1
|
Li L, Guo Z, Guo X, Dong D, Fan T, Yao L, Zha Y, Kong J, Dai Y, Pan T. Phanerochaete chrysosporium hyphae bio-crack, endocytose and metabolize plastic films. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137154. [PMID: 39798307 DOI: 10.1016/j.jhazmat.2025.137154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Numerous studies have focused on the effect and mechanism of plastic degradation; due to their high persistence, petroleum-based plastics are difficult for microbes to mineralize. Although such plastics have been demonstrated to be mineralized by white rot fungus, the reactions at the molecular level remain unknown. Here, we show the whole mineralization model of polyethylene film, that can be summarized as follows: 1) white rot fungus colonizes on polyethylene film, using additives as dissimilated carbon sources; 2) the fungus secretes extracellular enzymes protein, combining with stearic acid as electron donor, causes oxidation and cracking of polyethylene film; and 3) partial dissociated sub-microplastic debris access to cells, further oxidizes in sequential actions of intracellular enzymes, and ultimately mineralize via β-oxidation. Our study provides new insight into the causes of polyethylene film cracking degradation model.
Collapse
Affiliation(s)
- Lele Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Ecological Civilization Research Institute, Hefei University of Technology, Hefei 230009, China
| | - Zhi Guo
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Ecological Civilization Research Institute, Hefei University of Technology, Hefei 230009, China.
| | - Xingpan Guo
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | - Dazhuang Dong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Ecological Civilization Research Institute, Hefei University of Technology, Hefei 230009, China
| | - Ting Fan
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Lin Yao
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Ecological Civilization Research Institute, Hefei University of Technology, Hefei 230009, China
| | - Yuanyuan Zha
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Ecological Civilization Research Institute, Hefei University of Technology, Hefei 230009, China
| | - Jianyu Kong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Ecological Civilization Research Institute, Hefei University of Technology, Hefei 230009, China
| | - Yaodan Dai
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Ecological Civilization Research Institute, Hefei University of Technology, Hefei 230009, China
| | - Tao Pan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Ecological Civilization Research Institute, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
2
|
Ren Y, Yang J, Fujita B, Zhang Y, Berro J. Cross-regulations of two connected domains form a mechanical circuit for steady force transmission during clathrin-mediated endocytosis. Cell Rep 2024; 43:114725. [PMID: 39276354 PMCID: PMC11476202 DOI: 10.1016/j.celrep.2024.114725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/01/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024] Open
Abstract
Mechanical forces are transmitted from the actin cytoskeleton to the membrane during clathrin-mediated endocytosis (CME) in the fission yeast Schizosaccharomyces pombe. End4p directly transmits force in CME by binding to both the membrane (through the AP180 N-terminal homology [ANTH] domain) and F-actin (through the talin-HIP1/R/Sla2p actin-tethering C-terminal homology [THATCH] domain). We show that 7 pN force is required for stable binding between THATCH and F-actin. We also characterized a domain in End4p, Rend (rod domain in End4p), that resembles R12 of talin. Membrane localization of Rend primes the binding of THATCH to F-actin, and force-induced unfolding of Rend at 15 pN terminates the transmission of force. We show that the mechanical properties (mechanical stability, unfolding extension, hysteresis) of Rend and THATCH are tuned to form a circuit for the initiation, transmission, and termination of force between the actin cytoskeleton and membrane. The mechanical circuit by Rend and THATCH may be conserved and coopted evolutionarily in cell adhesion complexes.
Collapse
Affiliation(s)
- Yuan Ren
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Nanobiology Institute, Yale University, West Haven, CT 06516, USA.
| | - Jie Yang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Barbara Fujita
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Nanobiology Institute, Yale University, West Haven, CT 06516, USA
| | - Yongli Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Nanobiology Institute, Yale University, West Haven, CT 06516, USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
3
|
Ren Y, Lin Q, Berro J. 2A peptide from ERBV-1 efficiently separates endogenous protein domains in the fission yeast Schizosaccharomyces pombe. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000941. [PMID: 37767365 PMCID: PMC10520729 DOI: 10.17912/micropub.biology.000941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
2A peptides are widely used for polycistronic gene expression from vectors. In contrast, the separation of endogenous genes via 2A peptides has been largely unexplored. We show that in fission yeast Schizosaccharomyces pombe , the "cleaving" efficiency of the 2A peptide from ERBV-1 (Equine rhinitis B virus 1) range from ~70% to ~99% for End4 at different insertion sites. Our results suggest a high "cleaving" efficiency as well as considerable variation for using 2A peptide to separate endogenous protein domains in fission yeast. Verification of the "cleaving" efficiency of 2A peptides is advised for its application.
Collapse
Affiliation(s)
- Yuan Ren
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States
| | - Qun Lin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States
- Department of Cell Biology, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
4
|
Yang N, Liang Y, Yang P, Jiang L. Flurbiprofen inhibits cell proliferation in thyroid cancer through interrupting HIP1R-induced endocytosis of PTEN. Eur J Med Res 2022; 27:29. [PMID: 35209947 PMCID: PMC8867849 DOI: 10.1186/s40001-022-00658-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background The incidence of thyroid cancer, a most common tumor in the endocrine system, has increased in recent years. A growing number of studies have focused on the molecular mechanisms of thyroid cancer subtypes, aiming to identify effective therapeutic targets. Endocytosis is of vital significance in the malignant development of tumors, although its involvement in thyroid cancer has been rarely reported. Methods HIP1R expressions in thyroid cancer from the TCGA database were analyzed by UALCAN software. Thyroid epithelial and cancer cell lines were cultured in vitro. Western blotting and quantitative PCR were used to analyze protein and mRNA levels, respectively. Cell viability was measured by CCK-8 assay. Immunofluorescence staining indicated protein distribution in cell. Co-immunoprecipitation was used to study protein–protein interaction. Immunohistochemical staining was used to analyze protein expression in clinical tissues. Differences between groups were compared using the two-tailed Student’s t test, and those among three or more groups were compared by one-way or two-way ANOVA. Results In the present study, HIP1R (Huntingtin Interacting Protein 1 Related) was found upregulated in thyroid cancer tissues and cell lines compared with that in the controls, while knockdown of HIP1R significantly inhibited the proliferation of thyroid cancer cells. Since HIP1R is essential for the clathrin-dependent endocytic process, we thereafter explored the effect of HIP1R on the endocytosis of thyroid cancer cells. Interestingly, knockdown of HIP1R significantly reduced the number of clathrin-coated pits (CCPs) in thyroid cancer cells. In addition, the interaction between HIP1R and PTEN (phosphatase and tensin homolog) was identified in thyroid cancer cells. Knockdown of HIP1R downregulated intracellular PTEN in thyroid cancer cells, but upregulated membrane-binding PTEN. Notably, flurbiprofen, a commonly used analgesic, significantly inhibited the proliferation of thyroid cancer cells and interfered with the interaction between HIP1R and PTEN, thereby enhancing the binding of PTEN to cell membrane. However, the proliferation inhibitory effect of flurbiprofen was attenuated when knocking down HIP1R or PTEN. Conclusions Upregulated HIP1R in thyroid cancer cells promotes cell proliferation and mediates the endocytosis of PTEN. Flurbiprofen may exert an anti-tumor effect on thyroid cancer by blocking the interaction between HIP1R and PTEN.
Collapse
Affiliation(s)
- Nengli Yang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Street, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Yafeng Liang
- Department of Pediatric Intensive Care Unit, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Pei Yang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Street, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Liuming Jiang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Street, Wenzhou, 325000, Zhejiang, People's Republic of China.
| |
Collapse
|
5
|
Pashkova N, Gakhar L, Yu L, Schnicker NJ, Minard AY, Winistorfer S, Johnson IE, Piper RC. ANTH domains within CALM, HIP1R, and Sla2 recognize ubiquitin internalization signals. eLife 2021; 10:72583. [PMID: 34821552 PMCID: PMC8648300 DOI: 10.7554/elife.72583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Attachment of ubiquitin (Ub) to cell surface proteins serves as a signal for internalization via clathrin-mediated endocytosis (CME). How ubiquitinated membrane proteins engage the internalization apparatus remains unclear. The internalization apparatus contains proteins such as Epsin and Eps15, which bind Ub, potentially acting as adaptors for Ub-based internalization signals. Here, we show that additional components of the endocytic machinery including CALM, HIP1R, and Sla2 bind Ub via their N-terminal ANTH domain, a domain belonging to the superfamily of ENTH and VHS domains. Structural studies revealed that Ub binds with µM affinity to a unique C-terminal region within the ANTH domain not found in ENTH domains. Functional studies showed that combined loss of Ub-binding by ANTH-domain proteins and other Ub-binding domains within the yeast internalization apparatus caused defects in the Ub-dependent internalization of the GPCR Ste2 that was engineered to rely exclusively on Ub as an internalization signal. In contrast, these mutations had no effect on the internalization of Ste2 engineered to use an alternate Ub-independent internalization signal. These studies define new components of the internalization machinery that work collectively with Epsin and Eps15 to specify recognition of Ub as an internalization signal.
Collapse
Affiliation(s)
- Natalya Pashkova
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Lokesh Gakhar
- Carver College of Medicine Protein Crystallography Core, University of Iowa, Iowa City, United States.,Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, United States
| | - Liping Yu
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, United States.,Carver College of Medicine NMR Core, University of Iowa, Iowa City, United States
| | - Nicholas J Schnicker
- Carver College of Medicine Protein Crystallography Core, University of Iowa, Iowa City, United States
| | - Annabel Y Minard
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Stanley Winistorfer
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Ivan E Johnson
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| |
Collapse
|
6
|
CgEnd3 Regulates Endocytosis, Appressorium Formation, and Virulence in the Poplar Anthracnose Fungus Colletotrichum gloeosporioides. Int J Mol Sci 2021; 22:ijms22084029. [PMID: 33919762 PMCID: PMC8103510 DOI: 10.3390/ijms22084029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 01/23/2023] Open
Abstract
The hemibiotrophic ascomycete fungus Colletotrichum gloeosporioides is the causal agent of anthracnose on numerous plants, and it causes considerable economic losses worldwide. Endocytosis is an essential cellular process in eukaryotic cells, but its roles in C. gloeosporioides remain unknown. In our study, we identified an endocytosis-related protein, CgEnd3, and knocked it out via polyethylene glycol (PEG)-mediated protoplast transformation. The lack of CgEnd3 resulted in severe defects in endocytosis. C. gloeosporioides infects its host through a specialized structure called appressorium, and ΔCgEnd3 showed deficient appressorium formation, melanization, turgor pressure accumulation, penetration ability of appressorium, cellophane membrane penetration, and pathogenicity. CgEnd3 also affected oxidant adaptation and the expression of core effectors during the early stage of infection. CgEnd3 contains one EF hand domain and four calcium ion-binding sites, and it is involved in calcium signaling. A lack of CgEnd3 changed the responses to cell-wall integrity agents and fungicide fludioxonil. However, CgEnd3 regulated appressorium formation and endocytosis in a calcium signaling-independent manner. Taken together, these results demonstrate that CgEnd3 plays pleiotropic roles in endocytosis, calcium signaling, cell-wall integrity, appressorium formation, penetration, and pathogenicity in C. gloeosporioides, and it suggests that CgEnd3 or endocytosis-related genes function as promising antifungal targets.
