1
|
Zhang X, Li LX, Yu C, Nath KA, Zhuang S, Li X. Targeting lysine-specific demethylase 1A inhibits renal epithelial-mesenchymal transition and attenuates renal fibrosis. FASEB J 2021; 36:e22122. [PMID: 34958158 DOI: 10.1096/fj.202101566r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 11/11/2022]
Abstract
Lysine-specific histone demethylase 1 (LSD1) as the first identified histone/lysine demethylase regulates gene expression and protein functions in diverse diseases. In this study, we show that the expression of LSD1 is increased in mouse kidneys with unilateral ureteral obstruction (UUO) and in cultured NRK-52E cells undergoing TGF-β1-induced epithelial-mesenchymal transition (EMT). Inhibition of LSD1 with its specific inhibitor ORY1001 attenuated renal EMT and fibrosis, which was associated with decreased the deposition of extracellular matrix proteins and the expression of fibrotic markers, including α-smooth muscle actin (α-SMA) and fibronectin, and the recovery of E-cadherin expression and decrease of N-cadherin expression in UUO kidneys and in NRK-52E cells induced with TGF-β1. Targeting LSD1 also decreased the expression of Snail family transcriptional repressor 1 (Snail-1) and its interaction with LSD1 in UUO kidneys and in NRK-52E cells treated with TGF-β1. In addition, we identified a novel LSD1-14-3-3ζ-PKCα axis in the regulation of the activation of AKT and Stat3 and then the activation of fibroblasts. This study suggests that LSD1 plays a critical role in regulation of renal EMT and fibrosis through activation of diverse signaling pathways and places an emphasis that LSD1 has potential as a therapeutic target for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Karl A Nath
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
2
|
Schmölders J, Manske C, Otto A, Hoffmann C, Steiner B, Welin A, Becher D, Hilbi H. Comparative Proteomics of Purified Pathogen Vacuoles Correlates Intracellular Replication of Legionella pneumophila with the Small GTPase Ras-related protein 1 (Rap1). Mol Cell Proteomics 2017; 16:622-641. [PMID: 28183814 DOI: 10.1074/mcp.m116.063453] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/24/2017] [Indexed: 12/19/2022] Open
Abstract
Legionella pneumophila is an opportunistic bacterial pathogen that causes a severe lung infection termed "Legionnaires' disease." The pathogen replicates in environmental protozoa as well as in macrophages within a unique membrane-bound compartment, the Legionella-containing-vacuole (LCV). LCV formation requires the bacterial Icm/Dot type IV secretion system, which translocates ca. 300 "effector proteins" into host cells, where they target distinct host factors. The L. pneumophila "pentuple" mutant (Δpentuple) lacks 5 gene clusters (31% of the effector proteins) and replicates in macrophages but not in Dictyostelium discoideum amoeba. To elucidate the host factors defining a replication-permissive compartment, we compare here the proteomes of intact LCVs isolated from D. discoideum or macrophages infected with Δpentuple or the parental strain Lp02. This analysis revealed that the majority of host proteins are shared in D. discoideum or macrophage LCVs containing the mutant or the parental strain, respectively, whereas some proteins preferentially localize to distinct LCVs. The small GTPase Rap1 was identified on D. discoideum LCVs containing strain Lp02 but not the Δpentuple mutant and on macrophage LCVs containing either strain. The localization pattern of active Rap1 on D. discoideum or macrophage LCVs was confirmed by fluorescence microscopy and imaging flow cytometry, and the depletion of Rap1 by RNA interference significantly reduced the intracellular growth of L. pneumophila Thus, comparative proteomics identified Rap1 as a novel LCV host component implicated in intracellular replication of L. pneumophila.
Collapse
Affiliation(s)
- Johanna Schmölders
- From the ‡Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich, Germany
| | - Christian Manske
- From the ‡Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich, Germany
| | - Andreas Otto
- §Institute for Microbiology, Ernst Moritz Arndt University, Greifswald, Germany
| | - Christine Hoffmann
- From the ‡Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich, Germany
| | - Bernhard Steiner
- ¶Institute of Medical Microbiology, University of Zürich, Switzerland
| | - Amanda Welin
- ¶Institute of Medical Microbiology, University of Zürich, Switzerland
| | - Dörte Becher
- §Institute for Microbiology, Ernst Moritz Arndt University, Greifswald, Germany;
| | - Hubert Hilbi
- From the ‡Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich, Germany; .,¶Institute of Medical Microbiology, University of Zürich, Switzerland
| |
Collapse
|
3
|
The yeast 14-3-3 proteins BMH1 and BMH2 differentially regulate rapamycin-mediated transcription. Biosci Rep 2014; 34:BSR20130096. [PMID: 27919033 PMCID: PMC3958127 DOI: 10.1042/bsr20130096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/03/2014] [Accepted: 01/17/2014] [Indexed: 11/17/2022] Open
Abstract
14-3-3 proteins are highly conserved and have been found in all eukaryotic organisms investigated. They are involved in many varied cellular processes, and interact with hundreds of other proteins. Among many other roles in cells, yeast 14-3-3 proteins have been implicated in rapamycin-mediated cell signalling. We determined the transcription profiles of bmh1 and bmh2 yeast after treatment with rapamycin. We found that, under these conditions, BMH1 and BMH2 are required for rapamycin-induced regulation of distinct, but overlapping sets of genes. Both Bmh1 and Bmh2 associate with the promoters of at least some of these genes. BMH2, but not BMH1, attenuates the repression of genes involved in some functions required for ribosome biogenesis. BMH2 also attenuates the activation of genes sensitive to nitrogen catabolite repression.
