e.g., CXCR4 and CCR5. Here, we will review many aspects of cofilin regulation and its contribution to synaptic loss and pathology of neurodegenerative diseases.
Collapse
Affiliation(s)
- James R. Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
- Correspondence: ; Tel.: +1-970-988-9120; Fax: +1-970-491-0494
| | - Laurie S. Minamide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
| | - O’Neil Wiggan
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
| | - Lubna H. Tahtamouni
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
- Department of Biology and Biotechnology, The Hashemite University, Zarqa 13115, Jordan
| | - Thomas B. Kuhn
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
- Department of Chemistry and Biochemistry, University of Alaska, Fairbanks, AK 99775, USA
| |
Collapse
|
8
|
Giampazolias E, Schulz O, Lim KHJ, Rogers NC, Chakravarty P, Srinivasan N, Gordon O, Cardoso A, Buck MD, Poirier EZ, Canton J, Zelenay S, Sammicheli S, Moncaut N, Varsani-Brown S, Rosewell I, Reis e Sousa C. Secreted gelsolin inhibits DNGR-1-dependent cross-presentation and cancer immunity. Cell 2021; 184:4016-4031.e22. [PMID: 34081922 PMCID: PMC8320529 DOI: 10.1016/j.cell.2021.05.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/24/2021] [Accepted: 05/17/2021] [Indexed: 12/30/2022]
Abstract
Cross-presentation of antigens from dead tumor cells by type 1 conventional dendritic cells (cDC1s) is thought to underlie priming of anti-cancer CD8+ T cells. cDC1 express high levels of DNGR-1 (a.k.a. CLEC9A), a receptor that binds to F-actin exposed by dead cell debris and promotes cross-presentation of associated antigens. Here, we show that secreted gelsolin (sGSN), an extracellular protein, decreases DNGR-1 binding to F-actin and cross-presentation of dead cell-associated antigens by cDC1s. Mice deficient in sGsn display increased DNGR-1-dependent resistance to transplantable tumors, especially ones expressing neoantigens associated with the actin cytoskeleton, and exhibit greater responsiveness to cancer immunotherapy. In human cancers, lower levels of intratumoral sGSN transcripts, as well as presence of mutations in proteins associated with the actin cytoskeleton, are associated with signatures of anti-cancer immunity and increased patient survival. Our results reveal a natural barrier to cross-presentation of cancer antigens that dampens anti-tumor CD8+ T cell responses.
Collapse
Affiliation(s)
- Evangelos Giampazolias
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Oliver Schulz
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kok Haw Jonathan Lim
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Immunology and Inflammation, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Neil C Rogers
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Probir Chakravarty
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Naren Srinivasan
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Oliver Gordon
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ana Cardoso
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael D Buck
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Enzo Z Poirier
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Johnathan Canton
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Santiago Zelenay
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Stefano Sammicheli
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Natalia Moncaut
- Genetic Modification Services, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sunita Varsani-Brown
- Genetic Modification Services, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ian Rosewell
- Genetic Modification Services, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Caetano Reis e Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
9
|
Das S, Stortz JF, Meissner M, Periz J. The multiple functions of actin in apicomplexan parasites. Cell Microbiol 2021; 23:e13345. [PMID: 33885206 DOI: 10.1111/cmi.13345] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/29/2022]
Abstract
The cytoskeletal protein actin is highly abundant and conserved in eukaryotic cells. It occurs in two different states- the globular (G-actin) form, which can polymerise into the filamentous (F-actin) form, fulfilling various critical functions including cytokinesis, cargo trafficking and cellular motility. In higher eukaryotes, there are several actin isoforms with nearly identical amino acid sequences. Despite the high level of amino acid identity, they display regulated expression patterns and unique non-redundant roles. The number of actin isoforms together with conserved sequences may reflect the selective pressure exerted by scores of actin binding proteins (ABPs) in higher eukaryotes. In contrast, in many protozoans such as apicomplexan parasites which possess only a few ABPs, the regulatory control of actin and its multiple functions are still obscure. Here, we provide a summary of the regulation and biological functions of actin in higher eukaryotes and compare it with the current knowledge in apicomplexans. We discuss future experiments that will help us understand the multiple, critical roles of this fascinating system in apicomplexans.
Collapse
Affiliation(s)
- Sujaan Das
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig Maximilian University, Munich, Germany
| | - Johannes Felix Stortz
- Department Metabolism of Infection, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Markus Meissner
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig Maximilian University, Munich, Germany
| | - Javier Periz
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
10
|
Naffa R, Padányi R, Ignácz A, Hegyi Z, Jezsó B, Tóth S, Varga K, Homolya L, Hegedűs L, Schlett K, Enyedi A. The Plasma Membrane Ca 2+ Pump PMCA4b Regulates Melanoma Cell Migration through Remodeling of the Actin Cytoskeleton. Cancers (Basel) 2021; 13:cancers13061354. [PMID: 33802790 PMCID: PMC8002435 DOI: 10.3390/cancers13061354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Earlier we demonstrated that the plasma membrane Ca2+ pump PMCA4b inhibits migration and metastatic activity of BRAF mutant melanoma cells, however, the exact mechanism has not been fully understood. Here we demonstrate that PMCA4b acted through actin cytoskeleton remodeling in generating a low migratory melanoma cell phenotype resulting in increased cell–cell connections, lamellipodia and stress fiber formation. Both proper trafficking and calcium transporting activity of the pump were essential to complete these tasks indicating that controlling Ca2+ concentration levels at specific plasma membrane locations such as the cell front played a role. Our findings suggest that PMCA4b downregulation is likely one of the mechanisms that leads to the perturbed cancer cell cytoskeleton organization resulting in enhanced melanoma cell migration and metastasis. Abstract We demonstrated that the plasma membrane Ca2+ ATPase PMCA4b inhibits migration and metastatic activity of BRAF mutant melanoma cells. Actin dynamics are essential for cells to move, invade and metastasize, therefore, we hypothesized that PMCA4b affected cell migration through remodeling of the actin cytoskeleton. We found that expression of PMCA4b in A375 BRAF mutant melanoma cells induced a profound change in cell shape, cell culture morphology, and displayed a polarized migratory character. Along with these changes the cells became more rounded with increased cell–cell connections, lamellipodia and stress fiber formation. Silencing PMCA4b in MCF-7 breast cancer cells had a similar effect, resulting in a dramatic loss of stress fibers. In addition, the PMCA4b expressing A375 cells maintained front-to-rear Ca2+ concentration gradient with the actin severing protein cofilin localizing to the lamellipodia, and preserved the integrity of the actin cytoskeleton from a destructive Ca2+ overload. We showed that both PMCA4b activity and trafficking were essential for the observed morphology and motility changes. In conclusion, our data suggest that PMCA4b plays a critical role in adopting front-to-rear polarity in a normally spindle-shaped cell type through F-actin rearrangement resulting in a less aggressive melanoma cell phenotype.
Collapse
Affiliation(s)
- Randa Naffa
- Department of Transfusiology, Semmelweis University, H-1089 Budapest, Hungary; (R.N.); (S.T.)
| | - Rita Padányi
- Department of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary;
| | - Attila Ignácz
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary; (A.I.); (K.S.)
| | - Zoltán Hegyi
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt.2, H-1117 Budapest, Hungary; (Z.H.); (B.J.); (L.H.)
| | - Bálint Jezsó
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt.2, H-1117 Budapest, Hungary; (Z.H.); (B.J.); (L.H.)
| | - Sarolta Tóth
- Department of Transfusiology, Semmelweis University, H-1089 Budapest, Hungary; (R.N.); (S.T.)
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | | | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt.2, H-1117 Budapest, Hungary; (Z.H.); (B.J.); (L.H.)
| | - Luca Hegedűs
- Department of Thoracic Surgery, Ruhrlandklinik, University Clinic Essen, 45239 Essen, Germany;
| | - Katalin Schlett
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary; (A.I.); (K.S.)
| | - Agnes Enyedi
- Department of Transfusiology, Semmelweis University, H-1089 Budapest, Hungary; (R.N.); (S.T.)