Collapse
|
7
|
Skruzny M, Pohl E, Gnoth S, Malengo G, Sourjik V. The protein architecture of the endocytic coat analyzed by FRET microscopy. Mol Syst Biol 2020; 16:e9009. [PMID: 32400111 PMCID: PMC7218409 DOI: 10.15252/msb.20199009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
Endocytosis is a fundamental cellular trafficking pathway, which requires an organized assembly of the multiprotein endocytic coat to pull the plasma membrane into the cell. Although the protein composition of the endocytic coat is known, its functional architecture is not well understood. Here, we determine the nanoscale organization of the endocytic coat by FRET microscopy in yeast Saccharomyces cerevisiae. We assessed pairwise proximities of 18 conserved coat-associated proteins and used clathrin subunits and protein truncations as molecular rulers to obtain a high-resolution protein map of the coat. Furthermore, we followed rearrangements of coat proteins during membrane invagination and their binding dynamics at the endocytic site. We show that the endocytic coat proteins are not confined inside the clathrin lattice, but form distinct functional layers above and below the lattice. Importantly, key endocytic proteins transverse the clathrin lattice deeply into the cytoplasm connecting thus the membrane and cytoplasmic parts of the coat. We propose that this design enables an efficient and regulated function of the endocytic coat during endocytic vesicle formation.
Collapse
Affiliation(s)
- Michal Skruzny
- Department of Systems and Synthetic MicrobiologyMax Planck Institute for Terrestrial MicrobiologyMarburgGermany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Emma Pohl
- Department of Systems and Synthetic MicrobiologyMax Planck Institute for Terrestrial MicrobiologyMarburgGermany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Sandina Gnoth
- Department of Systems and Synthetic MicrobiologyMax Planck Institute for Terrestrial MicrobiologyMarburgGermany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Gabriele Malengo
- Department of Systems and Synthetic MicrobiologyMax Planck Institute for Terrestrial MicrobiologyMarburgGermany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Victor Sourjik
- Department of Systems and Synthetic MicrobiologyMax Planck Institute for Terrestrial MicrobiologyMarburgGermany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| |
Collapse
|
8
|
Nagano M, Toshima JY, Siekhaus DE, Toshima J. Rab5-mediated endosome formation is regulated at the trans-Golgi network. Commun Biol 2019; 2:419. [PMID: 31754649 PMCID: PMC6858330 DOI: 10.1038/s42003-019-0670-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/29/2019] [Indexed: 01/01/2023] Open
Abstract
Early endosomes, also called sorting endosomes, are known to mature into late endosomes via the Rab5-mediated endolysosomal trafficking pathway. Thus, early endosome existence is thought to be maintained by the continual fusion of transport vesicles from the plasma membrane and the trans-Golgi network (TGN). Here we show instead that endocytosis is dispensable and post-Golgi vesicle transport is crucial for the formation of endosomes and the subsequent endolysosomal traffic regulated by yeast Rab5 Vps21p. Fittingly, all three proteins required for endosomal nucleotide exchange on Vps21p are first recruited to the TGN before transport to the endosome, namely the GEF Vps9p and the epsin-related adaptors Ent3/5p. The TGN recruitment of these components is distinctly controlled, with Vps9p appearing to require the Arf1p GTPase, and the Rab11s, Ypt31p/32p. These results provide a different view of endosome formation and identify the TGN as a critical location for regulating progress through the endolysosomal trafficking pathway.
Collapse
Affiliation(s)
- Makoto Nagano
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo, 125-8585 Japan
| | - Junko Y. Toshima
- School of Health Science, Tokyo University of Technology, 5-23-22 Nishikamada, Ota-ku, Tokyo, 144-8535 Japan
| | | | - Jiro Toshima
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo, 125-8585 Japan
| |
Collapse
|
9
|
Elhasi T, Blomberg A. Integrins in disguise - mechanosensors in Saccharomyces cerevisiae as functional integrin analogues. MICROBIAL CELL 2019; 6:335-355. [PMID: 31404395 PMCID: PMC6685044 DOI: 10.15698/mic2019.08.686] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ability to sense external mechanical stimuli is vital for all organisms. Integrins are transmembrane receptors that mediate bidirectional signalling between the extracellular matrix (ECM) and the cytoskeleton in animals. Thus, integrins can sense changes in ECM mechanics and can translate these into internal biochemical responses through different signalling pathways. In the model yeast species Saccharomyces cerevisiae there are no proteins with sequence similarity to mammalian integrins. However, we here emphasise that the WSC-type (Wsc1, Wsc2, and Wsc3) and the MID-type (Mid2 and Mtl1) mechanosensors in yeast act as partial functional integrin analogues. Various environmental cues recognised by these mechanosensors are transmitted by a conserved signal transduction cascade commonly referred to as the PKC1-SLT1 cell wall integrity (CWI) pathway. We exemplify the WSC- and MID-type mechanosensors functional analogy to integrins with a number of studies where they resemble the integrins in terms of both mechanistic and molecular features as well as in the overall phenotypic consequences of their activity. In addition, many important components in integrin-dependent signalling in humans are conserved in yeast; for example, Sla1 and Sla2 are homologous to different parts of human talin, and we propose that they together might be functionally similar to talin. We also propose that the yeast cell wall is a prominent cellular feature involved in sensing a number of external factors and subsequently activating different signalling pathways. In a hypothetical model, we propose that nutrient limitations modulate cell wall elasticity, which is sensed by the mechanosensors and results in filamentous growth. We believe that mechanosensing is a somewhat neglected aspect of yeast biology, and we argue that the physiological and molecular consequences of signal transduction initiated at the cell wall deserve more attention.
Collapse
Affiliation(s)
- Tarek Elhasi
- Dept. of Chemistry and Molecular Biology, Univ. of Gothenburg, Sweden
| | - Anders Blomberg
- Dept. of Chemistry and Molecular Biology, Univ. of Gothenburg, Sweden
| |
Collapse
|
10
|
Ma M, Burd CG. Retrograde trafficking and quality control of yeast synaptobrevin, Snc1, are conferred by its transmembrane domain. Mol Biol Cell 2019; 30:1729-1742. [PMID: 31067149 PMCID: PMC6727757 DOI: 10.1091/mbc.e19-02-0117] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/11/2019] [Accepted: 05/03/2019] [Indexed: 11/11/2022] Open
Abstract
Synaptobrevin/vesicle-associated membrane protein 2 (VAMP2) is an essential soluble N-ethyl maleimide-sensitive factor attachment protein receptor (SNARE) protein that has been extensively studied in its role in synaptic vesicle fusion. However, sorting and trafficking of VAMP2 within the endosomal system is not well understood. Here, we use the yeast VAMP2 homologue Snc1 to investigate the pathways and signals required for endocytic trafficking. We identify two genetically distinct retrieval pathways from the endosomal system: a plasma membrane recycling pathway that requires the Rcy1 F-box protein and a retrograde pathway originating from the multivesicular/prevacuole endosome dependent on the Snx4-Atg20 sorting nexin complex. Lysine residues within the transmembrane domain of Snc1 are necessary for presentation of a Snx4-Atg20-dependent sorting signal located within its juxtamembrane region. Mutations of the transmembrane lysine residues ablate retrograde sorting and subject Snc1 to quality control via sorting into the degradative multivesicular endosome pathway. Degradative sorting requires lysine residues in the juxtamembrane region of Snc1 and is mediated by the Rsp5 ubiquitin ligase and its transmembrane adapters, Ear1 and Ssh4, which localize to endosome and vacuole membranes. This study shows that Snc1 is trafficked between the endosomal system and the Golgi apparatus via multiple pathways and provides evidence for protein quality control surveillance of a SNARE protein in the endo-vacuolar system.
Collapse
Affiliation(s)
- Mengxiao Ma
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | | |
Collapse
|
11
|
Distinct segregation patterns of yeast cell-peripheral proteins uncovered by a method for protein segregatome analysis. Proc Natl Acad Sci U S A 2019; 116:8909-8918. [PMID: 30975753 DOI: 10.1073/pnas.1819715116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Protein segregation contributes to various cellular processes such as polarization, differentiation, and aging. However, the difficulty in global determination of protein segregation hampers our understanding of its mechanisms and physiological roles. Here, by developing a quantitative proteomics technique, we globally monitored segregation of preexisting and newly synthesized proteins during cell division of budding yeast, and identified crucial domains that determine the segregation of cell-peripheral proteins. Remarkably, the proteomic and subsequent microscopic analyses demonstrated that the flow through the bud neck of the proteins that harbor both endoplasmic reticulum (ER) membrane-spanning and plasma membrane (PM)-binding domains is not restricted by the previously suggested ER membrane or PM diffusion barriers but by septin-mediated partitioning of the PM-associated ER (pmaER). Furthermore, the proteomic analysis revealed that although the PM-spanning t-SNARE Sso2 was retained in mother cells, its paralog Sso1 unexpectedly showed symmetric localization. We found that the transport of Sso1 to buds was required for enhancement of polarized cell growth and resistance to cell-wall stress. Taken together, these data resolve long-standing questions about septin-mediated compartmentalization of the cell periphery, and provide new mechanistic insights into the segregation of cell-periphery proteins and their cellular functions.
Collapse
|
12
|
A Flow Cytometry-Based Phenotypic Screen To Identify Novel Endocytic Factors in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2018. [PMID: 29540444 PMCID: PMC5940143 DOI: 10.1534/g3.118.200102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Endocytosis is a fundamental process for internalizing material from the plasma membrane, including many transmembrane proteins that are selectively internalized depending on environmental conditions. In most cells, the main route of entry is clathrin-mediated endocytosis (CME), a process that involves the coordinated activity of over 60 proteins; however, there are likely as-yet unidentified proteins involved in cargo selection and/or regulation of endocytosis. We performed a mutagenic screen to identify novel endocytic genes in Saccharomyces cerevisiae expressing the methionine permease Mup1 tagged with pHluorin (pHl), a pH-sensitive GFP variant whose fluorescence is quenched upon delivery to the acidic vacuole lumen. We used fluorescence-activated cell sorting to isolate mutagenized cells with elevated fluorescence, resulting from failure to traffic Mup1-pHl cargo to the vacuole, and further assessed subcellular localization of Mup1-pHl to characterize the endocytic defects in 256 mutants. A subset of mutant strains was classified as having general endocytic defects based on mislocalization of additional cargo proteins. Within this group, we identified mutations in four genes encoding proteins with known roles in endocytosis: the endocytic coat components SLA2, SLA1, and EDE1, and the ARP3 gene, whose product is involved in nucleating actin filaments to form branched networks. All four mutants demonstrated aberrant dynamics of the endocytic machinery at sites of CME; moreover, the arp3R346H mutation showed reduced actin nucleation activity in vitro. Finally, whole genome sequencing of two general endocytic mutants identified mutations in conserved genes not previously implicated in endocytosis, KRE33 and IQG1, demonstrating that our screening approach can be used to identify new components involved in endocytosis.
