1
|
Chen M, Zhang L, Guo Y, Liu X, Song Y, Li X, Ding X, Guo H. A novel lncRNA promotes myogenesis of bovine skeletal muscle satellite cells via PFN1-RhoA/Rac1. J Cell Mol Med 2021; 25:5988-6005. [PMID: 33942976 PMCID: PMC8256363 DOI: 10.1111/jcmm.16427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Myogenesis, the process of skeletal muscle formation, is a highly coordinated multistep biological process. Accumulating evidence suggests that long non-coding RNAs (lncRNAs) are emerging as a gatekeeper in myogenesis. Up to now, most studies on muscle development-related lncRNAs are mainly focussed on humans and mice. In this study, a novel muscle highly expressed lncRNA, named lnc23, localized in nucleus, was found differentially expressed in different stages of embryonic development and myogenic differentiation. The knockdown and over-expression experiments showed that lnc23 positively regulated the myogenic differentiation of bovine skeletal muscle satellite cells. Then, TMT 10-plex labelling quantitative proteomics was performed to screen the potentially regulatory proteins of lnc23. Results indicated that lnc23 was involved in the key processes of myogenic differentiation such as cell fusion, further demonstrated that down-regulation of lnc23 may inhibit myogenic differentiation by reducing signal transduction and cell fusion among cells. Furthermore, RNA pulldown/LC-MS and RIP experiment illustrated that PFN1 was a binding protein of lnc23. Further, we also found that lnc23 positively regulated the protein expression of RhoA and Rac1, and PFN1 may negatively regulate myogenic differentiation and the expression of its interacting proteins RhoA and Rac1. Hence, we support that lnc23 may reduce the inhibiting effect of PFN1 on RhoA and Rac1 by binding to PFN1, thereby promoting myogenic differentiation. In short, the novel identified lnc23 promotes myogenesis of bovine skeletal muscle satellite cells via PFN1-RhoA/Rac1.
Collapse
Affiliation(s)
- Mingming Chen
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| | - Linlin Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| | - Yiwen Guo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| | - Xinfeng Liu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| | - Yingshen Song
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| | - Xin Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| | - Xiangbin Ding
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| | - Hong Guo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| |
Collapse
|
2
|
Millward DJ. Interactions between Growth of Muscle and Stature: Mechanisms Involved and Their Nutritional Sensitivity to Dietary Protein: The Protein-Stat Revisited. Nutrients 2021; 13:729. [PMID: 33668846 PMCID: PMC7996181 DOI: 10.3390/nu13030729] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Childhood growth and its sensitivity to dietary protein is reviewed within a Protein-Stat model of growth regulation. The coordination of growth of muscle and stature is a combination of genetic programming, and of two-way mechanical interactions involving the mechanotransduction of muscle growth through stretching by bone length growth, the core Protein-Stat feature, and the strengthening of bone through muscle contraction via the mechanostat. Thus, growth in bone length is the initiating event and this is always observed. Endocrine and cellular mechanisms of growth in stature are reviewed in terms of the growth hormone-insulin like growth factor-1 (GH-IGF-1) and thyroid axes and the sex hormones, which together mediate endochondral ossification in the growth plate and bone lengthening. Cellular mechanisms of muscle growth during development are then reviewed identifying (a) the difficulties posed by the need to maintain its ultrastructure during myofibre hypertrophy within the extracellular matrix and the concept of muscle as concentric "bags" allowing growth to be conceived as bag enlargement and filling, (b) the cellular and molecular mechanisms involved in the mechanotransduction of satellite and mesenchymal stromal cells, to enable both connective tissue remodelling and provision of new myonuclei to aid myofibre hypertrophy and (c) the implications of myofibre hypertrophy for protein turnover within the myonuclear domain. Experimental data from rodent and avian animal models illustrate likely changes in DNA domain size and protein turnover during developmental and stretch-induced muscle growth and between different muscle fibre types. Growth of muscle in male rats during adulthood suggests that "bag enlargement" is achieved mainly through the action of mesenchymal stromal cells. Current understanding of the nutritional regulation of protein deposition in muscle, deriving from experimental studies in animals and human adults, is reviewed, identifying regulation by amino acids, insulin and myofibre volume changes acting to increase both ribosomal capacity and efficiency of muscle protein synthesis via the mechanistic target of rapamycin complex 1 (mTORC1) and the phenomenon of a "bag-full" inhibitory signal has been identified in human skeletal muscle. The final section deals with the nutritional sensitivity of growth of muscle and stature to dietary protein in children. Growth in length/height as a function of dietary protein intake is described in the context of the breastfed child as the normative growth model, and the "Early Protein Hypothesis" linking high protein intakes in infancy to later adiposity. The extensive paediatric studies on serum IGF-1 and child growth are reviewed but their clinical relevance is of limited value for understanding growth regulation; a role in energy metabolism and homeostasis, acting with insulin to mediate adiposity, is probably more important. Information on the influence of dietary protein on muscle mass per se as opposed to lean body mass is limited but suggests that increased protein intake in children is unable to promote muscle growth in excess of that linked to genotypic growth in length/height. One possible exception is milk protein intake, which cohort and cross-cultural studies suggest can increase height and associated muscle growth, although such effects have yet to be demonstrated by randomised controlled trials.
Collapse
Affiliation(s)
- D Joe Millward
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
3
|
Tyrosine phosphorylation-dependent localization of TmaR that controls activity of a major bacterial sugar regulator by polar sequestration. Proc Natl Acad Sci U S A 2021; 118:2016017118. [PMID: 33376208 DOI: 10.1073/pnas.2016017118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The poles of Escherichia coli cells are emerging as hubs for major sensory systems, but the polar determinants that allocate their components to the pole are largely unknown. Here, we describe the discovery of a previously unannotated protein, TmaR, which localizes to the E. coli cell pole when phosphorylated on a tyrosine residue. TmaR is shown here to control the subcellular localization and activity of the general PTS protein Enzyme I (EI) by binding and polar sequestration of EI, thus regulating sugar uptake and metabolism. Depletion or overexpression of TmaR results in EI release from the pole or enhanced recruitment to the pole, which leads to increasing or decreasing the rate of sugar consumption, respectively. Notably, phosphorylation of TmaR is required to release EI and enable its activity. Like TmaR, the ability of EI to be recruited to the pole depends on phosphorylation of one of its tyrosines. In addition to hyperactivity in sugar consumption, the absence of TmaR also leads to detrimental effects on the ability of cells to survive in mild acidic conditions. Our results suggest that this survival defect, which is sugar- and EI-dependent, reflects the difficulty of cells lacking TmaR to enter stationary phase. Our study identifies TmaR as the first, to our knowledge, E. coli protein reported to localize in a tyrosine-dependent manner and to control the activity of other proteins by their polar sequestration and release.
Collapse
|
4
|
Holstein I, Singh AK, Pohl F, Misiak D, Braun J, Leitner L, Hüttelmaier S, Posern G. Post-transcriptional regulation of MRTF-A by miRNAs during myogenic differentiation of myoblasts. Nucleic Acids Res 2020; 48:8927-8942. [PMID: 32692361 PMCID: PMC7498330 DOI: 10.1093/nar/gkaa596] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 12/02/2022] Open
Abstract
The differentiation and regeneration of skeletal muscle from myoblasts to myotubes involves myogenic transcription factors, such as myocardin-related transcription factor A (MRTF-A) and serum response factor (SRF). In addition, post-transcriptional regulation by miRNAs is required during myogenesis. Here, we provide evidence for novel mechanisms regulating MRTF-A during myogenic differentiation. Endogenous MRTF-A protein abundance and activity decreased during C2C12 differentiation, which was attributable to miRNA-directed inhibition. Conversely, overexpression of MRTF-A impaired differentiation and myosin expression. Applying miRNA trapping by RNA affinity purification (miTRAP), we identified miRNAs which directly regulate MRTF-A via its 3′UTR, including miR-1a-3p, miR-206-3p, miR-24-3p and miR-486-5p. These miRNAs were upregulated during differentiation and specifically recruited to the 3′UTR of MRTF-A. Concomitantly, Ago2 recruitment to the MRTF-A 3′UTR was considerably increased, whereas Dicer1 depletion or 3′UTR deletion elevated MRTF-A and inhibited differentiation. MRTF-A protein expression was inhibited by ectopic miRNA expression in murine C2C12 and primary human myoblasts. 3′UTR reporter activity diminished upon differentiation or miRNA expression, whereas deletion of the predicted binding sites reversed these effects. Furthermore, TGF-β abolished MRTF-A reduction and decreased miR-486-5p expression. Our findings implicate miR-24-3p and miR-486-5p in the repression of MRTF-A and suggest a complex network of transcriptional and post-transcriptional mechanisms regulating myogenesis.
Collapse
Affiliation(s)
- Ingo Holstein
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114 Halle (Saale), Germany
| | - Anurag Kumar Singh
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114 Halle (Saale), Germany
| | - Falk Pohl
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114 Halle (Saale), Germany
| | - Danny Misiak
- Institute of Molecular Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany
| | - Juliane Braun
- Institute of Molecular Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany
| | - Laura Leitner
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114 Halle (Saale), Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany
| | - Guido Posern
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114 Halle (Saale), Germany
| |
Collapse
|
5
|
Ross JA, Barrett B, Bensimon V, Shukla G, Weyman CM. Basal Signalling Through Death Receptor 5 and Caspase 3 Activates p38 Kinase to Regulate Serum Response Factor (SRF)-Mediated MyoD Transcription. J Mol Signal 2020; 14:1. [PMID: 32405318 PMCID: PMC7207250 DOI: 10.5334/1750-2187-14-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/09/2020] [Indexed: 11/20/2022] Open
Abstract
We have previously reported that stable expression of a dominant negative Death Receptor 5 (dnDR5) in skeletal myoblasts results in decreased basal caspase activity and decreased mRNA and protein expression of the muscle regulatory transcription factor MyoD in growth medium (GM), resulting in inhibited differentation when myoblasts are then cultured in differentiation media (DM). Further, this decreased level of MyoD mRNA was not a consequence of altered message stability, but rather correlated with decreased acetylation of histones in the distal regulatory region (DRR) of the MyoD extended promoter known to control MyoD transcription. As serum response factor (SRF) is the transcription factor known to be responsible for basal MyoD expression in GM, we compared the level of SRF binding to the non-canonical serum response element (SRE) within the DRR in parental and dnDR5 expressing myoblasts. Herein, we report that stable expression of dnDR5 resulted in decreased levels of serum response factor (SRF) binding to the CArG box in the SRE of the DRR. Total SRF expression levels were not affected, but phosphorylation indicative of SRF activation was impaired. This decreased SRF phosphorylation correlated with decreased phosphorylation-induced activation of p38 kinase. Moreover, the aforementioned signaling events affected by expression of dnDR5 could be appropriately recapitulated using either a pharmacological inhibitor of caspase 3 or p38 kinase. Thus, our results have established a signaling pathway from DR5 through caspases to p38 kinase activation, to SRF activation and the basal expression of MyoD.
