1
|
Automated segmentation and tracking of mitochondria in live-cell time-lapse images. Nat Methods 2021; 18:1091-1102. [PMID: 34413523 DOI: 10.1038/s41592-021-01234-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 07/06/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria display complex morphology and movements, which complicates their segmentation and tracking in time-lapse images. Here, we introduce Mitometer, an algorithm for fast, unbiased, and automated segmentation and tracking of mitochondria in live-cell two-dimensional and three-dimensional time-lapse images. Mitometer requires only the pixel size and the time between frames to identify mitochondrial motion and morphology, including fusion and fission events. The segmentation algorithm isolates individual mitochondria via a shape- and size-preserving background removal process. The tracking algorithm links mitochondria via differences in morphological features and displacement, followed by a gap-closing scheme. Using Mitometer, we show that mitochondria of triple-negative breast cancer cells are faster, more directional, and more elongated than those in their receptor-positive counterparts. Furthermore, we show that mitochondrial motility and morphology in breast cancer, but not in normal breast epithelia, correlate with metabolic activity. Mitometer is an unbiased and user-friendly tool that will help resolve fundamental questions regarding mitochondrial form and function.
Collapse
|
2
|
Wijesooriya CS, Peterson JA, Shrestha P, Gehrmann EJ, Winter AH, Smith EA. A Photoactivatable BODIPY Probe for Localization‐Based Super‐Resolution Cellular Imaging. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | | | | | | | | | - Emily A. Smith
- Department of Chemistry Iowa State University Ames IA 50011 USA
- The Ames Laboratory US Department of Energy Ames IA 50011 USA
| |
Collapse
|
3
|
Wijesooriya CS, Peterson JA, Shrestha P, Gehrmann EJ, Winter AH, Smith EA. A Photoactivatable BODIPY Probe for Localization-Based Super-Resolution Cellular Imaging. Angew Chem Int Ed Engl 2018; 57:12685-12689. [PMID: 30247796 DOI: 10.1002/anie.201805827] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/10/2018] [Indexed: 11/07/2022]
Abstract
The synthesis and application of a photoactivatable boron-alkylated BODIPY probe for localization-based super-resolution microscopy is reported. Photoactivation and excitation of the probe is achieved by a previously unknown boron-photodealkylation reaction with a single low-power visible laser and without requiring the addition of reducing agents or oxygen scavengers in the imaging buffer. These features lead to a versatile probe for localization-based microscopy of biological systems. The probe can be easily linked to nucleophile-containing molecules to target specific cellular organelles. By attaching paclitaxel to the photoactivatable BODIPY, in vitro and in vivo super-resolution imaging of microtubules is demonstrated. This is the first example of single-molecule localization-based super-resolution microscopy using a visible-light-activated BODIPY compound as a fluorescent probe.
Collapse
Affiliation(s)
| | - Julie A Peterson
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Pradeep Shrestha
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | | | - Arthur H Winter
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Emily A Smith
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA.,The Ames Laboratory, US Department of Energy, Ames, IA, 50011, USA
| |
Collapse
|
4
|
Komis G, Mistrik M, Šamajová O, Doskočilová A, Ovečka M, Illés P, Bartek J, Šamaj J. Dynamics and organization of cortical microtubules as revealed by superresolution structured illumination microscopy. PLANT PHYSIOLOGY 2014; 165:129-48. [PMID: 24686112 PMCID: PMC4012574 DOI: 10.1104/pp.114.238477] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/28/2014] [Indexed: 05/07/2023]
Abstract
Plants employ acentrosomal mechanisms to organize cortical microtubule arrays essential for cell growth and differentiation. Using structured illumination microscopy (SIM) adopted for the optimal documentation of Arabidopsis (Arabidopsis thaliana) hypocotyl epidermal cells, dynamic cortical microtubules labeled with green fluorescent protein fused to the microtubule-binding domain of the mammalian microtubule-associated protein MAP4 and with green fluorescent protein-fused to the alpha tubulin6 were comparatively recorded in wild-type Arabidopsis plants and in the mitogen-activated protein kinase mutant mpk4 possessing the former microtubule marker. The mpk4 mutant exhibits extensive microtubule bundling, due to increased abundance and reduced phosphorylation of the microtubule-associated protein MAP65-1, thus providing a very useful genetic tool to record intrabundle microtubule dynamics at the subdiffraction level. SIM imaging revealed nano-sized defects in microtubule bundling, spatially resolved microtubule branching and release, and finally allowed the quantification of individual microtubules within cortical bundles. Time-lapse SIM imaging allowed the visualization of subdiffraction, short-lived excursions of the microtubule plus end, and dynamic instability behavior of both ends during free, intrabundle, or microtubule-templated microtubule growth and shrinkage. Finally, short, rigid, and nondynamic microtubule bundles in the mpk4 mutant were observed to glide along the parent microtubule in a tip-wise manner. In conclusion, this study demonstrates the potential of SIM for superresolution time-lapse imaging of plant cells, showing unprecedented details accompanying microtubule dynamic organization.