Collapse
|
4
|
Sluchanko NN, Gusev NB. 14-3-3 proteins and regulation of cytoskeleton. BIOCHEMISTRY (MOSCOW) 2011; 75:1528-46. [PMID: 21417993 DOI: 10.1134/s0006297910130031] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The proteins of the 14-3-3 family are universal adapters participating in multiple processes running in the cell. We describe the structure, isoform composition, and distribution of 14-3-3 proteins in different tissues. Different elements of 14-3-3 structure important for dimer formation and recognition of protein targets are analyzed in detail. Special attention is paid to analysis of posttranslational modifications playing important roles in regulation of 14-3-3 function. The data of the literature concerning participation of 14-3-3 in regulation of intercellular contacts and different elements of cytoskeleton formed by microfilaments are analyzed. We also describe participation of 14-3-3 in regulation of small G-proteins and protein kinases important for proper functioning of cytoskeleton. The data on the interaction of 14-3-3 with different components of microtubules are presented, and the probable role of 14-3-3 in developing of certain neurodegenerative diseases is discussed. The data of the literature concerning the role of 14-3-3 in formation and normal functioning of intermediate filaments are also reviewed. It is concluded that due to its adapter properties 14-3-3 plays an important role in cytoskeleton regulation. The cytoskeletal proteins that are abundant in the cell might compete with the other protein targets of 14-3-3 and therefore can indirectly regulate many intracellular processes that are dependent on 14-3-3.
Collapse
Affiliation(s)
- N N Sluchanko
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Russia
| | | |
Collapse
|
5
|
Diouf B, Collazos A, Labesse G, Macari F, Choquet A, Clair P, Gauthier-Rouvière C, Guérineau NC, Jay P, Hollande F, Joubert D. A 20-amino acid module of protein kinase C{epsilon} involved in translocation and selective targeting at cell-cell contacts. J Biol Chem 2009; 284:18808-15. [PMID: 19429675 DOI: 10.1074/jbc.m109.004614] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the pituitary gland, activated protein kinase C (PKC) isoforms accumulate either selectively at the cell-cell contact (alpha and epsilon) or at the entire plasma membrane (beta1 and delta). The molecular mechanisms underlying these various subcellular locations are not known. Here, we demonstrate the existence within PKCepsilon of a cell-cell contact targeting sequence (3CTS) that, upon stimulation, is capable of targeting PKCdelta, chimerin-alpha1, and the PKCepsilon C1 domain to the cell-cell contact. We show that this selective targeting of PKCepsilon is lost upon overexpression of 3CTS fused to a (R-Ahx-R)(4) (where Ahx is 6-aminohexanoic acid) vectorization peptide, reflecting a dominant-negative effect of the overexpressed 3CTS on targeting selectivity. 3CTS contains a putative amphipathic alpha-helix, a 14-3-3-binding site, and the Glu-374 amino acid, involved in targeting selectivity. We show that the integrity of the alpha-helix is important for translocation but that 14-3-3 is not involved in targeting selectivity. However, PKCepsilon translocation is increased when PKCepsilon/14-3-3 interaction is abolished, suggesting that phorbol 12-myristate 13-acetate activation may initiate two sets of PKCepsilon functions, those depending on 14-3-3 and those depending on translocation to cell-cell contacts. Thus, 3CTS is involved in the modulation of translocation via its 14-3-3-binding site, in cytoplasmic desequestration via the alpha-helix, and in selective PKCepsilon targeting at the cell-cell contact via Glu-374.
Collapse
Affiliation(s)
- Barthélémy Diouf
- CNRS UMR5203, INSERM, U661, University of Montpellier I and II, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Urwyler S, Nyfeler Y, Ragaz C, Lee H, Mueller LN, Aebersold R, Hilbi H. Proteome analysis of Legionella vacuoles purified by magnetic immunoseparation reveals secretory and endosomal GTPases. Traffic 2008; 10:76-87. [PMID: 18980612 DOI: 10.1111/j.1600-0854.2008.00851.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, replicates in macrophages and amoebae within 'Legionella-containing vacuoles' (LCVs), which communicate with the early secretory pathway and the endoplasmic reticulum. Formation of LCVs requires the bacterial Icm/Dot type IV secretion system. The Icm/Dot-translocated effector protein SidC selectively anchors to LCVs by binding the host lipid phosphatidylinositol-4-phosphate (PtdIns(4)P). Here, we describe a novel and simple approach to purify intact vacuoles formed by L. pneumophila within Dictyostelium discoideum by using magnetic immunoseparation with an antibody against SidC, followed by density gradient centrifugation. To monitor LCV purification by fluorescence microscopy, we used Dictyostelium producing the LCV marker calnexin-GFP and L. pneumophila labeled with the red fluorescent protein DsRed. A proteome analysis of purified LCVs by liquid chromatography coupled to tandem mass spectrometry revealed 566 host proteins, including known LCV components, such as the small GTPases Arf1, Rab1 and Rab7. Rab8, an endosomal regulator of the late secretory pathway originating from the trans Golgi network, and the endosomal GTPase Rab14 were identified as novel LCV components, which were found to be present on vacuoles harboring wild-type but not Icm/Dot-deficient L. pneumophila. Thus, LCVs also communicate with the late secretory and endosomal pathways. Depletion of Rab8 or Arf1 by RNA interference reduced the amount of SidC on LCVs, indicating that the GTPases promote the recruitment of Legionella effectors by regulating the level of PtdIns(4)P.