Collapse
Affiliation(s)
- Jason A. Ross
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, US
| | - Brianna Barrett
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, US
| | - Victoria Bensimon
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, US
| | - Girish Shukla
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, US
| | - Crystal M. Weyman
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, US
| |
Collapse
|
6
|
Randrianarison-Huetz V, Papaefthymiou A, Herledan G, Noviello C, Faradova U, Collard L, Pincini A, Schol E, Decaux JF, Maire P, Vassilopoulos S, Sotiropoulos A. Srf controls satellite cell fusion through the maintenance of actin architecture. J Cell Biol 2017; 217:685-700. [PMID: 29269426 PMCID: PMC5800804 DOI: 10.1083/jcb.201705130] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/20/2017] [Accepted: 11/21/2017] [Indexed: 01/17/2023] Open
Abstract
This work describes a crucial role for the transcription factor Srf and F-actin scaffold to drive muscle stem cell fusion in vitro and in vivo and provides evidence of how actin cytoskeleton architecture affects myoblast fusion in vertebrates. Satellite cells (SCs) are adult muscle stem cells that are mobilized when muscle homeostasis is perturbed. Here, we show that serum response factor (Srf) is needed for optimal SC-mediated hypertrophic growth. We identified Srf as a master regulator of SC fusion required in both fusion partners, whereas it was dispensable for SC proliferation and differentiation. We show that SC-specific Srf deletion leads to impaired actin cytoskeleton and report the existence of finger-like actin–based protrusions at fusion sites in vertebrates that were notoriously absent in fusion-defective myoblasts lacking Srf. Restoration of a polymerized actin network by overexpression of an α-actin isoform in Srf mutant SCs rescued their fusion with a control cell in vitro and in vivo and reestablished overload-induced muscle growth. These findings demonstrate the importance of Srf in controlling the organization of actin cytoskeleton and actin-based protrusions for myoblast fusion in mammals and its requirement to achieve efficient hypertrophic myofiber growth.
Collapse
Affiliation(s)
- Voahangy Randrianarison-Huetz
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Aikaterini Papaefthymiou
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Gaëlle Herledan
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Chiara Noviello
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Ulduz Faradova
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | | | - Alessandra Pincini
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Emilie Schol
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Jean François Decaux
- Université Pierre et Marie Curie Paris 6, Centre National de la Recherche Scientifique UMR8256, Institut National de la Santé et de la Recherche Médicale U1164, Institute of Biology Paris-Seine, Paris, France
| | - Pascal Maire
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Stéphane Vassilopoulos
- Institut National de la Santé et de la Recherche Médicale/University Pierre and Marie Curie UMR-S974, Institut de Myologie, Paris, France
| | - Athanassia Sotiropoulos
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France .,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| |
Collapse
|
7
|
Ma R, Gong X, Jiang H, Lin C, Chen Y, Xu X, Zhang C, Wang J, Lu W, Zhong N. Reduced nuclear translocation of serum response factor is associated with skeletal muscle atrophy in a cigarette smoke-induced mouse model of COPD. Int J Chron Obstruct Pulmon Dis 2017; 12:581-587. [PMID: 28260872 PMCID: PMC5327903 DOI: 10.2147/copd.s109243] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Skeletal muscle atrophy and dysfunction are common complications in the chronic obstructive pulmonary disease (COPD). However, the underlying molecular mechanism remains elusive. Serum response factor (SRF) is a transcription factor which is critical in myocyte differentiation and growth. In this study, we established a mouse COPD model induced by cigarette smoking (CS) exposure for 24 weeks, with apparent pathophysiological changes, including increased airway resistance, enlarged alveoli, and skeletal muscle atrophy. Levels of upstream regulators of SRF, striated muscle activator of Rho signaling (STARS), and ras homolog gene family, member A (RhoA) were decreased in quadriceps muscle of COPD mice. Meanwhile, the nucleic location of SRF was diminished along with its cytoplasmic accumulation. There was a downregulation of the target muscle-specific gene, Igf1. These results suggest that the CS is one of the major causes for COPD pathogenesis, which induces the COPD-associated skeletal muscle atrophy which is closely related to decreasing SRF nucleic translocation, consequently downregulating the SRF target genes involved in muscle growth and nutrition. The STARS/RhoA signaling pathway might contribute to this course by impacting SRF subcellular distribution.
Collapse
Affiliation(s)
- Ran Ma
- Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, The 1st Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xuefang Gong
- Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, The 1st Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Hua Jiang
- Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, The 1st Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Chunyi Lin
- Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, The 1st Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yuqin Chen
- Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, The 1st Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoming Xu
- Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, The 1st Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Chenting Zhang
- Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, The 1st Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jian Wang
- Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, The 1st Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Wenju Lu
- Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, The 1st Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Nanshan Zhong
- Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, The 1st Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
8
|
Coletti D, Daou N, Hassani M, Li Z, Parlakian A. Serum Response Factor in Muscle Tissues: From Development to Ageing. Eur J Transl Myol 2016; 26:6008. [PMID: 27478561 PMCID: PMC4942704 DOI: 10.4081/ejtm.2016.6008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Skeletal, cardiac and smooth muscle cells share various common characteristic features. During development the embryonic mesodermal layer contribute at different proportions to the formation of these tissues. At the functional level, contractility as well as its decline during ageing, are also common features. Cytoskeletal components of these tissues are characterized by various actin isoforms that govern through their status (polymerised versus monomeric) and their interaction with the myosins the contractile properties of these muscles. Finally, at the molecular level, a set of different transcription factors with the notable exception of Serum Response Factor SRF- which is commonly enriched in the 3 types of muscle- drive and maintain the differentiation of these cells (Myf5, MyoD, Myogenin for skeletal muscle; Nkx2.5, GATA4 for cardiomyocytes). In this review, we will focus on the transcription factor SRF and its role in the homeostasis of cardiac, smooth and skeletal muscle tissues as well as its behaviour during the age related remodelling process of these tissues with a specific emphasis on animal models and human data when available.
Collapse
Affiliation(s)
- Dario Coletti
- Sorbonne University, UPMC, Department of Biological Adaptation and Ageing, IBPS, UMR 8256 CNRS, INSERM U1164, Paris, France; Dept of Anatomy, Histology, Forensic Medicine & Ortopedics, School of Medicine Sapienza University of Rome, Italy
| | - Nissrine Daou
- Sorbonne University, UPMC , Department of Biological Adaptation and Ageing, IBPS, UMR 8256 CNRS, INSERM U1164, Paris, France
| | - Medhi Hassani
- Sorbonne University, UPMC , Department of Biological Adaptation and Ageing, IBPS, UMR 8256 CNRS, INSERM U1164, Paris, France
| | - Zhenlin Li
- Sorbonne University, UPMC , Department of Biological Adaptation and Ageing, IBPS, UMR 8256 CNRS, INSERM U1164, Paris, France
| | - Ara Parlakian
- Sorbonne University, UPMC , Department of Biological Adaptation and Ageing, IBPS, UMR 8256 CNRS, INSERM U1164, Paris, France
| |
Collapse
|
9
|
Tizioto PC, Coutinho LL, Mourão GB, Gasparin G, Malagó-Jr W, Bressani FA, Tullio RR, Nassu RT, Taylor JF, Regitano LCA. Variation inmyogenic differentiation 1mRNA abundance is associated with beef tenderness in Nelore cattle. Anim Genet 2016; 47:491-4. [DOI: 10.1111/age.12434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2016] [Indexed: 01/12/2023]
Affiliation(s)
| | - L. L. Coutinho
- Department of Animal Science; University of São Paulo/ESALQ; Piracicaba SP Brazil
| | - G. B. Mourão
- Department of Animal Science; University of São Paulo/ESALQ; Piracicaba SP Brazil
| | - G. Gasparin
- Department of Animal Science; University of São Paulo/ESALQ; Piracicaba SP Brazil
| | - W. Malagó-Jr
- Embrapa Southeast Livestock; São Carlos SP Brazil
| | | | - R. R. Tullio
- Embrapa Southeast Livestock; São Carlos SP Brazil
| | - R. T. Nassu
- Embrapa Southeast Livestock; São Carlos SP Brazil
| | - J. F. Taylor
- Division of Animal Sciences; University of Missouri; Columbia MO USA
| | | |
Collapse
|
10
|
Sakuma K, Aoi W, Yamaguchi A. The intriguing regulators of muscle mass in sarcopenia and muscular dystrophy. Front Aging Neurosci 2014; 6:230. [PMID: 25221510 PMCID: PMC4148637 DOI: 10.3389/fnagi.2014.00230] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/10/2014] [Indexed: 12/25/2022] Open
Abstract
Recent advances in our understanding of the biology of muscle have led to new interest in the pharmacological treatment of muscle wasting. Loss of muscle mass and increased intramuscular fibrosis occur in both sarcopenia and muscular dystrophy. Several regulators (mammalian target of rapamycin, serum response factor, atrogin-1, myostatin, etc.) seem to modulate protein synthesis and degradation or transcription of muscle-specific genes during both sarcopenia and muscular dystrophy. This review provides an overview of the adaptive changes in several regulators of muscle mass in both sarcopenia and muscular dystrophy.
Collapse
Affiliation(s)
- Kunihiro Sakuma
- Research Center for Physical Fitness, Sports and Health, Toyohashi University of Technology, Toyohashi, Japan
| | - Wataru Aoi
- Laboratory of Health Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Akihiko Yamaguchi
- Department of Physical Therapy, Health Sciences University of Hokkaido, Kanazawa, Japan
| |
Collapse
|
11
|
Current understanding of sarcopenia: possible candidates modulating muscle mass. Pflugers Arch 2014; 467:213-29. [PMID: 24797147 DOI: 10.1007/s00424-014-1527-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 12/17/2022]
Abstract
The world's elderly population is expanding rapidly, and we are now faced with the significant challenge of maintaining or improving physical activity, independence, and quality of life in the elderly. Sarcopenia, the age-related loss of skeletal muscle mass, is characterized by a deterioration of muscle quantity and quality leading to a gradual slowing of movement, a decline in strength and power, increased risk of fall-related injury, and often, frailty. Since sarcopenia is largely attributed to various molecular mediators affecting fiber size, mitochondrial homeostasis, and apoptosis, the mechanisms responsible for these deleterious changes present numerous therapeutic targets for drug discovery. Muscle loss has been linked with several proteolytic systems, including the ubuiquitin-proteasome, lysosome-autophagy, and tumor necrosis factor (TNF)-α/nuclear factor-kappaB (NF-κB) systems. Although many factors are considered to regulate age-dependent muscle loss, this gentle atrophy is not affected by factors known to enhance rapid atrophy (denervation, hindlimb suspension, etc.). In addition, defects in Akt-mammalian target of rapamycin (mTOR) and serum response factor (SRF)-dependent signaling have been found in sarcopenic muscle. Intriguingly, more recent studies indicated an apparent functional defect in autophagy- and myostatin-dependent signaling in sarcopenic muscle. In this review, we summarize the current understanding of the adaptation of many regulators in sarcopenia.
