1
|
Bouchalova P, Bouchal P. Current methods for studying metastatic potential of tumor cells. Cancer Cell Int 2022; 22:394. [PMID: 36494720 PMCID: PMC9733110 DOI: 10.1186/s12935-022-02801-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Cell migration and invasiveness significantly contribute to desirable physiological processes, such as wound healing or embryogenesis, as well as to serious pathological processes such as the spread of cancer cells to form tumor metastasis. The availability of appropriate methods for studying these processes is essential for understanding the molecular basis of cancer metastasis and for identifying suitable therapeutic targets for anti-metastatic treatment. This review summarizes the current status of these methods: In vitro methods for studying cell migration involve two-dimensional (2D) assays (wound-healing/scratch assay), and methods based on chemotaxis (the Dunn chamber). The analysis of both cell migration and invasiveness in vitro require more complex systems based on the Boyden chamber principle (Transwell migration/invasive test, xCELLigence system), or microfluidic devices with three-dimensional (3D) microscopy visualization. 3D culture techniques are rapidly becoming routine and involve multicellular spheroid invasion assays or array chip-based, spherical approaches, multi-layer/multi-zone culture, or organoid non-spherical models, including multi-organ microfluidic chips. The in vivo methods are mostly based on mice, allowing genetically engineered mice models and transplant models (syngeneic mice, cell line-derived xenografts and patient-derived xenografts including humanized mice models). These methods currently represent a solid basis for the state-of-the art research that is focused on understanding metastatic fundamentals as well as the development of targeted anti-metastatic therapies, and stratified treatment in oncology.
Collapse
Affiliation(s)
- Pavla Bouchalova
- grid.10267.320000 0001 2194 0956Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Pavel Bouchal
- grid.10267.320000 0001 2194 0956Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
2
|
Hasegawa K, Matsui TK, Kondo J, Kuwako KI. N-WASP-Arp2/3 signaling controls multiple steps of dendrite maturation in Purkinje cells in vivo. Development 2022; 149:285127. [PMID: 36469048 DOI: 10.1242/dev.201214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
During neural development, the actin filament network must be precisely regulated to form elaborate neurite structures. N-WASP tightly controls actin polymerization dynamics by activating an actin nucleator Arp2/3. However, the importance of N-WASP-Arp2/3 signaling in the assembly of neurite architecture in vivo has not been clarified. Here, we demonstrate that N-WASP-Arp2/3 signaling plays a crucial role in the maturation of cerebellar Purkinje cell (PC) dendrites in vivo in mice. N-WASP was expressed and activated in developing PCs. Inhibition of Arp2/3 and N-WASP from the beginning of dendrite formation severely disrupted the establishment of a single stem dendrite, which is a characteristic basic structure of PC dendrites. Inhibition of Arp2/3 after stem dendrite formation resulted in hypoplasia of the PC dendritic tree. Cdc42, an upstream activator of N-WASP, is required for N-WASP-Arp2/3 signaling-mediated PC dendrite maturation. In addition, overactivation of N-WASP is also detrimental to dendrite formation in PCs. These findings reveal that proper activation of N-WASP-Arp2/3 signaling is crucial for multiple steps of PC dendrite maturation in vivo.
Collapse
Affiliation(s)
- Koichi Hasegawa
- Department of Neural and Muscular Physiology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane 693-8501, Japan
| | - Takeshi K Matsui
- Department of Neural and Muscular Physiology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane 693-8501, Japan
| | - Junpei Kondo
- Department of Neural and Muscular Physiology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane 693-8501, Japan
| | - Ken-Ichiro Kuwako
- Department of Neural and Muscular Physiology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane 693-8501, Japan
| |
Collapse
|
3
|
Khuntia P, Rawal S, Marwaha R, Das T. Actin-driven Golgi apparatus dispersal during collective migration of epithelial cells. Proc Natl Acad Sci U S A 2022; 119:e2204808119. [PMID: 35749357 PMCID: PMC9245705 DOI: 10.1073/pnas.2204808119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/20/2022] [Indexed: 12/26/2022] Open
Abstract
As a sedentary epithelium turns motile during wound healing, morphogenesis, and metastasis, the Golgi apparatus moves from an apical position, above the nucleus, to a basal position. This apical-to-basal repositioning of Golgi is critical for epithelial cell migration. Yet the molecular mechanism underlying it remains elusive, although microtubules are believed to play a role. Using live-cell and super-resolution imaging, we show that at the onset of collective migration of epithelial cells, Golgi stacks get dispersed to create an unpolarized transitional structure, and surprisingly, this dispersal process depends not on microtubules but on actin cytoskeleton. Golgi-actin interaction involves Arp2/3-driven actin projections emanating from the actin cortex, and a Golgi-localized actin elongation factor, MENA. While in sedentary epithelial cells, actin projections intermittently interact with the apically located Golgi, and the frequency of this event increases before the dispersion of Golgi stacks, at the onset of cell migration. Preventing Golgi-actin interaction with MENA-mutants eliminates Golgi dispersion and reduces the persistence of cell migration. Taken together, we show a process of actin-driven Golgi dispersion that is mechanistically different from the well-known Golgi apparatus fragmentation during mitosis and is essential for collective migration of epithelial cells.