- Correspondence:
| |
Collapse
|
11
|
Wu H, Chen Y, Li B, Li C, Guo J, You J, Hu X, Kuang D, Qi S, Liu P, Li L, Xu C. Targeting ROCK1/2 blocks cell division and induces mitotic catastrophe in hepatocellular carcinoma. Biochem Pharmacol 2021; 184:114353. [PMID: 33278350 DOI: 10.1016/j.bcp.2020.114353] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Rho-Associated kinases ROCK1 and ROCK2 have been extensively investigated in the pathogenesis of cardiovascular disease. However, their roles are not fully understood in carcinogenesis. In this study, we investigated whether ROCK1 or ROCK2 is required for the survival and growth of hepatocellular carcinoma (HCC) cells and underlying mechanism. METHODS ROCKs expression was determined in human HCC tissue and cell lines using qRT-PCR, western blotting, and immunohistochemistry (IHC). Cell growth and proliferation were assayed using cell counting kit-8 (CCK-8) and EdU incorporation assay. Cell cycle and apoptosis analysis were performed using flow cytometry. HCC cell division or mitosis was observed using a confocal microscope and a time relapse fluorescence microscope. Inhibitory role of targeting ROCK1/2 on HCC was assayed in both xenograft and primary HCC mouse models. RESULTS Both ROCK1 and ROCK2 are over-expressed in human HCC tissues and cell lines. Knockdown of ROCK1 or ROCK2 inhibited HCC cell growth. Pharmacological inactivation of ROCK1/2 with Fasudil further blocked the growth and survival of HCC both in vitro and in vivo. Mechanically, Fasudil induces cell cycle arrest in HCC cells, but not apoptosis. Instead, Fasudil treatment led to mitotic catastrophe in HCC cells, characterized with the multipolar and asymmetric mitosis, and disassociated stress fibers. Knockdown of cofilin restored the cell morphology and division, and reduced the mitotic catastrophe induced by Fasudil. CONCLUSIONS Both ROCK1 and ROCK2 are required for HCC cell division and growth. Targeting ROCK1 or ROCK2 rather than both can serve as a potential approach for HCC treatment and may reduce the side effects.
Collapse
Affiliation(s)
- Hua Wu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuyuan Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chun Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Guo
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jia You
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xian Hu
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dong Kuang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shibo Qi
- Department of Pharmacy, General Hospital of Benxi Iron and Steel Company, Benxi 117000, China
| | - Pin Liu
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lei Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Chuanrui Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
12
|
Luo X, He JY, Xu J, Hu SY, Mo BH, Shu QX, Chen C, Gong YZ, Zhao XL, Xie GF, Yu ST. Vascular NRP2 triggers PNET angiogenesis by activating the SSH1-cofilin axis. Cell Biosci 2020; 10:113. [PMID: 32983407 PMCID: PMC7509939 DOI: 10.1186/s13578-020-00472-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background Angiogenesis is a critical step in the growth of pancreatic neuroendocrine tumors (PNETs) and may be a selective target for PNET therapy. However, PNETs are robustly resistant to current anti-angiogenic therapies that primarily target the VEGFR pathway. Thus, the mechanism of PNET angiogenesis urgently needs to be clarified. Methods Dataset analysis was used to identify angiogenesis-related genes in PNETs. Immunohistochemistry was performed to determine the relationship among Neuropilin 2 (NRP2), VEGFR2 and CD31. Cell proliferation, wound-healing and tube formation assays were performed to clarify the function of NRP2 in angiogenesis. The mechanism involved in NRP2-induced angiogenesis was detected by constructing plasmids with mutant variants and performing Western blot, and immunofluorescence assays. A mouse model was used to evaluate the effect of the NRP2 antibody in vivo, and clinical data were collected from patient records to verify the association between NRP2 and patient prognosis. Results NRP2, a VEGFR2 co-receptor, was positively correlated with vascularity but not with VEGFR2 in PNET tissues. NRP2 promoted the migration of human umbilical vein endothelial cells (HUVECs) cultured in the presence of conditioned medium PNET cells via a VEGF/VEGFR2-independent pathway. Moreover, NRP2 induced F-actin polymerization by activating the actin-binding protein cofilin. Cofilin phosphatase slingshot-1 (SSH1) was highly expressed in NRP2-activating cofilin, and silencing SSH1 ameliorated NRP2-activated HUVEC migration and F-actin polymerization. Furthermore, blocking NRP2 in vivo suppressed PNET angiogenesis and tumor growth. Finally, elevated NRP2 expression was associated with poor prognosis in PNET patients. Conclusion Vascular NRP2 promotes PNET angiogenesis by activating the SSH1/cofilin/actin axis. Our findings demonstrate that NRP2 is an important regulator of angiogenesis and a potential therapeutic target of anti-angiogenesis therapy for PNET.
Collapse
Affiliation(s)
- Xi Luo
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Jiang-Yi He
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Jie Xu
- Department of Urology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Shao-Yi Hu
- Nursing Division, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Bang-Hui Mo
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Qiu-Xia Shu
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Can Chen
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Yu-Zhu Gong
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Xiao-Long Zhao
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Gan-Feng Xie
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Song-Tao Yu
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| |
Collapse
|
13
|
Clostridium perfringens Epsilon-Toxin Impairs the Barrier Function in MDCK Cell Monolayers in a Ca 2+-Dependent Manner. Toxins (Basel) 2020; 12:toxins12050286. [PMID: 32365779 PMCID: PMC7291203 DOI: 10.3390/toxins12050286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 12/27/2022] Open
Abstract
Epsilon-toxin produced by Clostridium perfringens significantly contributes to the pathogeneses of enterotoxemia in ruminants and multiple sclerosis in humans. Epsilon-toxin forms a heptameric oligomer in the host cell membrane, promoting cell disruption. Here, we investigate the effect of epsilon-toxin on epithelial barrier functions. Epsilon-toxin impairs the barrier integrity of Madin-Darby Canine Kidney (MDCK) cells, as demonstrated by decreased transepithelial electrical resistance (TEER), increased paracellular flux marker permeability, and the decreased cellular localization of junctional proteins, such as occludin, ZO-1, and claudin-1. U73122, an endogenous phospholipase C (PLC) inhibitor, inhibited the decrease in TEER and the increase in the permeability of flux marker induced by epsilon-toxin. The application of epsilon-toxin to MDCK cells resulted in the biphasic formation of 1,2-diacylglycerol (DAG) and inositol-1,4,5-triphosphate (IP3). U73122 blocked the formation of DAG and IP3 induced by the toxin. Epsilon-toxin also specifically activated endogenous PLC-γ1. Epsilon-toxin dose-dependently increased the cytosolic calcium ion concentration ([Ca2+]i). The toxin-induced elevation of [Ca2+]i was inhibited by U73122. Cofilin is a key regulator of actin cytoskeleton turnover and tight-junction (TJ) permeability regulation. Epsilon-toxin caused cofilin dephosphorylation. These results demonstrate that epsilon-toxin induces Ca2+ influx through activating the phosphorylation of PLC-γ1 and then causes TJ opening accompanied by cofilin dephosphorylation.
Collapse
|
14
|
Muñoz-Lasso DC, Mollá B, Calap-Quintana P, García-Giménez JL, Pallardo FV, Palau F, Gonzalez-Cabo P. Cofilin dysregulation alters actin turnover in frataxin-deficient neurons. Sci Rep 2020; 10:5207. [PMID: 32251310 PMCID: PMC7090085 DOI: 10.1038/s41598-020-62050-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/04/2020] [Indexed: 01/04/2023] Open
Abstract
Abnormalities in actin cytoskeleton have been linked to Friedreich's ataxia (FRDA), an inherited peripheral neuropathy characterised by an early loss of neurons in dorsal root ganglia (DRG) among other clinical symptoms. Despite all efforts to date, we still do not fully understand the molecular events that contribute to the lack of sensory neurons in FRDA. We studied the adult neuronal growth cone (GC) at the cellular and molecular level to decipher the connection between frataxin and actin cytoskeleton in DRG neurons of the well-characterised YG8R Friedreich's ataxia mouse model. Immunofluorescence studies in primary cultures of DRG from YG8R mice showed neurons with fewer and smaller GCs than controls, associated with an inhibition of neurite growth. In frataxin-deficient neurons, we also observed an increase in the filamentous (F)-actin/monomeric (G)-actin ratio (F/G-actin ratio) in axons and GCs linked to dysregulation of two crucial modulators of filamentous actin turnover, cofilin-1 and the actin-related protein (ARP) 2/3 complex. We show how the activation of cofilin is due to the increase in chronophin (CIN), a cofilin-activating phosphatase. Thus cofilin emerges, for the first time, as a link between frataxin deficiency and actin cytoskeleton alterations.