Collapse
Affiliation(s)
- George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic (G.K., O.Š., A.D., M.O., P.I., J.Š.)
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic (M.M., J.B.); and
- Danish Cancer Society Research Center, DK–2100 Copenhagen, Denmark (J.B.)
| | - Martin Mistrik
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic (G.K., O.Š., A.D., M.O., P.I., J.Š.)
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic (M.M., J.B.); and
- Danish Cancer Society Research Center, DK–2100 Copenhagen, Denmark (J.B.)
| | - Olga Šamajová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic (G.K., O.Š., A.D., M.O., P.I., J.Š.)
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic (M.M., J.B.); and
- Danish Cancer Society Research Center, DK–2100 Copenhagen, Denmark (J.B.)
| | - Anna Doskočilová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic (G.K., O.Š., A.D., M.O., P.I., J.Š.)
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic (M.M., J.B.); and
- Danish Cancer Society Research Center, DK–2100 Copenhagen, Denmark (J.B.)
| | - Miroslav Ovečka
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic (G.K., O.Š., A.D., M.O., P.I., J.Š.)
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic (M.M., J.B.); and
- Danish Cancer Society Research Center, DK–2100 Copenhagen, Denmark (J.B.)
| | - Peter Illés
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic (G.K., O.Š., A.D., M.O., P.I., J.Š.)
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic (M.M., J.B.); and
- Danish Cancer Society Research Center, DK–2100 Copenhagen, Denmark (J.B.)
| | - Jiri Bartek
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic (G.K., O.Š., A.D., M.O., P.I., J.Š.)
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic (M.M., J.B.); and
- Danish Cancer Society Research Center, DK–2100 Copenhagen, Denmark (J.B.)
| | | |
Collapse
|
5
|
Hernández Candia CN, Tafoya Martínez S, Gutiérrez-Medina B. A minimal optical trapping and imaging microscopy system. PLoS One 2013; 8:e57383. [PMID: 23451216 PMCID: PMC3581452 DOI: 10.1371/journal.pone.0057383] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/21/2013] [Indexed: 11/30/2022] Open
Abstract
We report the construction and testing of a simple and versatile optical trapping apparatus, suitable for visualizing individual microtubules (∼25 nm in diameter) and performing single-molecule studies, using a minimal set of components. This design is based on a conventional, inverted microscope, operating under plain bright field illumination. A single laser beam enables standard optical trapping and the measurement of molecular displacements and forces, whereas digital image processing affords real-time sample visualization with reduced noise and enhanced contrast. We have tested our trapping and imaging instrument by measuring the persistence length of individual double-stranded DNA molecules, and by following the stepping of single kinesin motor proteins along clearly imaged microtubules. The approach presented here provides a straightforward alternative for studies of biomaterials and individual biomolecules.