Collapse
|
12
|
Ting CH, Ho PJ, Yen BL. Age-related decreases of serum-response factor levels in human mesenchymal stem cells are involved in skeletal muscle differentiation and engraftment capacity. Stem Cells Dev 2014; 23:1206-16. [PMID: 24576136 DOI: 10.1089/scd.2013.0231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Skeletal muscle (SkM) comprise ∼40% of human body weight. Injury or damage to this important tissue can result in physical disability, and in severe cases is difficult for its endogenous stem cell-the satellite cell-to reverse effectively. Mesenchymal stem cells (MSC) are postnatal progenitor/stem cells that possess multilineage mesodermal differentiation capacity, including toward SkM. Adult bone marrow (BM) is the best-studied source of MSCs; however, aging also decreases BMMSC numbers and can adversely affect differentiation capacity. Therefore, we asked whether human sources of developmentally early stage mesenchymal stem cells (hDE-MSCs) isolated from embryonic stem cells, fetal bone, and term placenta could be cellular sources for SkM repair. Under standard muscle-inducing conditions, hDE-MPCs differentiate toward a SkM lineage rather than cardiomyocytic or smooth muscle lineages, as evidenced by increased expression of SkM-associated markers and in vitro myotube formation. In vivo transplantation revealed that SkM-differentiated hDE-MSCs can efficiently incorporate into host SkM tissue in a mouse model of SkM injury. In contrast, adult BMMSCs do not express SkM-associated genes after in vitro SkM differentiation nor engraft in vivo. Further investigation of possible factors responsible for this difference in SkM differentiation potential revealed that, compared with adult BMMSCs, hDE-MSCs expressed higher levels of serum response factor (SRF), a transcription factor critical for SkM lineage commitment. Moreover, knockdown of SRF in hDE-MSCs resulted in decreased expression of SkM-related genes after in vitro differentiation and decreased in vivo engraftment. Our results implicate SRF as a key factor in age-related SkM differentiation capacity of MSCs, and demonstrate that hDE-MSCs are possible candidates for SkM repair.
Collapse
Affiliation(s)
- Chiao-Hsuan Ting
- 1 Graduate Institute of Life Sciences, National Defense Medical Center , Taipei, Taiwan
| | | | | |
Collapse
|
13
|
Lamon S, Wallace MA, Russell AP. The STARS signaling pathway: a key regulator of skeletal muscle function. Pflugers Arch 2014; 466:1659-71. [DOI: 10.1007/s00424-014-1475-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 01/08/2023]
|
14
|
Wu MP, Doyle JR, Barry B, Beauvais A, Rozkalne A, Piao X, Lawlor MW, Kopin AS, Walsh CA, Gussoni E. G-protein coupled receptor 56 promotes myoblast fusion through serum response factor- and nuclear factor of activated T-cell-mediated signalling but is not essential for muscle development in vivo. FEBS J 2013; 280:6097-113. [PMID: 24102982 PMCID: PMC3877849 DOI: 10.1111/febs.12529] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/24/2013] [Accepted: 09/04/2013] [Indexed: 12/28/2022]
Abstract
Mammalian muscle cell differentiation is a complex process of multiple steps for which many of the factors involved have not yet been defined. In a screen to identify the regulators of myogenic cell fusion, we found that the gene for G-protein coupled receptor 56 (GPR56) was transiently up-regulated during the early fusion of human myoblasts. Human mutations in the gene for GPR56 cause the disease bilateral frontoparietal polymicrogyria; however, the consequences of receptor dysfunction on muscle development have not been explored. Using knockout mice, we defined the role of GPR56 in skeletal muscle. GPR56(-/-) myoblasts have decreased fusion and smaller myotube sizes in culture. In addition, a loss of GPR56 expression in muscle cells results in decreases or delays in the expression of myogenic differentiation 1, myogenin and nuclear factor of activated T-cell (NFAT)c2. Our data suggest that these abnormalities result from decreased GPR56-mediated serum response element and NFAT signalling. Despite these changes, no overt differences in phenotype were identified in the muscle of GPR56 knockout mice, which presented only a mild but statistically significant elevation of serum creatine kinase compared to wild-type. In agreement with these findings, clinical data from 13 bilateral frontoparietal polymicrogyria patients revealed mild serum creatine kinase increase in only two patients. In summary, targeted disruption of GPR56 in mice results in myoblast abnormalities. The absence of a severe muscle phenotype in GPR56 knockout mice and human patients suggests that other factors may compensate for the lack of this G-protein coupled receptor during muscle development and that the motor delay observed in these patients is likely not a result of primary muscle abnormalities.
Collapse
Affiliation(s)
- Melissa P. Wu
- Biological and Biomedical Sciences, Harvard Medical School, Boston MA 02115, USA
- Division of Genetics, Boston Children’s Hospital, Boston MA 02115, USA
| | - Jamie R. Doyle
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Brenda Barry
- Division of Genetics, Boston Children’s Hospital, Boston MA 02115, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston MA 02115, USA
| | - Ariane Beauvais
- Division of Genetics, Boston Children’s Hospital, Boston MA 02115, USA
| | - Anete Rozkalne
- Division of Genetics, Boston Children’s Hospital, Boston MA 02115, USA
| | - Xianhua Piao
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA 02115, USA
| | - Michael W. Lawlor
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Wisconsin and Medical College of Wisconsin, Milwaukee WI 53226, USA
| | - Alan S. Kopin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Christopher A. Walsh
- Division of Genetics, Boston Children’s Hospital, Boston MA 02115, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston MA 02115, USA
| | - Emanuela Gussoni
- Division of Genetics, Boston Children’s Hospital, Boston MA 02115, USA
| |
Collapse
|
15
|
MicroRNA-199a is induced in dystrophic muscle and affects WNT signaling, cell proliferation, and myogenic differentiation. Cell Death Differ 2013; 20:1194-208. [PMID: 23764775 DOI: 10.1038/cdd.2013.62] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 04/10/2013] [Accepted: 04/29/2013] [Indexed: 01/25/2023] Open
Abstract
In patients with Duchenne muscular dystrophy (DMD), the absence of a functional dystrophin protein results in sarcolemmal instability, abnormal calcium signaling, cardiomyopathy, and skeletal muscle degeneration. Using the dystrophin-deficient sapje zebrafish model, we have identified microRNAs (miRNAs) that, in comparison to our previous findings in human DMD muscle biopsies, are uniquely dysregulated in dystrophic muscle across vertebrate species. MiR-199a-5p is dysregulated in dystrophin-deficient zebrafish, mdx(5cv) mice, and human muscle biopsies. MiR-199a-5p mature miRNA sequences are transcribed from stem loop precursor miRNAs that are found within the introns of the dynamin-2 and dynamin-3 loci. The miR-199a-2 stem loop precursor transcript that gives rise to the miR-199a-5p mature transcript was found to be elevated in human dystrophic muscle. The levels of expression of miR-199a-5p are regulated in a serum response factor (SRF)-dependent manner along with myocardin-related transcription factors. Inhibition of SRF-signaling reduces miR-199a-5p transcript levels during myogenic differentiation. Manipulation of miR-199a-5p expression in human primary myoblasts and myotubes resulted in dramatic changes in cellular size, proliferation, and differentiation. MiR-199a-5p targets several myogenic cell proliferation and differentiation regulatory factors within the WNT signaling pathway, including FZD4, JAG1, and WNT2. Overexpression of miR-199a-5p in the muscles of transgenic zebrafish resulted in abnormal myofiber disruption and sarcolemmal membrane detachment, pericardial edema, and lethality. Together, these studies identify miR-199a-5p as a potential regulator of myogenesis through suppression of WNT-signaling factors that act to balance myogenic cell proliferation and differentiation.
Collapse
|
16
|
Harafuji N, Schneiderat P, Walter MC, Chen YW. miR-411 is up-regulated in FSHD myoblasts and suppresses myogenic factors. Orphanet J Rare Dis 2013; 8:55. [PMID: 23561550 PMCID: PMC3637251 DOI: 10.1186/1750-1172-8-55] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/22/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant muscle disorder, which is linked to the contraction of the D4Z4 array at chromosome 4q35. Recent studies suggest that this shortening of the D4Z4 array leads to aberrant expression of double homeobox protein 4 (DUX4) and causes FSHD. In addition, misregulation of microRNAs (miRNAs) has been reported in muscular dystrophies including FSHD. In this study, we identified a miRNA that is differentially expressed in FSHD myoblasts and investigated its function. METHODS To identify misregulated miRNAs and their potential targets in FSHD myoblasts, we performed expression profiling of both miRNA and mRNA using TaqMan Human MicroRNA Arrays and Affymetrix Human Genome U133A plus 2.0 microarrays, respectively. In addition, we over-expressed miR-411 in C₂C₁₂ cells to determine the effect of miR-411 on myogenic markers. RESULTS Using miRNA and mRNA expression profiling, we identified 8 miRNAs and 1,502 transcripts that were differentially expressed in FSHD myoblasts during cell proliferation. One of the 8 differentially expressed miRNAs, miR-411, was validated by quantitative RT-PCR in both primary (2.1 fold, p<0.01) and immortalized (2.7 fold, p<0.01) myoblasts. In situ hybridization showed cytoplasmic localization of miR-411 in FSHD myoblasts. By analyzing both miRNA and mRNA data using Partek Genomics Suite, we identified 4 mRNAs potentially regulated by miR-411 including YY1 associated factor 2 (YAF2). The down-regulation of YAF2 in immortalized myoblasts was validated by immunoblotting (-3.7 fold, p<0.01). C₂C₁₂ cells were transfected with miR-411 to determine whether miR-411 affects YAF2 expression in myoblasts. The results showed that over-expression of miR-411 reduced YAF2 mRNA expression. In addition, expression of myogenic markers including Myod, myogenin, and myosin heavy chain 1 (Myh1) were suppressed by miR-411. CONCLUSIONS The study demonstrated that miR-411 was differentially expressed in FSHD myoblasts and may play a role in regulating myogenesis.
Collapse
Affiliation(s)
- Naoe Harafuji
- Center for Genetic Medicine Research, Children’s Research Institute, Washington, DC, USA
| | - Peter Schneiderat
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Maggie C Walter
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Yi-Wen Chen
- Center for Genetic Medicine Research, Children’s Research Institute, Washington, DC, USA
- Department of Integrative Systems Biology and Department of Pediatrics, George Washington University, Washington, DC, USA
- Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Avenue, NW, Washington, DC 20010, USA
| |
Collapse
|
17
|
Abstract
Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration.
Collapse
Affiliation(s)
- Hang Yin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
18
|
Borensztein M, Monnier P, Court F, Louault Y, Ripoche MA, Tiret L, Yao Z, Tapscott SJ, Forné T, Montarras D, Dandolo L. Myod and H19-Igf2 locus interactions are required for diaphragm formation in the mouse. Development 2013; 140:1231-9. [PMID: 23406902 DOI: 10.1242/dev.084665] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The myogenic regulatory factor Myod and insulin-like growth factor 2 (Igf2) have been shown to interact in vitro during myogenic differentiation. In order to understand how they interact in vivo, we produced double-mutant mice lacking both the Myod and Igf2 genes. Surprisingly, these mice display neonatal lethality due to severe diaphragm atrophy. Alteration of diaphragm muscle development occurs as early as 15.5 days post-coitum in the double-mutant embryos and leads to a defect in the terminal differentiation of muscle progenitor cells. A negative-feedback loop was detected between Myod and Igf2 in embryonic muscles. Igf2 belongs to the imprinted H19-Igf2 locus. Molecular analyses show binding of Myod on a mesodermal enhancer (CS9) of the H19 gene. Chromatin conformation capture experiments reveal direct interaction of CS9 with the H19 promoter, leading to increased H19 expression in the presence of Myod. In turn, the non-coding H19 RNA represses Igf2 expression in trans. In addition, Igf2 also negatively regulates Myod expression, possibly by reducing the expression of the Srf transcription factor, a known Myod activator. In conclusion, Igf2 and Myod are tightly co-regulated in skeletal muscles and act in parallel pathways in the diaphragm, where they affect the progression of myogenic differentiation. Igf2 is therefore an essential player in the formation of a functional diaphragm in the absence of Myod.