Collapse
Affiliation(s)
- Purnati Khuntia
- Tata Institute of Fundamental Research Hyderabad, Hyderabad 500 046, India
| | - Simran Rawal
- Tata Institute of Fundamental Research Hyderabad, Hyderabad 500 046, India
| | - Rituraj Marwaha
- Tata Institute of Fundamental Research Hyderabad, Hyderabad 500 046, India
| | - Tamal Das
- Tata Institute of Fundamental Research Hyderabad, Hyderabad 500 046, India
| |
Collapse
|
4
|
Will Cannabigerol Trigger Neuroregeneration after a Spinal Cord Injury? An In Vitro Answer from NSC-34 Scratch-Injured Cells Transcriptome. Pharmaceuticals (Basel) 2022; 15:ph15020117. [PMID: 35215230 PMCID: PMC8875351 DOI: 10.3390/ph15020117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury affects the lives of millions of people around the world, often causing disability and, in unfortunate circumstances, death. Rehabilitation can partly improve outcomes and only a small percentage of patients, typically the least injured, can hope to return to normal living conditions. Cannabis sativa is gaining more and more interest in recent years, even though its beneficial properties have been known for thousands of years. Cannabigerol (CBG), extracted from C. sativa, is defined as the “mother of all cannabinoids” and its properties range from anti-inflammatory to antioxidant and neuroprotection. Using NSC-34 cells to model spinal cord injury in vitro, our work evaluated the properties of CBG treatments in motor neuron regeneration. While pre-treatment can modulate oxidative stress and increase antioxidant enzyme genes, such as Tnx1, decreasing Nos1 post-treatment seems to induce regeneration genes by triggering different pathways, such as Gap43 via p53 acetylation by Ep300 and Ddit3 and Xbp1 via Bdnf signaling, along with cytoskeletal remodeling signaling genes Nrp1 and Map1b. Our results indicate CBG as a phytocompound worth further investigation in the field of neuronal regeneration.
Collapse
|
5
|
Jossin Y. Molecular mechanisms of cell polarity in a range of model systems and in migrating neurons. Mol Cell Neurosci 2020; 106:103503. [PMID: 32485296 DOI: 10.1016/j.mcn.2020.103503] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 05/23/2020] [Indexed: 01/09/2023] Open
Abstract
Cell polarity is defined as the asymmetric distribution of cellular components along an axis. Most cells, from the simplest single-cell organisms to highly specialized mammalian cells, are polarized and use similar mechanisms to generate and maintain polarity. Cell polarity is important for cells to migrate, form tissues, and coordinate activities. During development of the mammalian cerebral cortex, cell polarity is essential for neurogenesis and for the migration of newborn but as-yet undifferentiated neurons. These oriented migrations include both the radial migration of excitatory projection neurons and the tangential migration of inhibitory interneurons. In this review, I will first describe the development of the cerebral cortex, as revealed at the cellular level. I will then define the core molecular mechanisms - the Par/Crb/Scrib polarity complexes, small GTPases, the actin and microtubule cytoskeletons, and phosphoinositides/PI3K signaling - that are required for asymmetric cell division, apico-basal and front-rear polarity in model systems, including C elegans zygote, Drosophila embryos and cultured mammalian cells. As I go through each core mechanism I will explain what is known about its importance in radial and tangential migration in the developing mammalian cerebral cortex.
Collapse
Affiliation(s)
- Yves Jossin
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
6
|
Mortensen LA, Svane AM, Burton M, Bistrup C, Thiesson HC, Marcussen N, Beck HC. Proteomic Analysis of Renal Biomarkers of Kidney Allograft Fibrosis-A Study in Renal Transplant Patients. Int J Mol Sci 2020; 21:ijms21072371. [PMID: 32235494 PMCID: PMC7177439 DOI: 10.3390/ijms21072371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022] Open
Abstract
Renal transplantation is the preferred treatment of end stage renal disease, but allograft survival is limited by the development of interstitial fibrosis and tubular atrophy in response to various stimuli. Much effort has been put into identifying new protein markers of fibrosis to support the diagnosis. In the present work, we performed an in-depth quantitative proteomics analysis of allograft biopsies from 31 prevalent renal transplant patients and correlated the quantified proteins with the volume fraction of fibrosis as determined by a morphometric method. Linear regression analysis identified four proteins that were highly associated with the degree of interstitial fibrosis, namely Coagulation Factor XIII A chain (estimate 18.7, adjusted p < 0.03), Uridine Phosphorylase 1 (estimate 19.4, adjusted p < 0.001), Actin-related protein 2/3 subunit 2 (estimate 34.2, adjusted p < 0.05) and Cytochrome C Oxidase Assembly Factor 6 homolog (estimate -44.9, adjusted p < 0.002), even after multiple testing. Proteins that were negatively associated with fibrosis (p < 0.005) were primarily related to normal metabolic processes and respiration, whereas proteins that were positively associated with fibrosis (p < 0.005) were involved in catabolic processes, cytoskeleton organization and the immune response. The identified proteins may be candidates for further validation with regards to renal fibrosis. The results support the notion that cytoskeleton organization and immune responses are prevalent processes in renal allograft fibrosis.