Collapse
Affiliation(s)
- Simon Urwyler
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
7
|
Park JK, Kang MY, Kim YH, Jo HC, Shin JK, Choi WJ, Lee SA, Lee JH, Choi WS, Paik WY. PKC delta in preeclamptic placentas promotes Bax dissociation from 14-3-3 zeta through 14-3-3 zeta phosphorylation. Placenta 2008; 29:584-92. [PMID: 18472156 DOI: 10.1016/j.placenta.2008.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Revised: 03/16/2008] [Accepted: 03/29/2008] [Indexed: 10/22/2022]
Abstract
OBJECTIVE We investigated placental apoptosis and the expression of and interactions between 14-3-3 and Bcl-2 family proteins during preeclampsia. In addition, we explored the mechanism of Bax dissociation from 14-3-3, hypothesizing that PKC-mediated phosphorylation of 14-3-3 results in dissociation of Bax from 14-3-3 proteins, and leads to apoptosis. METHODS Placental samples from 10 women with preeclampsia and 10 normotensive control patients were analyzed using M30-specific immunohistochemistry to assess placental apoptosis. Biochemical markers of cellular apoptosis, such as cleaved caspase-3, Bax, Bcl-2, 14-3-3, and PKC were followed by Western blotting. Interaction of 14-3-3 proteins with Bax and with PKC was assessed by immunoprecipitation. RESULTS M30-positive cells were widespread in the preeclamptic placentas. The levels of cleaved caspase-3, Bax, 14-3-3 zeta, phospho-(Ser)-14-3-3, and PKC delta were significantly higher in the preeclamptic placentas than in normal placentas. Preeclampsia was also associated with weaker interactions between 14-3-3 zeta and Bax and stronger interactions between 14-3-3 zeta and PKC delta. CONCLUSION Our results suggest that PKC delta in preeclamptic placentas promotes Bax dissociation from 14-3-3 zeta through the phosphorylation of 14-3-3 zeta. This finding may at least in part explain the apoptosis-inducing activity of PKC delta, revealing the important role of PKC delta in the development of apoptosis-related diseases such as preeclampsia.
Collapse
Affiliation(s)
- J K Park
- Department of Obstetrics and Gynecology, College of Medicine, Gyeongsang National University, 90 Chilam-dong, JinJu 660-702, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Crow T, Xue-Bian JJ, Neary JT. 14-3-3 proteins interact with the beta-thymosin repeat protein Csp24. Neurosci Lett 2007; 424:6-9. [PMID: 17709188 PMCID: PMC2695760 DOI: 10.1016/j.neulet.2007.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 07/07/2007] [Indexed: 12/29/2022]
Abstract
Conditioned stimulus pathway protein 24 (Csp24) is a beta-thymosin-like protein that is homologous to other members of the family of beta-thymosin repeat proteins that contain multiple actin binding domains. Actin co-precipitates with Csp24 and co-localizes with it in the cytosol of type-B photoreceptor cell bodies. Several signal transduction pathways have been shown to regulate the phosphorylation of Csp24 and contribute to cellular plasticity. Here, we report the identification of the adapter protein 14-3-3 in lysates of the Hermissenda circumesophageal nervous system and its interaction with Csp24. Immunoprecipitation experiments using an antibody that is broadly reactive with several isoforms of the 14-3-3 family of proteins showed that Csp24 co-precipitates with 14-3-3 protein, and nervous systems stimulated with 5-HT exhibited a significant increase in co-precipitated Csp24 probed with a phosphospecific antibody as compared with controls. These results indicate that post-translational modifications of Csp24 regulate its interaction with 14-3-3 protein, and suggest that this mechanism may contribute to the control of intrinsic enhanced excitability.
Collapse
Affiliation(s)
- Terry Crow
- Department of Neurobiology and Anatomy, University of Texas Medical School, 6431 Fannin Street, Houston, TX 77030, USA.
| | | | | |
Collapse
|
9
|
Kim YH, Kim YS, Kang SS, Noh HS, Kim HJ, Cho GJ, Choi WS. Expression of 14-3-3 zeta and interaction with protein kinase C in the rat retina in early diabetes. Diabetologia 2005; 48:1411-5. [PMID: 15909155 DOI: 10.1007/s00125-005-1774-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Accepted: 02/23/2005] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS The present study aimed to investigate the expression levels of and the relationship between 14-3-3 zeta and protein kinase C (PKC) in the retina of early diabetes. METHODS Changes in the expression levels of, and interaction between, 14-3-3 zeta and PKC were investigated by Northern and Western blot analyses, immunoprecipitation and double immunostaining in the retina of diabetic rats after 6 weeks of diabetes. PKC activity was examined using a PKC assay. RESULTS In the diabetic retina, the molecular levels of 14-3-3 zeta were reduced, while those of PKC beta and zeta were increased. Direct interaction between 14-3-3 zeta and PKC was markedly decreased in the retina after 6 weeks of diabetes, while PKC activity was increased. CONCLUSIONS/INTERPRETATION These findings show that a reduction in 14-3-3 zeta can induce PKC activation, suggesting that this is a main cause of visual dysfunction in the retina during diabetes.
Collapse
Affiliation(s)
- Y H Kim
- Department of Anatomy and Neurobiology, College of Medicine, Institute of Health Science, Gyeongsang National University, Jinju, South Korea
| | | | | | | | | | | | | |
Collapse
|
10
|
Yumura S, Uyeda TQP. Myosins and cell dynamics in cellular slime molds. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 224:173-225. [PMID: 12722951 DOI: 10.1016/s0074-7696(05)24005-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Myosin is a mechanochemical transducer and serves as a motor for various motile activities such as cell migration, cytokinesis, maintenance of cell shape, phagocytosis, and morphogenesis. Nonmuscle myosin in vivo does not either stay static at specific subcellular regions or construct highly organized structures, such as sarcomere in skeletal muscle cells. The cellular slime mold Dictyostelium discoideum is an ideal "model organism" for the investigation of cell movement and cytokinesis. The advantages of this organism prompted researchers to carry out pioneering cell biological, biochemical, and molecular genetic studies on myosin II, which resulted in elucidation of many fundamental features of function and regulation of this most abundant molecular motor. Furthermore, recent molecular biological research has revealed that many unconventional myosins play various functions in vivo. In this article, how myosins are organized and regulated in a dynamic manner in Dictyostelium cells is reviewed and discussed.