Collapse
|
13
|
Hsu CY, Lin CH, Jan YH, Su CY, Yao YC, Cheng HC, Hsu TI, Wang PS, Su WP, Yang CJ, Huang MS, Calkins MJ, Hsiao M, Lu PJ. Huntingtin-Interacting Protein-1 Is an Early-Stage Prognostic Biomarker of Lung Adenocarcinoma and Suppresses Metastasis via Akt-mediated Epithelial-Mesenchymal Transition. Am J Respir Crit Care Med 2016; 193:869-80. [PMID: 26595459 DOI: 10.1164/rccm.201412-2226oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
RATIONALE Non-small cell lung cancer (NSCLC) carries a poor survival rate mainly because of metastasis. However, the molecular mechanisms that govern NSCLC metastasis have not been described. Because huntingtin-interacting protein-1 (HIP1) is known to play a role in tumorigenesis, we tested the involvement of HIP1 in NSCLC progression and metastasis. OBJECTIVES HIP1 expression was measured in human NSCLC tumors, and correlation with survival outcome was evaluated. Furthermore, we investigated the ability of HIP1 to suppress metastasis. The molecular mechanism by which HIP1 contributes to suppress metastasis was investigated. METHODS We used tissue arrays containing samples from 121 patients with NSCLC to analyze HIP1 expression by immunohistochemistry. To investigate the role of HIP1 expression on metastasis, we evaluated cellular mobility, migration, and invasion using lung adenocarcinoma (AdCA) cells with modified HIP1 expression levels. The human disease mouse models with the same cells were applied to evaluate the HIP1 suppressing metastasis and its mechanism in vivo. MEASUREMENTS AND MAIN RESULTS HIP1 expression in AdCA progression was found to be an early-stage prognostic biomarker, with low expression correlated to poor prognosis. We also found HIP1 to be a metastatic suppressor in AdCA. HIP1 significantly repressed the mobility of lung cancer cells in vitro and in vivo and regulated the epithelial-mesenchymal transition by repressing AKT/glycogen synthase kinase-3β/β-catenin signaling. CONCLUSIONS HIP1 serves as an early-stage prognostic biomarker and a metastatic suppressor. Reduced expression during AdCA progression can relieve HIP1 suppression of Akt-mediated epithelial-mesenchymal transition and thereby lead to development of late metastases and poor prognosis.
Collapse
Affiliation(s)
- Che-Yu Hsu
- 1 Institute of Basic Medical Sciences, College of Medicine
| | - Cheng-Han Lin
- 2 Institute of Clinical Medicine, College of Medicine, and.,3 Genomics Research Center, Academia Sinica, Taipei, Taiwan; and
| | - Yi-Hua Jan
- 3 Genomics Research Center, Academia Sinica, Taipei, Taiwan; and
| | - Chia-Yi Su
- 3 Genomics Research Center, Academia Sinica, Taipei, Taiwan; and
| | - Yun-Chin Yao
- 4 Clinical Medicine Research Center, National Cheng Kung University, Tainan, Taiwan
| | | | - Tai-I Hsu
- 1 Institute of Basic Medical Sciences, College of Medicine
| | - Po-Shun Wang
- 2 Institute of Clinical Medicine, College of Medicine, and
| | - Wen-Pin Su
- 2 Institute of Clinical Medicine, College of Medicine, and
| | - Chih-Jen Yang
- 5 Department of Internal Medicine, Kaohsiung Medical University Hospital and School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Shyan Huang
- 5 Department of Internal Medicine, Kaohsiung Medical University Hospital and School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Michael Hsiao
- 3 Genomics Research Center, Academia Sinica, Taipei, Taiwan; and
| | - Pei-Jung Lu
- 1 Institute of Basic Medical Sciences, College of Medicine.,2 Institute of Clinical Medicine, College of Medicine, and
| |
Collapse
|
14
|
Aspergillus nidulans Ambient pH Signaling Does Not Require Endocytosis. EUKARYOTIC CELL 2015; 14:545-53. [PMID: 25841020 DOI: 10.1128/ec.00031-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/30/2015] [Indexed: 01/10/2023]
Abstract
Aspergillus nidulans (Pal) ambient pH signaling takes place in cortical structures containing components of the ESCRT pathway, which are hijacked by the alkaline pH-activated, ubiquitin-modified version of the arrestin-like protein PalF and taken to the plasma membrane. There, ESCRTs scaffold the assembly of dedicated Pal proteins acting downstream. The molecular details of this pathway, which results in the two-step proteolytic processing of the transcription factor PacC, have received considerable attention due to the key role that it plays in fungal pathogenicity. While current evidence strongly indicates that the pH signaling role of ESCRT complexes is limited to plasma membrane-associated structures where PacC proteolysis would take place, the localization of the PalB protease, which almost certainly catalyzes the first and only pH-regulated proteolytic step, had not been investigated. In view of ESCRT participation, this formally leaves open the possibility that PalB activation requires endocytic internalization. As endocytosis is essential for hyphal growth, nonlethal endocytic mutations are predicted to cause an incomplete block. We used a SynA internalization assay to measure the extent to which any given mutation prevents endocytosis. We show that none of the tested mutations impairing endocytosis to different degrees, including slaB1, conditionally causing a complete block, have any effect on the activation of the pathway. We further show that PalB, like PalA and PalC, localizes to cortical structures in an alkaline pH-dependent manner. Therefore, signaling through the Pal pathway does not involve endocytosis.
Collapse
|
15
|
Abstract
Endocytosis, the process whereby the plasma membrane invaginates to form vesicles, is essential for bringing many substances into the cell and for membrane turnover. The mechanism driving clathrin-mediated endocytosis (CME) involves > 50 different protein components assembling at a single location on the plasma membrane in a temporally ordered and hierarchal pathway. These proteins perform precisely choreographed steps that promote receptor recognition and clustering, membrane remodeling, and force-generating actin-filament assembly and turnover to drive membrane invagination and vesicle scission. Many critical aspects of the CME mechanism are conserved from yeast to mammals and were first elucidated in yeast, demonstrating that it is a powerful system for studying endocytosis. In this review, we describe our current mechanistic understanding of each step in the process of yeast CME, and the essential roles played by actin polymerization at these sites, while providing a historical perspective of how the landscape has changed since the preceding version of the YeastBook was published 17 years ago (1997). Finally, we discuss the key unresolved issues and where future studies might be headed.
Collapse
Affiliation(s)
- Bruce L Goode
- Brandeis University, Department of Biology, Rosenstiel Center, Waltham, Massachusetts 02454
| | - Julian A Eskin
- Brandeis University, Department of Biology, Rosenstiel Center, Waltham, Massachusetts 02454
| | - Beverly Wendland
- The Johns Hopkins University, Department of Biology, Baltimore, Maryland 21218
| |
Collapse
|
16
|
Boeke D, Trautmann S, Meurer M, Wachsmuth M, Godlee C, Knop M, Kaksonen M. Quantification of cytosolic interactions identifies Ede1 oligomers as key organizers of endocytosis. Mol Syst Biol 2014; 10:756. [PMID: 25366307 PMCID: PMC4299599 DOI: 10.15252/msb.20145422] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/11/2014] [Accepted: 10/01/2014] [Indexed: 01/08/2023] Open
Abstract
Clathrin-mediated endocytosis is a highly conserved intracellular trafficking pathway that depends on dynamic protein-protein interactions between up to 60 different proteins. However, little is known about the spatio-temporal regulation of these interactions. Using fluorescence (cross)-correlation spectroscopy in yeast, we tested 41 previously reported interactions in vivo and found 16 to exist in the cytoplasm. These detected cytoplasmic interactions included the self-interaction of Ede1, homolog of mammalian Eps15. Ede1 is the crucial scaffold for the organization of the early stages of endocytosis. We show that oligomerization of Ede1 through its central coiled coil domain is necessary for its localization to the endocytic site and we link the oligomerization of Ede1 to its function in locally concentrating endocytic adaptors and organizing the endocytic machinery. Our study sheds light on the importance of the regulation of protein-protein interactions in the cytoplasm for the assembly of the endocytic machinery in vivo.
Collapse
Affiliation(s)
- Dominik Boeke
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Deutsches Krebsforschungszentrum (DKFZ) DKFZ-ZMBH-Allianz, Heidelberg, Germany
| | - Susanne Trautmann
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Deutsches Krebsforschungszentrum (DKFZ) DKFZ-ZMBH-Allianz, Heidelberg, Germany
| | - Matthias Meurer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Deutsches Krebsforschungszentrum (DKFZ) DKFZ-ZMBH-Allianz, Heidelberg, Germany
| | - Malte Wachsmuth
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Camilla Godlee
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Deutsches Krebsforschungszentrum (DKFZ) DKFZ-ZMBH-Allianz, Heidelberg, Germany
| | - Marko Kaksonen
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
17
|
Colombi P, Webster BM, Fröhlich F, Lusk CP. The transmission of nuclear pore complexes to daughter cells requires a cytoplasmic pool of Nsp1. ACTA ACUST UNITED AC 2013; 203:215-32. [PMID: 24165936 PMCID: PMC3812967 DOI: 10.1083/jcb.201305115] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nuclear pore complexes (NPCs) are essential protein assemblies that span the nuclear envelope and establish nuclear-cytoplasmic compartmentalization. We have investigated mechanisms that control NPC number in mother and daughter cells during the asymmetric division of budding yeast. By simultaneously tracking existing NPCs and newly synthesized NPC protomers (nups) through anaphase, we uncovered a pool of the central channel nup Nsp1 that is actively targeted to the bud in association with endoplasmic reticulum. Bud targeting required an intact actin cytoskeleton and the class V myosin, Myo2. Selective inhibition of cytoplasmic Nsp1 or inactivation of Myo2 reduced the inheritance of NPCs in daughter cells, leading to a daughter-specific loss of viability. Our data are consistent with a model in which Nsp1 releases a barrier that otherwise prevents NPC passage through the bud neck. It further supports the finding that NPC inheritance, not de novo NPC assembly, is primarily responsible for controlling NPC number in daughter cells.