Collapse
Affiliation(s)
- Line Aas Mortensen
- Department of Nephrology, Odense University Hospital, DK-5000 Odense, Denmark; (L.A.M.); (C.B.); (H.C.T.)
| | - Anne Marie Svane
- Department of Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, DK-5000 Odense, Denmark;
| | - Mark Burton
- Department of Clinical Genetics, Odense University Hospital, DK-5000 Odense, Denmark;
| | - Claus Bistrup
- Department of Nephrology, Odense University Hospital, DK-5000 Odense, Denmark; (L.A.M.); (C.B.); (H.C.T.)
| | - Helle Charlotte Thiesson
- Department of Nephrology, Odense University Hospital, DK-5000 Odense, Denmark; (L.A.M.); (C.B.); (H.C.T.)
| | - Niels Marcussen
- Department of Pathology, Odense University Hospital, DK-5000 Odense, Denmark;
| | - Hans Christian Beck
- Department of Clinical Biochemistry and Pharmacology, Centre for Clinical Proteomics, Odense University Hospital, DK-5000 Odense, Denmark
- Correspondence:
| |
Collapse
|
7
|
Phuyal S, Farhan H. Multifaceted Rho GTPase Signaling at the Endomembranes. Front Cell Dev Biol 2019; 7:127. [PMID: 31380367 PMCID: PMC6646525 DOI: 10.3389/fcell.2019.00127] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
The Rho family of small GTPases orchestrates fundamental biological processes such as cell cycle progression, cell migration, and actin cytoskeleton dynamics, and their aberrant signaling is linked to numerous human diseases and disorders. Traditionally, active Rho GTPase proteins were proposed to reside and function predominantly at the plasma membrane. While this view still holds true, it is emerging that active pool of multiple Rho GTPases are in part localized to endomembranes such as endosomes and the Golgi. In this review, we will focus on the intracellular pools and discuss how their local activation contributes to the shaping of various cellular processes. Our main focus will be on Rho signaling from the endosomes, Golgi, mitochondria and nucleus and how they regulate multiple cellular events such as receptor trafficking, cell proliferation and differentiation, cell migration and polarity.
Collapse
Affiliation(s)
- Santosh Phuyal
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Hesso Farhan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
S100P enhances the motility and invasion of human trophoblast cell lines. Sci Rep 2018; 8:11488. [PMID: 30065265 PMCID: PMC6068119 DOI: 10.1038/s41598-018-29852-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/26/2018] [Indexed: 01/11/2023] Open
Abstract
S100P has been shown to be a marker for carcinogenesis where its expression in solid tumours correlates with metastasis and a poor patient prognosis. This protein's role in any physiological process is, however, unknown. Here we first show that S100P is expressed both in trophoblasts in vivo as well as in some corresponding cell lines in culture. We demonstrate that S100P is predominantly expressed during the early stage of placental formation with its highest expression levels occurring during the first trimester of gestation, particularly in the invading columns and anchoring villi. Using gain or loss of function studies through overexpression or knockdown of S100P expression respectively, our work shows that S100P stimulates both cell motility and cellular invasion in different trophoblastic and first trimester EVT cell lines. Interestingly, cell invasion was seen to be more dramatically affected than cell migration. Our results suggest that S100P may be acting as an important regulator of trophoblast invasion during placentation. This finding sheds new light on a hitherto uncharacterized molecular mechanism which may, in turn, lead to the identification of novel targets that may explain why significant numbers of confirmed human pregnancies suffer complications through poor placental implantation.
Collapse
|
9
|
Abstract
Cell migration is suppressed by confluence in a process called contact inhibition. Relieving contact inhibition upon scratching is one of the simplest ways to induce cell migration in a variety of cell types. Wound healing is probably most relevant to epithelial monolayers, because epithelial cells generally assume a barrier function, which must be restored as fast as possible by the healing process. This versatile assay, however, can also be applied to fibroblasts and to tumor cell types. Furthermore, assessing the cell response to scratch wounding requires no special equipment or reagents. It is one of the few cell migration assays, which can even be performed without videomicroscopy, since the closure of the wound can be estimated at fixed time points. Several hours after wounding, directional collective migration is easily assessed and quantified. However, cell proliferation, which is also induced by the relief of contact inhibition, is one of the confounding factors of wound healing assays that must be taken into account. A recent alternative to the scratch-induced wound is to use special inserts to seed cells into closely spaced chambers. When the insert is removed, contact inhibition is relieved, similar to the scratch-induced wound. In this chapter, we provide the protocol of the two methods and compare their advantages and disadvantages. We also provide a protocol to estimate cell proliferation upon wound healing based on the incorporation of the nucleotide analog EdU.