Collapse
Affiliation(s)
- Maud Borensztein
- Genetics and Development Department, Inserm U1016, CNRS UMR 8104, University of Paris Descartes, Institut Cochin, 75014 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mokalled MH, Johnson AN, Creemers EE, Olson EN. MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration. Genes Dev 2012; 26:190-202. [PMID: 22279050 DOI: 10.1101/gad.179663.111] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In response to skeletal muscle injury, satellite cells, which function as a myogenic stem cell population, become activated, expand through proliferation, and ultimately fuse with each other and with damaged myofibers to promote muscle regeneration. Here, we show that members of the Myocardin family of transcriptional coactivators, MASTR and MRTF-A, are up-regulated in satellite cells in response to skeletal muscle injury and muscular dystrophy. Global and satellite cell-specific deletion of MASTR in mice impairs skeletal muscle regeneration. This impairment is substantially greater when MRTF-A is also deleted and is due to aberrant differentiation and excessive proliferation of satellite cells. These abnormalities mimic those associated with genetic deletion of MyoD, a master regulator of myogenesis, which is down-regulated in the absence of MASTR and MRTF-A. Consistent with an essential role of MASTR in transcriptional regulation of MyoD expression, MASTR activates a muscle-specific postnatal MyoD enhancer through associations with MEF2 and members of the Myocardin family. Our results provide new insights into the genetic circuitry of muscle regeneration and identify MASTR as a central regulator of this process.
Collapse
Affiliation(s)
- Mayssa H Mokalled
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
20
|
Marrone AK, Shcherbata HR. Dystrophin Orchestrates the Epigenetic Profile of Muscle Cells Via miRNAs. Front Genet 2011; 2:64. [PMID: 22303359 PMCID: PMC3268617 DOI: 10.3389/fgene.2011.00064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 08/26/2011] [Indexed: 12/02/2022] Open
Abstract
Mammalian musculature is a very robust and dynamic tissue that goes through many rounds of degeneration and regeneration in an individual’s lifetime. There is a biological program that maintains muscle progenitor cells that, when activated, give rise to intermediate myoblast progeny that consequently differentiate into mature muscle cells. Recent works have provided a picture of the role that microRNAs (miRNAs) play in maintaining aspects of this program. Intriguingly, a subset of these miRNAs is de-regulated in muscular dystrophies (MDs), a group of fatal inherited neuromuscular disorders that are often associated with deficiencies in the Dystrophin (Dys) complex. Apparently, transcriptional expression of many of the muscle specific genes and miRNAs is dependent on chromatin state regulated by the Dys–Syn–nNOS pathway. This puts Dystrophin at the epicenter of a highly regulated program of muscle gene expression in which miRNAs help to coordinate networking between multiple phases of muscle maintenance, degeneration, and regeneration. Therefore, understanding the role of miRNAs in physiology of normal and diseased muscle tissue could be useful for future applications in improving the MD therapies and could open new clinical perspectives.
Collapse
Affiliation(s)
- April K Marrone
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry Goettingen, Germany
| | | |
Collapse
|
21
|
Expression of Gαz in C2C12 cells restrains myogenic differentiation. Cell Signal 2011; 23:389-97. [DOI: 10.1016/j.cellsig.2010.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 09/16/2010] [Accepted: 10/01/2010] [Indexed: 10/19/2022]
|
22
|
Regulation of Serum Response Factor and Adiponectin by PPARγ Agonist Docosahexaenoic Acid. J Lipids 2010; 2011:670479. [PMID: 21490806 PMCID: PMC3066850 DOI: 10.1155/2011/670479] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/18/2010] [Accepted: 08/03/2010] [Indexed: 12/25/2022] Open
Abstract
Recent studies indicate that significant health benefits involving the regulation of signaling proteins result from the consumption of omega-3 polyunsaturated fatty acids (ω-3 PUFAs). Serum response factor (SRF) is involved in transcriptional regulation of muscle growth and differentiation. SRF levels are increased in the aging heart muscle. It has not been examined whether SRF is made by adipocytes and whether SRF secretion by adipocytes is modulated by PPARγ agonist DHA.
Adiponectin is made exclusively by adipocytes. We and others have previously reported that PUFAs such as DHA increase adiponectin levels and secretion in adipocytes. Here we show that DHA downregulates SRF with a simultaneous upregulation of adiponectin and that both these responses are reversible by PPARγ antagonist. Furthermore, there appears to be a direct relationship between DHA exposure and increased levels of membrane-associated high-density adiponectin, as well as lower levels of membrane-associated SRF. Thus, we find that the levels of SRF and adiponectin are inversely related in response to treatment with PPARγ agonist DHA. Decreased levels of SRF along with increase in membrane-associated adiponectin could in part mediate the health benefits of DHA.
Collapse
|
23
|
Macharia R, Otto A, Valasek P, Patel K. Neuromuscular junction morphology, fiber-type proportions, and satellite-cell proliferation rates are altered in MyoD(-/-) mice. Muscle Nerve 2010; 42:38-52. [PMID: 20544915 DOI: 10.1002/mus.21637] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene compensation by members of the myogenic regulatory factor (MRF) family has been proposed to explain the apparent normal adult phenotype of MyoD(-/-) mice. Nerve and field stimulation were used to investigate contraction properties of muscle from MyoD(-/-) mice, and molecular approaches were used to investigate satellite-cell behavior. We demonstrate that MyoD deletion results in major alterations in the organization of the neuromuscular junction, which have a dramatic influence on the physiological contractile properties of skeletal muscle. Second, we show that the lineage progression of satellite cells (especially initial proliferation) in the absence of MyoD is abnormal and linked to perturbations in the nuclear localization of beta-catenin, a key readout of canonical Wnt signaling. These results show that MyoD has unique functions in both developing and adult skeletal muscle that are not carried out by other members of the MRF family.
Collapse
Affiliation(s)
- Raymond Macharia
- Department of Veterinary Basic Sciences, Royal Veterinary College, London, NW1 0TU, UK
| | | | | | | |
Collapse
|
24
|
Li D, Niu Z, Yu W, Qian Y, Wang Q, Li Q, Yi Z, Luo J, Wu X, Wang Y, Schwartz RJ, Liu M. SMYD1, the myogenic activator, is a direct target of serum response factor and myogenin. Nucleic Acids Res 2010; 37:7059-71. [PMID: 19783823 PMCID: PMC2790895 DOI: 10.1093/nar/gkp773] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
SMYD1 is a heart and muscle specific SET-MYND domain containing protein, which functions as a histone methyltransferase and regulates downstream gene transcription. We demonstrated that the expression of SMYD1 is restricted in the heart and skeletal muscle tissues in human. To reveal the regulatory mechanisms of SMYD1 expression during myogenesis and cardiogenesis, we cloned and characterized the human SMYD1 promoter, which contains highly conserved serum response factor (SRF) and myogenin binding sites. Overexpression of SRF and myogenin significantly increased the endogenous expression level of Smyd1 in C2C12 cells, respectively. Deletion of Srf in the heart of mouse embryos dramatically decreased the expression level of Smyd1 mRNA and the expression of Smyd1 can be rescued by exogenous SRF introduction in SRF null ES cells during differentiation. Furthermore, we demonstrated that SRF binds to the CArG site and myogenin binds to the E-box element on Smyd1 promoter region using EMSA and ChIP assays. Moreover, forced expression of SMYD1 accelerates myoblast differentiation and myotube formation in C2C12 cells. Taken together, these studies demonstrated that SMYD1 is a key regulator of myogenic differentiation and acts as a downstream target of muscle regulatory factors, SRF and myogenin.
Collapse
Affiliation(s)
- Dali Li
- The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sakuma K, Watanabe K, Hotta N, Koike T, Ishida K, Katayama K, Akima H. The adaptive responses in several mediators linked with hypertrophy and atrophy of skeletal muscle after lower limb unloading in humans. Acta Physiol (Oxf) 2009; 197:151-9. [PMID: 19432591 DOI: 10.1111/j.1748-1716.2009.01995.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIM To determine the adaptive changes in several molecules regulating muscle hypertrophy and atrophy after unloading, we examined whether unilateral lower limb suspension changes the mRNA and protein levels of SRF-linked (RhoA, RhoGDI, STARS and SRF), myostatin-linked (myostatin, Smad2, Smad3 and FLRG) and Foxo-linked (P-Akt, Foxo1, Foxo3a and Atrogin-1) mediators. METHODS A single lower limb of each of eight healthy men was suspended for 20 days. Biopsy specimens were obtained from the vastus lateralis muscle pre- and post-suspension. RESULTS The volume of the vastus lateralis muscle was significantly decreased after unloading. The amount of RhoA, RhoGDI or SRF protein in the muscle was not significantly changed post-suspension. An RT-PCR semiquantitative analysis showed increased levels of myostatin mRNA but not Smad2, Smad3 or FLRG mRNA. Unloading did not elicit significant changes in the amount of p-Smad3 or myostatin protein in the muscle. The amount of p-Akt protein was markedly reduced in the unloaded muscle. Lower limb SUSPENSION DID NOT INFLUENCE THE EXPRESSION PATTERN OF FOXO1, FOXO3A OR ATROGIN-1. CONCLUSION Unloading inducing a mild degree of muscle atrophy may decrease p-Akt and increase myostatin but not SRF-linked mediators.
Collapse
Affiliation(s)
- K Sakuma
- Research Center for Physical Fitness, Sports and Health, Toyohashi University of Technology, Toyohashi, Japan.
| | | | | | | | | | | | | |
Collapse
|
26
|
Otto A, Collins-Hooper H, Patel K. The origin, molecular regulation and therapeutic potential of myogenic stem cell populations. J Anat 2009; 215:477-97. [PMID: 19702867 DOI: 10.1111/j.1469-7580.2009.01138.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Satellite cells, originating in the embryonic dermamyotome, reside beneath the myofibre of mature adult skeletal muscle and constitute the tissue-specific stem cell population. Recent advances following the identification of markers for these cells (including Pax7, Myf5, c-Met and CD34) (CD, cluster of differentiation; c-Met, mesenchymal epithelial transition factor) have led to a greater understanding of the role played by satellite cells in the regeneration of new skeletal muscle during growth and following injury. In response to muscle damage, satellite cells harbour the ability both to form myogenic precursors and to self-renew to repopulate the stem cell niche following myofibre damage. More recently, other stem cell populations including bone marrow stem cells, skeletal muscle side population cells and mesoangioblasts have also been shown to have myogenic potential in culture, and to be able to form skeletal muscle myofibres in vivo and engraft into the satellite cell niche. These cell types, along with satellite cells, have shown potential when used as a therapy for skeletal muscle wasting disorders where the intrinsic stem cell population is genetically unable to repair non-functioning muscle tissue. Accurate understanding of the mechanisms controlling satellite cell lineage progression and self-renewal as well as the recruitment of other stem cell types towards the myogenic lineage is crucial if we are to exploit the power of these cells in combating myopathic conditions. Here we highlight the origin, molecular regulation and therapeutic potential of all the major cell types capable of undergoing myogenic differentiation and discuss their potential therapeutic application.