Collapse
Affiliation(s)
- Paolo Colombi
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | | | | | | |
Collapse
|
18
|
Fernández-Murray JP, Ngo MH, McMaster CR. Choline transport activity regulates phosphatidylcholine synthesis through choline transporter Hnm1 stability. J Biol Chem 2013; 288:36106-15. [PMID: 24187140 DOI: 10.1074/jbc.m113.499855] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Choline is a precursor for the synthesis of phosphatidylcholine through the CDP-choline pathway. Saccharomyces cerevisiae expresses a single high affinity choline transporter at the plasma membrane, encoded by the HNM1 gene. We show that exposing cells to increasing levels of choline results in two different regulatory mechanisms impacting Hnm1 activity. Initial exposure to choline results in a rapid decrease in Hnm1-mediated transport at the level of transporter activity, whereas chronic exposure results in Hnm1 degradation through an endocytic mechanism that depends on the ubiquitin ligase Rsp5 and the casein kinase 1 redundant pair Yck1/Yck2. We present details of how the choline transporter is a major regulator of phosphatidylcholine synthesis.
Collapse
Affiliation(s)
- J Pedro Fernández-Murray
- From the Department of Pharmacology, Atlantic Research Centre, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | |
Collapse
|
19
|
Mukherjee D, Sen A, Boettner DR, Fairn GD, Schlam D, Bonilla Valentin FJ, Michael McCaffery J, Hazbun T, Staiger CJ, Grinstein S, Lemmon SK, Claudio Aguilar R. Bem3, a Cdc42 GTPase-activating protein, traffics to an intracellular compartment and recruits the secretory Rab GTPase Sec4 to endomembranes. J Cell Sci 2013; 126:4560-71. [PMID: 23943876 DOI: 10.1242/jcs.117663] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cell polarity is essential for many cellular functions including division and cell-fate determination. Although RhoGTPase signaling and vesicle trafficking are both required for the establishment of cell polarity, the mechanisms by which they are coordinated are unclear. Here, we demonstrate that the yeast RhoGAP (GTPase activating protein), Bem3, is targeted to sites of polarized growth by the endocytic and recycling pathways. Specifically, deletion of SLA2 or RCY1 led to mislocalization of Bem3 to depolarized puncta and accumulation in intracellular compartments, respectively. Bem3 partitioned between the plasma membrane and an intracellular membrane-bound compartment. These Bem3-positive structures were polarized towards sites of bud emergence and were mostly observed during the pre-mitotic phase of apical growth. Cell biological and biochemical approaches demonstrated that this intracellular Bem3 compartment contained markers for both the endocytic and secretory pathways, which were reminiscent of the Spitzenkörper present in the hyphal tips of growing fungi. Importantly, Bem3 was not a passive cargo, but recruited the secretory Rab protein, Sec4, to the Bem3-containing compartments. Moreover, Bem3 deletion resulted in less efficient localization of Sec4 to bud tips during early stages of bud emergence. Surprisingly, these effects of Bem3 on Sec4 were independent of its GAP activity, but depended on its ability to efficiently bind endomembranes. This work unveils unsuspected and important details of the relationship between vesicle traffic and elements of the cell polarity machinery: (1) Bem3, a cell polarity and peripherally associated membrane protein, relies on vesicle trafficking to maintain its proper localization; and (2) in turn, Bem3 influences secretory vesicle trafficking.
Collapse
Affiliation(s)
- Debarati Mukherjee
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Structural disorder provides increased adaptability for vesicle trafficking pathways. PLoS Comput Biol 2013; 9:e1003144. [PMID: 23874186 PMCID: PMC3715437 DOI: 10.1371/journal.pcbi.1003144] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 06/02/2013] [Indexed: 01/07/2023] Open
Abstract
Vesicle trafficking systems play essential roles in the communication between the organelles of eukaryotic cells and also between cells and their environment. Endocytosis and the late secretory route are mediated by clathrin-coated vesicles, while the COat Protein I and II (COPI and COPII) routes stand for the bidirectional traffic between the ER and the Golgi apparatus. Despite similar fundamental organizations, the molecular machinery, functions, and evolutionary characteristics of the three systems are very different. In this work, we compiled the basic functional protein groups of the three main routes for human and yeast and analyzed them from the structural disorder perspective. We found similar overall disorder content in yeast and human proteins, confirming the well-conserved nature of these systems. Most functional groups contain highly disordered proteins, supporting the general importance of structural disorder in these routes, although some of them seem to heavily rely on disorder, while others do not. Interestingly, the clathrin system is significantly more disordered (∼23%) than the other two, COPI (∼9%) and COPII (∼8%). We show that this structural phenomenon enhances the inherent plasticity and increased evolutionary adaptability of the clathrin system, which distinguishes it from the other two routes. Since multi-functionality (moonlighting) is indicative of both plasticity and adaptability, we studied its prevalence in vesicle trafficking proteins and correlated it with structural disorder. Clathrin adaptors have the highest capability for moonlighting while also comprising the most highly disordered members. The ability to acquire tissue specific functions was also used to approach adaptability: clathrin route genes have the most tissue specific exons encoding for protein segments enriched in structural disorder and interaction sites. Overall, our results confirm the general importance of structural disorder in vesicle trafficking and suggest major roles for this structural property in shaping the differences of evolutionary adaptability in the three routes. Vesicle trafficking systems are fundamental among cellular transport mechanisms; various cargo molecules are transported via different coated vesicles to their specific destinations in every eukaryotic cell. Clathrin-coated vesicles mediate endocytosis and the late secretory route, while the COat Protein I and II (COPI and COPII) vesicle trafficking routes are responsible for the bidirectional traffic between the ER and the Golgi apparatus. Despite similar basic principles, regulatory mechanisms and structural features of the three systems, their molecular machinery, functions, and evolutionary characteristics vastly differ. We investigated and compared these three routes and their basic functional protein groups from the structural disorder point of view, since disordered protein regions could provide a broad variety of functional and evolutionary advantages for them. We found that structurally disordered protein segments are most abundant in the clathrin system, which might explain the observed inherent plasticity, increased adaptability and exceptional robustness of this route. We support our hypothesis by two analyses on protein multi-functionality and tissue specificity, both being indicative of evolutionary adaptability. Clathrin pathway proteins stand out in both measures, with their disordered regions being largely responsible for their outstanding capabilities.
Collapse
|
21
|
Chen Q, Pollard T. Actin filament severing by cofilin dismantles actin patches and produces mother filaments for new patches. Curr Biol 2013; 23:1154-62. [PMID: 23727096 PMCID: PMC4131202 DOI: 10.1016/j.cub.2013.05.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/02/2013] [Accepted: 05/02/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Yeast cells depend on Arp2/3 complex to assemble actin filaments at sites of endocytosis, but the source of the initial filaments required to activate Arp2/3 complex is not known. RESULTS We tested the proposal that cofilin severs actin filaments during endocytosis in fission yeast cells using a mutant cofilin defective in severing. We used quantitative fluorescence microscopy to track mGFP-tagged proteins, including early endocytic adaptor proteins, activators of Arp2/3 complex, and actin filaments. Consistent with the hypothesis, actin patches disassembled far more slowly in cells depending on severing-deficient cofilin than in wild-type cells. Even more interesting, actin patches assembled slowly in these cofilin mutant cells. Adaptor proteins End4p and Pan1p accumulated and persisted at endocytic sites more than ten times longer than in wild-type cells, followed by slow but persistent recruitment of activators of Arp2/3 complex, including WASP and myosin-I. Mutations revealed that actin filament binding sites on adaptor proteins Pan1p and End4p contribute to initiating actin polymerization in actin patches. CONCLUSIONS We propose a "sever, diffuse, and trigger" model for the nucleation of actin filaments at sites of endocytosis, whereby cofilin generates actin filament fragments that diffuse through the cytoplasm, bind adaptor proteins at nascent sites of endocytosis, and serve as mother filaments to initiate the autocatalytic assembly of the branched actin filament network of each new patch. This hypothesis explains the source of the "mother filaments" that are absolutely required for Arp2/3 complex to nucleate actin polymerization.
Collapse
Affiliation(s)
- Qian Chen
- Departments of Molecular Cellular and Developmental Biology, Yale University, PO Box 208103, New Haven, CT 06520-8103 USA
| | - Thomas Pollard
- Departments of Molecular Cellular and Developmental Biology, Yale University, PO Box 208103, New Haven, CT 06520-8103 USA
- Departments of Molecular Biophysics and Biochemistry, Yale University, PO Box 208103, New Haven, CT 06520-8103 USA
- Department of Cell Biology, Yale University, PO Box 208103, New Haven, CT 06520-8103 USA
| |
Collapse
|
22
|
Molecular basis for coupling the plasma membrane to the actin cytoskeleton during clathrin-mediated endocytosis. Proc Natl Acad Sci U S A 2012; 109:E2533-42. [PMID: 22927393 DOI: 10.1073/pnas.1207011109] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dynamic actin filaments are a crucial component of clathrin-mediated endocytosis when endocytic proteins cannot supply enough energy for vesicle budding. Actin cytoskeleton is thought to provide force for membrane invagination or vesicle scission, but how this force is transmitted to the plasma membrane is not understood. Here we describe the molecular mechanism of plasma membrane-actin cytoskeleton coupling mediated by cooperative action of epsin Ent1 and the HIP1R homolog Sla2 in yeast Saccharomyces cerevisiae. Sla2 anchors Ent1 to a stable endocytic coat by an unforeseen interaction between Sla2's ANTH and Ent1's ENTH lipid-binding domains. The ANTH and ENTH domains bind each other in a ligand-dependent manner to provide critical anchoring of both proteins to the membrane. The C-terminal parts of Ent1 and Sla2 bind redundantly to actin filaments via a previously unknown phospho-regulated actin-binding domain in Ent1 and the THATCH domain in Sla2. By the synergistic binding to the membrane and redundant interaction with actin, Ent1 and Sla2 form an essential molecular linker that transmits the force generated by the actin cytoskeleton to the plasma membrane, leading to membrane invagination and vesicle budding.
Collapse
|
23
|
The importance of conserved features of yeast actin-binding protein 1 (Abp1p): the conditional nature of essentiality. Genetics 2012; 191:1199-211. [PMID: 22661326 DOI: 10.1534/genetics.112.141739] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae Actin-Binding Protein 1 (Abp1p) is a member of the Abp1 family of proteins, which are in diverse organisms including fungi, nematodes, flies, and mammals. All proteins in this family possess an N-terminal Actin Depolymerizing Factor Homology (ADF-H) domain, a central Proline-Rich Region (PRR), and a C-terminal SH3 domain. In this study, we employed sequence analysis to identify additional conserved features of the family, including sequences rich in proline, glutamic acid, serine, and threonine amino acids (PEST), which are found in all family members examined, and two motifs, Conserved Fungal Motifs 1 and 2 (CFM1 and CFM2), that are conserved in fungi. We also discovered that, similar to its mammalian homologs, Abp1p is phosphorylated in its PRR. This phosphorylation is mediated by the Cdc28p and Pho85p kinases, and it protects Abp1p from proteolysis mediated by the conserved PEST sequences. We provide evidence for an intramolecular interaction between the PRR region and SH3 domain that may be affected by phosphorylation. Although deletion of CFM1 alone caused no detectable phenotype in any genetic backgrounds or conditions tested, deletion of this motif resulted in a significant reduction of growth when it was combined with a deletion of the ADF-H domain. Importantly, this result demonstrates that deletion of highly conserved domains on its own may produce no phenotype unless the domains are assayed in conjunction with deletions of other functionally important elements within the same protein. Detection of this type of intragenic synthetic lethality provides an important approach for understanding the function of individual protein domains or motifs.