Collapse
|
10
|
Copeland SJ, Thurston SF, Copeland JW. Actin- and microtubule-dependent regulation of Golgi morphology by FHDC1. Mol Biol Cell 2015; 27:260-76. [PMID: 26564798 PMCID: PMC4713130 DOI: 10.1091/mbc.e15-02-0070] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 11/04/2015] [Indexed: 01/08/2023] Open
Abstract
The coordinated action of the actin and microtubule cytoskeletal networks is required for Golgi ribbon assembly. The novel formin FHDC1 accumulates on the Golgi-derived microtubule network, where it acts to regulate Golgi ribbon assembly in an actin- and microtubule-dependent manner. The Golgi apparatus is the central hub of intracellular trafficking and consists of tethered stacks of cis, medial, and trans cisternae. In mammalian cells, these cisternae are stitched together as a perinuclear Golgi ribbon, which is required for the establishment of cell polarity and normal subcellular organization. We previously identified FHDC1 (also known as INF1) as a unique microtubule-binding member of the formin family of cytoskeletal-remodeling proteins. We show here that endogenous FHDC1 regulates Golgi ribbon formation and has an apparent preferential association with the Golgi-derived microtubule network. Knockdown of FHDC1 expression results in defective Golgi assembly and suggests a role for FHDC1 in maintenance of the Golgi-derived microtubule network. Similarly, overexpression of FHDC1 induces dispersion of the Golgi ribbon into functional ministacks. This effect is independent of centrosome-derived microtubules and instead likely requires the interaction between the FHDC1 microtubule-binding domain and the Golgi-derived microtubule network. These effects also depend on the interaction between the FHDC1 FH2 domain and the actin cytoskeleton. Thus our results suggest that the coordination of actin and microtubule dynamics by FHDC1 is required for normal Golgi ribbon formation.
Collapse
Affiliation(s)
- Sarah J Copeland
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Susan F Thurston
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - John W Copeland
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
11
|
Lee WY, Goh G, Chia J, Boey A, Gunko NV, Bard F. The Ubiquitin Ligase CBLC Maintains the Network Organization of the Golgi Apparatus. PLoS One 2015; 10:e0138789. [PMID: 26393512 PMCID: PMC4579092 DOI: 10.1371/journal.pone.0138789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/03/2015] [Indexed: 11/21/2022] Open
Abstract
The Golgi apparatus plays a pivotal role in the sorting and post-translational modifications of secreted and membrane proteins. In mammalian cells, the Golgi is organized in stacks of cisternae linked together to form a network with a ribbon shape. Regulation of Golgi ribbon formation is poorly understood. Here we find in an image-based RNAi screen that depletion of the ubiquitin-ligase CBLC induces Golgi fragmentation. Depletions of the close homologues CBL and CBLB do not induce any visible defects. In CBLC-depleted cells, Golgi stacks appear relatively unperturbed at both the light and electron microscopy levels, suggesting that CBLC controls mostly network organization. CBLC partially localizes on Golgi membranes and this localization is enhanced after activation of the SRC kinase. Inhibition of SRC reverts CBLC depletion effects, suggesting interplay between the two. CBLC's regulation of Golgi network requires its ubiquitin ligase activity. However, SRC levels are not significantly affected by CBLC, and CBLC knockdown does not phenocopy SRC activation, suggesting that CBLC's action at the Golgi is not direct downregulation of SRC. Altogether, our results demonstrate a role of CBLC in regulating Golgi ribbon by antagonizing the SRC tyrosine kinase.
Collapse
Affiliation(s)
- Wan Yin Lee
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Germaine Goh
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Joanne Chia
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Adrian Boey
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Institute of Medical Biology, Singapore, Singapore
- IMB-IMCB Joint Electron Microscopy Suite, Singapore, Singapore
| | - Natalia V. Gunko
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Institute of Medical Biology, Singapore, Singapore
- IMB-IMCB Joint Electron Microscopy Suite, Singapore, Singapore
| | - Frederic Bard
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Speranza F, Mahankali M, Henkels KM, Gomez-Cambronero J. The molecular basis of leukocyte adhesion involving phosphatidic acid and phospholipase D. J Biol Chem 2014; 289:28885-97. [PMID: 25187519 DOI: 10.1074/jbc.m114.597146] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Defining how leukocytes adhere to solid surfaces, such as capillary beds, and the subsequent migration through the extracellular matrix, is a central biological issue. We show here that phospholipase D (PLD) and its enzymatic reaction product, phosphatidic acid (PA), regulate cell adhesion of immune cells (macrophages and neutrophils) to collagen and have defined the underlying molecular mechanism in a spatio-temporal manner that coincides with PLD activity timing. A rapid (t½ = 4 min) and transient activation of the PLD1 isoform occurs upon adhesion, and a slower (t½ = 7.5 min) but prolonged (>30 min) activation occurs for PLD2. Importantly, PA directly binds to actin-related protein 3 (Arp3) at EC50 = 22 nm, whereas control phosphatidylcholine did not bind. PA-activated Arp3 hastens actin nucleation with a kinetics of t½ = 3 min at 300 nm (compared with controls of no PA, t½ = 5 min). Thus, PLD and PA are intrinsic components of cell adhesion, which reinforce each other in a positive feedback loop and react from cues from their respective solid substrates. In nascent adhesion, PLD1 is key, whereas a sustained adhesion in mature or established focal points is dependent upon PLD2, PA, and Arp3. A prolonged adhesion could effectively counteract the reversible intrinsic nature of this cellular process and constitute a key player in chronic inflammation.