Collapse
Affiliation(s)
- Diana C Muñoz-Lasso
- CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia-INCLIVA, Valencia, 46010, Spain
- Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain
| | - Belén Mollá
- CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
- Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia, 46010, Spain
| | - Pablo Calap-Quintana
- CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia-INCLIVA, Valencia, 46010, Spain
- Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain
| | - José Luis García-Giménez
- CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia-INCLIVA, Valencia, 46010, Spain
- Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain
| | - Federico V Pallardo
- CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia-INCLIVA, Valencia, 46010, Spain
- Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain
| | - Francesc Palau
- CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
- Institut de Recerca Sant Joan de Déu and Department of Genetic & Molecular Medicine and IPER, Hospital Sant Joan de Déu, Barcelona, 08950, Spain
- Hospital Clínic and Division of Pediatrics, University of Barcelona School of Medicine and Health Sciences, Barcelona, Spain
| | - Pilar Gonzalez-Cabo
- CIBER de Enfermedades Raras (CIBERER), Valencia, Spain.
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia-INCLIVA, Valencia, 46010, Spain.
- Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain.
| |
Collapse
|
15
|
Skouloudaki K, Christodoulou I, Khalili D, Tsarouhas V, Samakovlis C, Tomancak P, Knust E, Papadopoulos DK. Yorkie controls tube length and apical barrier integrity during airway development. J Cell Biol 2019; 218:2762-2781. [PMID: 31315941 PMCID: PMC6683733 DOI: 10.1083/jcb.201809121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 05/02/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022] Open
Abstract
Skouloudaki et al. identify an alternative role of the transcriptional coactivator Yorkie (Yki) in controlling water impermeability and tube size of developing Drosophila airways. Tracheal impermeability is triggered by Yki-mediated transcriptional regulation of δ-aminolevulinate synthase (Alas), whereas tube elongation is controlled by binding of Yki to the actin-severing factor Twinstar. Epithelial organ size and shape depend on cell shape changes, cell–matrix communication, and apical membrane growth. The Drosophila melanogaster embryonic tracheal network is an excellent model to study these processes. Here, we show that the transcriptional coactivator of the Hippo pathway, Yorkie (YAP/TAZ in vertebrates), plays distinct roles in the developing Drosophila airways. Yorkie exerts a cytoplasmic function by binding Drosophila Twinstar, the orthologue of the vertebrate actin-severing protein Cofilin, to regulate F-actin levels and apical cell membrane size, which are required for proper tracheal tube elongation. Second, Yorkie controls water tightness of tracheal tubes by transcriptional regulation of the δ-aminolevulinate synthase gene (Alas). We conclude that Yorkie has a dual role in tracheal development to ensure proper tracheal growth and functionality.
Collapse
Affiliation(s)
| | - Ioannis Christodoulou
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Dilan Khalili
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Vasilios Tsarouhas
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Christos Samakovlis
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,Excellence Cluster Cardio-Pulmonary System, University of Giessen, Giessen, Germany
| | - Pavel Tomancak
- Max-Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elisabeth Knust
- Max-Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Dimitrios K Papadopoulos
- Max-Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany .,Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
16
|
Jia X, Zhang X, Hu Y, Hu M, Han X, Sun Y, Han L. Role of Downregulation and Phosphorylation of Cofilin in Polarized Growth, MpkA Activation and Stress Response of Aspergillus fumigatus. Front Microbiol 2018; 9:2667. [PMID: 30455681 PMCID: PMC6230985 DOI: 10.3389/fmicb.2018.02667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/18/2018] [Indexed: 12/27/2022] Open
Abstract
Aspergillus fumigatus causes most of aspergillosis in clinic and comprehensive function analysis of its key protein would promote anti-aspergillosis. In a previous study, we speculated actin depolymerizing factor cofilin might be essential for A. fumigatus viability and found its overexpression upregulated oxidative response and cell wall polysaccharide synthesis of this pathogen. Here, we constructed a conditional cofilin mutant to determine the essential role of cofilin. And the role of cofilin downregulation and phosphorylation in A. fumigatus was further analyzed. Cofilin was required for the polarized growth and heat sensitivity of A. fumigatus. Downregulation of cofilin caused hyphal cytoplasmic leakage, increased the sensitivity of A. fumigatus to sodium dodecyl sulfonate but not to calcofluor white and Congo Red and farnesol, and enhanced the basal phosphorylation level of MpkA, suggesting that cofilin affected the cell wall integrity (CWI) signaling. Downregulation of cofilin also increased the sensitivity of A. fumigatus to alkaline pH and H2O2. Repressing cofilin expression in A. fumigatus lead to attenuated virulence, which manifested as lower adherence and internalization rates, weaker host inflammatory response and shorter survival rate in a Galleria mellonella model. Expression of non-phosphorylated cofilin with a mutation of S5A had little impacts on A. fumigatus, whereas expression of a mimic-phosphorylated cofilin with a mutation of S5E resulted in inhibited growth, increased phospho-MpkA level, and decreased pathogenicity. In conclusion, cofilin is crucial to modulating the polarized growth, stress response, CWI and virulence of A. fumigatus.
Collapse
Affiliation(s)
- Xiaodong Jia
- Institute for Disease Control and Prevention of PLA, Beijing, China.,Comprehensive Liver Cancer Center, Beijing 302 Hospital of PLA, Beijing, China
| | - Xi Zhang
- Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Yingsong Hu
- Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Mandong Hu
- Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Xuelin Han
- Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Yansong Sun
- Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Li Han
- Institute for Disease Control and Prevention of PLA, Beijing, China
| |
Collapse
|
17
|
McCarthy CG, Wenceslau CF, Ogbi S, Szasz T, Webb RC. Toll-Like Receptor 9-Dependent AMPK α Activation Occurs via TAK1 and Contributes to RhoA/ROCK Signaling and Actin Polymerization in Vascular Smooth Muscle Cells. J Pharmacol Exp Ther 2018; 365:60-71. [PMID: 29348267 DOI: 10.1124/jpet.117.245746] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/17/2018] [Indexed: 01/06/2023] Open
Abstract
Traditionally, Toll-like receptor 9 (TLR9) signals through an MyD88-dependent cascade that results in proinflammatory gene transcription. Recently, it was reported that TLR9 also participates in a stress tolerance signaling cascade in nonimmune cells. In this noncanonical pathway, TLR9 binds to and inhibits sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2 (SERCA2), modulating intracellular calcium handling, and subsequently resulting in the activation of 5'-AMP-activated protein kinase α (AMPKα). We have previously reported that TLR9 causes increased contraction in isolated arteries; however, the mechanisms underlying this vascular dysfunction need to be further clarified. Therefore, we hypothesized that noncanonical TLR9 signaling was also present in vascular smooth muscle cells (VSMCs) and that it mediates enhanced contractile responses through SERCA2 inhibition. To test these hypotheses, aortic microsomes, aortic VSMCs, and isolated arteries from male Sprague-Dawley rats were incubated with vehicle or TLR9 agonist (ODN2395). Despite clear AMPKα activation after treatment with ODN2395, SERCA2 activity was unaffected. Alternatively, ODN2395 caused the phosphorylation of AMPKα via transforming growth factor β-activated kinase 1 (TAK1), a kinase involved in TLR9 inflammatory signaling. Downstream, we hypothesized that that TLR9 activation of AMPKα may be important in mediating actin cytoskeleton reorganization. ODN2395 significantly increased the filamentous-to-globular actin ratio, as well as indices of RhoA/Rho-associated protein kinase (ROCK) activation, with the latter being prevented by AMPKα inhibition. In conclusion, AMPKα phosphorylation after TLR9 activation in VSMCs appears to be an extension of traditional inflammatory signaling via TAK1, as opposed to SERCA2 inhibition and the noncanonical pathway. Nonetheless, TLR9-AMPKα signaling can mediate VSMC function via RhoA/ROCK activation and actin polymerization.
Collapse
Affiliation(s)
| | | | - Safia Ogbi
- Department of Physiology, Augusta University, Augusta, Georgia
| | - Theodora Szasz
- Department of Physiology, Augusta University, Augusta, Georgia
| | - R Clinton Webb
- Department of Physiology, Augusta University, Augusta, Georgia
| |
Collapse
|
18
|
Jia X, Zhang X, Hu Y, Hu M, Tian S, Han X, Sun Y, Han L. Role of actin depolymerizing factor cofilin in Aspergillus fumigatus oxidative stress response and pathogenesis. Curr Genet 2017; 64:619-634. [PMID: 29170805 DOI: 10.1007/s00294-017-0777-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/28/2017] [Accepted: 10/31/2017] [Indexed: 12/13/2022]
Abstract
Aspergillus fumigatus is a major fungal pathogen that is responsible for approximately 90% of human aspergillosis. Cofilin is an actin depolymerizing factor that plays crucial roles in multiple cellular functions in many organisms. However, the functions of cofilin in A. fumigatus are still unknown. In this study, we constructed an A. fumigatus strain overexpressing cofilin (cofilin OE). The cofilin OE strain displayed a slightly different growth phenotype, significantly increased resistance against H2O2 and diamide, and increased activation of the high osmolarity glycerol pathway compared to the wild-type strain (WT). The cofilin OE strain internalized more efficiently into lung epithelial A549 cells, and induced increased transcription of inflammatory factors (MCP-1, TNF-α and IL-8) compared to WT. Cofilin overexpression also resulted in increased polysaccharides including β-1, 3-glucan and chitin, and increased transcription of genes related to oxidative stress responses and polysaccharide synthesis in A. fumigatus. However, the cofilin OE strain exhibited similar virulence to the wild-type strain in murine and Galleria mellonella infection models. These results demonstrated for the first time that cofilin, a regulator of actin cytoskeleton dynamics, might play a critical role in the regulation of oxidative stress responses and cell wall polysaccharide synthesis in A. fumigatus.