Collapse
Affiliation(s)
- Shigehiko Yumura
- Department of Biology, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan
| | | |
Collapse
|
11
|
Komori T, Ishizawa K, Arai N, Hirose T, Mizutani T, Oda M. Immunoexpression of 14-3-3 proteins in glial cytoplasmic inclusions of multiple system atrophy. Acta Neuropathol 2003; 106:66-70. [PMID: 12669242 DOI: 10.1007/s00401-003-0702-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2002] [Accepted: 03/03/2003] [Indexed: 11/24/2022]
Abstract
Glial cytoplasmic inclusions (GCIs) are the histological hallmark of multiple system atrophy (MSA). In six postmortem brains of patients with MSA, 14-3-3-protein immunoreactivity was identified in GCIs predominately in the white matter tissue of the basal forebrain and cerebellum. Using double immunohistochemistry, co-localization of 14-3-3-protein and alpha-synuclein immunoreactivities in the GCIs was confirmed. The immunolabeling rate of GCIs with 14-3-3 proteins varied regionally from approximately 40% to 90%. Semiquantitative analysis yielded a significant negative correlation between degree of tissue degeneration and density of 14-3-3-protein-immunoreactive GCIs. The 14-3-3 proteins are active cofactors involved in cellular regulation through binding to phosphorylated motifs in target proteins and alpha-synuclein is a known target of 14-3-3. Our study suggests that 14-3-3 proteins are closely associated with alpha-synuclein in GCIs and 14-3-3 proteins may be candidate cofactors of alpha-synuclein in GCI formation.
Collapse
Affiliation(s)
- Takashi Komori
- Department of Clinical Neuropathology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu City, 183-8526 Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
12
|
Cavet ME, Lehoux S, Berk BC. 14-3-3beta is a p90 ribosomal S6 kinase (RSK) isoform 1-binding protein that negatively regulates RSK kinase activity. J Biol Chem 2003; 278:18376-83. [PMID: 12618428 DOI: 10.1074/jbc.m208475200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p90 ribosomal S6 kinase 1 (RSK1) is a serine/threonine kinase that is activated by extracellular signal-related kinases 1/2 and phosphoinositide-dependent protein kinase 1 upon mitogen stimulation. Under basal conditions, RSK1 is located in the cytosol and upon stimulation, RSK1 translocates to the plasma membrane where it is fully activated. The ability of RSK1 to bind the adapter protein 14-3-3beta was investigated because RSK1 contains several putative 14-3-3-binding motifs. We demonstrate that RSK1 specifically and directly binds 14-3-3beta. This interaction was dependent on phosphorylation of serine 154 within the motif RLSKEV of RSK1. Binding of RSK1 to 14-3-3beta was maximal under basal conditions and decreased significantly upon mitogen stimulation. After 5 min of serum stimulation, a portion of 14-3-3beta and RSK1 translocated to the membrane fraction, and immunofluorescence studies demonstrated colocalization of RSK1 and 14-3-3beta at the plasma membrane in vivo. Incubation of recombinant RSK1 with 14-3-3beta decreased RSK1 kinase activity by approximately 50%. Mutation of RSK1 serine 154 increased both basal and serum-stimulated RSK activity. In addition, the epidermal growth factor response of RSK1S154A was enhanced compared with wild type RSK. The amount of RSK1S154A was significantly increased in the membrane fraction under basal conditions. Increased phosphorylation of two sites essential for RSK1 kinase activity (Ser(380) and Ser(363)) in RSK1S154A compared with RSK1 wild type, demonstrated that 14-3-3 interferes with RSK1 phosphorylation. These data suggest that 14-3-3beta binding negatively regulates RSK1 activity to maintain signal specificity and that association/dissociation of the 14-3-3beta-RSK1 complex is likely to be important for mitogen-mediated RSK1 activation.
Collapse
MESH Headings
- 14-3-3 Proteins
- 3T3 Cells
- Amino Acid Sequence
- Animals
- Binding Sites
- COS Cells
- Cell Line
- Cell Membrane/metabolism
- Cells, Cultured
- Cricetinae
- DNA/metabolism
- Dose-Response Relationship, Drug
- Genes, Reporter
- Glutathione Transferase/metabolism
- Humans
- Immunohistochemistry
- Mice
- Microscopy, Confocal
- Microscopy, Fluorescence
- Models, Biological
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Phosphorylation
- Point Mutation
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Binding
- Protein Biosynthesis
- Protein Isoforms
- Protein Kinases/metabolism
- Protein Transport
- Rats
- Recombinant Proteins/chemistry
- Ribosomal Protein S6 Kinases
- Ribosomal Protein S6 Kinases, 90-kDa/chemistry
- Ribosomal Protein S6 Kinases, 90-kDa/metabolism
- Serine/chemistry
- Time Factors
- Transfection
- Tyrosine 3-Monooxygenase/metabolism
- Tyrosine 3-Monooxygenase/physiology
Collapse
Affiliation(s)
- Megan E Cavet
- Center for Cardiovascular Research and Department of Medicine, University of Rochester, Rochester, New York 14642, USA
| | | | | |
Collapse
|
13
|
Dai JG, Murakami K. Constitutively and autonomously active protein kinase C associated with 14-3-3 zeta in the rodent brain. J Neurochem 2003; 84:23-34. [PMID: 12485398 DOI: 10.1046/j.1471-4159.2003.01254.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Persistent activation of protein kinase C (PKC) is required for the expression of synaptic plasticity in the brain. There are several mechanisms proposed that can lead to the prolonged activation of PKC. These include long lasting production of lipid activators (diacylglycerol and fatty acid) through mitogen-activated protein (MAP) kinase pathway, and a modification of PKC by reactive oxygen species. In nerve growth factor (NGF)-differentiated PC12 cells, we found that constitutive and autonomous Ca2+-independent PKC activity is associated with 14-3-3 zeta. Because PKC and 14-3-3 zeta are both involved in synaptic plasticity and learning and memory, we examined whether PKC interacts with 14-3-3 zeta in the brain and whether the PKC/14-3-3 zeta complex has autonomous activity. Here we show that three subclasses of PKC, Ca2+-dependent classical PKC, Ca2+-independent novel PKC, and Ca2+-independent and diacylglycerol-insensitive atypical PKC, all interact with 14-3-3 zeta in the rodent brain. The pool size of 14-3-3 zeta bound form of PKC is small (1-4% of each PKC isoform), but they show constitutive and autonomous activity. Our study indicates that the binding of PKC with 14-3-3 zeta is at least in part independent of phosphorylation of PKC and that the C1 domain of PKC is involved in the binding. As both molecules are enriched in synaptic locus, the constitutive PKC activity and its interaction with 14-3-3 zeta could be a mechanism for the persistent PKC activation in the brain.