Collapse
Affiliation(s)
- Francis Speranza
- From the Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435
| | - Madhu Mahankali
- From the Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435
| | - Karen M Henkels
- From the Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435
| | - Julian Gomez-Cambronero
- From the Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435
| |
Collapse
|
13
|
Kloc M, Kubiak JZ, Li XC, Ghobrial RM. The newly found functions of MTOC in immunological response. J Leukoc Biol 2013; 95:417-30. [DOI: 10.1189/jlb.0813468] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
14
|
Ilatovskaya DV, Chubinskiy-Nadezhdin V, Pavlov TS, Shuyskiy LS, Tomilin V, Palygin O, Staruschenko A, Negulyaev YA. Arp2/3 complex inhibitors adversely affect actin cytoskeleton remodeling in the cultured murine kidney collecting duct M-1 cells. Cell Tissue Res 2013; 354:783-92. [PMID: 24036843 DOI: 10.1007/s00441-013-1710-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/19/2013] [Indexed: 12/22/2022]
Abstract
Dynamic remodeling of the actin cytoskeleton plays an essential role in cell migration and various signaling processes in living cells. One of the critical factors that controls the nucleation of new actin filaments in eukaryotic cells is the actin-related protein 2/3 (Arp2/3) complex. Recently, two novel classes of small molecules that bind to different sites on the Arp2/3 complex and inhibit its ability to nucleate F-actin have been discovered and described. The current study aims at investigating the effects of CK-0944666 (CK-666) and its analogs (CK-869 and inactive CK-689) on the reorganization of the actin microfilaments in the cortical collecting duct cell line, M-1. We show that treatment with CK-666 and CK869 results in the reorganization of F-actin and drastically affects cell motility rate. The concentrations of the compounds used in this study (100-200 μM) neither cause loss of cell viability nor influence cell shape or monolayer integrity; hence, the effects of described compounds were not due to structural side effects. Therefore, we conclude that the Arp2/3 complex plays an important role in cell motility and F-actin reorganization in M-1 cells. Furthermore, CK-666 and its analogs are useful tools for the investigation of the Arp2/3 complex.
Collapse
Affiliation(s)
- Daria V Ilatovskaya
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia,
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- Primal de Lanerolle
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, IL 60612, USA.
| |
Collapse
|
16
|
Kumar A, Dave M, Pant DC, Laxkar R, Tiwari AK. Vinca rosealeaf extract supplementation leads to developmental delay and several phenotypic anomalies in Drosophila melanogaster. TOXICOLOGICAL & ENVIRONMENTAL CHEMISTRY 2013; 95:635-645. [DOI: 10.1080/02772248.2013.806511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
|
17
|
LaGier AJ, Manzo ND, Dye JA. Diesel exhaust particles induce aberrant alveolar epithelial directed cell movement by disruption of polarity mechanisms. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:71-85. [PMID: 23294296 DOI: 10.1080/15287394.2013.738169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Disruption of the respiratory epithelium contributes to the progression of a variety of respiratory diseases that are aggravated by exposure to air pollutants, specifically traffic-based pollutants such as diesel exhaust particles (DEP). Recognizing that lung repair following injury requires efficient and directed alveolar epithelial cell migration, this study's goal was to understand the mechanisms underlying alveolar epithelial cells response to DEP, particularly when exposure is accompanied with comorbid lung injury. Separate mechanistic steps of directed migration were investigated in confluent murine LA-4 cells exposed to noncytotoxic concentrations (0-100 μg/cm(2)) of either automobile-emitted diesel exhaust particles (DEP(A)) or carbon black (CB) particles. A scratch wound model ascertained how DEP(A) exposure affected directional cell migration and BCECF ratio fluorimetry-monitored intracellular pH (pHi). Cells were immunostained with giantin to assess cell polarity, and with paxillin to assess focal cell adhesions. Cells were immunoblotted for ezrin/radixin/moesin (ERM) to assess cytoskeletal anchoring. Data demonstrate herein that exposure of LA-4 cells to DEP(A) (but not CB) resulted in delayed directional cell migration, impaired de-adhesion of the trailing edge cell processes, disrupted regulation of pHi, and altered Golgi polarity of leading edge cells, along with modified focal adhesions and reduced ERM levels, indicative of decreased cytoskeletal anchoring. The ability of DEP(A) to disrupt directed cell migration at multiple levels suggests that signaling pathways such as ERM/Rho are critical for transduction of ion transport signals into cytoskeletal arrangement responses. These results provide insights into the mechanisms by which chronic exposure to traffic-based emissions may result in decrements in lung capacity.
Collapse
Affiliation(s)
- Adriana J LaGier
- Department of Biological Sciences, College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, Florida 33965, USA.