Collapse
Affiliation(s)
- Xiaodong Jia
- Institute for Disease Control and Prevention of PLA, Academy of Military Medical Sciences, 20# Dongda Str., 100071, Beijing, China
| | - Xi Zhang
- Institute for Disease Control and Prevention of PLA, Academy of Military Medical Sciences, 20# Dongda Str., 100071, Beijing, China
| | - Yingsong Hu
- Institute for Disease Control and Prevention of PLA, Academy of Military Medical Sciences, 20# Dongda Str., 100071, Beijing, China
| | - Mandong Hu
- Institute for Disease Control and Prevention of PLA, Academy of Military Medical Sciences, 20# Dongda Str., 100071, Beijing, China
| | - Shuguang Tian
- Institute for Disease Control and Prevention of PLA, Academy of Military Medical Sciences, 20# Dongda Str., 100071, Beijing, China
| | - Xuelin Han
- Institute for Disease Control and Prevention of PLA, Academy of Military Medical Sciences, 20# Dongda Str., 100071, Beijing, China
| | - Yansong Sun
- Institute for Disease Control and Prevention of PLA, Academy of Military Medical Sciences, 20# Dongda Str., 100071, Beijing, China.
| | - Li Han
- Institute for Disease Control and Prevention of PLA, Academy of Military Medical Sciences, 20# Dongda Str., 100071, Beijing, China.
| |
Collapse
|
19
|
Sheng N, Tan G, You W, Chen H, Gong J, Chen D, Zhang H, Wang Z. MiR-145 inhibits human colorectal cancer cell migration and invasion via PAK4-dependent pathway. Cancer Med 2017; 6:1331-1340. [PMID: 28440035 PMCID: PMC5463071 DOI: 10.1002/cam4.1029] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/04/2017] [Accepted: 01/08/2017] [Indexed: 01/05/2023] Open
Abstract
MicroRNA-145 (miR-145), as a tumor-suppressive miRNA, has been demonstrated down-regulated in colorectal cancer (CRC) cells, and could inhibit CRC cells growth. However, the molecular pathway in which miR-145 modulates CRC malignant transformation has not been fully revealed. Here, we reported an intense correlation between the expressions of PAK4 and miR-145 in human CRC cell lines. Transwell assay verified overexpression of miR-145, as well as knockdown of PAK4, significantly suppressed cell migration and invasion ability. The impaired migration and invasion ability of SW1116 cells was affected through the down-regulation of phosphorylation level of LIMK1 and cofilin in a PAK4-dependent manner. Collectively, we have demonstrated that miR-145 suppressed CRC migration and invasion through PAK4 pathway, which provides an attractive microRNA-based therapeutic target for CRC.
Collapse
Affiliation(s)
- Nengquan Sheng
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Gewen Tan
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Weiqiang You
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Hongqi Chen
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Jianfeng Gong
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Di Chen
- National Key Laboratory of Science and Technology on Nano/Micro Fabrication TechnologyResearch Institute Micro/Nano Science and TechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Huizhen Zhang
- Department of PathologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Zhigang Wang
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| |
Collapse
|
20
|
Inada N. Plant actin depolymerizing factor: actin microfilament disassembly and more. JOURNAL OF PLANT RESEARCH 2017; 130:227-238. [PMID: 28044231 PMCID: PMC5897475 DOI: 10.1007/s10265-016-0899-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/14/2016] [Indexed: 05/19/2023]
Abstract
ACTIN DEPOLYMERIZING FACTOR (ADF) is a conserved protein among eukaryotes. The main function of ADF is the severing and depolymerizing filamentous actin (F-actin), thus regulating F-actin organization and dynamics and contributing to growth and development of the organisms. Mammalian genomes contain only a few ADF genes, whereas angiosperm plants have acquired an expanding number of ADFs, resulting in the differentiation of physiological functions. Recent studies have revealed functions of ADFs in plant growth and development, and various abiotic and biotic stress responses. In biotic stress responses, ADFs are involved in both susceptibility and resistance, depending on the pathogens. Furthermore, recent studies have highlighted a new role of ADF in the nucleus, possibly in the regulation of gene expression. In this review, I will summarize the current status of plant ADF research and discuss future research directions.
Collapse
Affiliation(s)
- Noriko Inada
- The Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara, 630-0192, Japan.
| |
Collapse
|
21
|
Cofilin-1 and Other ADF/Cofilin Superfamily Members in Human Malignant Cells. Int J Mol Sci 2016; 18:ijms18010010. [PMID: 28025492 PMCID: PMC5297645 DOI: 10.3390/ijms18010010] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/18/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022] Open
Abstract
Identification of actin-depolymerizing factor homology (ADF-H) domains in the structures of several related proteins led first to the formation of the ADF/cofilin family, which then expanded to the ADF/cofilin superfamily. This superfamily includes the well-studied cofilin-1 (Cfl-1) and about a dozen different human proteins that interact directly or indirectly with the actin cytoskeleton, provide its remodeling, and alter cell motility. According to some data, Cfl-1 is contained in various human malignant cells (HMCs) and is involved in the formation of malignant properties, including invasiveness, metastatic potential, and resistance to chemotherapeutic drugs. The presence of other ADF/cofilin superfamily proteins in HMCs and their involvement in the regulation of cell motility were discovered with the use of various OMICS technologies. In our review, we discuss the results of the study of Cfl-1 and other ADF/cofilin superfamily proteins, which may be of interest for solving different problems of molecular oncology, as well as for the prospects of further investigations of these proteins in HMCs.
Collapse
|
22
|
Wang R, Wang X, Wu JQ, Ni B, Wen LB, Huang L, Liao Y, Tong GZ, Ding C, Mao X. Efficient porcine reproductive and respiratory syndrome virus entry in MARC-145 cells requires EGFR-PI3K-AKT-LIMK1-COFILIN signaling pathway. Virus Res 2016; 225:23-32. [DOI: 10.1016/j.virusres.2016.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/16/2016] [Accepted: 09/08/2016] [Indexed: 01/24/2023]
|
23
|
Du J, Wang X, Dong CH, Yang JM, Yao XJ. Computational Study of the Binding Mechanism of Actin-Depolymerizing Factor 1 with Actin in Arabidopsis thaliana. PLoS One 2016; 11:e0159053. [PMID: 27414648 PMCID: PMC4944973 DOI: 10.1371/journal.pone.0159053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/27/2016] [Indexed: 12/15/2022] Open
Abstract
Actin is a highly conserved protein. It plays important roles in cellular function and exists either in the monomeric (G-actin) or polymeric form (F-actin). Members of the actin-depolymerizing factor (ADF)/cofilin protein family bind to both G-actin and F-actin and play vital roles in actin dynamics by manipulating the rates of filament polymerization and depolymerization. It has been reported that the S6D and R98A/K100A mutants of actin-depolymerizing factor 1 (ADF1) in Arabidopsis thaliana decreased the binding affinity of ADF for the actin monomer. To investigate the binding mechanism and dynamic behavior of the ADF1–actin complex, we constructed a homology model of the AtADF1–actin complex based on the crystal structure of AtADF1 and the twinfilin C-terminal ADF-H domain in a complex with a mouse actin monomer. The model was then refined for subsequent molecular dynamics simulations. Increased binding energy of the mutated system was observed using the Molecular Mechanics Generalized Born Surface Area and Poisson–Boltzmann Surface Area (MM-GB/PBSA) methods. To determine the residues that make decisive contributions to the ADF1 actin-binding affinity, per-residue decomposition and computational alanine scanning analyses were performed, which provided more detailed information on the binding mechanism. Root-mean-square fluctuation and principal component analyses confirmed that the S6D and R98A/K100A mutants induced an increased conformational flexibility. The comprehensive molecular insight gained from this study is of great importance for understanding the binding mechanism of ADF1 and G-actin.