Collapse
Affiliation(s)
- Jian-Guo Dai
- Department of Biology, University of Vermont, Burlington, Vermont 05405, USA
| | | |
Collapse
|
14
|
Gannon-Murakami L, Murakami K. Selective association of protein kinase C with 14-3-3 zeta in neuronally differentiated PC12 Cells. Stimulatory and inhibitory effect of 14-3-3 zeta in vivo. J Biol Chem 2002; 277:23116-22. [PMID: 11950841 DOI: 10.1074/jbc.m201478200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 14-3-3 protein is a family of highly conserved acidic proteins found in a wide range of eukaryotes from yeast to mammals. 14-3-3 acts as an adapter protein and interacts with signaling molecules including protein kinase C (PKC). Although 14-3-3 zeta was originally characterized as an endogenous PKC inhibitor, it was reported to activate PKC in vitro, but the in vivo regulation of PKC by 14-3-3 is still not well understood. To examine the regulation of PKC by 14-3-3 in the cell, we have generated a sub-cell line, PC12-B3, that stably expresses FLAG epitope-tagged 14-3-3 zeta isoform in PC12 cells. Here we show that PKC-alpha and PKC-epsilon become associated with 14-3-3 zeta when the cells are neuronally differentiated by nerve growth factor. We found that the immunoprecipitate by anti-FLAG antibody contains constitutive and autonomous Ca(2+)-independent non-classical PKC activity. In contrast, the FLAG immunoprecipitate has no Ca(2+)-dependent classical PKC activity despite the fact that PKC-alpha is present in the FLAG immunoprecipitate from differentiated PC12-B3 cells. Our results show that the association with 14-3-3 zeta has distinct effects on classical PKC and non-classical PKC activity.
Collapse
|
15
|
Kashiwagi K, Shirai Y, Kuriyama M, Sakai N, Saito N. Importance of C1B domain for lipid messenger-induced targeting of protein kinase C. J Biol Chem 2002; 277:18037-45. [PMID: 11877428 DOI: 10.1074/jbc.m111761200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanisms by which arachidonic acid (AA) and ceramide elicit translocation of protein kinase C (PKC) were investigated. Ceramide translocated epsilonPKC from the cytoplasm to the Golgi complex, but with a mechanism distinct from that utilized by AA. Using fluorescence recovery after photobleaching, we showed that, upon treatment with AA, epsilonPKC was tightly associated with the Golgi complex; ceramide elicited an accumulation of epsilonPKC which was exchangeable with the cytoplasm. Stimulation with ceramide after AA converted the AA-induced Golgi complex staining to one elicited by ceramide alone; AA had no effect on the ceramide-stimulated localization. Using point mutants and deletions of epsilonPKC, we determined that the epsilonC1B domain was responsible for the ceramide- and AA-induced translocation. Switch chimeras, containing the C1B from epsilonPKC in the context of deltaPKC (delta(epsilonC1B)) and vice versa (epsilon(deltaC1B)), were generated and tested for their translocation in response to ceramide and AA. delta(epsilonC1B) translocated upon treatment with both ceramide and AA; epsilon(deltaC1B) responded only to ceramide. Thus, through the C1B domain, AA and ceramide induce different patterns of epsilonPKC translocation and the C1B domain defines the subtype specific sensitivity of PKCs to lipid second messengers.
Collapse
Affiliation(s)
- Kaori Kashiwagi
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
16
|
Zeidman R, Trollér U, Raghunath A, Påhlman S, Larsson C. Protein kinase Cepsilon actin-binding site is important for neurite outgrowth during neuronal differentiation. Mol Biol Cell 2002; 13:12-24. [PMID: 11809819 PMCID: PMC65069 DOI: 10.1091/mbc.01-04-0210] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have previously shown that protein kinase Cepsilon (PKCepsilon) induces neurite outgrowth via its regulatory domain and independently of its kinase activity. This study aimed at identifying mechanisms regulating PKCepsilon-mediated neurite induction. We show an increased association of PKCepsilon to the cytoskeleton during neuronal differentiation. Furthermore, neurite induction by overexpression of full-length PKCepsilon is suppressed if serum is removed from the cultures or if an actin-binding site is deleted from the protein. A peptide corresponding to the PKCepsilon actin-binding site suppresses neurite outgrowth during neuronal differentiation and outgrowth elicited by PKCepsilon overexpression. Neither serum removal, deletion of the actin-binding site, nor introduction of the peptide affects neurite induction by the isolated regulatory domain. Membrane targeting by myristoylation renders full-length PKCepsilon independent of both serum and the actin-binding site, and PKCepsilon colocalized with F-actin at the cortical cytoskeleton during neurite outgrowth. These results demonstrate that the actin-binding site is of importance for signals acting on PKCepsilon in a pathway leading to neurite outgrowth. Localization of PKCepsilon to the plasma membrane and/or the cortical cytoskeleton is conceivably important for its effect on neurite outgrowth.