Collapse
Affiliation(s)
| | - Sara Tafoya Martínez
- Program in Physics, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Braulio Gutiérrez-Medina
- Advanced Materials Division, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico
| |
Collapse
|
6
|
Zhang W, Ju J, Rigney T, Tribble G. Integrin α5β1-fimbriae binding and actin rearrangement are essential for Porphyromonas gingivalis invasion of osteoblasts and subsequent activation of the JNK pathway. BMC Microbiol 2013; 13:5. [PMID: 23305098 PMCID: PMC3566952 DOI: 10.1186/1471-2180-13-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/08/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic periodontitis is an infectious disease of the periodontium, which includes the gingival epithelium, periodontal ligament and alveolar bone. The signature clinical feature of periodontitis is resorption of alveolar bone and subsequent tooth loss. The Gram-negative oral anaerobe, Porphyromonas gingivalis, is strongly associated with periodontitis, and it has been shown previously that P. gingivalis is capable of invading osteoblasts in a dose- and time-dependent manner resulting in inhibition of osteoblast differentiation and mineralization in vitro. It is not yet clear which receptors and cytoskeletal components mediate the invasive process, nor how the signaling pathways and viability of osteoblasts are affected by bacterial internalization. This study aimed to investigate these issues using an in vitro model system involving the inoculation of P. gingivalis ATCC 33277 into primary osteoblast cultures. RESULTS It was found that binding between P. gingivalis fimbriae and integrin α5β1 on osteoblasts, and subsequent peripheral condensation of actin, are essential for entry of P. gingivalis into osteoblasts. The JNK pathway was activated in invaded osteoblasts, and apoptosis was induced by repeated infections. CONCLUSIONS These observations indicate that P. gingivalis manipulates osteoblast function to promote its initial intracellular persistence by prolonging the host cell life span prior to its intercellular dissemination via host cell lysis. The identification of molecules critical to the interaction between P. gingivalis and osteoblasts will facilitate the development of new therapeutic strategies for the prevention of periodontal bone loss.
Collapse
Affiliation(s)
- Wenjian Zhang
- Department of Diagnostic and Biomedical Sciences, University of Texas School of Dentistry at Houston, 7500 Cambridge Street, Suite 5366, Houston, TX 77054, USA.
| | | | | | | |
Collapse
|
7
|
Noyes N, Knopman J, Labella P, McCaffrey C, Clark-Williams M, Grifo J. Oocyte cryopreservation outcomes including pre-cryopreservation and post-thaw meiotic spindle evaluation following slow cooling and vitrification of human oocytes. Fertil Steril 2010; 94:2078-82. [DOI: 10.1016/j.fertnstert.2010.01.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 01/06/2010] [Accepted: 01/11/2010] [Indexed: 10/19/2022]
|
8
|
Keller PJ, Pampaloni F, Stelzer EHK. Three-dimensional preparation and imaging reveal intrinsic microtubule properties. Nat Methods 2007; 4:843-6. [PMID: 17828271 DOI: 10.1038/nmeth1087] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 08/14/2007] [Indexed: 11/09/2022]
Abstract
We present an experimental investigation of microtubule dynamic instability in three dimensions, based on laser light-sheet fluorescence microscopy. We introduce three-dimensional (3D) preparation of Xenopus laevis egg extracts in Teflon-based cylinders and provide algorithms for 3D image processing. Our approach gives experimental access to the intrinsic dynamic properties of microtubules and to microtubule population statistics in single asters. We obtain evidence for a stochastic nature of microtubule pausing.
Collapse
Affiliation(s)
- Philipp J Keller
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
| | | | | |
Collapse
|
9
|
Hom EFY, Marchis F, Lee TK, Haase S, Agard DA, Sedat JW. AIDA: an adaptive image deconvolution algorithm with application to multi-frame and three-dimensional data. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2007; 24:1580-600. [PMID: 17491626 PMCID: PMC3166524 DOI: 10.1364/josaa.24.001580] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We describe an adaptive image deconvolution algorithm (AIDA) for myopic deconvolution of multi-frame and three-dimensional data acquired through astronomical and microscopic imaging. AIDA is a reimplementation and extension of the MISTRAL method developed by Mugnier and co-workers and shown to yield object reconstructions with excellent edge preservation and photometric precision [J. Opt. Soc. Am. A21, 1841 (2004)]. Written in Numerical Python with calls to a robust constrained conjugate gradient method, AIDA has significantly improved run times over the original MISTRAL implementation. Included in AIDA is a scheme to automatically balance maximum-likelihood estimation and object regularization, which significantly decreases the amount of time and effort needed to generate satisfactory reconstructions. We validated AIDA using synthetic data spanning a broad range of signal-to-noise ratios and image types and demonstrated the algorithm to be effective for experimental data from adaptive optics-equipped telescope systems and wide-field microscopy.