Collapse
Affiliation(s)
- Juan Du
- Key Laboratory of Plant Biotechnology of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao, China
- * E-mail:
| | - Xue Wang
- Key Laboratory of Plant Biotechnology of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Chun-Hai Dong
- Key Laboratory of Plant Biotechnology of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Jian Ming Yang
- Key Laboratory of Plant Biotechnology of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Xiao Jun Yao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| |
Collapse
|
24
|
Parrish AR. The cytoskeleton as a novel target for treatment of renal fibrosis. Pharmacol Ther 2016; 166:1-8. [PMID: 27343756 DOI: 10.1016/j.pharmthera.2016.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/07/2016] [Indexed: 12/23/2022]
Abstract
The incidence of chronic kidney disease (CKD) is increasing, with an estimated prevalence of 12% in the United States (Synder et al., 2009). While CKD may progress to end-stage renal disease (ESRD), which necessitates renal replacement therapy, i.e. dialysis or transplantation, most CKD patients never reach ESRD due to the increased risk of death from cardiovascular disease. It is well-established that regardless of the initiating insult - most often diabetes or hypertension - fibrosis is the common pathogenic pathway that leads to progressive injury and organ dysfunction (Eddy, 2014; Duffield, 2014). As such, there has been extensive research into the molecular and cellular mechanisms of renal fibrosis; however, translation to effective therapeutic strategies has been limited. While a role for the disruption of the cytoskeleton, most notably the actin network, has been established in acute kidney injury over the past two decades, a role in regulating renal fibrosis and CKD is only recently emerging. This review will focus on the role of the cytoskeleton in regulating pro-fibrotic pathways in the kidney, as well as data suggesting that these pathways represent novel therapeutic targets to manage fibrosis and ultimately CKD.
Collapse
Affiliation(s)
- Alan R Parrish
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
25
|
Mi N, Chen Y, Wang S, Chen M, Zhao M, Yang G, Ma M, Su Q, Luo S, Shi J, Xu J, Guo Q, Gao N, Sun Y, Chen Z, Yu L. CapZ regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane. Nat Cell Biol 2015; 17:1112-23. [DOI: 10.1038/ncb3215] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 07/01/2015] [Indexed: 12/16/2022]
|
26
|
Leemans B, Gadella BM, Stout TA, Heras S, Smits K, Ferrer-Buitrago M, Claes E, Heindryckx B, De Vos WH, Nelis H, Hoogewijs M, Van Soom A. Procaine Induces Cytokinesis in Horse Oocytes via a pH-Dependent Mechanism1. Biol Reprod 2015; 93:23. [DOI: 10.1095/biolreprod.114.127423] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 06/05/2015] [Indexed: 01/16/2023] Open
|
27
|
Ohashi K. Roles of cofilin in development and its mechanisms of regulation. Dev Growth Differ 2015; 57:275-90. [DOI: 10.1111/dgd.12213] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Kazumasa Ohashi
- Department of Biomolecular Sciences; Graduate School of Life Sciences; Tohoku University; Sendai Miyagi 980-8578 Japan
| |
Collapse
|
28
|
Vermillion KL, Lidberg KA, Gammill LS. Expression of actin-binding proteins and requirement for actin-depolymerizing factor in chick neural crest cells. Dev Dyn 2014; 243:730-8. [PMID: 24868596 DOI: 10.1002/dvdy.24105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Neural crest cells are multipotent cells that migrate extensively throughout vertebrate embryos to form diverse lineages. Cell migration requires polarized, organized actin networks that provide the driving force for motility. Actin-binding proteins that regulate neural crest cell migration are just beginning to be defined. RESULTS We recently identified a number of actin-associated factors through proteomic profiling of methylated proteins in migratory neural crest cells. Here, we report the previously undocumented expression pattern of three of these proteins in chick early neural crest development: doublecortin (DCX), tropomyosin-1 (TPM-1), and actin depolymerizing factor (ADF). All three genes are expressed with varying degrees of specificity and intensity in premigratory and migratory neural crest cells, and their resulting proteins exhibit distinct subcellular localization in migratory neural crest cells. Morpholino knock down of ADF reveals it is required for Sox10 gene expression, but minimally important during neural crest migration. CONCLUSIONS Neural crest cells express DCX, TPM-1, and ADF. ADF is necessary during neural crest specification, but largely dispensable for migration.
Collapse
|
29
|
Koth AP, Oliveira BR, Parfitt GM, Buonocore JDQ, Barros DM. Participation of group I p21-activated kinases in neuroplasticity. ACTA ACUST UNITED AC 2014; 108:270-7. [PMID: 25174326 DOI: 10.1016/j.jphysparis.2014.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/25/2014] [Accepted: 08/20/2014] [Indexed: 12/15/2022]
Abstract
PAKs are a family of serine/threonine protein kinases activated by small GTPases of the Rho family, including Rac and Cdc42, and are categorized into group I (isoforms 1, 2 and 3) and group II (isoforms 4, 5 and 6). PAK1 and PAK3 are critically involved in biological mechanisms associated with neurodevelopment, neuroplasticity and maturation of the nervous system, and changes in their activity have been detected in pathological disorders, such as Alzheimer's disease, Huntington's disease and mental retardation. The group I PAKs have been associated with neurological processes due to their involvement in intracellular mechanisms that result in molecular and cellular morphological alterations that promote cytoskeletal outgrowth, increasing the efficiency of synaptic transmission. Their substrates in these processes include other intracellular signaling molecules, such as Raf, Mek and LIMK, as well as other components of the cytoskeleton, such as MLC and FLNa. In this review, we describe the characteristics of group I PAKs, such as their molecular structure, mechanisms of activation and importance in the neurobiological processes involved in synaptic plasticity.
Collapse
Affiliation(s)
- André P Koth
- Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas, Fisiologia Animal Comparada, Laboratório de Neurociências, Universidade Federal do Rio Grande (FURG), Av Itália, Km 8, Rio Grande, RS 96203-900, Brazil.
| | - Bruno R Oliveira
- Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas, Fisiologia Animal Comparada, Laboratório de Biologia Molecular, Universidade Federal do Rio Grande (FURG), Av Itália, Km 8, Rio Grande, RS 96203-900, Brazil.
| | - Gustavo M Parfitt
- Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas, Fisiologia Animal Comparada, Laboratório de Neurociências, Universidade Federal do Rio Grande (FURG), Av Itália, Km 8, Rio Grande, RS 96203-900, Brazil.
| | - Juliana de Quadros Buonocore
- Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas, Fisiologia Animal Comparada, Laboratório de Neurociências, Universidade Federal do Rio Grande (FURG), Av Itália, Km 8, Rio Grande, RS 96203-900, Brazil.
| | - Daniela M Barros
- Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas, Fisiologia Animal Comparada, Laboratório de Neurociências, Universidade Federal do Rio Grande (FURG), Av Itália, Km 8, Rio Grande, RS 96203-900, Brazil.