Collapse
Affiliation(s)
- Ruth Zeidman
- Department of Laboratory Medicine, Molecular Medicine, Lund University, Malmö University Hospital, 205 02 Malmö, Sweden
| | | | | | | | | |
Collapse
|
17
|
Mulvihill DP, Barretto C, Hyams JS. Localization of fission yeast type II myosin, Myo2, to the cytokinetic actin ring is regulated by phosphorylation of a C-terminal coiled-coil domain and requires a functional septation initiation network. Mol Biol Cell 2001; 12:4044-53. [PMID: 11739799 PMCID: PMC60774 DOI: 10.1091/mbc.12.12.4044] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Myo2 truncations fused to green fluorescent protein (GFP) defined a C-terminal domain essential for the localization of Myo2 to the cytokinetic actin ring (CAR). The localization domain contained two predicted phosphorylation sites. Mutation of serine 1518 to alanine (S(1518)A) abolished Myo2 localization, whereas Myo2 with a glutamic acid at this position (S(1518)E) localized to the CAR. GFP-Myo2 formed rings in the septation initiation kinase (SIN) mutant cdc7-24 at 25 degrees C but not at 36 degrees C. GFP-Myo2S(1518)E rings persisted at 36 degrees C in cdc7-24 but not in another SIN kinase mutant, sid2-250. To further examine the relationship between Myo2 and the SIN pathway, the chromosomal copy of myo2(+) was fused to GFP (strain myo2-gc). Myo2 ring formation was abolished in the double mutants myo2-gc cdc7.24 and myo2-gc sid2-250 at the restrictive temperature. In contrast, activation of the SIN pathway in the double mutant myo2-gc cdc16-116 resulted in the formation of Myo2 rings which subsequently collapsed at 36 degrees C. We conclude that the SIN pathway that controls septation in fission yeast also regulates Myo2 ring formation and contraction. Cdc7 and Sid2 are involved in ring formation, in the case of Cdc7 by phosphorylation of a single serine residue in the Myo2 tail. Other kinases and/or phosphatases may control ring contraction.
Collapse
Affiliation(s)
- D P Mulvihill
- Department of Biology, University College London, London WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
18
|
Cahill CM, Tzivion G, Nasrin N, Ogg S, Dore J, Ruvkun G, Alexander-Bridges M. Phosphatidylinositol 3-kinase signaling inhibits DAF-16 DNA binding and function via 14-3-3-dependent and 14-3-3-independent pathways. J Biol Chem 2001; 276:13402-10. [PMID: 11124266 DOI: 10.1074/jbc.m010042200] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Caenorhabditis elegans, an insulin-like signaling pathway to phosphatidylinositol 3-kinase (PI 3-kinase) and AKT negatively regulates the activity of DAF-16, a Forkhead transcription factor. We show that in mammalian cells, C. elegans DAF-16 is a direct target of AKT and that AKT phosphorylation generates 14-3-3 binding sites and regulates the nuclear/cytoplasmic distribution of DAF-16 as previously shown for its mammalian homologs FKHR and FKHRL1. In vitro, interaction of AKT- phosphorylated DAF-16 with 14-3-3 prevents DAF-16 binding to its target site in the insulin-like growth factor binding protein-1 gene, the insulin response element. In HepG2 cells, insulin signaling to PI 3-kinase/AKT inhibits the ability of a GAL4 DNA binding domain/DAF-16 fusion protein to activate transcription via the insulin-like growth factor binding protein-1-insulin response element, but not the GAL4 DNA binding site, which suggests that insulin inhibits the interaction of DAF-16 with its cognate DNA site. Elimination of the DAF-16/1433 association by mutation of the AKT/14-3-3 sites in DAF-16, prevents 14-3-3 inhibition of DAF-16 DNA binding and insulin inhibition of DAF-16 function. Similarly, inhibition of the DAF-16/14-3-3 association by exposure of cells to the PI 3-kinase inhibitor LY294002, enhances DAF-16 DNA binding and transcription activity. Surprisingly constitutively nuclear DAF-16 mutants that lack AKT/14-3-3 binding sites also show enhanced DNA binding and transcription activity in response to LY294002, pointing to a 14-3-3-independent mode of regulation. Thus, our results demonstrate at least two mechanisms, one 14-3-3-dependent and the other 14-3-3-independent, whereby PI 3-kinase signaling regulates DAF-16 DNA binding and transcription function.
Collapse
Affiliation(s)
- C M Cahill
- Diabetes Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
de la Roche MA, Côté GP. Regulation of Dictyostelium myosin I and II. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1525:245-61. [PMID: 11257438 DOI: 10.1016/s0304-4165(01)00110-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dictyostelium expresses 12 different myosins, including seven single-headed myosins I and one conventional two-headed myosin II. In this review we focus on the signaling pathways that regulate Dictyostelium myosin I and myosin II. Activation of myosin I is catalyzed by a Cdc42/Rac-stimulated myosin I heavy chain kinase that is a member of the p21-activated kinase (PAK) family. Evidence that myosin I is linked to the Arp2/3 complex suggests that pathways that regulate myosin I may also influence actin filament assembly. Myosin II activity is stimulated by a cGMP-activated myosin light chain kinase and inhibited by myosin heavy chain kinases (MHCKs) that block bipolar filament assembly. Known MHCKs include MHCK A and MHCK B, which have a novel type of kinase catalytic domain joined to a WD repeat domain, and MHC-protein kinase C (PKC), which contains both diacylglycerol kinase and PKC-related protein kinase catalytic domains. A Dictyostelium PAK (PAKa) acts indirectly to promote myosin II filament formation, suggesting that the MHCKs may be indirectly regulated by Rac GTPases.
Collapse
Affiliation(s)
- M A de la Roche
- Department of Biochemistry, Queen's University, K7L 3N6, Kingston, Ont., Canada
| | | |
Collapse
|
20
|
Abstract
The 14-3-3 proteins constitute a family that is highly conserved in a wide range of organisms, including higher eukaryotes, invertebrates and plants. Variants of 14-3-3 proteins assembled in homo- and heterodimers were found to interact with diverse cellular proteins. Until recently, the biological role of 14-3-3 members was still poorly understood. However, the results of an increasing number of studies on their structure and function are converging to define 14-3-3 proteins as a novel type of adaptor that modulates interactions between components involved in signal transduction pathway and in cell cycle control.