Collapse
Affiliation(s)
- A Otto
- School of Biological Sciences, Hopkins Building, University of Reading, Whiteknights Campus, Reading, Berkshire, UK
| | | | | |
Collapse
|
27
|
Hu P, Geles KG, Paik JH, DePinho RA, Tjian R. Codependent activators direct myoblast-specific MyoD transcription. Dev Cell 2008; 15:534-46. [PMID: 18854138 PMCID: PMC2614327 DOI: 10.1016/j.devcel.2008.08.018] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 07/21/2008] [Accepted: 08/29/2008] [Indexed: 11/18/2022]
Abstract
Although FoxO and Pax proteins represent two important families of transcription factors in determining cell fate, they had not been functionally or physically linked together in mediating regulation of a common target gene during normal cellular transcription programs. Here, we identify MyoD, a key regulator of myogenesis, as a direct target of FoxO3 and Pax3/7 in myoblasts. Our cell-based assays and in vitro studies reveal a tight codependent partnership between FoxO3 and Pax3/7 to coordinately recruit RNA polymerase II and form a preinitiation complex (PIC) to activate MyoD transcription in myoblasts. The role of FoxO3 in regulating muscle differentiation is confirmed in vivo by observed defects in muscle regeneration caused by MyoD downregulation in FoxO3 null mice. These data establish a mutual interdependence and functional link between two families of transcription activators serving as potential signaling sensors and regulators of cell fate commitment in directing tissue specific MyoD transcription.
Collapse
Affiliation(s)
- Ping Hu
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkley, CA94720, USA
| | - Kenneth G. Geles
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkley, CA94720, USA
| | - Ji-Hye Paik
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ronald A. DePinho
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Center for Applied Cancer Science, Belfer Foundation Institute for Innovative Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Robert Tjian
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkley, CA94720, USA
- correspondence:
| |
Collapse
|
28
|
Iwasaki K, Hayashi K, Fujioka T, Sobue K. Rho/Rho-associated kinase signal regulates myogenic differentiation via myocardin-related transcription factor-A/Smad-dependent transcription of the Id3 gene. J Biol Chem 2008; 283:21230-41. [PMID: 18477564 PMCID: PMC3258938 DOI: 10.1074/jbc.m710525200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 05/05/2008] [Indexed: 12/27/2022] Open
Abstract
RhoA is known to be involved in myogenic differentiation, but whether it acts as a positive or negative regulator is controversial. To resolve this issue, we investigated the differentiation stage-specific roles of RhoA and its effector, Rho-associated kinase, using C2C12 myoblasts. We found that proliferating myoblasts show high levels of RhoA and serum-response factor activities and strong expression of the downstream target of RhoA, myocardin-related transcription factor-A (MRTF-A or MAL); these activities and expression are markedly lower in differentiating myocytes. We further demonstrated that, in proliferating myoblasts, an increase in MRTF-A, which forms a complex with Smad1/4, strikingly activates the expression level of the Id3 gene; the Id3 gene product is a potent inhibitor of myogenic differentiation. Finally, we found that during differentiation, one of the forkhead transcription factors translocates into the nucleus and suppresses Id3 expression by preventing the association of the MRTF-A-Smad complex with the Id3 promoter, which leads to the enhancement of myogenic differentiation. We conclude that RhoA/Rho-associated kinase signaling plays positive and negative roles in myogenic differentiation, mediated by MRTF-A/Smad-dependent transcription of the Id3 gene in a differentiation stage-specific manner.
Collapse
Affiliation(s)
- Kazuhiro Iwasaki
- Department of Neuroscience
(D13), Research Center for Child
Mental Development, Osaka University Graduate School of Medicine, Yamadaoka
2-2, Suita, Osaka, 565-0871 and the
Department of Urology, Iwate Medical
University, Uchimaru 19-1, Morioka, Iwate 020-8505, Japan
| | - Ken'ichiro Hayashi
- Department of Neuroscience
(D13), Research Center for Child
Mental Development, Osaka University Graduate School of Medicine, Yamadaoka
2-2, Suita, Osaka, 565-0871 and the
Department of Urology, Iwate Medical
University, Uchimaru 19-1, Morioka, Iwate 020-8505, Japan
| | - Tomoaki Fujioka
- Department of Neuroscience
(D13), Research Center for Child
Mental Development, Osaka University Graduate School of Medicine, Yamadaoka
2-2, Suita, Osaka, 565-0871 and the
Department of Urology, Iwate Medical
University, Uchimaru 19-1, Morioka, Iwate 020-8505, Japan
| | - Kenji Sobue
- Department of Neuroscience
(D13), Research Center for Child
Mental Development, Osaka University Graduate School of Medicine, Yamadaoka
2-2, Suita, Osaka, 565-0871 and the
Department of Urology, Iwate Medical
University, Uchimaru 19-1, Morioka, Iwate 020-8505, Japan
| |
Collapse
|
29
|
Age-related reductions in expression of serum response factor and myocardin-related transcription factor A in mouse skeletal muscles. Biochim Biophys Acta Mol Basis Dis 2008; 1782:453-61. [PMID: 18442487 DOI: 10.1016/j.bbadis.2008.03.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 03/27/2008] [Accepted: 03/28/2008] [Indexed: 11/29/2022]
Abstract
The molecular signaling pathways linking the atrophy of skeletal muscle during aging have not been identified. Using reverse transcription (RT)-PCR, Western blotting, and immunofluorescence microscopy, we investigated whether the amounts of RhoA, RhoGDI, SRF, MRTF-A, and MyoD in the triceps brachii and quadriceps muscles change with aging in mice. Young adult (3 mo) and aged (24 mo) C57BL/6J mice were used. Senescent mice possessed many fibers with central nuclei in the quadriceps muscle. Western blotting using a homogenate of whole muscle or the cytosolic fraction clearly showed that the amount of SRF protein was significantly decreased in the aged skeletal muscles. Immunofluorescence labeling indicated more SRF-positive muscle fibers in young mice. Both young and old mice possessed SRF immunoreactivity in some satellite cells expressing Pax7. MRTF-A and STARS mRNA levels significantly declined with aging in the triceps brachii and quadriceps muscles. The amount of MRTF-A protein was markedly reduced in the nuclear fraction of aged muscle of mice. The amounts of RhoA and RhoGDI in the crude homogenate or the cytosolic and membrane fractions were greater in the aged muscle. Senescent mice possessed significantly higher levels of MyoD protein in the cytosol and nucleus. Decreased SRF and MRTF expression may induce the atrophy of skeletal muscle with aging.
Collapse
|
30
|
Rigault C, Bernard A, Georges B, Kandel A, Pfützner E, Le Borgne F, Demarquoy J. Extracellular ATP increases L-carnitine transport and content in C2C12 cells. Pharmacology 2008; 81:246-50. [PMID: 18230920 DOI: 10.1159/000114449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 10/30/2007] [Indexed: 11/19/2022]
Abstract
Extracellular ATP regulates cell proliferation, muscle contraction and myoblast differentiation. ATP present in the muscle interstitium can be released from contracting skeletal muscle cells. L-Carnitine is a key element in muscle cell metabolism, as it serves as a carrier for fatty acid through mitochondrial membranes, controlling oxidation and energy production. Treatment of C2C12 cells with 1 mmol/l of ATP induced a marked increase in L-carnitine uptake that was associated with an increase in L-carnitine content in these cells. These effects were found to be dependent on the density of the cultured cells and on the dose of ATP. The use of specific inhibitors of P2X and P2Y receptors abolished the effect of ATP on L-carnitine metabolism. As ATP can be released from stressed or exercising cells, it can be hypothesized that ATP acts as a messenger in the muscle. ATP will be released to recruit the next cells and increase their metabolism.
Collapse
Affiliation(s)
- Caroline Rigault
- INSERM U866, Laboratoire de Biochimie Métabolique et Nutritionnelle, Faculté Gabriel, Université de Bourgogne, Dijon, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Laurenza I, Colognato R, Migliore L, Del Prato S, Benzi L. Modulation of palmitic acid-induced cell death by ergothioneine: evidence of an anti-inflammatory action. Biofactors 2008; 33:237-47. [PMID: 19509460 DOI: 10.1002/biof.5520330401] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammation and reactive oxygen species have been implicated in pathogenesis of vascular diabetic complications. However, treatment with classic free-radical scavengers and antioxidants has not been yet proved to reduce the risk of developing such complications. In search of more effective treatment we have tested the protective role of Ergothioneine (EGT), in vitro, on C2C12 cells model on FFA-induced lipotoxicity. Cells were incubated for 24 h in the presence of palmitic acid (PA) (250, 500, 750, 1000 microM), added as pro-oxidant compound, with or without 24-h pre-treatment with EGT. Cells were assessed for cell viability and MAPKs expression by Western Blot. Pre-treatment with EGT resulted in greater cell viability at each PA concentration (EGT 500 microM: 5, 16, 17, 23% and EGT 1000 microM: 9, 18, 21 and 25%). In response to PA exposure, p38 and JNK activity increased significantly while EGT prevented such activation. Moreover the analysis of the IL-6 production reveal that EGT is also able to exert anti-inflammatory action inhibiting the PA IL-6 modulation (P < 0.001). In conclusion, these results indicate that 1. EGT has a protective role on PA-induced cell death, possibly via 2. reduced activity of MAPKs cascade having also 3. an anti-inflammatory action exerted on the IL-6 modulation.
Collapse
|
32
|
Gopinath SD, Narumiya S, Dhawan J. The RhoA effector mDiaphanous regulates MyoD expression and cell cycle progression via SRF-dependent and SRF-independent pathways. J Cell Sci 2007; 120:3086-98. [PMID: 17684061 DOI: 10.1242/jcs.006619] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Expression of the key muscle transcription factor MyoD is regulated by RhoA GTPase, which is an important regulator of adhesion-dependent signaling. We show that mDiaphanous (mDia)--an adaptor protein that mediates the effects of RhoA on cell motility and the cytoskeleton--is an upstream regulator of MyoD in C2C12 mouse myoblasts. Knockdown of mDia1 reduced MyoD expression and proliferation via a serum-response factor (SRF)-dependent pathway. Surprisingly, overexpression of a Rho-independent form of mDia1 (mDiaDeltaN3), despite activating SRF, also suppressed MyoD and the cell cycle, suggesting the presence of a second pathway downstream of mDia1. We present evidence that the alternative pathway by which mDia1 regulates MyoD involves T-cell factor (TCF)/lymphoid enhancer factor (LEF) and its co-activator, beta-catenin. TCF activity was suppressed by mDiaDeltaN3 and induced by silencing mDia. mDiaDeltaN3 disrupted the signal-dependent nuclear localization of beta-catenin and suppressed MyoD expression. Co-expression of a degradation-resistant form of beta-catenin with mDiaDeltaN3 restored MyoD expression, suggesting a mechanistic link between the two signaling proteins. We also implicate a region encompassing the FH1 domain of mDia1 in beta-catenin-TCF regulation. Taken together, our results suggest that a balance between two pathways downstream of mDia regulates MyoD expression and cell cycle progression.