| |
Collapse
|
30
|
Kaur M, Kachlany SC. Aggregatibacter actinomycetemcomitans leukotoxin (LtxA; Leukothera) induces cofilin dephosphorylation and actin depolymerization during killing of malignant monocytes. MICROBIOLOGY-SGM 2014; 160:2443-2452. [PMID: 25169107 DOI: 10.1099/mic.0.082347-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Leukotoxin (LtxA; Leukothera), a protein toxin secreted by the oral bacterium Aggregatibacter actinomycetemcomitans, specifically kills white blood cells (WBCs). LtxA binds to the receptor known as lymphocyte function associated antigen-1 (LFA-1), a β2 integrin expressed only on the surface of WBCs. LtxA is being studied as a virulence factor that helps A. actinomycetemcomitans evade host defences and as a potential therapeutic agent for the treatment of WBC diseases. LtxA-mediated cell death in monocytes involves both caspases and lysosomes; however, the signalling proteins that regulate and mediate cell death remain largely unknown. We used a 2D-gel proteomics approach to analyse the global protein expression changes that occur in response to LtxA. This approach identified the protein cofilin, which underwent dephosphorylation upon LtxA treatment. Cofilin is a ubiquitous actin-binding protein known to regulate actin dynamics and is regulated by LIM kinase (LIMK)-mediated phosphorylation. LtxA-mediated cofilin dephosphorylation was dependent on LFA-1 and cofilin dephosphorylation did not occur when LFA-1 bound to its natural ligand, ICAM-1. Treatment of cells with an inhibitor of LIMK (LIMKi) also led to cofilin dephosphorylation and enhanced killing by LtxA. This enhanced sensitivity to LtxA coincided with an increase in lysosomal disruption, and an increase in LFA-1 surface expression and clustering. Both LIMKi and LtxA treatment also induced actin depolymerization, which could play a role in trafficking and surface distribution of LFA-1. We propose a model in which LtxA-mediated cofilin dephosphorylation leads to actin depolymerization, LFA-1 overexpression/clustering, and enhanced lysosomal-mediated cell death.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Scott C Kachlany
- Actinobac Biomed Inc., New Brunswick, NJ, USA.,Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| |
Collapse
|
31
|
Matsuda S, Kominato K, Koide-Yoshida S, Miyamoto K, Isshiki K, Tsuji A, Yuasa K. PCTAIRE kinase 3/cyclin-dependent kinase 18 is activated through association with cyclin A and/or phosphorylation by protein kinase A. J Biol Chem 2014; 289:18387-400. [PMID: 24831015 DOI: 10.1074/jbc.m113.542936] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PCTAIRE kinase 3 (PCTK3)/cyclin-dependent kinase 18 (CDK18) is an uncharacterized member of the CDK family because its activator(s) remains unidentified. Here we describe the mechanisms of catalytic activation of PCTK3 by cyclin A2 and cAMP-dependent protein kinase (PKA). Using a pulldown experiment with HEK293T cells, cyclin A2 and cyclin E1 were identified as proteins that interacted with PCTK3. An in vitro kinase assay using retinoblastoma protein as the substrate showed that PCTK3 was specifically activated by cyclin A2 but not by cyclin E1, although its activity was lower than that of CDK2. Furthermore, immunocytochemistry analysis showed that PCTK3 colocalized with cyclin A2 in the cytoplasm and regulated cyclin A2 stability. Amino acid sequence analysis revealed that PCTK3 contained four putative PKA phosphorylation sites. In vitro and in vivo kinase assays showed that PCTK3 was phosphorylated by PKA at Ser(12), Ser(66), and Ser(109) and that PCTK3 activity significantly increased via phosphorylation at Ser(12) by PKA even in the absence of cyclin A2. In the presence of cyclin A2, PCTK3 activity was comparable to CDK2 activity. We also found that PCTK3 knockdown in HEK293T cells induced polymerized actin accumulation in peripheral areas and cofilin phosphorylation. Taken together, our results provide the first evidence for the mechanisms of catalytic activation of PCTK3 by cyclin A2 and PKA and a physiological function of PCTK3.
Collapse
Affiliation(s)
- Shinya Matsuda
- From the Department of Biological Science and Technology, The University of Tokushima Graduate School, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | - Kyohei Kominato
- From the Department of Biological Science and Technology, The University of Tokushima Graduate School, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | - Shizuyo Koide-Yoshida
- From the Department of Biological Science and Technology, The University of Tokushima Graduate School, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | - Kenji Miyamoto
- From the Department of Biological Science and Technology, The University of Tokushima Graduate School, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | - Kinuka Isshiki
- From the Department of Biological Science and Technology, The University of Tokushima Graduate School, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | - Akihiko Tsuji
- From the Department of Biological Science and Technology, The University of Tokushima Graduate School, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | - Keizo Yuasa
- From the Department of Biological Science and Technology, The University of Tokushima Graduate School, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| |
Collapse
|
32
|
Ivanovska J, Tregubova A, Mahadevan V, Chakilam S, Gandesiri M, Benderska N, Ettle B, Hartmann A, Söder S, Ziesché E, Fischer T, Lautscham L, Fabry B, Segerer G, Gohla A, Schneider-Stock R. Identification of DAPK as a scaffold protein for the LIMK/cofilin complex in TNF-induced apoptosis. Int J Biochem Cell Biol 2013; 45:1720-9. [DOI: 10.1016/j.biocel.2013.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/09/2013] [Accepted: 05/09/2013] [Indexed: 12/12/2022]
|
33
|
Ullevig S, Kim HS, Asmis R. S-glutathionylation in monocyte and macrophage (dys)function. Int J Mol Sci 2013; 14:15212-32. [PMID: 23887649 PMCID: PMC3759857 DOI: 10.3390/ijms140815212] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 06/15/2013] [Accepted: 06/18/2013] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease involving the accumulation of monocytes and macrophages in the vascular wall. Monocytes and macrophages play a central role in the initiation and progression of atherosclerotic lesion development. Oxidative stress, which occurs when reactive oxygen species (ROS) overwhelm cellular antioxidant systems, contributes to the pathophysiology of many chronic inflammatory diseases, including atherosclerosis. Major targets of ROS are reactive thiols on cysteine residues in proteins, which when oxidized can alter cellular processes, including signaling pathways, metabolic pathways, transcription, and translation. Protein-S-glutathionylation is the process of mixed disulfide formation between glutathione (GSH) and protein thiols. Until recently, protein-S-glutathionylation was associated with increased cellular oxidative stress, but S-glutathionylation of key protein targets has now emerged as a physiologically important redox signaling mechanism, which when dysregulated contributes to a variety of disease processes. In this review, we will explore the role of thiol oxidative stress and protein-S-glutathionylation in monocyte and macrophage dysfunction as a mechanistic link between oxidative stress associated with metabolic disorders and chronic inflammatory diseases, including atherosclerosis.
Collapse
Affiliation(s)
- Sarah Ullevig
- Department of Biochemistry, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; E-Mail:
| | - Hong Seok Kim
- Department of Clinical Laboratory Sciences, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; E-Mail:
| | - Reto Asmis
- Department of Biochemistry, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; E-Mail:
- Department of Clinical Laboratory Sciences, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-210-567-3411; Fax: +1-210-567-3719
| |
Collapse
|
34
|
|
35
|
Signaling mechanisms and functional roles of cofilin phosphorylation and dephosphorylation. Cell Signal 2012; 25:457-69. [PMID: 23153585 DOI: 10.1016/j.cellsig.2012.11.001] [Citation(s) in RCA: 285] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 11/05/2012] [Indexed: 01/12/2023]
Abstract
Cofilin and actin-depolymerizing factor (ADF) are actin-binding proteins that play an essential role in regulating actin filament dynamics and reorganization by stimulating the severance and depolymerization of actin filaments. Cofilin/ADF are inactivated by phosphorylation at the serine residue at position 3 by LIM-kinases (LIMKs) and testicular protein kinases (TESKs) and are reactivated by dephosphorylation by the slingshot (SSH) family of protein phosphatases and chronophin. This review describes recent advances in our understanding of the signaling mechanisms regulating LIMKs and SSHs and the functional roles of cofilin phospho-regulation in cell migration, tumor invasion, mitosis, neuronal development, and synaptic plasticity. Accumulating evidence demonstrates that the phospho-regulation of cofilin/ADF is a key convergence point of cell signaling networks that link extracellular stimuli to actin cytoskeletal dynamics and that spatiotemporal control of cofilin/ADF activity by LIMKs and SSHs plays a crucial role in a diverse array of cellular and physiological processes. Perturbations in the normal control of cofilin/ADF activity underlie many pathological conditions, including cancer metastasis and neurological and cardiovascular disorders.
Collapse
|
36
|
Chen B, Jiang M, Zhou M, Chen L, Liu X, Wang X, Wang Y. Both NMDA and non-NMDA receptors mediate glutamate stimulation induced cofilin rod formation in cultured hippocampal neurons. Brain Res 2012; 1486:1-13. [DOI: 10.1016/j.brainres.2012.08.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 08/20/2012] [Accepted: 08/28/2012] [Indexed: 10/27/2022]
|
37
|
Keratinocyte migration in the developing eyelid requires LIMK2. PLoS One 2012; 7:e47168. [PMID: 23071748 PMCID: PMC3465268 DOI: 10.1371/journal.pone.0047168] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 09/10/2012] [Indexed: 01/03/2023] Open
Abstract
In vitro studies have identified LIMK2 as a key downstream effector of Rho GTPase-induced changes in cytoskeletal organization. LIMK2 is phosphorylated and activated by Rho associated coiled-coil kinases (ROCKs) in response to a variety of growth factors. The biochemical targets of LIMK2 belong to a family of actin binding proteins that are potent modulators of actin assembly and disassembly. Although numerous studies have suggested that LIMK2 regulates cell morphology and motility, evidence supportive of these functions in vivo has remained elusive. In this study, a knockout mouse was created that abolished LIMK2 biochemical activity resulting in a profound inhibition of epithelial sheet migration during eyelid development. In the absence of LIMK2, nascent eyelid keratinocytes differentiate and acquire a pre-migratory phenotype but the leading cells fail to nucleate filamentous actin and remain immobile causing an eyes open at birth (EOB) phenotype. The failed nucleation of actin was associated with significant reductions in phosphorylated cofilin, a major LIMK2 biochemical substrate and potent modulator of actin dynamics. These results demonstrate that LIMK2 activity is required for keratinocyte migration in the developing eyelid.