Collapse
Affiliation(s)
- Erik F Y Hom
- Graduate Group in Biophysics and Department of Biochemistry and Biophysics, University of California, San Francisco 94143-2240, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Wang Q, Sun QY. Evaluation of oocyte quality: morphological, cellular and molecular predictors. Reprod Fertil Dev 2007; 19:1-12. [PMID: 17389130 DOI: 10.1071/rd06103] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mounting evidence that oocyte quality profoundly affects fertilisation an d subsequent embryo development drives the continued search for reliable predictors of oocyte developmental competence. In the present review, we provide an overall summary and analysis of potential criteria that can be used to evaluate oocyte quality. These criteria are specifically classified as morphological and cellular/molecular predictors. Traditional methods for the evaluation of oocyte quality are based on morphological classification of thefollicle, cumulus-oocytecomplex, polar body and/or meiotic spindle. Although the use of morphological characteristics as predictors of oocyte quality is controversial, such a grading system can provide valuable information for the preselection of oocytes with higher developmental competence and, therefore, may maximise embryo developmental outcome. Several intrinsic markers (such as mitochondrial status and glucose-6-phosphate dehydrogenase 1 activity) and extrinsic markers (such as apoptosis of follicular cells and levels of the transforming growth factor-beta superfamily in follicular fluid or serum) have also been reported as useful indicators of oocyte competence and embryo quality. Compared with the morphological parameters, these cellular and molecular predictors of oocyte quality may prove to be more precise and objective, although further studies and refinement of techniques are needed.
Collapse
Affiliation(s)
- Qiang Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | | |
Collapse
|
11
|
Oldenbourg R. Analysis of microtubule dynamics by polarized light. METHODS IN MOLECULAR MEDICINE 2007; 137:111-23. [PMID: 18085225 DOI: 10.1007/978-1-59745-442-1_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this article, the author describes the needed instrumentation and the methods to be followed for the observation and measurement of the birefringence of single and bundled microtubules and of their ordered arrays using a polarizing microscope. As instruments, the traditional polarizing microscope and the recently developed LC-PolScope are discussed. As methods, we describe qualitative and quantitative observations, including notes on specimen preparations, which optimize the sensitivity and accuracy of measuring specimen retardance.
Collapse
|
12
|
Fang Y, Ferrie AM, Li G. Probing cytoskeleton modulation by optical biosensors. FEBS Lett 2005; 579:4175-80. [PMID: 16038906 DOI: 10.1016/j.febslet.2005.06.050] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 06/21/2005] [Accepted: 06/23/2005] [Indexed: 11/17/2022]
Abstract
This paper reported the use of resonant waveguide grating biosensors for studying the cytoskeleton structure in cells. This was achieved by measuring the changes in mass within the bottom portion of cells upon exposure to saponin in the absence and presence of cytoskeleton modulators. Treatment of Chinese hamster ovary cells with saponin led to a dose-dependent and dynamic mass changes. When a higher concentration of saponin (> 60 microg/ml) was used, a net loss in mass was observed. This is probably resulted from the diffusion of soluble intracellular materials away from the bottom portion of cells after pore formation in the cell plasma membranes by saponin. The pretreatment of cells with actin disruption agents, cytochalasin B and latrunculin A, led to significantly increased loss in cell mass induced by either 75 or 125 microg/ml saponin. These results suggested that optical biosensors provide an attractive means to study the cytoskeleton structure and screen modulators that affect the cytoskeleton structure.
Collapse
Affiliation(s)
- Ye Fang
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Sullivan Park, Corning, NY 14870, USA.
| | | | | |
Collapse
|
13
|
Konc J, Kanyó K, Cseh S. Visualization and examination of the meiotic spindle in human oocytes with polscope. J Assist Reprod Genet 2005; 21:349-53. [PMID: 15587138 PMCID: PMC3455237 DOI: 10.1023/b:jarg.0000046202.00570.1d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE The effect of detectability/location of meiotic spindle to fertilization of human MII oocytes and outcome of clinical IVF/ICSI-ET cycles was studied. METHODS The location of spindle relative to polar body positioned to 6 o'clock was detected with polscope prior to ICSI in oocytes. Data of 83 IVF/ICSI-ET cycle, including pregnancy results, and a total of 1033 oocytes examined were analyzed retrospectively. RESULTS Polar body position does not always accurately predict spindle position. Similar fertilization was observed in the polscope detected and in the control group. The main number of oocytes and spindle positive oocytes collected was higher in the pregnant than in the non-pregnant group. Higher fertilization was found in that group where 2/3-d of the oocytes had detected spindle. The main number of oocytes and spindle positive oocytes obtained decreased with increasing age of patients. CONCLUSIONS The presence of birefringent spindle predicts higher fertilization and development and greater probability of pregnancy.