Collapse
|
33
|
Dogra C, Hall SL, Wedhas N, Linkhart TA, Kumar A. Fibroblast growth factor inducible 14 (Fn14) is required for the expression of myogenic regulatory factors and differentiation of myoblasts into myotubes. Evidence for TWEAK-independent functions of Fn14 during myogenesis. J Biol Chem 2007; 282:15000-10. [PMID: 17383968 PMCID: PMC4149055 DOI: 10.1074/jbc.m608668200] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor-inducible 14 (Fn14), distantly related to tumor necrosis factor receptor superfamily and a receptor for TWEAK cytokine, has been implicated in several biological responses. In this study, we have investigated the role of Fn14 in skeletal muscle formation in vitro. Flow cytometric and Western blot analysis revealed that Fn14 is highly expressed on myoblastic cell line C2C12 and mouse primary myoblasts. The expression of Fn14 was decreased upon differentiation of myoblasts into myotubes. Suppression of Fn14 expression using RNA interference inhibited the myotube formation in both C2C12 and primary myoblast cultures. Fn14 was required for the transactivation of skeletal alpha-actin promoter and the expression of specific muscle proteins such as myosin heavy chain fast type and creatine kinase. RNA interference-mediated knockdown of Fn14 receptor in C2C12 myoblasts decreased the levels of myogenic regulatory factors MyoD and myogenin upon induction of differentiation. Conversely, overexpression of MyoD increased differentiation in Fn14-knockdown C2C12 cultures. Suppression of Fn14 expression in C2C12 myoblasts also inhibited the differentiation-associated increase in the activity of serum response factor and RhoA GTPase. In addition, our data suggest that the role of Fn14 during myogenic differentiation could be independent of TWEAK cytokine. Collectively, our study suggests that the Fn14 receptor is required for the expression of myogenic regulatory factors and differentiation of myoblasts into myotubes.
Collapse
Affiliation(s)
- Charu Dogra
- Jerry L Pettis Memorial Veteran Administration Medical Center, Loma Linda, CA 92357
| | - Susan L. Hall
- Jerry L Pettis Memorial Veteran Administration Medical Center, Loma Linda, CA 92357
- Loma Linda University School of Medicine, Loma Linda, CA 92350
| | - Nia Wedhas
- Jerry L Pettis Memorial Veteran Administration Medical Center, Loma Linda, CA 92357
| | - Thomas A. Linkhart
- Jerry L Pettis Memorial Veteran Administration Medical Center, Loma Linda, CA 92357
- Loma Linda University School of Medicine, Loma Linda, CA 92350
| | - Ashok Kumar
- Jerry L Pettis Memorial Veteran Administration Medical Center, Loma Linda, CA 92357
- Loma Linda University School of Medicine, Loma Linda, CA 92350
| |
Collapse
|
34
|
Pomiès P, Pashmforoush M, Vegezzi C, Chien KR, Auffray C, Beckerle MC. The cytoskeleton-associated PDZ-LIM protein, ALP, acts on serum response factor activity to regulate muscle differentiation. Mol Biol Cell 2007; 18:1723-33. [PMID: 17332502 PMCID: PMC1855033 DOI: 10.1091/mbc.e06-09-0815] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In this report, an antisense RNA strategy has allowed us to show that disruption of ALP expression affects the expression of the muscle transcription factors myogenin and MyoD, resulting in the inhibition of muscle differentiation. Introduction of a MyoD expression construct into ALP-antisense cells is sufficient to restore the capacity of the cells to differentiate, illustrating that ALP function occurs upstream of MyoD. It is known that MyoD is under the control of serum response factor (SRF), a transcriptional regulator whose activity is modulated by actin dynamics. A dramatic reduction of actin filament bundles is observed in ALP-antisense cells and treatment of these cells with the actin-stabilizing drug jasplakinolide stimulates SRF activity and restores the capacity of the cells to differentiate. Furthermore, we show that modulation of ALP expression influences SRF activity, the level of its coactivator, MAL, and muscle differentiation. Collectively, these results suggest a critical role of ALP on muscle differentiation, likely via cytoskeletal regulation of SRF.
Collapse
Affiliation(s)
- Pascal Pomiès
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5237, Centre de Recherches de Biochimie Macromoléculaire, 34293 Montpellier, France.
| | | | | | | | | | | |
Collapse
|
35
|
Cardiac Development: Toward a Molecular Basis for Congenital Heart Disease. CARDIOVASCULAR MEDICINE 2007. [DOI: 10.1007/978-1-84628-715-2_52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
36
|
Castellani L, Salvati E, Alemà S, Falcone G. Fine regulation of RhoA and Rock is required for skeletal muscle differentiation. J Biol Chem 2006; 281:15249-57. [PMID: 16574652 DOI: 10.1074/jbc.m601390200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The RhoA GTPase controls a variety of cell functions such as cell motility, cell growth, and gene expression. Previous studies suggested that RhoA mediates signaling inputs that promote skeletal myogenic differentiation. We show here that levels and activity of RhoA protein are down-regulated in both primary avian myoblasts and mouse satellite cells undergoing differentiation, suggesting that a fine regulation of this GTPase is required. In addition, ectopic expression of activated RhoA in primary quail myocytes, but not in mouse myocytes, inhibits accumulation of muscle-specific proteins and cell fusion. By disrupting RhoA signaling with specific inhibitors, we have shown that this GTPase, although required for cell identity in proliferating myoblasts, is not essential for commitment to terminal differentiation and muscle gene expression. Ectopic expression of an activated form of its downstream effector, Rock, impairs differentiation of both avian and mouse myoblasts. Conversely, Rock inhibition with specific inhibitors and small interfering RNA-mediated gene silencing leads to accelerated progression in the lineage and enhanced cell fusion, underscoring a negative regulatory function of Rock in myogenesis. Finally, we have reported that Rock acts independently from RhoA in preventing myoblast exit from the cell cycle and commitment to differentiation and may receive signaling inputs from Raf-1 kinase.
Collapse
Affiliation(s)
- Loriana Castellani
- Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche, 00016 Monterotondo Scalo (RM), Italy
| | | | | | | |
Collapse
|
37
|
Bryan BA, Mitchell DC, Zhao L, Ma W, Stafford LJ, Teng BB, Liu M. Modulation of muscle regeneration, myogenesis, and adipogenesis by the Rho family guanine nucleotide exchange factor GEFT. Mol Cell Biol 2006; 25:11089-101. [PMID: 16314529 PMCID: PMC1316953 DOI: 10.1128/mcb.25.24.11089-11101.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rho family guanine nucleotide exchange factors (GEFs) regulate diverse cellular processes including cytoskeletal reorganization, cell adhesion, and differentiation via activation of the Rho GTPases. However, no studies have yet implicated Rho-GEFs as molecular regulators of the mesenchymal cell fate decisions which occur during development and repair of tissue damage. In this study, we demonstrate that the steady-state protein level of the Rho-specific GEF GEFT is modulated during skeletal muscle regeneration and that gene transfer of GEFT into cardiotoxin-injured mouse tibialis anterior muscle exerts a powerful promotion of skeletal muscle regeneration in vivo. In order to molecularly characterize this regenerative effect, we extrapolate the mechanism of action by examining the consequence of GEFT expression in multipotent cell lines capable of differentiating into a number of cell types, including muscle and adipocyte lineages. Our data demonstrate that endogenous GEFT is transcriptionally upregulated during myogenic differentiation and downregulated during adipogenic differentiation. Exogenous expression of GEFT promotes myogenesis of C2C12 cells via activation of RhoA, Rac1, and Cdc42 and their downstream effector proteins, while a dominant-negative mutant of GEFT inhibits this process. Moreover, we show that GEFT inhibits insulin-induced adipogenesis in 3T3L1 preadipocytes. In summary, we provide the first evidence that the Rho family signaling pathways act as potential regulators of skeletal muscle regeneration and provide the first reported molecular mechanism illustrating how a mammalian Rho family GEF controls this process by modulating mesenchymal cell fate decisions.
Collapse
Affiliation(s)
- Brad A Bryan
- The Institute of Biosciences and Technology and Department of Medical Biochemistry and Genetics, University of Texas Health Science Center at Houston, 77030, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Jové M, Planavila A, Laguna JC, Vázquez-Carrera M. Palmitate-induced interleukin 6 production is mediated by protein kinase C and nuclear-factor kappaB activation and leads to glucose transporter 4 down-regulation in skeletal muscle cells. Endocrinology 2005; 146:3087-95. [PMID: 15802498 DOI: 10.1210/en.2004-1560] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mechanisms by which elevated levels of free fatty acids cause insulin resistance are not well understood. In addition, accumulating evidence suggests a link between inflammation and type 2 diabetes. Here, we report that exposure of C2C12 skeletal muscle cells to 0.5 mm palmitate results in increased mRNA levels (3.5-fold induction; P < 0.05) and secretion (control 375 +/- 57 vs. palmitate 1129 +/- 177 pg/ml; P < 0.001) of the proinflammatory cytokine IL-6. Palmitate increased nuclear factor-kappaB activation and coincubation of the cells with palmitate and the nuclear factor-kappaB inhibitor pyrrolidine dithiocarbamate prevented both IL-6 expression and secretion. Furthermore, incubation of palmitate-treated cells with calphostin C, a strong and specific inhibitor of protein kinase C, and phorbol myristate acetate, that down-regulates protein kinase C in long-term incubations, abolished induction of IL-6 production. Finally, exposure of skeletal muscle cells to palmitate caused a fall in the mRNA levels of glucose transporter 4 and insulin-stimulated glucose uptake, whereas in the presence of anti-IL-6 antibody, which neutralizes the biological activity of mouse IL-6 in cell culture, these reductions were prevented. These findings suggest that IL-6 may mediate several of the prodiabetic effects of palmitate.