Collapse
Affiliation(s)
- V Baldin
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération Université Paul Sabatier-CNRS, Toulouse, France
| |
Collapse
|
21
|
Van Der Hoeven PC, Van Der Wal JC, Ruurs P, Van Blitterswijk WJ. Protein kinase C activation by acidic proteins including 14-3-3. Biochem J 2000; 347 Pt 3:781-5. [PMID: 10769183 PMCID: PMC1221016 DOI: 10.1042/0264-6021:3470781] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
14-3-3 proteins may function as adapter or scaffold proteins in signal transduction pathways. We reported previously that several 14-3-3 isotypes bind to protein kinase C (PKC)-zeta and facilitate coupling of PKC-zeta to Raf-1 [van der Hoeven, van der Wal, Ruurs, van Dijk and van Blitterswijk (2000) Biochem. J. 345, 297-306], an event that boosts the mitogen-activated protein kinase (ERK) pathway in Rat-1 fibroblasts. The present work investigated whether bound 14-3-3 would affect PKC-zeta activity. Using recombinant 14-3-3 proteins and purified PKC-zeta in a convenient, newly developed in vitro kinase assay, we found that 14-3-3 proteins stimulated PKC-zeta activity in a dose-dependent fashion up to approx. 2.5-fold. Activation of PKC-zeta by 14-3-3 isotypes was unrelated to their mutual affinity, estimated by co-immunoprecipitation from COS cell lysates. Accordingly, PKC-zeta with a defective (point-mutated) 14-3-3-binding site, showed the same 14-3-3-stimulated activity as wild-type PKC-zeta. As 14-13-3 proteins are acidic, we tested several other acidic proteins, which turned out to stimulate PKC-zeta activity in a similar fashion, whereas neutral or basic proteins did not. These effects were not restricted to the atypical PKC-zeta, but were also found for classical PKC. Together, the results suggest that the stimulation of PKC activity by 14-3-3 proteins is non-specific and solely due to the acidic nature of these proteins, quite similar to that known for acidic lipids.
Collapse
Affiliation(s)
- P C Van Der Hoeven
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
22
|
Fuglsang AT, Visconti S, Drumm K, Jahn T, Stensballe A, Mattei B, Jensen ON, Aducci P, Palmgren MG. Binding of 14-3-3 protein to the plasma membrane H(+)-ATPase AHA2 involves the three C-terminal residues Tyr(946)-Thr-Val and requires phosphorylation of Thr(947). J Biol Chem 1999; 274:36774-80. [PMID: 10593986 DOI: 10.1074/jbc.274.51.36774] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
14-3-3 proteins play a regulatory role in a diverse array of cellular functions such as apoptosis, regulation of the cell cycle, and regulation of gene transcription. The phytotoxin fusicoccin specifically induces association of virtually any 14-3-3 protein to plant plasma membrane H(+)-ATPase. The 14-3-3 binding site in the Arabidopsis plasma membrane H(+)-ATPase AHA2 was localized to the three C-terminal residues of the enzyme (Tyr(946)-Thr-Val). Binding of 14-3-3 protein to this target was induced by phosphorylation of Thr(947) (K(D) = 88 nM) and was in practice irreversible in the presence of fusicoccin (K(D) = 7 nM). Mass spectrometry analysis demonstrated that AHA2 expressed in yeast was phosphorylated at Thr(947). We conclude that the extreme end of AHA2 contains an unusual high-affinity binding site for 14-3-3 protein.
Collapse
Affiliation(s)
- A T Fuglsang
- Department of Plant Biology, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
alpha-Synuclein has been implicated in the pathophysiology of many neurodegenerative diseases, including Parkinson's disease (PD) and Alzheimer's disease. Mutations in alpha-synuclein cause some cases of familial PD (Polymeropoulos et al., 1997; Kruger et al., 1998). In addition, many neurodegenerative diseases show accumulation of alpha-synuclein in dystrophic neurites and in Lewy bodies (Spillantini et al., 1998). Here, we show that alpha-synuclein shares physical and functional homology with 14-3-3 proteins, which are a family of ubiquitous cytoplasmic chaperones. Regions of alpha-synuclein and 14-3-3 proteins share over 40% homology. In addition, alpha-synuclein binds to 14-3-3 proteins, as well as some proteins known to associate with 14-3-3, including protein kinase C, BAD, and extracellular regulated kinase, but not Raf-1. We also show that overexpression of alpha-synuclein inhibits protein kinase C activity. The association of alpha-synuclein with BAD and inhibition of protein kinase C suggests that increased expression of alpha-synuclein could be harmful. Consistent with this hypothesis, we observed that overexpression of wild-type alpha-synuclein is toxic, and overexpression of alpha-synuclein containing the A53T or A30P mutations exhibits even greater toxicity. The activity and binding profile of alpha-synuclein suggests that it might act as a protein chaperone and that accumulation of alpha-synuclein could contribute to cell death in neurodegenerative diseases.
Collapse
|
24
|
Pan S, Sehnke PC, Ferl RJ, Gurley WB. Specific interactions with TBP and TFIIB in vitro suggest that 14-3-3 proteins may participate in the regulation of transcription when part of a DNA binding complex. THE PLANT CELL 1999; 11:1591-602. [PMID: 10449590 PMCID: PMC144297 DOI: 10.1105/tpc.11.8.1591] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The 14-3-3 family of multifunctional proteins is highly conserved among animals, plants, and yeast. Several studies have shown that these proteins are associated with a G-box DNA binding complex and are present in the nucleus in several plant and animal species. In this study, 14-3-3 proteins are shown to bind the TATA box binding protein (TBP), transcription factor IIB (TFIIB), and the human TBP-associated factor hTAF(II)32 in vitro but not hTAF(II)55. The interactions with TBP and TFIIB were highly specific, requiring amino acid residues in the box 1 domain of the 14-3-3 protein. These interactions do not require formation of the 14-3-3 dimer and are not dependent on known 14-3-3 recognition motifs containing phosphoserine. The 14-3-3-TFIIB interaction appears to occur within the same domain of TFIIB that binds the human herpes simplex virus transcriptional activator VP16, because VP16 and 14-3-3 were able to compete for interaction with TFIIB in vitro. In a plant transient expression system, 14-3-3 was able to activate GAL4-dependent beta-glucuronidase reporter gene expression at low levels when translationally fused with the GAL4 DNA binding domain. The in vitro binding with general transcription factors TBP and TFIIB together with its nuclear location provide evidence supporting a role for 14-3-3 proteins as transcriptional activators or coactivators when part of a DNA binding complex.