Collapse
Affiliation(s)
- Janos Konc
- Infertility and IVF Center of Buda, Saint János Hospital, Budapest, Hungary
| | - Katalin Kanyó
- Infertility and IVF Center of Buda, Saint János Hospital, Budapest, Hungary
| | - Sandor Cseh
- Infertility and IVF Center of Buda, Saint János Hospital, Budapest, Hungary
| |
Collapse
|
14
|
Kanyó K, Konc J, Solti L, Cseh S. Assisted reproductive research: laser assisted hatching and spindle detection (spindle view technique). Acta Vet Hung 2004; 52:113-23. [PMID: 15119792 DOI: 10.1556/avet.52.2004.1.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Animal experiments are very important for the development of new assisted reproductive techniques (ART) for use in human and animal reproductive medicine. Most technical aspects of reproductive manipulation of humans and animals are very similar, and many components of successful human ART used nowadays have been derived from animal studies. In this study we examined (1) the use of 'non-contact' laser for assisted hatching, (2) whether spindles in living mouse oocytes could safely be imaged/examined by polarisation microscope (polscope) and (3) the influence of environment (e.g. temperature, in vitro culture, etc.) on spindle detection/visualisation. The data of the study presented here show that (1) laser assisted hatching (AH) is a fast, very accurate and safe procedure without any harmful effect on embryo development and it can support very effectively the implantation of embryos, (2) the use of polscope facilitates the evaluation of oocyte quality and the selection of oocytes with spindle, (3) by monitoring the spindle position during intracytoplasmic sperm injection (ICSI), we can reduce spindle damage and increase the chance of fertilisation. Further studies are underway to test the hypothesised connection between spindle birefringence and developmental capacity of oocytes/embryos.
Collapse
Affiliation(s)
- Katalin Kanyó
- Infertility and IVF Center of Buda, Szent János Hospital, Budapest, Hungary
| | | | | | | |
Collapse
|
15
|
Yilmaz Ö, Young PA, Lamont RJ, Kenny GE. Gingival epithelial cell signalling and cytoskeletal responses to Porphyromonas gingivalis invasion. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2417-2426. [PMID: 12949167 DOI: 10.1099/mic.0.26483-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Porphyromonas gingivalis, an oral pathogen, can internalize within primary gingival epithelial cells (GECs) through an invasion mechanism mediated by interactions between P. gingivalis fimbriae and integrins on the surface of the GECs. Fimbriae-integrin-based signalling events were studied by fluorescence microscopy, and the subcellular localization of integrin-associated signalling molecules paxillin and focal adhesion kinase (FAK), and the architecture of the actin and microtubule cytoskeleton were examined. GECs infected with P. gingivalis for 30 min demonstrated significant redistribution of paxillin and FAK from the cytosol to cell peripheries and assembly into focal adhesion complexes. In contrast, a fimbriae-deficient mutant of P. gingivalis did not contribute substantially to activation of paxillin or FAK. After 24 h, the majority of paxillin and FAK had returned to the cytoplasm with significant co-localization with P. gingivalis in the perinuclear region. Wild-type P. gingivalis induced nucleation of actin filaments forming microspike-like protrusions and long stable microfilaments distributed throughout the cells. Fimbriae mutants promoted a rich cortical actin meshwork accompanied by membrane ruffling dispersed along the cell membrane. Remarkable disassembly and nucleation of the actin and microtubule filamentous network was observed following 24 h infection with either wild-type or fimbriae-deficient mutants of P. gingivalis. The results show that fimbriated P. gingivalis cells induce formation of integrin-associated focal adhesions with subsequent remodelling of the actin and tubulin cytoskeleton.