Collapse
Affiliation(s)
- Mireia Jové
- Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, University of Barcelona, E-08028 Barcelona, Spain
| | | | | | | |
Collapse
|
39
|
Jové M, Laguna JC, Vázquez-Carrera M. Agonist-induced activation releases peroxisome proliferator-activated receptor β/δ from its inhibition by palmitate-induced nuclear factor-κB in skeletal muscle cells. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1734:52-61. [PMID: 15866483 DOI: 10.1016/j.bbalip.2005.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 02/09/2005] [Accepted: 02/09/2005] [Indexed: 10/25/2022]
Abstract
The mechanisms by which elevated levels of free fatty acids cause insulin resistance are not well understood, but there is a strong correlation between insulin resistance and intramyocellular lipid accumulation in skeletal muscle. In addition, accumulating evidence suggests a link between inflammation and type 2 diabetes. The aim of this work was to study whether the exposure of skeletal muscle cells to palmitate affected peroxisome proliferator-activated receptor (PPAR) beta/delta activity. Here, we report that exposure of C2C12 skeletal muscle cells to 0.75 mM palmitate reduced (74%, P<0.01) the mRNA levels of the PPARbeta/delta-target gene pyruvatedehydrogenase kinase 4 (PDK-4), which is involved in fatty acid utilization. This reduction was not observed in the presence of the PPARbeta/delta agonist L-165041. This drug prevented palmitate-induced nuclear factor (NF)-kappaB activation. Increased NF-kappaB activity after palmitate exposure was associated with enhanced protein-protein interaction between PPARbeta/delta and p65. Interestingly, treatment with the PPARbeta/delta agonist L-165041 completely abolished this interaction. These results indicate that palmitate may reduce fatty acid utilization in skeletal muscle cells by reducing PPARbeta/delta signaling through increased NF-kappaB activity.
Collapse
Affiliation(s)
- Mireia Jové
- Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, Spain
| | | | | |
Collapse
|
40
|
Cen B, Selvaraj A, Prywes R. Myocardin/MKL family of SRF coactivators: key regulators of immediate early and muscle specific gene expression. J Cell Biochem 2005; 93:74-82. [PMID: 15352164 DOI: 10.1002/jcb.20199] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Myocardin, megakaryoblastic leukemia-1 (MKL1), and MKL2 belong to a newly defined family of transcriptional coactivators. All three family members bind to serum response factor (SRF) and strongly activate transcription from promoters with SRF binding sites. SRF is required for the serum induction of immediate early genes such as c-fos and for the expression of many muscle specific genes. Consistent with a role in muscle specific gene expression, myocardin is specifically expressed in cardiac and smooth muscle cells while MKL1 and 2 are broadly expressed. Myocardin has particularly been shown to be required for smooth muscle development while MKL1/2 are required for the RhoA signaling pathway for induction of immediate early genes. SRF can be activated by at least two families of coactivators, p62TCF and myocardin/MKL. These factors bind to the same region of SRF such that their binding is mutually exclusive. This provides one mechanism of regulation of SRF target genes by pathways that differentially activate the coactivators. The RhoA pathway appears to activate MKL1 by altering MKL1's binding to actin and causing MKL1's translocation from the cytoplasm to the nucleus. However, this mechanism of activation of the myocardin/MKL family has not been observed in all cell types such that other regulatory mechanism(s) likely exist. In particular, rapid serum inducible phosphorylation of MKL1 was observed. The regulation of this coactivator family is key to understanding how SRF target genes are activated during muscle cell differentiation or growth factor induced cell proliferation.
Collapse
Affiliation(s)
- Bo Cen
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
41
|
Dhawan J, Helfman DM. Modulation of acto-myosin contractility in skeletal muscle myoblasts uncouples growth arrest from differentiation. J Cell Sci 2004; 117:3735-48. [PMID: 15252113 DOI: 10.1242/jcs.01197] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell-substratum interactions trigger key signaling pathways that modulate growth control and tissue-specific gene expression. We have previously shown that abolishing adhesive interactions by suspension culture results in G0 arrest of myoblasts. We report that blocking intracellular transmission of adhesion-dependent signals in adherent cells mimics the absence of adhesive contacts. We investigated the effects of pharmacological inhibitors of acto-myosin contractility on growth and differentiation of C2C12 myogenic cells. ML7 (5-iodonaphthalene-1-sulfonyl homopiperazine) and BDM (2,3, butanedione monoxime) are specific inhibitors of myosin light chain kinase, and myosin heavy chain ATPase, respectively. ML7 and BDM affected cell shape by reducing focal adhesions and stress fibers. Both inhibitors rapidly blocked DNA synthesis in a dose-dependent, reversible fashion. Furthermore, both ML7 and BDM suppressed expression of MyoD and myogenin, induced p27kip1 but not p21cip1, and inhibited differentiation. Thus, as with suspension-arrest, inhibition of acto-myosin contractility in adherent cells led to arrest uncoupled from differentiation. Over-expression of inhibitors of the small GTPase RhoA (dominant negative RhoA and C3 transferase) mimicked the effects of myosin inhibitors. By contrast, wild-type RhoA induced arrest, maintained MyoD and activated myogenin and p21 expression. The Rho effector kinase ROCK did not appear to mediate Rho's effects on MyoD. Thus, ROCK and MLCK play different roles in the myogenic program. Signals regulated by MLCK are critical, since inhibition of MLCK suppressed MyoD expression but inhibition of ROCK did not. Inhibition of contractility suppressed MyoD but did not reduce actin polymer levels. However, actin depolymerization with latrunculin B inhibited MyoD expression. Taken together, our observations indicate that actin polymer status and contractility regulate MyoD expression. We suggest that in myoblasts, the Rho pathway and regulation of acto-myosin contractility may define a control point for conditional uncoupling of differentiation and the cell cycle.
Collapse
Affiliation(s)
- Jyotsna Dhawan
- Center for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India.
| | | |
Collapse
|
42
|
Nelson TJ, Duncan SA, Misra RP. Conserved enhancer in the serum response factor promoter controls expression during early coronary vasculogenesis. Circ Res 2004; 94:1059-66. [PMID: 15001533 DOI: 10.1161/01.res.0000125296.14014.17] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Serum response factor (SRF) is a transcription factor required for mesoderm formation in the developing mouse embryo that is important for myogenic differentiation, including notably, the differentiation of the proepicardial organ (PEO) into coronary vascular cells during early development. To identify regulatory sequences that control SRF expression during early mouse development, we used a novel transgenic approach to study the role of conserved noncoding DNA sequences (CNCS) in the SRF gene. Embryonic stem (ES) cells containing a targeted single-copy of putative SRF regulatory sequences were used to directly generate transgenic embryos by tetraploid aggregation. Because the ES cell-derived targeted embryos are genetically equivalent, except for the putative regulatory sequence of interest, differences in transgene expression can be attributed directly to these sequences. Using this approach, we identified an E-box/Ets containing 270-bp cis-acting module in the SRF promoter that mediates expression in the PEO. Reporter transgenes containing this module express in derivatives of the PEO that give rise to the coronary vasculature, but do not express in the PEO-derived epicardium. These results are the first reported in vivo analysis of SRF regulatory elements that control expression during early development. Using this reporter module and this approach, it should be possible to begin to elucidate molecular mechanisms involved in the differentiation of coronary vasculature progenitor cells, as well as identify additional SRF regulatory elements important during mammalian development.
Collapse
Affiliation(s)
- Timothy J Nelson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wis 53226, USA.
| | | | | |
Collapse
|
43
|
Charrasse S, Comunale F, Gilbert E, Delattre O, Gauthier-Rouvière C. Variation in cadherins and catenins expression is linked to both proliferation and transformation of Rhabdomyosarcoma. Oncogene 2003; 23:2420-30. [PMID: 14691446 DOI: 10.1038/sj.onc.1207382] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cadherins are a family of transmembrane glycoproteins that mediate Ca(2+)-dependent homophilic cell-cell adhesion and play a crucial role in cell differentiation. E-cadherin-mediated cell-cell adhesion is lost during the development of most epithelial cancers. This study examines cadherin-dependent adhesion in cell lines derived from rhabdomyosarcoma (RMS), a highly malignant soft-tissue tumor committed to the myogenic lineage, but arrested prior to terminal differentiation. We analysed the expression of cadherins and associated catenins at the mRNA and protein levels as well as their localization in nine RMS-derived cell lines relative to normal myoblasts. We show a decrease in the expression of cadherins and catenins in all RMS-derived cell lines compared to control cells. This decrease in the expression of N- and M-cadherin was confirmed in RMS biopsies. In contrast, R-cadherin is found expressed in RMS, whereas it is normally absent in normal myoblasts. We show that a decrease of R-cadherin expression using RNA interference inhibits cell proliferation of the RD cell line. In addition to their diminished expression, cadherins and catenins do not localize to intercellular contacts in embryonal RMS (ERMS), whereas specific persistent localization is seen in alveolar RMS (ARMS)-derived cell lines. Thus, RMS exhibit defects in the expression of molecules of the cadherin family. Defects in the localization of these adhesion molecules at the sites of cell-cell contact are specifically observed in the ERMS subtype. In addition, our data suggest that R-cadherin is a specific diagnostic marker for RMS and is also an important factor of RMS cell proliferation.
Collapse
Affiliation(s)
- Sophie Charrasse
- Centre de Recherche de Biochimie Macromoléculaire, CNRS UPR 1086, 1919 Route de Mende, 34293 Montpellier Cedex, France
| | | | | | | | | |
Collapse
|
44
|
Martin KM, Ellis PD, Metcalfe JC, Kemp PR. Selective modulation of the SM22alpha promoter by the binding of BTEB3 (basal transcription element-binding protein 3) to TGGG repeats. Biochem J 2003; 375:457-63. [PMID: 12848620 PMCID: PMC1223682 DOI: 10.1042/bj20030870] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2003] [Accepted: 07/09/2003] [Indexed: 01/12/2023]
Abstract
We have previously identified a C2H2 zinc-finger transcription factor [BTEB3 (basal transcription element-binding protein 3)/KLF13 (Krüppel-like factor 13)] that activates the minimal promoter for the smooth muscle-specific SM22alpha gene in other types of cell. We show that recombinant BTEB3 binds to three TGGG motifs in the minimal SM22alpha promoter. By mutation analysis, only one of these boxes is required for BTEB3-dependent promoter activation in P19 cells and BTEB3 activates or inhibits reporter gene expression depending on the TGGG box to which it binds. Transient transfection experiments show that BTEB3 also activates reporter gene expression from the SM22alpha promoter in VSMCs (vascular smooth muscle cells). Similar studies showed that BTEB3 did not activate expression from the promoter regions of the smooth muscle myosin heavy chain or smooth muscle alpha-actin promoters, which contain similar sequences, implying that promoter activation by BTEB3 is selective. The expression of BTEB3 is readily detectable in VSMCs in vitro and is modulated in response to injury in vivo.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites/genetics
- Carotid Artery Injuries/genetics
- Cell Line, Tumor
- Cells, Cultured
- Conserved Sequence/genetics
- DNA/genetics
- DNA/metabolism
- Electrophoretic Mobility Shift Assay
- Gene Expression Regulation
- In Situ Hybridization
- Microfilament Proteins/genetics
- Microsatellite Repeats
- Muscle Proteins/genetics
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Sequence Homology, Nucleic Acid
- Trans-Activators/genetics
- Trans-Activators/metabolism
Collapse
Affiliation(s)
- Karen M Martin
- Section of Cardiovascular Biology, Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge CB2 1QW, U.K
| | | | | | | |
Collapse
|
45
|
L'honore A, Lamb NJ, Vandromme M, Turowski P, Carnac G, Fernandez A. MyoD distal regulatory region contains an SRF binding CArG element required for MyoD expression in skeletal myoblasts and during muscle regeneration. Mol Biol Cell 2003; 14:2151-62. [PMID: 12802082 PMCID: PMC165104 DOI: 10.1091/mbc.e02-07-0451] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We show here that the distal regulatory region (DRR) of the mouse and human MyoD gene contains a conserved SRF binding CArG-like element. In electrophoretic mobility shift assays with myoblast nuclear extracts, this CArG sequence, although slightly divergent, bound two complexes containing, respectively, the transcription factor YY1 and SRF associated with the acetyltransferase CBP and members of C/EBP family. A single nucleotide mutation in the MyoD-CArG element suppressed binding of both SRF and YY1 complexes and abolished DRR enhancer activity in stably transfected myoblasts. This MyoD-CArG sequence is active in modulating endogeneous MyoD gene expression because microinjection of oligonucleotides corresponding to the MyoD-CArG sequence specifically and rapidly suppressed MyoD expression in myoblasts. In vivo, the expression of a transgenic construct comprising a minimal MyoD promoter fused to the DRR and beta-galactosidase was induced with the same kinetics as MyoD during mouse muscle regeneration. In contrast induction of this reporter was no longer seen in regenerating muscle from transgenic mice carrying a mutated DRR-CArG. These results show that an SRF binding CArG element present in MyoD gene DRR is involved in the control of MyoD gene expression in skeletal myoblasts and in mature muscle satellite cell activation during muscle regeneration.