Collapse
Affiliation(s)
- S Pan
- Program of Plant Molecular and Cellular Biology, Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA
| | | | | | | |
Collapse
|
25
|
Ostrerova N, Petrucelli L, Farrer M, Mehta N, Choi P, Hardy J, Wolozin B. alpha-Synuclein shares physical and functional homology with 14-3-3 proteins. J Neurosci 1999; 19:5782-91. [PMID: 10407019 PMCID: PMC6783081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
Abstract
alpha-Synuclein has been implicated in the pathophysiology of many neurodegenerative diseases, including Parkinson's disease (PD) and Alzheimer's disease. Mutations in alpha-synuclein cause some cases of familial PD (Polymeropoulos et al., 1997; Kruger et al., 1998). In addition, many neurodegenerative diseases show accumulation of alpha-synuclein in dystrophic neurites and in Lewy bodies (Spillantini et al., 1998). Here, we show that alpha-synuclein shares physical and functional homology with 14-3-3 proteins, which are a family of ubiquitous cytoplasmic chaperones. Regions of alpha-synuclein and 14-3-3 proteins share over 40% homology. In addition, alpha-synuclein binds to 14-3-3 proteins, as well as some proteins known to associate with 14-3-3, including protein kinase C, BAD, and extracellular regulated kinase, but not Raf-1. We also show that overexpression of alpha-synuclein inhibits protein kinase C activity. The association of alpha-synuclein with BAD and inhibition of protein kinase C suggests that increased expression of alpha-synuclein could be harmful. Consistent with this hypothesis, we observed that overexpression of wild-type alpha-synuclein is toxic, and overexpression of alpha-synuclein containing the A53T or A30P mutations exhibits even greater toxicity. The activity and binding profile of alpha-synuclein suggests that it might act as a protein chaperone and that accumulation of alpha-synuclein could contribute to cell death in neurodegenerative diseases.
Collapse
Affiliation(s)
- N Ostrerova
- Department of Pharmacology, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Zeidman R, Löfgren B, Pâhlman S, Larsson C. PKCepsilon, via its regulatory domain and independently of its catalytic domain, induces neurite-like processes in neuroblastoma cells. J Cell Biol 1999; 145:713-26. [PMID: 10330401 PMCID: PMC2133186 DOI: 10.1083/jcb.145.4.713] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To investigate the role of protein kinase C (PKC) isoforms in regulation of neurite outgrowth, PKCalpha, betaII, delta, and epsilon fused to enhanced green fluorescent protein (EGFP) were transiently overexpressed in neuroblastoma cells. Overexpression of PKCepsilon-EGFP induced cell processes whereas the other isoforms did not. The effect of PKCepsilon-EGFP was not suppressed by the PKC inhibitor GF109203X. Instead, process formation was more pronounced when the regulatory domain was introduced. Overexpression of various fragments from PKCepsilon regulatory domain revealed that a region encompassing the pseudosubstrate, the two C1 domains, and parts of the V3 region were necessary and sufficient for induction of processes. By deleting the second C1 domain from this construct, a dominant-negative protein was generated which suppressed processes induced by full-length PKCepsilon and neurites induced during retinoic acid- and growth factor-induced differentiation. As with neurites in differentiated neuroblastoma cells, processes induced by the PKCepsilon- PSC1V3 protein contained alpha-tubulin, neurofilament-160, and F-actin, but the PKCepsilon-PSC1V3-induced processes lacked the synaptic markers synaptophysin and neuropeptide Y. These data suggest that PKCepsilon, through its regulatory domain, can induce immature neurite-like processes via a mechanism that appears to be of importance for neurite outgrowth during neuronal differentiation.
Collapse
Affiliation(s)
- R Zeidman
- Lund University, Department of Laboratory Medicine, Molecular Medicine, Malmö University Hospital, S-205 02 Malmö, Sweden
| | | | | | | |
Collapse
|
27
|
Hausser A, Storz P, Link G, Stoll H, Liu YC, Altman A, Pfizenmaier K, Johannes FJ. Protein kinase C mu is negatively regulated by 14-3-3 signal transduction proteins. J Biol Chem 1999; 274:9258-64. [PMID: 10092600 DOI: 10.1074/jbc.274.14.9258] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies have documented direct interaction between 14-3-3 proteins and key molecules in signal transduction pathways like Ras, Cbl, and protein kinases. In T cells, the 14-3-3tau isoform has been shown to associate with protein kinase C theta and to negatively regulate interleukin-2 secretion. Here we present data that 14-3-3tau interacts with protein kinase C mu (PKCmu), a subtype that differs from other PKC members in structure and activation mechanisms. Specific interaction of PKCmu and 14-3-3tau can be shown in the T cell line Jurkat by immunocoprecipitiation and by pulldown assays of either endogenous or overexpressed proteins using PKCmu-specific antibodies and GST-14-3-3 fusion proteins, respectively. Using PKCmu deletion mutants, the 14-3-3tau binding region is mapped within the regulatory C1 domain. Binding of 14-3-3tau to PKCmu is significantly enhanced upon phorbol ester stimulation of PKCmu kinase activity in Jurkat cells and occurs via a Cbl-like serine containing consensus motif. However, 14-3-3tau is not a substrate of PKCmu. In contrast 14-3-3tau strongly down-regulates PKCmu kinase activity in vitro. Moreover, overexpression of 14-3-3tau significantly reduced phorbol ester induced activation of PKCmu kinase activity in intact cells. We therefore conclude that 14-3-3tau is a negative regulator of PKCmu in T cells.
Collapse
Affiliation(s)
- A Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | | | | | | | | | |
Collapse
|