Collapse
Affiliation(s)
- Özlem Yilmaz
- Department of Pathobiology, University of Washington, Seattle, WA 98195, USA
| | - Patrick A Young
- Department of Pathobiology, University of Washington, Seattle, WA 98195, USA
| | - Richard J Lamont
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
| | - George E Kenny
- Department of Pathobiology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
16
|
Abstract
An important mechanism for the initiation and progression of atherosclerosis is the loss of endothelial integrity, which is required for normal blood vessel function. The important components of the endothelial cell cytoskeleton system that regulate endothelial integrity include actin microfilaments and microtubules, which are both associated with protein complexes that regulate cell-cell and cell-substratum adhesion. To date, studies have shown that microfilaments are essential in maintaining the structural integrity of the endothelium while microtubules regulate the directional cell migration during repair. When microtubules are disrupted at the onset of wounding, neither centrosome reorientation, which is essential for efficient endothelial cell wound repair, nor cell migration occurs. Disruption of microfilaments is also associated with inefficient endothelial cell migration and repair. How then might these systems be associated with one another? Linker proteins, which may facilitate interaction between microtubules and actin microfilaments, have recently been identified in nonendothelial systems. It is likely that microtubule-microfilament interactions are important in the complex regulation of endothelial integrity and repair especially as they relate to atherosclerotic plaque formation.
Collapse
Affiliation(s)
- J S Y Lee
- Department of Pathology, University Health Network, University of Toronto, Ontario, Canada
| | | |
Collapse
|
17
|
Raffetto JD, Mendez MV, Marien BJ, Byers HR, Phillips TJ, Park HY, Menzoian JO. Changes in cellular motility and cytoskeletal actin in fibroblasts from patients with chronic venous insufficiency and in neonatal fibroblasts in the presence of chronic wound fluid. J Vasc Surg 2001; 33:1233-41. [PMID: 11389423 DOI: 10.1067/mva.2001.113297] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE Fibroblasts (fb) play an important role in wound healing involving motility, contraction, fibrosis, and expression of the cytoskeletal protein alpha-smooth muscle actin (alpha-sma). Patients with chronic venous insufficiency (CVI) are known to have dermal changes and impaired venous ulcer healing. To investigate whether these dermal-fb have an altered ability to migrate and whether chronic wound fluid from venous ulcers alters neonatal fb motility, we examined cell migration and alpha-sma. METHODS Fibroblasts were cultured from the margin of venous ulcers (du-fb, n = 4, CEAP 6), from patients with venous reflux without ulcer (dr-fb, n = 5, CEAP 2), and from the ipsilateral thigh of the same patients with (pu-fb) and without (pr-fb) ulcer, respectively. The abbreviations used are p and d, which represent proximal and distal, respectively; u and r represent ulcer and reflux, respectively. Neonatal foreskin fibroblasts (nf-fb) were exposed to chronic venous ulcer wound fluid (CVUWF, 300 microg protein/mL, n = 3) or bovine serum albumin (BSA, control). Fibroblast motility was determined by means of time-lapse photo-images, and the rate (micrometer per hour) was calculated. Immunohistochemistry for alpha-sma was analyzed with confocal laser microscopy. RESULTS The rate of motility (micrometer per hour +/- SEM) was decreased for both du-fb (11.4 +/- 0.7) and dr-fb (13.8 +/- 0.6), when compared with pu-fb (21.9 +/- 0.9) and pr-fb (24.7 +/- 1.1), respectively. The motility rate for nf-fb was lower in CVUWF (24.7 +/- 2.0) than in BSA (37.1 +/- 6.7). An elevated level of microfilament bundles of alpha-sma for both du-fb and dr-fb, compared with those of pu-fb and pr-fb, and also in nf-fb treated with CVUWF was demonstrated by means of immunohistochemistry. CONCLUSION These data demonstrate a reduced motility in the dermal fb of patients with CVI. Patients with reflux disease without ulcer are predisposed to these changes. Furthermore, it appears that CVUWF causes changes in motility and alpha-sma expression in nf-fb as demonstrated in du-fb. These findings suggest that reduced motility and CVUWF, representing the microenvironment of venous ulcers, play a significant role in impaired wound healing.