Collapse
|
24
|
Curwin AJ, von Blume J, Malhotra V. Cofilin-mediated sorting and export of specific cargo from the Golgi apparatus in yeast. Mol Biol Cell 2012; 23:2327-38. [PMID: 22553351 PMCID: PMC3374751 DOI: 10.1091/mbc.e11-09-0826] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sorting of secretory cargo from the Golgi remains an elusive process. Previously a role was identified for cofilin and the Ca2+ATPase SPCA1 in sorting of secretory cargo from the Golgi of mammalian cells. Now it is shown that the yeast orthologues cofilin and Pmr1 are also required for sorting of selective secretory cargo at the Golgi in yeast. The mechanism of cargo sorting at the trans-Golgi network (TGN) for secretion is poorly understood. We previously reported the involvement of the actin-severing protein cofilin and the Ca2+ ATPase secretory pathway calcium ATPase 1 (SPCA1) in the sorting of soluble secretory cargo at the TGN in mammalian cells. Now we report that cofilin in yeast is required for export of selective secretory cargo at the late Golgi membranes. In cofilin mutant (cof1-8) cells, the cell wall protein Bgl2 was secreted at a reduced rate and retained in a late Golgi compartment, whereas the plasma membrane H+ ATPase Pma1, which is transported in the same class of carriers, reached the cell surface. In addition, sorting of carboxypeptidase Y (CPY) to the vacuole was delayed, and CPY was secreted from cof1-8 cells. Loss of the yeast orthologue of SPCA1 (Pmr1) exhibited similar sorting defects and displayed synthetic sickness with cof1-8. In addition, overexpression of PMR1 restored Bgl2 secretion in cof1-8 cells. These findings highlight the conserved role of cofilin and SPCA1/Pmr1 in sorting of the soluble secretory proteins at the TGN/late Golgi membranes in eukaryotes.
Collapse
Affiliation(s)
- Amy J Curwin
- Department of Cell and Developmental Biology, Centre for Genomic Regulation, 08003 Barcelona, Spain
| | | | | |
Collapse
|
25
|
Schuh AL, Audhya A. Phosphoinositide signaling during membrane transport in Saccharomyces cerevisiae. Subcell Biochem 2012; 59:35-63. [PMID: 22374087 DOI: 10.1007/978-94-007-3015-1_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phosphatidylinositol (PI) is distinct from other phospholipids, possessing a head group that can be modified by phosphorylation at multiple positions to generate unique signaling molecules collectively known as phosphoinositides. The set of kinases and phosphatases that regulate PI metabolism are conserved throughout eukaryotic evolution, and numerous studies have demonstrated that phosphoinositides regulate a diverse spectrum of cellular processes, including vesicle transport, cell proliferation, and cytoskeleton organization. Over the past two decades, nearly all PI derivatives have been shown to interact directly with cellular proteins to affect their localization and/or activity. Additionally, there is growing evidence, which suggests that phosphoinositides may also affect local membrane topology. Here, we focus on the role of phosphoinositides in membrane trafficking and underscore the significant role that yeast has played in the field.
Collapse
Affiliation(s)
- Amber L Schuh
- Department of Biomolecular Chemistry, University of Wisconsin-Madison Medical School, 1300 University Avenue, WI, 53706, Madison, USA
| | | |
Collapse
|
26
|
Abstract
Clathrin-mediated endocytosis (CME) is the major pathway for internalization of membrane proteins from the cell surface. Half a century of studies have uncovered tremendous insights into how a clathrin-coated vesicle is formed. More recently, the advent of live-cell imaging has provided a dynamic view of this process. As CME is highly conserved from yeast to humans, budding yeast provides an evolutionary template for this process and has been a valuable system for dissecting the underlying molecular mechanisms. In this review we trace the formation of a clathrin-coated vesicle from initiation to uncoating, focusing on key findings from the yeast system.
Collapse
|
27
|
Boettner DR, Friesen H, Andrews B, Lemmon SK. Clathrin light chain directs endocytosis by influencing the binding of the yeast Hip1R homologue, Sla2, to F-actin. Mol Biol Cell 2011; 22:3699-714. [PMID: 21849475 PMCID: PMC3183023 DOI: 10.1091/mbc.e11-07-0628] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The clathrin light-chain (LC) N-terminal region interacts with the Sla2/Hip1/Hip1R family of ANTH/talin–like proteins. In vivo evidence shows that LC–Sla2 binding is important for releasing Sla2 attachments to actin in the endocytic coat. Loss of this regulation can suppress major actin defects during endocytosis. The role of clathrin light chain (CLC) in clathrin-mediated endocytosis is not completely understood. Previous studies showed that the CLC N-terminus (CLC-NT) binds the Hip1/Hip1R/Sla2 family of membrane/actin–binding factors and that overexpression of the CLC-NT in yeast suppresses endocytic defects of clathrin heavy-chain mutants. To elucidate the mechanistic basis for this suppression, we performed synthetic genetic array analysis with a clathrin CLC-NT deletion mutation (clc1-Δ19-76). clc1-Δ19-76 suppressed the internalization defects of null mutations in three late endocytic factors: amphiphysins (rvs161 and rvs167) and verprolin (vrp1). In actin sedimentation assays, CLC binding to Sla2 inhibited Sla2 interaction with F-actin. Furthermore, clc1-Δ19-76 suppression of the rvs and vrp phenotypes required the Sla2 actin-binding talin-Hip1/R/Sla2 actin-tethering C-terminal homology domain, suggesting that clc1-Δ19-76 promotes internalization by prolonging actin engagement by Sla2. We propose that CLC directs endocytic progression by pruning the Sla2-actin attachments in the clathrin lattice, providing direction for membrane internalization.
Collapse
Affiliation(s)
- Douglas R Boettner
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL 33101, USA
| | | | | | | |
Collapse
|
28
|
Bitsikas V, Karachaliou M, Gournas C, Diallinas G. Hypertonic conditions trigger transient plasmolysis, growth arrest and blockage of transporter endocytosis in Aspergillus nidulans and Saccharomyces cerevisiae. Mol Membr Biol 2010; 28:54-68. [PMID: 20919858 DOI: 10.3109/09687688.2010.510484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
By using Aspergillus nidulans strains expressing functional GFP-tagged transporters under hypertonic conditions, we noticed the rapid appearance of cortical, relatively static, fluorescent patches (0.5-2.3 μm). These patches do not correspond to transporter microdomains as they co-localize with other plasma membrane-associated molecules, such as the pleckstrin homology (PH) domain and the SsoA t-Snare, or the lipophilic markers FM4-64 and filipin. In addition, they do not show characteristics of lipid rafts, MCCs or other membrane microdomains. Deconvoluted microscopic images showed that fluorescent patches correspond to plasma membrane invaginations. Transporters remain fully active during this phenomenon of localized plasmolysis. Plasmolysis was however associated with reduced growth rate and a dramatic blockage in transporter and FM4-64 endocytosis. These phenomena are transient and rapidly reversible upon wash-out of hypertonic media. Based on the observation that block in endocytosis by hypertonic treatment altered dramatically the cellular localization of tropomyosin (GFP-TpmA), although it did not affect the cortical appearance of upstream (SlaB-GFP) or downstream (AbpA-mRFP) endocytic components, we conclude that hypertonicity modifies actin dynamics and thus acts indirectly on endocytosis. This was further supported by the effect of latrunculin B, an actin depolymerization agent, on endocytosis. We show that the phenomena observed in A. nidulans also occur in Saccharomyces cerevisiae, suggesting that they constitute basic homeostatic responses of ascomycetes to hypertonic shock. Finally, our work shows that hypertonic treatments can be used as physiological tools to study the endocytic down-regulation of transporters in A. nidulans, as non-conditional genetic blocks affecting endocytic internalization are lethal or severely debilitating.
Collapse
Affiliation(s)
- Vassilis Bitsikas
- Faculty of Biology, Department of Botany, University of Athens, Panepistimioupolis, Athens, Greece
| | | | | | | |
Collapse
|
29
|
Endocytic machinery protein SlaB is dispensable for polarity establishment but necessary for polarity maintenance in hyphal tip cells of Aspergillus nidulans. EUKARYOTIC CELL 2010; 9:1504-18. [PMID: 20693304 DOI: 10.1128/ec.00119-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Aspergillus nidulans endocytic internalization protein SlaB is essential, in agreement with the key role in apical extension attributed to endocytosis. We constructed, by gene replacement, a nitrate-inducible, ammonium-repressible slaB1 allele for conditional SlaB expression. Video microscopy showed that repressed slaB1 cells are able to establish but unable to maintain a stable polarity axis, arresting growth with budding-yeast-like morphology shortly after initially normal germ tube emergence. Using green fluorescent protein (GFP)-tagged secretory v-SNARE SynA, which continuously recycles to the plasma membrane after being efficiently endocytosed, we establish that SlaB is crucial for endocytosis, although it is dispensable for the anterograde traffic of SynA and of the t-SNARE Pep12 to the plasma and vacuolar membrane, respectively. By confocal microscopy, repressed slaB1 germlings show deep plasma membrane invaginations. Ammonium-to-nitrate medium shift experiments demonstrated reversibility of the null polarity maintenance phenotype and correlation of normal apical extension with resumption of SynA endocytosis. In contrast, SlaB downregulation in hyphae that had progressed far beyond germ tube emergence led to marked polarity maintenance defects correlating with deficient SynA endocytosis. Thus, the strict correlation between abolishment of endocytosis and disability of polarity maintenance that we report here supports the view that hyphal growth requires coupling of secretion and endocytosis. However, downregulated slaB1 cells form F-actin clumps containing the actin-binding protein AbpA, and thus F-actin misregulation cannot be completely disregarded as a possible contributor to defective apical extension. Latrunculin B treatment of SlaB-downregulated tips reduced the formation of AbpA clumps without promoting growth and revealed the formation of cortical "comets" of AbpA.