Collapse
|
38
|
Taulet N, Delorme-Walker VD, DerMardirossian C. Reactive oxygen species regulate protrusion efficiency by controlling actin dynamics. PLoS One 2012; 7:e41342. [PMID: 22876286 PMCID: PMC3410878 DOI: 10.1371/journal.pone.0041342] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 06/20/2012] [Indexed: 12/31/2022] Open
Abstract
Productive protrusions allowing motile cells to sense and migrate toward a chemotactic gradient of reactive oxygen species (ROS) require a tight control of the actin cytoskeleton. However, the mechanisms of how ROS affect cell protrusion and actin dynamics are not well elucidated yet. We show here that ROS induce the formation of a persistent protrusion. In migrating epithelial cells, protrusion of the leading edge requires the precise regulation of the lamellipodium and lamella F-actin networks. Using fluorescent speckle microscopy, we showed that, upon ROS stimulation, the F-actin retrograde flow is enhanced in the lamellipodium. This event coincides with an increase of cofilin activity, free barbed ends formation, Arp2/3 recruitment, and ERK activity at the cell edge. In addition, we observed an acceleration of the F-actin flow in the lamella of ROS-stimulated cells, which correlates with an enhancement of the cell contractility. Thus, this study demonstrates that ROS modulate both the lamellipodium and the lamella networks to control protrusion efficiency.
Collapse
Affiliation(s)
- Nicolas Taulet
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Violaine D. Delorme-Walker
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Céline DerMardirossian
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
39
|
Moffatt CE, Inaba H, Hirano T, Lamont RJ. Porphyromonas gingivalis SerB-mediated dephosphorylation of host cell cofilin modulates invasion efficiency. Cell Microbiol 2012; 14:577-88. [PMID: 22212282 DOI: 10.1111/j.1462-5822.2011.01743.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Porphyromonas gingivalis, a host-adapted opportunistic pathogen, produces a serine phosphatase, SerB, known to affect virulence, invasion and persistence within the host cell. SerB induces actin filament rearrangement in epithelial cells, but the mechanistic basis of this is not fully understood. Here we investigated the effects of SerB on the actin depolymerizing host protein cofilin. P. gingivalis infection resulted in the dephosphorylation of cofilin in gingival epithelial cells. In contrast, a SerB-deficient mutant of P. gingivalis was unable to cause cofilin dephosphorylation. The involvement of cofilin in P. gingivalis invasion was determined by quantitative image analysis of epithelial cells in which cofilin had been knocked down or knocked in with various cofilin constructs. siRNA-silencing of cofilin led to a significant decrease in numbers of intracellular P. gingivalis marked by an absence of actin colocalization. Transfection with wild-type cofilin or constitutively active cofilin both increased numbers of intracellular bacteria, while constitutively inactive cofilin abrogated invasion. Expression of LIM kinase resulted in reduced P. gingivalis invasion, an effect that was reversed by expression of constitutively active cofilin. These results show that P. gingivalis SerB activity induces dephosphorylation of cofilin, and that active cofilin is required for optimal invasion into gingival epithelial cells.
Collapse
Affiliation(s)
- Catherine E Moffatt
- Center for Oral Health and Systemic Disease, School of Dentistry, University of Louisville, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
40
|
Ohashi K, Fujiwara S, Watanabe T, Kondo H, Kiuchi T, Sato M, Mizuno K. LIM kinase has a dual role in regulating lamellipodium extension by decelerating the rate of actin retrograde flow and the rate of actin polymerization. J Biol Chem 2011; 286:36340-51. [PMID: 21868383 DOI: 10.1074/jbc.m111.259135] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Lamellipodium extension is crucial for cell migration and spreading. The rate of lamellipodium extension is determined by the balance between the rate of actin polymerization and the rate of actin retrograde flow. LIM kinase 1 (LIMK1) regulates actin dynamics by phosphorylating and inactivating cofilin, an actin-depolymerizing protein. We examined the role of LIMK1 in lamellipodium extension by measuring the rates of actin polymerization, actin retrograde flow, and lamellipodium extension using time-lapse imaging of fluorescence recovery after photobleaching. In the non-extending lamellipodia of active Rac-expressing N1E-115 cells, LIMK1 expression decelerated and LIMK1 knockdown accelerated actin retrograde flow. In the extending lamellipodia of neuregulin-stimulated MCF-7 cells, LIMK1 knockdown accelerated both the rate of actin polymerization and the rate of actin retrograde flow, but the accelerating effect on retrograde flow was greater than the effect on polymerization, thus resulting in a decreased rate of lamellipodium extension. These results indicate that LIMK1 has a dual role in regulating lamellipodium extension by decelerating actin retrograde flow and polymerization, and in MCF-7 cells endogenous LIMK1 contributes to lamellipodium extension by decelerating actin retrograde flow more effectively than decelerating actin polymerization.
Collapse
Affiliation(s)
- Kazumasa Ohashi
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.
| | | | | | | | | | | | | |
Collapse
|
41
|
Jiang N, Kham SKY, Koh GS, Suang Lim JY, Ariffin H, Chew FT, Yeoh AEJ. Identification of prognostic protein biomarkers in childhood acute lymphoblastic leukemia (ALL). J Proteomics 2011; 74:843-57. [DOI: 10.1016/j.jprot.2011.02.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 02/25/2011] [Accepted: 02/26/2011] [Indexed: 10/18/2022]
|
42
|
Huang ZH, Wang Y, Su ZD, Geng JG, Chen YZ, Yuan XB, He C. Slit-2 repels the migration of olfactory ensheathing cells by triggering Ca2+-dependent cofilin activation and RhoA inhibition. J Cell Sci 2011; 124:186-97. [PMID: 21187345 DOI: 10.1242/jcs.071357] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Olfactory ensheathing cells (OECs) migrate from the olfactory epithelium towards the olfactory bulb during development. However, the guidance mechanism for OEC migration remains a mystery. Here we show that migrating OECs expressed the receptor of the repulsive guidance factor Slit-2. A gradient of Slit-2 in front of cultured OECs first caused the collapse of the leading front, then the reversal of cell migration. These Slit-2 effects depended on the Ca(2+) release from internal stores through inositol (1,4,5)-triphosphate receptor channels. Interestingly, in response to Slit-2 stimulation, collapse of the leading front required the activation of the F-actin severing protein cofilin in a Ca(2+)-dependent manner, whereas the subsequent reversal of the soma migration depended on the reversal of RhoA activity across the cell. Finally, the Slit-2-induced repulsion of cell migration was fully mimicked by co-application of inhibitors of F-actin polymerization and RhoA kinase. Our findings revealed Slit-2 as a repulsive guidance factor for OEC migration and an unexpected link between Ca(2+) and cofilin signaling during Slit-2-triggered repulsion.
Collapse
Affiliation(s)
- Zhi-Hui Huang
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Neuroscience Research Center of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Röck K, Grandoch M, Majora M, Krutmann J, Fischer JW. Collagen fragments inhibit hyaluronan synthesis in skin fibroblasts in response to ultraviolet B (UVB): new insights into mechanisms of matrix remodeling. J Biol Chem 2011; 286:18268-76. [PMID: 21454612 DOI: 10.1074/jbc.m110.201665] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
UVB irradiation causes characteristic features of skin aging including remodeling of the dermal extracellular matrix. A key feature during this process is the up-regulation of matrix metalloproteinases and cleavage of collagen. Hyaluronic acid (HA), a major component of the dermal matrix, decreases after chronic UVB exposure. However, the factors that govern the decline of HA synthesis during the course of actinic aging are largely unknown. The aim of the present study was to explore whether collagen degradation causes inhibition of HA synthesis in human skin fibroblasts. After treatment of fibroblasts with collagen fragments (CF) in vitro, resolution of the actin cytoskeleton and inhibition of HA secretion occurred because of specific down-regulation of hyaluronan synthase 2 (HAS2) expression. The α(v)β(3)-agonist, RGDS, latrunculin A, and an inhibitor of Rho-activated kinase inhibited HAS2 expression. Conversely, blocking antibodies to α(v)β(3) abolished the down-regulation of HAS2 and the cytoskeletal effects. Furthermore, inhibition of cofilin phosphorylation in response to CF was prevented by α(v)β(3)-blocking antibodies. The key role of ERK signaling was shown by reduced nuclear accumulation of phosphoERK and of ELK-1 phosphorylation in response to CF. In addition, the ERK inhibitor PD98059 reduced HAS2 expression. Also, UVB irradiation of fibroblasts caused down-regulation of HAS2, which was sensitive to matrix metalloproteinase inhibitors and to α(v)β(3)-blocking antibodies. In conclusion, these data suggest that CF activate α(v)β(3)-integrins and in turn inhibit Rho kinase (ROCK) signaling and nuclear translocation of phosphoERK, resulting in reduced HAS2 expression. Therefore, a novel mechanism is presented how proteolytic collagen cleavage may inhibit HA synthesis in dermal fibroblasts during extrinsic skin aging.