Collapse
Affiliation(s)
- J D Raffetto
- Boston University Medical Center, and the West Palm Beach Hospital, Fla, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Kabir N, Schaefer AW, Nakhost A, Sossin WS, Forscher P. Protein kinase C activation promotes microtubule advance in neuronal growth cones by increasing average microtubule growth lifetimes. J Cell Biol 2001; 152:1033-44. [PMID: 11238458 PMCID: PMC2198821 DOI: 10.1083/jcb.152.5.1033] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2000] [Accepted: 01/11/2001] [Indexed: 11/22/2022] Open
Abstract
We describe a novel mechanism for protein kinase C regulation of axonal microtubule invasion of growth cones. Activation of PKC by phorbol esters resulted in a rapid, robust advance of distal microtubules (MTs) into the F-actin rich peripheral domain of growth cones, where they are normally excluded. In contrast, inhibition of PKC activity by bisindolylmaleimide and related compounds had no perceptible effect on growth cone motility, but completely blocked phorbol ester effects. Significantly, MT advance occurred despite continued retrograde F-actin flow-a process that normally inhibits MT advance. Polymer assembly was necessary for PKC-mediated MT advance since it was highly sensitive to a range of antagonists at concentrations that specifically interfere with microtubule dynamics. Biochemical evidence is presented that PKC activation promotes formation of a highly dynamic MT pool. Direct assessment of microtubule dynamics and translocation using the fluorescent speckle microscopy microtubule marking technique indicates PKC activation results in a nearly twofold increase in the typical lifetime of a MT growth episode, accompanied by a 1.7-fold increase and twofold decrease in rescue and catastrophe frequencies, respectively. No significant effects on instantaneous microtubule growth, shortening, or sliding rates (in either anterograde or retrograde directions) were observed. MTs also spent a greater percentage of time undergoing retrograde transport after PKC activation, despite overall MT advance. These results suggest that regulation of MT assembly by PKC may be an important factor in determining neurite outgrowth and regrowth rates and may play a role in other cellular processes dependent on directed MT advance.
Collapse
Affiliation(s)
- Nurul Kabir
- Yale University, New Haven, Connecticut 06520-8103
| | | | - Arash Nakhost
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada H3A-2B4
| | - Wayne S. Sossin
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada H3A-2B4
| | | |
Collapse
|
19
|
Wang WH, Meng L, Hackett RJ, Odenbourg R, Keefe DL. The spindle observation and its relationship with fertilization after intracytoplasmic sperm injection in living human oocytes. Fertil Steril 2001; 75:348-53. [PMID: 11172838 DOI: 10.1016/s0015-0282(00)01692-7] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To image spindles in living human oocytes and to examine the relation between spindles and fertilization after ICSI. DESIGN The LC polscope was used to examine spindles in an observational study of living oocytes. SETTING Academic IVF clinic. PATIENT(S) Women being treated for infertility. INTERVENTION(S) Oocytes retrieved from patients for infertility treatment were examined before ICSI. Aged, unfertilized oocytes after IVF or ICSI were examined with polscope and confocal microscopes to compare the two methods. MAIN OUTCOME MEASURE(S) Spindle structure in living oocytes and fertilization after ICSI. RESULT(S) Spindles could be imaged in 61.4% of oocytes. More oocytes with spindles than oocytes without spindles fertilized normally after ICSI (61.8% vs. 44.2%). Spindles in most aged oocytes were partially or completely disassembled, and only a few microtubules around the chromosomes or dispersed microtubules in the cytoplasm were observed. Confocal images of immunostained spindles were almost identical to polscope images of spindle birefringence. CONCLUSION(S) Spindles in living human oocytes can be imaged by using the polscope. A birefringent spindle in human oocytes may clinically predict the quality and age of oocytes. This method also can be used to monitor spindle position during ICSI.
Collapse
Affiliation(s)
- W H Wang
- Division of Reproductive Medicine and Infertility, Department of Obstetrics and Gynecology, Women and Infants Hospital of Rhode Island, 101 Dudley Street, Brown University School of Medicine, Providence, Rhode Island 02905-2499, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Cortical flow, the directed movement of cortical F-actin and cortical organelles, is a basic cellular motility process. Microtubules are thought to somehow direct cortical flow, but whether they do so by stimulating or inhibiting contraction of the cortical actin cytoskeleton is the subject of debate. Treatment of Xenopus oocytes with phorbol 12-myristate 13-acetate (PMA) triggers cortical flow toward the animal pole of the oocyte; this flow is suppressed by microtubules. To determine how this suppression occurs and whether it can control the direction of cortical flow, oocytes were subjected to localized manipulation of either the contractile stimulus (PMA) or microtubules. Localized PMA application resulted in redirection of cortical flow toward the site of application, as judged by movement of cortical pigment granules, cortical F-actin, and cortical myosin-2A. Such redirected flow was accelerated by microtubule depolymerization, showing that the suppression of cortical flow by microtubules is independent of the direction of flow. Direct observation of cortical F-actin by time-lapse confocal analysis in combination with photobleaching showed that cortical flow is driven by contraction of the cortical F-actin network and that microtubules suppress this contraction. The oocyte germinal vesicle serves as a microtubule organizing center in Xenopus oocytes; experimental displacement of the germinal vesicle toward the animal pole resulted in localized flow away from the animal pole. The results show that 1) cortical flow is directed toward areas of localized contraction of the cortical F-actin cytoskeleton; 2) microtubules suppress cortical flow by inhibiting contraction of the cortical F-actin cytoskeleton; and 3) localized, microtubule-dependent suppression of actomyosin-based contraction can control the direction of cortical flow. We discuss these findings in light of current models of cortical flow.