Collapse
|
30
|
Mathur V, Taneja V, Sun Y, Liebman SW. Analyzing the birth and propagation of two distinct prions, [PSI+] and [Het-s](y), in yeast. Mol Biol Cell 2010; 21:1449-61. [PMID: 20219972 PMCID: PMC2861605 DOI: 10.1091/mbc.e09-11-0927] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Various proteins, like the infectious yeast prions and the noninfectious human Huntingtin protein (with expanded polyQ), depend on a Gln or Asn (QN)-rich region for amyloid formation. Other prions, e.g., mammalian PrP and the [Het-s] prion of Podospora anserina, although still able to form infectious amyloid aggregates, do not have QN-rich regions. Furthermore, [Het-s] and yeast prions appear to differ dramatically in their amyloid conformation. Despite these differences, a fusion of the Het-s prion domain to GFP (Het-sPrD-GFP) can propagate in yeast as a prion called [Het-s](y). We analyzed the properties of two divergent prions in yeast: [Het-s](y) and the native yeast prion [PSI(+)] (prion form of translational termination factor Sup35). Curiously, the induced appearance and transmission of [PSI(+)] and [Het-s](y) aggregates is remarkably similar. Overexpression of tagged prion protein (Sup35-GFP or Het-sPrD-GFP) in nonprion cells gives rise to peripheral, and later internal, ring/mesh-like aggregates. The cells with these ring-like aggregates give rise to daughters with one (perivacuolar) or two (perivacuolar and juxtanuclear) dot-like aggregates per cell. These line, ring, mesh, and dot aggregates are not really the transmissible prion species and should only be regarded as phenotypic markers of the presence of the prions. Both [PSI(+)] and [Het-s](y) first appear in daughters as numerous tiny dot-like aggregates, and both require the endocytic protein, Sla2, for ring formation, but not propagation.
Collapse
Affiliation(s)
- Vidhu Mathur
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
31
|
Gale CA, Leonard MD, Finley KR, Christensen L, McClellan M, Abbey D, Kurischko C, Bensen E, Tzafrir I, Kauffman S, Becker J, Berman J. SLA2 mutations cause SWE1-mediated cell cycle phenotypes in Candida albicans and Saccharomyces cerevisiae. MICROBIOLOGY-SGM 2009; 155:3847-3859. [PMID: 19778960 DOI: 10.1099/mic.0.033233-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The early endocytic patch protein Sla2 is important for morphogenesis and growth rates in Saccharomyces cerevisiae and Candida albicans, but the mechanism that connects these processes is not clear. Here we report that growth defects in cells lacking CaSLA2 or ScSLA2 are associated with a cell cycle delay that is influenced by Swe1, a morphogenesis checkpoint kinase. To establish how Swe1 monitors Sla2 function, we compared actin organization and cell cycle dynamics in strains lacking other components of early endocytic patches (Sla1 and Abp1) with those in strains lacking Sla2. Only sla2 strains had defects in actin cables, a known trigger of the morphogenesis checkpoint, yet all three strains exhibited Swe1-dependent phenotypes. Thus, Swe1 appears to monitor actin patch in addition to actin cable function. Furthermore, Swe1 contributed to virulence in a mouse model of disseminated candidiasis, implying a role for the morphogenesis checkpoint during the pathogenesis of C. albicans infections.
Collapse
Affiliation(s)
- Cheryl A Gale
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Pediatrics, University of Minnesota, Minneapolis MN 55455, USA
| | - Michelle D Leonard
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kenneth R Finley
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Leah Christensen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark McClellan
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Darren Abbey
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cornelia Kurischko
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eric Bensen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Iris Tzafrir
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sarah Kauffman
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jeff Becker
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Judith Berman
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
32
|
Reider A, Barker SL, Mishra SK, Im YJ, Maldonado-Báez L, Hurley JH, Traub LM, Wendland B. Syp1 is a conserved endocytic adaptor that contains domains involved in cargo selection and membrane tubulation. EMBO J 2009; 28:3103-16. [PMID: 19713939 DOI: 10.1038/emboj.2009.248] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 07/31/2009] [Indexed: 11/09/2022] Open
Abstract
Internalization of diverse transmembrane cargos from the plasma membrane requires a similarly diverse array of specialized adaptors, yet only a few adaptors have been characterized. We report the identification of the muniscin family of endocytic adaptors that is conserved from yeast to human beings. Solving the structures of yeast muniscin domains confirmed the unique combination of an N-terminal domain homologous to the crescent-shaped membrane-tubulating EFC/F-BAR domains and a C-terminal domain homologous to cargo-binding mu homology domains (muHDs). In vitro and in vivo assays confirmed membrane-tubulation activity for muniscin EFC/F-BAR domains. The muHD domain has conserved interactions with the endocytic adaptor/scaffold Ede1/eps15, which influences muniscin localization. The transmembrane protein Mid2, earlier implicated in polarized Rho1 signalling, was identified as a cargo of the yeast adaptor protein. These and other data suggest a model in which the muniscins provide a combined adaptor/membrane-tubulation activity that is important for regulating endocytosis.
Collapse
Affiliation(s)
- Amanda Reider
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218-2685, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Wen Y, Stavrou I, Bersuker K, Brady RJ, De Lozanne A, O'Halloran TJ. AP180-mediated trafficking of Vamp7B limits homotypic fusion of Dictyostelium contractile vacuoles. Mol Biol Cell 2009; 20:4278-88. [PMID: 19692567 DOI: 10.1091/mbc.e09-03-0243] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Clathrin-coated vesicles play an established role in endocytosis from the plasma membrane, but they are also found on internal organelles. We examined the composition of clathrin-coated vesicles on an internal organelle responsible for osmoregulation, the Dictyostelium discoideum contractile vacuole. Clathrin puncta on contractile vacuoles contained multiple accessory proteins typical of plasma membrane-coated pits, including AP2, AP180, and epsin, but not Hip1r. To examine how these clathrin accessory proteins influenced the contractile vacuole, we generated cell lines that carried single and double gene knockouts in the same genetic background. Single or double mutants that lacked AP180 or AP2 exhibited abnormally large contractile vacuoles. The enlarged contractile vacuoles in AP180-null mutants formed because of excessive homotypic fusion among contractile vacuoles. The SNARE protein Vamp7B was mislocalized and enriched on the contractile vacuoles of AP180-null mutants. In vitro assays revealed that AP180 interacted with the cytoplasmic domain of Vamp7B. We propose that AP180 directs Vamp7B into clathrin-coated vesicles on contractile vacuoles, creating an efficient mechanism for regulating the internal distribution of fusion-competent SNARE proteins and limiting homotypic fusions among contractile vacuoles. Dictyostelium contractile vacuoles offer a valuable system to study clathrin-coated vesicles on internal organelles within eukaryotic cells.
Collapse
Affiliation(s)
- Yujia Wen
- Department of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | | | |
Collapse
|
34
|
Robertson AS, Smythe E, Ayscough KR. Functions of actin in endocytosis. Cell Mol Life Sci 2009; 66:2049-65. [PMID: 19290477 PMCID: PMC11115948 DOI: 10.1007/s00018-009-0001-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 02/10/2009] [Accepted: 02/13/2009] [Indexed: 12/30/2022]
Abstract
Endocytosis is a fundamental eukaryotic process required for remodelling plasma-membrane lipids and protein to ensure appropriate membrane composition. Increasing evidence from a number of cell types reveals that actin plays an active, and often essential, role at key endocytic stages. Much of our current mechanistic understanding of the endocytic process has come from studies in budding yeast and has been facilitated by yeast's genetic amenability and by technological advances in live cell imaging. While endocytosis in metazoans is likely to be subject to a greater array of regulatory signals, recent reports indicate that spatiotemporal aspects of vesicle formation requiring actin are likely to be conserved across eukaryotic evolution. In this review we focus on the 'modular' model of endocytosis in yeast before highlighting comparisons with other cell types. Our discussion is limited to endocytosis involving clathrin as other types of endocytosis have not been demonstrated in yeast.
Collapse
Affiliation(s)
- Alastair S. Robertson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN UK
| | - Elizabeth Smythe
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN UK
| | - Kathryn R. Ayscough
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN UK
| |
Collapse
|
35
|
Trends in the molecular pathogenesis and clinical therapeutics of common neurodegenerative disorders. Int J Mol Sci 2009; 10:2510-2557. [PMID: 19582217 PMCID: PMC2705504 DOI: 10.3390/ijms10062510] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 04/28/2009] [Accepted: 05/05/2009] [Indexed: 12/11/2022] Open
Abstract
The term neurodegenerative disorders, encompasses a variety of underlying conditions, sporadic and/or familial and are characterized by the persistent loss of neuronal subtypes. These disorders can disrupt molecular pathways, synapses, neuronal subpopulations and local circuits in specific brain regions, as well as higher-order neural networks. Abnormal network activities may result in a vicious cycle, further impairing the integrity and functions of neurons and synapses, for example, through aberrant excitation or inhibition. The most common neurodegenerative disorders are Alzheimer’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis and Huntington’s disease. The molecular features of these disorders have been extensively researched and various unique neurotherapeutic interventions have been developed. However, there is an enormous coercion to integrate the existing knowledge in order to intensify the reliability with which neurodegenerative disorders can be diagnosed and treated. The objective of this review article is therefore to assimilate these disorders’ in terms of their neuropathology, neurogenetics, etiology, trends in pharmacological treatment, clinical management, and the use of innovative neurotherapeutic interventions.
Collapse
|
36
|
Hatanaka H, Omura F, Kodama Y, Ashikari T. Gly-46 and His-50 of yeast maltose transporter Mal21p are essential for its resistance against glucose-induced degradation. J Biol Chem 2009; 284:15448-57. [PMID: 19359240 DOI: 10.1074/jbc.m808151200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The maltose transporter gene is situated at the MAL locus, which consists of genes for a transporter, maltase, and transcriptional activator. Five unlinked MAL loci (MAL1, MAL2, MAL3, MAL4, and MAL6) constitute a gene family in Saccharomyces cerevisiae. The expression of the maltose transporter is induced by maltose and repressed by glucose. The activity of the maltose transporter is also regulated post-translationally; Mal61p is rapidly internalized from the plasma membrane and degraded by ubiquitin-mediated proteolysis in the presence of glucose. We found that S. cerevisiae strain ATCC20598 harboring MAL21 could grow in maltose supplemented with a non- assimilable glucose analogue, 2-deoxyglucose, whereas strain ATCC96955 harboring MAL61 and strain CB11 with MAL31 and AGT1 could not. These observations implied a Mal21p-specific resistance against glucose-induced degradation. Mal21p found in ATCC20598 has 10 amino acids, including Gly-46 and His-50, that are inconsistent with the corresponding residues in Mal61p. The half-life of Mal21p for glucose-induced degradation was 118 min when expressed using the constitutive TPI1 promoter, which was significantly longer than that of Mal61p (25 min). Studies with mutant cells that are defective in endocytosis or the ubiquitination process indicated that Mal21p was less ubiquitinated than Mal61p, suggesting that Mal21p remains on the plasma membrane because of poor susceptibility to ubiquitination. Mutational studies revealed that both residues Gly-46 and His-50 in Mal21p are essential for the full resistance of maltose transporters against glucose-induced degradation.