Collapse
Affiliation(s)
- Aurore L'honore
- Cell Biology Unit, Institut de Génétique Humaine, 34396 Montpellier cedex 05, France
| | | | | | | | | | | |
Collapse
|
46
|
Seghatoleslami MR, Roman-Blas JA, Rainville AM, Modaressi R, Danielson KG, Tuan RS. Progression of chondrogenesis in C3H10T1/2 cells is associated with prolonged and tight regulation of ERK1/2. J Cell Biochem 2003; 88:1129-44. [PMID: 12647296 DOI: 10.1002/jcb.10458] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Close contact of mesenchymal cells in vivo and also in super dense micromass cultures in vitro results in cellular condensation and alteration of existing cellular signaling required for initiation and progression of chondrogenesis. To investigate chondrogenesis related changes in the activity of ubiquitous cell signaling mediated by mitogen-activated protein kinases (MAP kinase), we have compared the effect of cell seeding of pluripotent C3H10T1/2 mesenchymal cells as monolayers (non-chondrogenic culture) or high density micromass cultures (chondrogenic) on the regulation and phosphorylation state of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and also on regulation of ERK1/2 nuclear targets, namely, activation protein-1 (AP-1) and serum response factor (SRF). Increasing cell density resulted in reduced DNA binding as well as activity of AP-1. SRF activity, on the other hand, was up-regulated in confluent monolayer cultures but like AP-1 was inhibited in micromass cultures. Low levels of PD 98059 (5 microM), a specific inhibitor of ERK1/2, resulted in delayed induction of AP-1 and SRF activity whereas higher concentrations of this inhibitor (10-50 microM) conferred an opposite effect. Increasing concentrations of the PD 98059 inhibitor in long term monolayer or micromass cultures (2.5 day) resulted in differential regulation of c-Fos and c-Jun protein levels as well as total expression and phosphorylation levels of ERK1/2. PD 98059 treatment of C3H10T1/2 micromass cultures also resulted in up-regulation of type IIB collagen and Sox9 gene expression. While high expression of aggrecan and type IIB collagen genes were dependent on BMP-2 signaling, ERK inhibition of BMP-2 treated micromass cultures resulted in reduced activity of both genes. Our findings show that the activity of ERK1/2 in chondrogenic cultures of C3H10T1/2 cells is tightly controlled and can cross interact with other signaling activities mediated by BMP-2 to positively regulate chondrogensis.
Collapse
Affiliation(s)
- M Reza Seghatoleslami
- Division of Rheumatology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Sakuma K, Nishikawa J, Nakao R, Nakano H, Sano M, Yasuhara M. Serum response factor plays an important role in the mechanically overloaded plantaris muscle of rats. Histochem Cell Biol 2003; 119:149-60. [PMID: 12610734 DOI: 10.1007/s00418-003-0499-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2003] [Indexed: 10/25/2022]
Abstract
Molecular signaling pathways linking the hypertrophy after mechanical overloading in vivo have not been identified. Using western blot analysis, immunoprecipitation, and immunohistochemistry, we investigated the effect of the mechanical overloading state on RhoA, serum response factor (SRF), and MyoD in the rat plantaris muscle. Adult male rats (10 weeks of age) were used in this experiment. Compensatory enlargement of the plantaris muscle was induced in one leg of each rat by surgical removal of the ipsilateral soleus and gastrocnemius muscles. In the normal plantaris muscle of rats, slight expression of RhoA and SRF was observed in the quiescent satellite cells possessing CD34 and c-Met. Western blotting using the homogenate of whole muscle clearly showed that mechanical overloading of the plantaris muscle significantly increased the amount of RhoA during 3-6 days postsurgery. Threonine phosphorylation of SRF occurred at 2-4 h after mechanical overloading. The most marked increase in SRF protein was observed in the hypertrophied muscle at 6 days postsurgery. At 2 days postoperation, SRF immunoreactivity was not detected in the proliferating satellite cells possessing bromodeoxyuridine and in the infiltrating macrophages expressing ED1 in the overloaded muscle by surgical removal. The SRF protein was colocalized with RhoA, FAK, and myogenin but not Myf-5 in many mononuclear cells at 6 days of functional overload. At this time, MyoD immunoreactivity was detected in the cytoplasm of mononuclear cells (possibly satellite cell-derived myoblasts) possessing SRF protein at the nucleus. These results suggest that the signaling pathway through RhoA-FAK-SRF is important to the differentiation of satellite cells by interacting MyoD and myogenin in the hypertrophied muscle of rats.
Collapse
Affiliation(s)
- Kunihiro Sakuma
- Department of Legal Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-hirokoji, Kamigyo-ku, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Charrasse S, Meriane M, Comunale F, Blangy A, Gauthier-Rouvière C. N-cadherin-dependent cell-cell contact regulates Rho GTPases and beta-catenin localization in mouse C2C12 myoblasts. J Cell Biol 2002; 158:953-65. [PMID: 12213839 PMCID: PMC2173149 DOI: 10.1083/jcb.200202034] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
N-cadherin, a member of the Ca(2+)-dependent cell-cell adhesion molecule family, plays an essential role in skeletal muscle cell differentiation. We show that inhibition of N-cadherin-dependent adhesion impairs the upregulation of the two cyclin-dependent kinase inhibitors p21 and p27, the expression of the muscle-specific genes myogenin and troponin T, and C2C12 myoblast fusion. To determine the nature of N-cadherin-mediated signals involved in myogenesis, we investigated whether N-cadherin-dependent adhesion regulates the activity of Rac1, Cdc42Hs, and RhoA. N-cadherin-dependent adhesion decreases Rac1 and Cdc42Hs activity, and as a consequence, c-jun NH2-terminal kinase (JNK) MAPK activity but not that of the p38 MAPK pathway. On the other hand, N-cadherin-mediated adhesion increases RhoA activity and activates three skeletal muscle-specific promoters. Furthermore, RhoA activity is required for beta-catenin accumulation at cell-cell contact sites. We propose that cell-cell contacts formed via N-cadherin trigger signaling events that promote the commitment to myogenesis through the positive regulation of RhoA and negative regulation of Rac1, Cdc42Hs, and JNK activities.
Collapse
Affiliation(s)
- Sophie Charrasse
- Centre de Recherche de Biochimie Macromoléculaire, 34293 Montpellier Cedex, France
| | | | | | | | | |
Collapse
|
49
|
Cabrero A, Alegret M, Sanchez RM, Adzet T, Laguna JC, Carrera MV. Increased reactive oxygen species production down-regulates peroxisome proliferator-activated alpha pathway in C2C12 skeletal muscle cells. J Biol Chem 2002; 277:10100-7. [PMID: 11792699 DOI: 10.1074/jbc.m110321200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Generation of reactive oxygen species may contribute to the pathogenesis of diseases involving intracellular lipid accumulation. To explore the mechanisms leading to these pathologies we tested the effects of etomoxir, an inhibitor of carnitine palmitoyltransferase I which contains a fatty acid-derived structure, in C2C12 skeletal muscle cells. Etomoxir treatment for 24 h resulted in a down-regulation of peroxisome proliferator-activated receptor alpha (PPARalpha) mRNA expression, achieving an 87% reduction at 80 microm etomoxir. The mRNA levels of most of the PPARalpha target genes studied were reduced at 100 microm etomoxir. By using several inhibitors of de novo ceramide synthesis and C(2)-ceramide we showed that they were not involved in the effects of etomoxir. Interestingly, the addition of triacsin C, a potent inhibitor of acyl-CoA synthetase, to etomoxir-treated C2C12 skeletal muscle cells did not prevent the down-regulation in PPARalpha mRNA levels, suggesting that the active form of the drug, etomoxir-CoA, was not involved. Given that saturated fatty acids may generate reactive oxygen species (ROS), we determined whether the addition of etomoxir resulted in ROS generation. Etomoxir increased ROS production and the activity of the well known redox transcription factor NF-kappaB. In the presence of the pyrrolidine dithiocarbamate, a potent antioxidant and inhibitor of NF-kappaB activity, etomoxir did not down-regulate PPARalpha mRNA in C2C12 skeletal muscle cells. These results indicate that ROS generation and NF-kappaB activation are responsible for the down-regulation of PPARalpha and may provide a new mechanism by which intracellular lipid accumulation occurs in skeletal muscle cells.
Collapse
Affiliation(s)
- Agatha Cabrero
- Unitat de Farmacologia, Departament de Farmacologia i Quimica Terapèutica, Facultat de Farmàcia, Universitat de Barcelona, E-08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Drewett V, Devitt A, Saxton J, Portman N, Greaney P, Cheong NE, Alnemri TF, Alnemri E, Shaw PE. Serum response factor cleavage by caspases 3 and 7 linked to apoptosis in human BJAB cells. J Biol Chem 2001; 276:33444-51. [PMID: 11387340 DOI: 10.1074/jbc.m103877200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apoptosis involves the cessation of cellular processes, the breakdown of intracellular organelles, and, finally, the nonphlogistic clearance of apoptotic cells from the body. Important for these events is a family of proteases, caspases, which are activated by a proteolytic cleavage cascade and drive apoptosis by targeting key proteins within the cell. Here, we demonstrate that serum response factor (SRF), a transcription factor essential for proliferative gene expression, is cleaved by caspases and that this cleavage occurs in proliferating murine fibroblasts and can be induced in the human B-cell line BJAB. We identify the two major sites at which SRF cleavage occurs as Asp(245) and Asp(254), the caspases responsible for the cleavage and generate a mutant of SRF resistant to cleavage in BJAB cells. Investigation of the physiological and functional significance of SRF cleavage reveals that it correlates with the loss of c-fos expression, whereby neither SRF cleavage fragment retains transcriptional activity. Moreover, the expression of a noncleavable SRF in BJAB cells suppresses apoptosis induced by Fas cross-linking. These results suggest that for apoptosis to proceed, the transcriptional events promoting cell survival and proliferation, in which SRF is involved, must first be inactivated.
Collapse
Affiliation(s)
- V Drewett
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|