| | | | | |
Collapse
|
18
|
Mendoza-Naranjo A, Cormie P, Serrano AE, Hu R, O'Neill S, Wang CM, Thrasivoulou C, Power KT, White A, Serena T, Phillips ARJ, Becker DL. Targeting Cx43 and N-cadherin, which are abnormally upregulated in venous leg ulcers, influences migration, adhesion and activation of Rho GTPases. PLoS One 2012; 7:e37374. [PMID: 22615994 PMCID: PMC3352877 DOI: 10.1371/journal.pone.0037374] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 04/18/2012] [Indexed: 12/19/2022] Open
Abstract
Background Venous leg ulcers can be very hard to heal and represent a significant medical need with no effective therapeutic treatment currently available. Principal Findings In wound edge biopsies from human venous leg ulcers we found a striking upregulation of dermal N-cadherin, Zonula Occludens-1 and the gap junction protein Connexin43 (Cx43) compared to intact skin, and in stark contrast to the down-regulation of Cx43 expression seen in acute, healing wounds. We targeted the expression of these proteins in 3T3 fibroblasts to evaluate their role in venous leg ulcers healing. Knockdown of Cx43 and N-cadherin, but not Zonula Occludens-1, accelerated cell migration in a scratch wound-healing assay. Reducing Cx43 increased Golgi reorientation, whilst decreasing cell adhesion and proliferation. Furthermore, Connexin43 and N-cadherin knockdown led to profound effects on fibroblast cytoskeletal dynamics after scratch-wounding. The cells exhibited longer lamelipodial protrusions lacking the F-actin belt seen at the leading edge in wounded control cells. This phenotype was accompanied by augmented activation of Rac-1 and RhoA GTPases, as revealed by Förster Resonance Energy Transfer and pull down experiments. Conclusions Cx43 and N-cadherin are potential therapeutic targets in the promotion of healing of venous leg ulcers, by acting at least in part through distinct contributions of cell adhesion, migration, proliferation and cytoskeletal dynamics.
Collapse
Affiliation(s)
- Ariadna Mendoza-Naranjo
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
- * E-mail: (DLB); (AMN)
| | - Peter Cormie
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Antonio E. Serrano
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Rebecca Hu
- CoDa Therapeutics, Auckland, New Zealand
| | | | - Chiuhui Mary Wang
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | | | - Kieran T. Power
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | | | - Thomas Serena
- Newbridge Medical Research Corp, Warren, Pennsylvania, United States of America
| | | | - David L. Becker
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
- * E-mail: (DLB); (AMN)
| |
Collapse
|
19
|
Polarised apical-like intracellular sorting and trafficking regulates invadopodia formation and degradation of the extracellular matrix in cancer cells. Eur J Cell Biol 2012; 91:961-8. [PMID: 22564726 DOI: 10.1016/j.ejcb.2012.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 01/07/2023] Open
Abstract
Invadopodia are proteolytically active protrusions formed by invasive tumoral cells when grown on an extracellular matrix (ECM) substratum. A current challenge is to understand how proteolytic activity is so precisely localised at discrete sites of the plasma membrane to produce focalised ECM degradation at invadopodia. Indeed, a number of components including metalloproteases need to be directed to invadopodia to ensure proper segregation of proteolytic activities. We recently found invadopodia to feature the properties of cholesterol-rich membrane domains (a.k.a. lipid drafts) and that ECM degradation depends on the tight control of cholesterol homeostasis. Since apically directed polarised sorting and transport in epithelial cells relies on segregation of proteins into lipid rafts at the Golgi complex, we hypothesised that invadopodia-dependent ECM degradation might also rely on lipid raft-dependent polarised transport routes. To investigate this issue we undertook a three-pronged approach. First, we found that microtubule depolymerisation, which is known to disrupt polarised transport in polarised cells, strongly inhibited invadopodia formation, while not affecting overall protein transport. In the second approach we found that glycosylphosphatidylinositol-anchored green fluorescent protein (an apical model protein), but not vesicular stomatitis virus G-protein or influenza virus hemagglutinin (both model basolateral model cargoes), was transported to sites of ECM degradation. Finally, RNAi-mediated knock-down of proteins known to specifically regulate polarised apical or basolateral transport in epithelial cells, such as caveolin 1 and annexin XIIIB or clathrin, respectively, demonstrated that the selective inhibition of the apical, but not the basolateral, transport route impairs invadopodia formation and ECM degradation. Taken together, our findings suggest that invadopodia are apical-like membrane domains, where signal transduction and local membrane remodelling events might be temporally and spatially confined via selective raft-dependent apical transport routes.
Collapse
|
20
|
Millarte V, Farhan H. The Golgi in cell migration: regulation by signal transduction and its implications for cancer cell metastasis. ScientificWorldJournal 2012; 2012:498278. [PMID: 22623902 PMCID: PMC3353474 DOI: 10.1100/2012/498278] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 12/18/2011] [Indexed: 01/17/2023] Open
Abstract
Migration and invasion are fundamental features of metastatic cancer cells. The Golgi apparatus, an organelle involved in posttranslational modification and sorting of proteins, is widely accepted to regulate directional cell migration. In addition, mounting evidence suggests that the Golgi is a hub for different signaling pathways. In this paper we will give an overview on how polarized secretion and microtubule nucleation at the Golgi regulate directional cell migration. We will review different signaling pathways that signal to and from the Golgi. Finally, we will discuss how these signaling pathways regulate the role of the Golgi in cell migration and invasion. We propose that by identifying regulators of the Golgi, we might be able to uncover unappreciated modulators of cell migration. Uncovering the regulatory network that orchestrates cell migration is of fundamental importance for the development of new therapeutic strategies against cancer cell metastasis.