Collapse
|
37
|
Endocytosis is crucial for cell polarity and apical membrane recycling in the filamentous fungus Aspergillus oryzae. EUKARYOTIC CELL 2008; 8:37-46. [PMID: 19028995 DOI: 10.1128/ec.00207-08] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Establishing the occurrence of endocytosis in filamentous fungi was elusive in the past mainly due to the lack of reliable indicators of endocytosis. Recently, however, it was shown that the fluorescent dye N-(3-triethylammoniumpropyl)-4-(p-diethyl-aminophenyl-hexatrienyl)pyridinium dibromide (FM4-64) and the plasma membrane protein AoUapC (Aspergillus oryzae UapC) fused to enhanced green fluorescent protein (EGFP) were internalized from the plasma membrane by endocytosis. Although the occurrence of endocytosis was clearly demonstrated, its physiological importance in filamentous fungi still remains largely unaddressed. We generated a strain in which A. oryzae end4 (Aoend4), the A. oryzae homolog of Saccharomyces cerevisiae END4/SLA2, was expressed from the Aoend4 locus under the control of a regulatable thiA promoter. The growth of this strain was severely impaired, and its hyphal morphology was altered in the Aoend4-repressed condition. Moreover, in the Aoend4-repressed condition, neither FM4-64 nor AoUapC-EGFP was internalized, indicating defective endocytosis. Furthermore, the localization of a secretory soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) was abnormal in the Aoend4-repressed condition. Aberrant accumulation of cell wall components was also observed by calcofluor white staining and transmission electron microscopy analysis, and several genes that encode cell wall-building enzymes were upregulated, indicating that the regulation of cell wall synthesis is abnormal in the Aoend4-repressed condition, whereas Aopil1 disruptants do not display the phenotype exhibited in the Aoend4-repressed condition. Our results strongly suggest that endocytosis is crucial for the hyphal tip growth in filamentous fungi.
Collapse
|
38
|
Jain RN, Al-Menhali AA, Keeley TM, Ren J, El-Zaatari M, Chen X, Merchant JL, Ross TS, Chew CS, Samuelson LC. Hip1r is expressed in gastric parietal cells and is required for tubulovesicle formation and cell survival in mice. J Clin Invest 2008; 118:2459-70. [PMID: 18535670 DOI: 10.1172/jci33569] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 04/30/2008] [Indexed: 11/17/2022] Open
Abstract
Huntingtin interacting protein 1 related (Hip1r) is an F-actin- and clathrin-binding protein involved in vesicular trafficking. In this study, we demonstrate that Hip1r is abundantly expressed in the gastric parietal cell, predominantly localizing with F-actin to canalicular membranes. Hip1r may provide a critical function in vivo, as demonstrated by extensive changes to parietal cells and the gastric epithelium in Hip1r-deficient mice. Electron microscopy revealed abnormal apical canalicular membranes and loss of tubulovesicles in mutant parietal cells, suggesting that Hip1r is necessary for the normal trafficking of these secretory membranes. Accordingly, acid secretory dynamics were altered in mutant parietal cells, with enhanced activation and acid trapping, as measured in isolated gastric glands. At the whole-organ level, gastric acidity was reduced in Hip1r-deficient mice, and the gastric mucosa was grossly transformed, with fewer parietal cells due to enhanced apoptotic cell death and glandular hypertrophy associated with cellular transformation. Hip1r-deficient mice had increased expression of the gastric growth factor gastrin, and mice mutant for both gastrin and Hip1r exhibited normalization of both proliferation and gland height. Taken together, these studies demonstrate that Hip1r plays a significant role in gastric physiology, mucosal architecture, and secretory membrane dynamics in parietal cells.
Collapse
Affiliation(s)
- Renu N Jain
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Girao H, Geli MI, Idrissi FZ. Actin in the endocytic pathway: from yeast to mammals. FEBS Lett 2008; 582:2112-9. [PMID: 18420037 DOI: 10.1016/j.febslet.2008.04.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 04/02/2008] [Accepted: 04/09/2008] [Indexed: 02/07/2023]
Abstract
Genetic analysis of endocytosis in yeast early pointed to the essential role of actin in the uptake step. Efforts to identify the machinery involved demonstrated the important contribution of Arp2/3 and the myosins-I. Analysis of the process using live-cell fluorescence microscopy and electron microscopy have recently contributed to refine molecular models explaining clathrin and actin-dependent endocytic uptake. Increasing evidence now also indicates that actin plays important roles in post-internalization events along the endocytic pathway in yeast, including transport of vesicles, motility of endosomes and vacuole fusion. This review describes the present knowledge state on the roles of actin in endocytosis in yeast and points to similarities and differences with analogous processes in mammals.
Collapse
Affiliation(s)
- Henrique Girao
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), PCB, Edifici Hèlix, Baldiri Reixac 15, 08028 Barcelona, Spain
| | | | | |
Collapse
|
40
|
Araujo-Bazán L, Peñalva MA, Espeso EA. Preferential localization of the endocytic internalization machinery to hyphal tips underlies polarization of the actin cytoskeleton in Aspergillus nidulans. Mol Microbiol 2008; 67:891-905. [DOI: 10.1111/j.1365-2958.2007.06102.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Repass SL, Brady RJ, O'Halloran TJ. Dictyostelium Hip1r contributes to spore shape and requires epsin for phosphorylation and localization. J Cell Sci 2007; 120:3977-88. [PMID: 17971415 DOI: 10.1242/jcs.011213] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clathrin-coated pits assemble on the plasma membrane to select and sequester proteins within coated vesicles for delivery to intracellular compartments. Although a host of clathrin-associated proteins have been identified, much less is known regarding the interactions between clathrin-associated proteins or how individual proteins influence the function of other proteins. In this study, we present evidence of a functional relationship between two clathrin-associated proteins in Dictyostelium, Hip1r and epsin. Hip1r-null cells form fruiting bodies that yield defective spores that lack the organized fibrils typical of wild-type spores. This spore coat defect leads to formation of round, rather than ovoid, spores in Hip1r-null cells that exhibit decreased viability. Like Hip1r-null cells, epsin-null cells also construct fruiting bodies with round spores, but these spores are more environmentally robust. Double-null cells that harbor deletions in both epsin and Hip1r form fruiting bodies, with spores identical in shape and viability to Hip1r single-null cells. In the growing amoeba, Hip1r is phosphorylated and localizes to puncta on the plasma membrane that also contain epsin. Both the phosphorylation state and localization of Hip1r into membrane puncta require epsin. Moreover, expression of the N-terminal ENTH domain of epsin is sufficient to restore both the phosphorylation and the restricted localization of Hip1r within plasma membrane puncta. The results from this study reveal a novel interaction between two clathrin-associated proteins during cellular events in both growing and developing Dictyostelium cells.
Collapse
Affiliation(s)
- Shannon Lea Repass
- Department of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin TX 78712, USA
| | | | | |
Collapse
|
42
|
Newpher TM, Lemmon SK. Clathrin is important for normal actin dynamics and progression of Sla2p-containing patches during endocytosis in yeast. Traffic 2007; 7:574-88. [PMID: 16643280 PMCID: PMC2975023 DOI: 10.1111/j.1600-0854.2006.00410.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Clathrin is a major vesicle coat protein involved in receptor-mediated endocytosis. In yeast and higher eukaryotes, clathrin is recruited to the plasma membrane during the early stage of endocytosis along with clathrin-associated adaptors. As coated pits undergo maturation, a burst of actin polymerization accompanies and helps drive vesicle internalization. Here, we investigate the dynamics of clathrin relative to the early endocytic patch protein Sla2p. We find that clathrin is recruited to the cortex prior to Sla2p. In the absence of clathrin, normal numbers of Sla2p patches form, but many do not internalize or are dramatically delayed in completion of endocytosis. Patches that do internalize receive Sla1p late, which is followed by Abp1, which appears near the end of Sla2p lifetime. In addition, clathrin mutants develop actin comet tails, suggesting an important function in actin patch organization/dynamics. Similar to its mammalian counterparts, the light chain (LC) subunit of yeast clathrin interacts directly with the coiled-coil domain of Sla2p. A mutant of Sla2p that no longer interacts with LC (sla2Delta376-573) results in delayed progression of endocytic patches and aberrant actin dynamics. These data demonstrate an important role for clathrin in organization and progression of early endocytic patches to the late stages of endocytosis.
Collapse
Affiliation(s)
- Thomas M. Newpher
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sandra K. Lemmon
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL 33101, USA
- Corresponding author: Sandra K. Lemmon,
| |
Collapse
|
43
|
Sun Y, Carroll S, Kaksonen M, Toshima JY, Drubin DG. PtdIns(4,5)P2 turnover is required for multiple stages during clathrin- and actin-dependent endocytic internalization. ACTA ACUST UNITED AC 2007; 177:355-67. [PMID: 17452534 PMCID: PMC2064142 DOI: 10.1083/jcb.200611011] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The lipid phosphatidylinositol-4,5-bisphosphate (PtdIns[4,5]P(2)) appears to play an important role in endocytosis. However, the timing of its formation and turnover, and its specific functions at different stages during endocytic internalization, have not been established. In this study, Sla2 ANTH-GFP and Sjl2-3GFP were expressed as functional fusion proteins at endogenous levels to quantitatively explore PtdIns(4,5)P(2) dynamics during endocytosis in yeast. Our results indicate that PtdIns(4,5)P(2) levels increase and decline in conjunction with coat and actin assembly and disassembly, respectively. Live-cell image analysis of endocytic protein dynamics in an sjl1Delta sjl2Delta mutant, which has elevated PtdIns(4,5)P(2) levels, revealed that the endocytic machinery is still able to assemble and disassemble dynamically, albeit nonproductively. The defects in the dynamic behavior of the various endocytic proteins in this double mutant suggest that PtdIns(4,5)P(2) turnover is required for multiple stages during endocytic vesicle formation. Furthermore, our results indicate that PtdIns(4,5)P(2) turnover may act in coordination with the Ark1/Prk1 protein kinases in stimulating disassembly of the endocytic machinery.
Collapse
Affiliation(s)
- Yidi Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
44
|
Aronova S, Wedaman K, Anderson S, Yates J, Powers T. Probing the membrane environment of the TOR kinases reveals functional interactions between TORC1, actin, and membrane trafficking in Saccharomyces cerevisiae. Mol Biol Cell 2007; 18:2779-94. [PMID: 17507646 PMCID: PMC1949386 DOI: 10.1091/mbc.e07-03-0274] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The TOR kinases are regulators of growth in eukaryotic cells that assemble into two distinct protein complexes, TORC1 and TORC2, where TORC1 is inhibited by the antibiotic rapamycin. Present models favor a view wherein TORC1 regulates cell mass accumulation, and TORC2 regulates spatial aspects of growth, including organization of the actin cytoskeleton. Here, we demonstrate that in yeast both TORC1 and TORC2 fractionate with a novel form of detergent-resistant membranes that are distinct from detergent-resistant plasma membrane "rafts." Proteomic analysis of these TOR-associated membranes revealed the presence of regulators of endocytosis and the actin cytoskeleton. Genetic analyses revealed a significant number of interactions between these components and TORC1, demonstrating a functional link between TORC1 and actin/endocytosis-related genes. Moreover, we found that inhibition of TORC1 by rapamycin 1) disrupted actin polarization, 2) delayed actin repolarization after glucose starvation, and 3) delayed accumulation of lucifer yellow within the vacuole. By combining our genetic results with database mining, we constructed a map of interactions that led to the identification of additional genetic interactions between TORC1 and components involved in membrane trafficking. Together, these results reveal the broad scope of cellular processes influenced by TORC1, and they underscore the functional overlap between TORC1 and TORC2.