Collapse
Affiliation(s)
- Katharina Röck
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
44
|
Clark AG, Paluch E. Mechanics and regulation of cell shape during the cell cycle. Results Probl Cell Differ 2011; 53:31-73. [PMID: 21630140 DOI: 10.1007/978-3-642-19065-0_3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many cell types undergo dramatic changes in shape throughout the cell cycle. For individual cells, a tight control of cell shape is crucial during cell division, but also in interphase, for example during cell migration. Moreover, cell cycle-related cell shape changes have been shown to be important for tissue morphogenesis in a number of developmental contexts. Cell shape is the physical result of cellular mechanical properties and of the forces exerted on the cell. An understanding of the causes and repercussions of cell shape changes thus requires knowledge of both the molecular regulation of cellular mechanics and how specific changes in cell mechanics in turn effect global shape changes. In this chapter, we provide an overview of the current knowledge on the control of cell morphology, both in terms of general cell mechanics and specifically during the cell cycle.
Collapse
Affiliation(s)
- Andrew G Clark
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| | | |
Collapse
|
45
|
|
46
|
Inhibition of GGTase-I and FTase disrupts cytoskeletal organization of human PC-3 prostate cancer cells. Cell Biol Int 2010; 34:815-26. [PMID: 20446922 DOI: 10.1042/cbi20090288] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The mevalonate synthesis pathway produces intermediates for isoprenylation of small GTPases, which are involved in the regulation of actin cytoskeleton and cell motility. Here, we investigated the role of the prenylation transferases in the regulation of the cytoskeletal organization and motility of PC-3 prostate cancer cells. This was done by using FTI-277, GGTI-298 or NE-10790, the specific inhibitors of FTase (farnesyltransferase), GGTase (geranylgeranyltransferase)-I and -II, respectively. Treatment of PC-3 cells with GGTI-298 and FTI-277 inhibited migration and invasion in a time- and dose-dependent manner. This was associated with disruption of F-actin organization and decreased recovery of GFP-actin. Immunoblot analysis of various cytoskeleton-associated proteins showed that the most striking change in GGTI-298- and FTI-277-treated cells was a markedly decreased level of total and phosphorylated cofilin, whereas the level of cofilin mRNA was not decreased. The treatment of PC-3 cells with GGTI-298 also affected the dynamics of GFP-paxillin and decreased the levels of total and phosphorylated paxillin. The levels of phosphorylated FAK (focal adhesion kinase) and PAK (p-21-associated kinase)-2 were also lowered by GGTI-298, but levels of paxillin or FAK mRNAs were not affected. In addition, GGTI-298 had a minor effect on the activity of MMP-9. RNAi knockdown of GGTase-Ibeta inhibited invasion, disrupted F-actin organization and decreased the level of cofilin in PC-3 cells. NE-10790 did not have any effect on PC-3 prostate cancer cell motility or on the organization of the cytoskeleton. In conclusion, our results demonstrate the involvement of GGTase-I- and FTase-catalysed prenylation reactions in the regulation of cytoskeletal integrity and motility of prostate cancer cells and suggest them as interesting drug targets for development of inhibitors of prostate cancer metastasis.
Collapse
|
47
|
Trushin SA, Bren GD, Badley AD. CXCR4 Tropic HIV-1 gp120 Inhibition of SDF-1α-Induced Chemotaxis Requires Lck and is Associated with Cofilin Phosphorylation. Open Virol J 2010; 4:157-62. [PMID: 20835359 PMCID: PMC2936012 DOI: 10.2174/1874357901004010157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 05/12/2010] [Accepted: 05/24/2010] [Indexed: 01/04/2023] Open
Abstract
Objective: HIV gp120 is a pleiotropic protein present in the plasma and tissues of HIV-infected patients, which affects a variety of homeostatic functions. In this report, we examine the mechanism of how gp120 blocks CD4 T cells from migrating towards SDF-1α. Methods: In vitro treatment of primary CD4 T cells with CXCR4 tropic gp120, SDF, and measurement of chemotaxis and cell signaling. Results: gp120 signaling through CD4 receptor and Lck are required for its ability to inhibit chemotaxis induced by SDF, as demonstrated by CD4 receptor decoys, Lck inhibitors, as well as cells deficient in Lck, in which Lck expression is restored. Blocking Lck abrogates the ability of CXCR4 tropic gp120 to antagonize SDF-1α-induced chemotaxis. This inhibition is associated with cofilin phosphorylation, thereby providing a potential mechanism. Conclusion: We conclude that the ability of gp120 to inhibit SDF-1α-induced chemotaxis is mediated by the CD4 receptor and Lck signaling, potentially by promoting cofilin phosphorylation.
Collapse
Affiliation(s)
- Sergey A Trushin
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | | | | |
Collapse
|
48
|
Miranda L, Carpentier S, Platek A, Hussain N, Gueuning MA, Vertommen D, Ozkan Y, Sid B, Hue L, Courtoy PJ, Rider MH, Horman S. AMP-activated protein kinase induces actin cytoskeleton reorganization in epithelial cells. Biochem Biophys Res Commun 2010; 396:656-61. [PMID: 20438708 DOI: 10.1016/j.bbrc.2010.04.151] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 04/27/2010] [Indexed: 12/13/2022]
Abstract
AMP-activated protein kinase (AMPK), a known regulator of cellular and systemic energy balance, is now recognized to control cell division, cell polarity and cell migration, all of which depend on the actin cytoskeleton. Here we report the effects of A769662, a pharmacological activator of AMPK, on cytoskeletal organization and signalling in epithelial Madin-Darby canine kidney (MDCK) cells. We show that AMPK activation induced shortening or radiation of stress fibers, uncoupling from paxillin and predominance of cortical F-actin. In parallel, Rho-kinase downstream targets, namely myosin regulatory light chain and cofilin, were phosphorylated. These effects resembled the morphological changes in MDCK cells exposed to hyperosmotic shock, which led to Ca(2+)-dependent AMPK activation via calmodulin-dependent protein kinase kinase-beta(CaMKKbeta), a known upstream kinase of AMPK. Indeed, hypertonicity-induced AMPK activation was markedly reduced by the STO-609 CaMKKbeta inhibitor, as was the increase in MLC and cofilin phosphorylation. We suggest that AMPK links osmotic stress to the reorganization of the actin cytoskeleton.
Collapse
Affiliation(s)
- Lisa Miranda
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate, B-1200 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kim JE, Kim DW, Kwak SE, Ryu HJ, Yeo SI, Kwon OS, Choi SY, Kang TC. Pyridoxal-5'-phosphate phosphatase/chronophin inhibits long-term potentiation induction in the rat dentate gyrus. Hippocampus 2010; 19:1078-89. [PMID: 19253407 DOI: 10.1002/hipo.20568] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pyridoxal-5'-phosphate (PLP)-phosphatase/chronophin (PLPP/CIN) directly dephosphorylates actin-depolymerizing factor (ADF)/cofilin as well as PLP. Although PLPP/CIN plays a role in the regulation of F-actin and vitamin B(6) metabolism, there is no direct evidence to support a correlation between PLPP/CIN and F-actin polymerization during long-term potentiation (LTP) induction. In this study, we investigated whether the expression of PLPP/CIN is altered following LTP induction, and whether Tat-PLPP/CIN transduction affects LTP induction in the rat dentate gyrus (DG). PLPP/CIN immunoreactivity was markedly decreased in dentate granule cells after the induction of LTP. Tat-PLPP/CIN transduction (20 and 200 microg/kg) decreased the efficiency of high frequency stimulus-induced potentiation of populations spike amplitude as compared to saline or Tat-protein-treated animals. The PLPP/CIN protein level showed an inverse correlation with phosphorylated ADF/cofilin levels and F-actin content. These findings suggest that PLPP/CIN-mediated actin dynamics may play an important role in the changes of morphological properties (dendritic spine reorganization) of the hippocampus in LTP.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon, Kangwon-Do, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- C.B. SHUSTER
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - I.M. HERMAN
- Department of Physiology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|