Collapse
Affiliation(s)
- H A Benink
- Department of Zoology, University of Wisconsin, Madison 53706, USA
| | | | | |
Collapse
|
21
|
Mandato CA, Benink HA, Bement WM. Microtubule-actomyosin interactions in cortical flow and cytokinesis. CELL MOTILITY AND THE CYTOSKELETON 2000; 45:87-92. [PMID: 10658205 DOI: 10.1002/(sici)1097-0169(200002)45:2<87::aid-cm1>3.0.co;2-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- C A Mandato
- Department of Zoology, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
22
|
Salisbury JL, Lingle WL, White RA, Cordes LE, Barrett S. Microtubule nucleating capacity of centrosomes in tissue sections. J Histochem Cytochem 1999; 47:1265-74. [PMID: 10490455 DOI: 10.1177/002215549904701006] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We used a novel adaptation of methods for microtubule polymerization in vitro to assess the MTOC activity of centrosomes in frozen-sectioned tissues. Remarkably, centrosomes of tissue sections retain the ability to nucleate microtubules even after several years of storage as frozen tissue blocks. Adaptations of these methods allow accurate counts of microtubules from individual cells and the quantitative estimation the MTOC activity of the intact tissue. These methods can be utilized to characterize MTOC activity in normal and diseased tissues and in particular tissues at different stages of development. (J Histochem Cytochem 47:1265-1273, 1999)
Collapse
Affiliation(s)
- J L Salisbury
- Tumor Biology Program, Mayo Clinic, Rochester, Minnesota.
| | | | | | | | | |
Collapse
|
23
|
Rochlin MW, Dailey ME, Bridgman PC. Polymerizing microtubules activate site-directed F-actin assembly in nerve growth cones. Mol Biol Cell 1999; 10:2309-27. [PMID: 10397767 PMCID: PMC25445 DOI: 10.1091/mbc.10.7.2309] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We identify an actin-based protrusive structure in growth cones termed "intrapodium." Unlike filopodia, intrapodia are initiated exclusively within lamellipodia and elongate in a continuous (nonsaltatory) manner parallel to the plane of the dorsal plasma membrane causing a ridge-like protrusion. Intrapodia resemble the actin-rich structures induced by intracellular pathogens (e.g., Listeria) or by extracellular beads. Cytochalasin B inhibits intrapodial elongation and removal of cytochalasin B produced a burst of intrapodial activity. Electron microscopic studies revealed that lamellipodial intrapodia contain both short and long actin filaments oriented with their barbed ends toward the membrane surface or advancing end. Our data suggest an interaction between microtubule endings and intrapodia formation. Disruption of microtubules by acute nocodazole treatment decreased intrapodia frequency, and washout of nocodazole or addition of the microtubule-stabilizing drug Taxol caused a burst of intrapodia formation. Furthermore, individual microtubule ends were found near intrapodia initiation sites. Thus, microtubule ends or associated structures may regulate these actin-dependent structures. We propose that intrapodia are the consequence of an early step in a cascade of events that leads to the development of F-actin-associated plasma membrane specializations.
Collapse
Affiliation(s)
- M W Rochlin
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
24
|
Waterman-Storer C, Desai A, Salmon ED. Fluorescent speckle microscopy of spindle microtubule assembly and motility in living cells. Methods Cell Biol 1999; 61:155-73. [PMID: 9891314 DOI: 10.1016/s0091-679x(08)61980-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- C Waterman-Storer
- Department of Biology, University of North Carolina at Chapel Hill 27599, USA
| | | | | |
Collapse
|