Collapse
Affiliation(s)
- Valentina Millarte
- Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, Germany
| | | |
Collapse
|
21
|
Blood-borne metabolic factors in obesity exacerbate injury-induced gliosis. J Mol Neurosci 2012; 47:267-77. [PMID: 22392152 DOI: 10.1007/s12031-012-9734-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
Abstract
Reactive gliosis, a sign of neuroinflammation, has been observed in mice with adult-onset obesity as well as CNS injury. The hypothesis that obesity-derived metabolic factors exacerbate reactive gliosis in response to mechanical injury was tested here on cultured primary glial cells subjected to a well-established model of scratch wound injury. Cells treated with serum from mice with diet-induced obesity (DIO) showed higher immunoreactivity of CD11b (marker for microglia) and GFAP (marker for astrocytes), with morphological changes at both the injury border and areas away from the injury. The effect of DIO serum was greater than that of scratch injury alone. Leptin was almost as effective as DIO serum in inducing microgliosis and astrogliosis in a dose-response manner. By contrast, C-reactive protein (CRP) mainly induced microgliosis in noninjured cells; injury-induced factors appeared to attenuate this effect. The effect of CRP also differed from the effect of the antibiotic minocycline. Minocycline attenuated the microgliosis and to a lesser extent astrogliosis, particularly in CRP-treated cells, thus serving as a negative control. We conclude that blood-borne proinflammatory metabolic factors in obesity increase reactive gliosis and probably exacerbate CNS injury.
Collapse
|
22
|
Reed SCO, Serio AW, Welch MD. Rickettsia parkeri invasion of diverse host cells involves an Arp2/3 complex, WAVE complex and Rho-family GTPase-dependent pathway. Cell Microbiol 2012; 14:529-45. [PMID: 22188208 DOI: 10.1111/j.1462-5822.2011.01739.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rickettsiae are obligate intracellular pathogens that are transmitted to humans by arthropod vectors and cause diseases such as spotted fever and typhus. Although rickettsiae require the host cell actin cytoskeleton for invasion, the cytoskeletal proteins that mediate this process have not been completely described. To identify the host factors important during cell invasion by Rickettsia parkeri, a member of the spotted fever group (SFG), we performed an RNAi screen targeting 105 proteins in Drosophila melanogaster S2R+ cells. The screen identified 21 core proteins important for invasion, including the GTPases Rac1 and Rac2, the WAVE nucleation-promoting factor complex and the Arp2/3 complex. In mammalian cells, including endothelial cells, the natural targets of R. parkeri, the Arp2/3 complex was also crucial for invasion, while requirements for WAVE2 as well as Rho GTPases depended on the particular cell type. We propose that R. parkeri invades S2R+ arthropod cells through a primary pathway leading to actin nucleation, whereas invasion of mammalian endothelial cells occurs via redundant pathways that converge on the host Arp2/3 complex. Our results reveal a key role for the WAVE and Arp2/3 complexes, as well as a higher degree of variation than previously appreciated in actin nucleation pathways activated during Rickettsia invasion.
Collapse
Affiliation(s)
- Shawna C O Reed
- Microbiology Graduate Group, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
23
|
Dasgupta S, Cushman I, Kpetemey M, Casey PJ, Vishwanatha JK. Prenylated c17orf37 induces filopodia formation to promote cell migration and metastasis. J Biol Chem 2011; 286:25935-46. [PMID: 21628459 DOI: 10.1074/jbc.m111.254599] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Post-translational modification by covalent attachment of isoprenoid lipids (prenylation) regulates the functions and biological activities of several proteins implicated in the oncogenic transformation and metastatic progression of cancer. The largest group of prenylated proteins contains a CAAX motif at the C-terminal that serves as a substrate for a series of post-translational modifications that convert these otherwise hydrophilic proteins to lipidated proteins, thus facilitating membrane association. C17orf37 (chromosome 17 open reading frame 37), also known as C35/Rdx12/MGC14832, located in the 17q12 amplicon, is overexpressed in human cancer, and its expression correlates with the migratory and invasive phenotype of cancer cells. Here we show that C17orf37 contains a functional CAAX motif and is post-translationally modified by protein geranylgeranyltransferase-I (GGTase-I). Geranylgeranylation of C17orf37 at the CAAX motif facilitates association of the protein to the inner leaflet of plasma membrane, enhances migratory phenotype of cells by inducing increased filopodia formation, and potentiates directional migration. A prenylation-deficient mutant of C17orf37 is functionally inactive and fails to trigger dissemination of tail vein-injected cells in a mouse model of metastasis. These findings demonstrate that prenylation is required for the function of the C17orf37 protein in cancer cells and imply that the post-translational modification may functionally regulate metastatic progression of disease.
Collapse
Affiliation(s)
- Subhamoy Dasgupta
- Department of Biomedical Sciences and Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | | | | | | | | |
Collapse
|
24
|
Cao L, Pu J, Zhao M. GSK-3β is essential for physiological electric field-directed Golgi polarization and optimal electrotaxis. Cell Mol Life Sci 2011; 68:3081-93. [PMID: 21207103 PMCID: PMC3136619 DOI: 10.1007/s00018-010-0608-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 12/03/2010] [Accepted: 12/07/2010] [Indexed: 12/24/2022]
Abstract
Endogenous electrical fields (EFs) at corneal and skin wounds send a powerful signal that directs cell migration during wound healing. This signal therefore may serve as a fundamental regulator directing cell polarization and migration. Very little is known of the intracellular and molecular mechanisms that mediate EF-induced cell polarization and migration. Here, we report that Chinese hamster ovary (CHO) cells show robust directional polarization and migration in a physiological EF (0.3–1 V/cm) in both dissociated cell culture and monolayer culture. An EF of 0.6 V/cm completely abolished cell migration into wounds in monolayer culture. An EF of higher strength (≥1 V/cm) is an overriding guidance cue for cell migration. Application of EF induced quick phosphorylation of glycogen synthase kinase 3β (GSK-3β) which reached a peak as early as 3 min in an EF. Inhibition of protein kinase C (PKC) significantly reduced EF-induced directedness of cell migration initially (in 1–2 h). Inhibition of GSK-3β completely abolished EF-induced GA polarization and significantly inhibited the directional cell migration, but at a later time (2–3 h in an EF). Those results suggest that GSK-3β is essential for physiological EF-induced Golgi apparatus (GA) polarization and optimal electrotactic cell migration.