Collapse
Affiliation(s)
- Sofia Aronova
- *Section of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616; and
| | - Karen Wedaman
- *Section of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616; and
| | - Scott Anderson
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - John Yates
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Ted Powers
- *Section of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616; and
| |
Collapse
|
45
|
Haynes J, Garcia B, Stollar EJ, Rath A, Andrews BJ, Davidson AR. The biologically relevant targets and binding affinity requirements for the function of the yeast actin-binding protein 1 Src-homology 3 domain vary with genetic context. Genetics 2007; 176:193-208. [PMID: 17409071 PMCID: PMC1893037 DOI: 10.1534/genetics.106.070300] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Many protein-protein interaction domains bind to multiple targets. However, little is known about how the interactions of a single domain with many proteins are controlled and modulated under varying cellular conditions. In this study, we investigated the in vivo effects of Abp1p SH3 domain mutants that incrementally reduce target-binding affinity in four different yeast mutant backgrounds in which Abp1p activity is essential for growth. Although the severity of the phenotypic defects observed generally increased as binding affinity was reduced, some genetic backgrounds (prk1 Delta and sla1 Delta) tolerated large affinity reductions while others (sac6 Delta and sla2 Delta) were much more sensitive to these reductions. To elucidate the mechanisms behind these observations, we determined that Ark1p is the most important Abp1p SH3 domain interactor in prk1 Delta cells, but that interactions with multiple targets, including Ark1p and Scp1p, are required in the sac6 Delta background. We establish that the Abp1p SH3 domain makes different, functionally important interactions under different genetic conditions, and these changes in function are reflected by changes in the binding affinity requirement of the domain. These data provide the first evidence of biological relevance for any Abp1p SH3 domain-mediated interaction. We also find that considerable reductions in binding affinity are tolerated by the cell with little effect on growth rate, even when the actin cytoskeletal morphology is significantly perturbed.
Collapse
Affiliation(s)
- Jennifer Haynes
- Department of Moledular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Increasing evidence from a variety of cell types has highlighted the importance of the actin cytoskeleton during endocytosis. No longer is actin viewed as a passive barrier that must be removed to allow endocytosis to proceed. Rather, actin structures are dynamically organised to assist the remodelling of the cell surface to allow inward movement of vesicles. The majority of our mechanistic insight into the role of actin in endocytosis has come from studies in budding yeast. Although endocytosis in mammalian cells is clearly more complex and subject to a greater array of regulatory signals, recent advances have revealed actin, and actin-regulatory proteins, to be present at endocytic sites. Furthermore, live cell imaging indicates that spatiotemporal aspects of actin recruitment and vesicle formation are likely to be conserved across eukaryotic evolution.
Collapse
Affiliation(s)
- Elizabeth Smythe
- Department of Biomedical Science, Firth Court, Western Bank, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
47
|
Trushina E, Singh RD, Dyer RB, Cao S, Shah VH, Parton RG, Pagano RE, McMurray CT. Mutant huntingtin inhibits clathrin-independent endocytosis and causes accumulation of cholesterol in vitro and in vivo. Hum Mol Genet 2006; 15:3578-91. [PMID: 17142251 DOI: 10.1093/hmg/ddl434] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We show that the mutant Huntington's disease (HD) protein (mhtt) specifically inhibits endocytosis in primary striatal neurons. Unexpectedly, mhtt does not inhibit clathrin-dependent endocytosis as was anticipated based on known interacting partners. Instead, inhibition occurs through a non-clathrin, caveolar-related pathway. Expression of mhtt inhibited internalization of BODIPY-lactosylceramide (LacCer), which is internalized by a caveolar-related mechanism. In contrast, endocytosis of Alexa Fluor 594-transferrin (Tfn) and epidermal growth factor, internalized through clathrin pathway, was unaffected by mhtt expression. Caveolin-1 (cav1), the major structural protein of caveolae binds cholesterol and is responsible for its trafficking inside cells. Mhtt interacts with cav-1 and caused a striking accumulation of intracellular cholesterol. Cholesterol accumulated in cultured neurons expressing mhtt in vitro and in brains of mhtt-expressing animals in vivo, and was observed after induction of mhtt expression in PC-12 cell lines. The accumulation occurred only when mhtt and cav1 were simultaneously expressed in cells. Knockdown of cav1 in mhtt-expressing neurons blocked cholesterol accumulation and restored LacCer endocytosis. Thus, mhtt and cav1 functionally interact to cause both cellular defects. These data provide the first direct link between mhtt and caveolar-related endocytosis and also suggest a possible mechanism for HD neurotoxicity where cholesterol homeostasis is perturbed.
Collapse
Affiliation(s)
- Eugenia Trushina
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Moseley JB, Goode BL. The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol Mol Biol Rev 2006; 70:605-45. [PMID: 16959963 PMCID: PMC1594590 DOI: 10.1128/mmbr.00013-06] [Citation(s) in RCA: 295] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All cells undergo rapid remodeling of their actin networks to regulate such critical processes as endocytosis, cytokinesis, cell polarity, and cell morphogenesis. These events are driven by the coordinated activities of a set of 20 to 30 highly conserved actin-associated proteins, in addition to many cell-specific actin-associated proteins and numerous upstream signaling molecules. The combined activities of these factors control with exquisite precision the spatial and temporal assembly of actin structures and ensure dynamic turnover of actin structures such that cells can rapidly alter their cytoskeletons in response to internal and external cues. One of the most exciting principles to emerge from the last decade of research on actin is that the assembly of architecturally diverse actin structures is governed by highly conserved machinery and mechanisms. With this realization, it has become apparent that pioneering efforts in budding yeast have contributed substantially to defining the universal mechanisms regulating actin dynamics in eukaryotes. In this review, we first describe the filamentous actin structures found in Saccharomyces cerevisiae (patches, cables, and rings) and their physiological functions, and then we discuss in detail the specific roles of actin-associated proteins and their biochemical mechanisms of action.
Collapse
Affiliation(s)
- James B Moseley
- Department of Biology and The Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | | |
Collapse
|
49
|
Almaguer C, Fisher E, Patton-Vogt J. Posttranscriptional regulation of Git1p, the glycerophosphoinositol/glycerophosphocholine transporter of Saccharomyces cerevisiae. Curr Genet 2006; 50:367-75. [PMID: 16924500 DOI: 10.1007/s00294-006-0096-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 07/25/2006] [Accepted: 07/29/2006] [Indexed: 12/25/2022]
Abstract
Glycerophosphoinositol (GroPIns) and glycerophosphocholine (GroPCho) are the products of phospholipase-B mediated deacylation of phosphatidylinositol and phosphatidylcholine, respectively. GroPIns and GroPCho are transported across the Saccharomyces cerevisiae plasma membrane into the cell via the transporter encoded by GIT1. Previous studies have shown that GIT1 expression is regulated by inorganic phosphate (P(i)) availability through the transcription factors Pho2p and Pho4p. We now report that posttranscriptional mechanisms also regulate Git1p activity in response to P(i) availability. Mutations that inhibit endocytosis and vacuolar proteolysis inhibit Git1p degradation, indicating that Git1p downregulation involves internalization and subsequent degradation in the vacuole. Similar to the effect seen with P(i), provision of cells with high levels of the Git1p substrates, GroPIns and GroPCho, posttranscriptionally downregulates Git1p activity. Unlike P(i), high levels of GroPCho and GroPIns do not repress GIT1 promoter-driven reporter gene activity. These results indicate that Git1p transport activity is regulated at multiple levels by P(i) availability. In addition, the results indicate that the Git1p substrates (and alternate phosphate sources) GroPIns and GroPCho behave distinctly from P(i) in their ability to affect GIT1 expression.
Collapse
Affiliation(s)
- Claudia Almaguer
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | | | | |
Collapse
|
50
|
Connert S, Wienand S, Thiel C, Krikunova M, Glyvuk N, Tsytsyura Y, Hilfiker-Kleiner D, Bartsch JW, Klingauf J, Wienands J. SH3P7/mAbp1 deficiency leads to tissue and behavioral abnormalities and impaired vesicle transport. EMBO J 2006; 25:1611-22. [PMID: 16601697 PMCID: PMC1440832 DOI: 10.1038/sj.emboj.7601053] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 02/28/2006] [Indexed: 12/25/2022] Open
Abstract
The intracellular adaptor protein SH3P7 is the mammalian ortholog of yeast actin-binding protein 1 and thus alternatively named as mAbp1 (or HIP55). Structural properties, biochemical analysis of its interaction partners and siRNA studies implicated mAbp1 as an accessory protein in clathrin-mediated endocytosis (CME). Here, we describe the generation and characterization of mice deficient for SH3P7/mAbp1 owing to targeted gene disruption in embryonic stem cells. Mutant animals are viable and fertile without obvious deficits during the first weeks of life. Abnormal structure and function of organs including the spleen, heart, and lung is observed at about 3 months of age in both heterozygous and homozygous mouse mutants. A moderate reduction of both receptor-mediated and synaptic endocytosis is observed in embryonic fibroblasts and in synapses of hippocampal neurons, respectively. Recycling of synaptic vesicles in hippocampal boutons is severely impaired and delayed four-fold. The presynaptic defect of SH3P7/mAbp1 mouse mutants is associated with their constricted physical capabilities and disturbed neuromotoric behaviour. Our data reveal a nonredundant role of SH3P7/mAbp1 in CME and places its function downstream of vesicle fission.
Collapse
Affiliation(s)
- Sabine Connert
- Department of Biochemistry and Molecular Immunology, University of Bielefeld, Bielefeld, Germany
| | - Simone Wienand
- Cellular and Molecular Immunology, Medical Faculty of Georg-August-University, Göttingen, Germany
| | - Cora Thiel
- Cellular and Molecular Immunology, Medical Faculty of Georg-August-University, Göttingen, Germany
| | - Maria Krikunova
- Department of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Nataliya Glyvuk
- Department of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Yaroslav Tsytsyura
- Department of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Jörg W Bartsch
- Department of Developmental Biology and Molecular Pathology, University of Bielefeld, Bielefeld, Germany
| | - Jürgen Klingauf
- Department of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jürgen Wienands
- Cellular and Molecular Immunology, Medical Faculty of Georg-August-University, Göttingen, Germany
- Department of Cellular and Molecular Immunology, Medical Faculty of the Georg-August-University of Göttingen, Humboldtallee 34, 37073 Göttingen, Germany. Tel.: +49 551 39 5812; Fax: +49 551 39 5843; E-mail:
| |
Collapse
|