Collapse
Affiliation(s)
- Lin Cao
- Department of Dermatology, University of California, Davis, CA 95618, USA
| | | | | |
Collapse
|
25
|
Abstract
The scratch-wound assay is a simple, reproducible assay commonly used to measure basic cell migration parameters such as speed, persistence, and polarity. Cells are grown to confluence and a thin "wound" introduced by scratching with a pipette tip. Cells at the wound edge polarise and migrate into the wound space. Advantages of this assay are that it does not require the use of specific chemoattractants or gradient chambers and it generates a strong directional migratory response, even in cell types that do not show robust responses in "single cell" migration assays. It is most reliably analysed when performed using time-lapse imaging, which can also yield valuable cell morphology/protein localisation information.
Collapse
Affiliation(s)
- Giles Cory
- Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, UK.
| |
Collapse
|
26
|
TGN golgins, Rabs and cytoskeleton: regulating the Golgi trafficking highways. Trends Cell Biol 2010; 20:329-36. [DOI: 10.1016/j.tcb.2010.02.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 02/15/2010] [Accepted: 02/17/2010] [Indexed: 12/22/2022]
|
27
|
Caldieri G, Buccione R. Aiming for invadopodia: organizing polarized delivery at sites of invasion. Trends Cell Biol 2009; 20:64-70. [PMID: 19931459 DOI: 10.1016/j.tcb.2009.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 10/22/2009] [Accepted: 10/26/2009] [Indexed: 01/05/2023]
Abstract
Recent years have witnessed growing interest in the biology of invadopodia, proteolytically active protrusions formed by invasive tumor cells when cultured on an extracellular matrix (ECM). Although substantial progress has been made towards defining their basic elements and features, the need remains to understand how these components are recruited and, ultimately, how ECM degradation is so precisely localized. According to recent evidence, invadopodia are raft-like membrane domains where cholesterol levels are tightly regulated, and active transport of protease-delivering carriers is required for their function. On this basis we hypothesize that the correct delivery of cargo to invadopodia is ensured by a polarized, cholesterol-dependent trafficking mechanism, similar to that of the apical domain of epithelial cells.
Collapse
Affiliation(s)
- Giusi Caldieri
- Tumor Cell Invasion Laboratory, Consorzio Mario Negri Sud, S. Maria Imbaro (Chieti), 66030 Italy
| | | |
Collapse
|
28
|
Pocha SM, Cory GO. WAVE2 is regulated by multiple phosphorylation events within its VCA domain. ACTA ACUST UNITED AC 2009; 66:36-47. [PMID: 19012317 PMCID: PMC2798068 DOI: 10.1002/cm.20323] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The (Wiskott-Aldrich Syndrome Protein)-family verprolin homologous protein (WAVE) family of proteins occupies a pivotal position in the cell, converting extracellular signals into the formation of branched filamentous (F) actin structures. WAVE proteins contain a verprolin central acidic (VCA) domain at their C-terminus, responsible for binding to and activating the Arp2/3 complex, which in-turn nucleates the formation of new actin filaments. Here we identify five Casein Kinase 2 (CK2) phosphorylation sites within the VCA domain of WAVE2, serines 482, 484, 488, 489, and 497. Phosphorylation of these sites is required for a high affinity interaction with the Arp2/3 complex. Phosphorylation of ser 482 and 484 specifically inhibits the activation of the Arp2/3 complex by the WAVE2 VCA domain, but has no effect on the affinity for the Arp2/3 complex when the other phosphorylation sites are occupied. We demonstrate phosphorylation of all five sites on endogenous WAVE2 and show that their mutation to non-phosphorylatable alanine residues inhibits WAVE2 function in vivo, inhibiting cell ruffling and disrupting the integrity of the leading edge of migrating cells. Cell Motil. Cytoskeleton 2008. © 2008 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Shirin M Pocha
- Department of Biochemistry, Faculty of Medical and Veterinary Sciences, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
29
|
Brownhill K, Wood L, Allan V. Molecular motors and the Golgi complex: staying put and moving through. Semin Cell Dev Biol 2009; 20:784-92. [PMID: 19446479 DOI: 10.1016/j.semcdb.2009.03.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 03/30/2009] [Accepted: 03/31/2009] [Indexed: 11/19/2022]
Abstract
The Golgi apparatus is a highly dynamic organelle through which nascent proteins released from the endoplasmic reticulum (ER) are trafficked. Proteins are post-translationally modified within the Golgi and subsequently packaged into carriers for transport to a variety of cellular destinations. This transit of proteins, as well as the maintenance of Golgi structure and position, is highly dependent upon the actin and microtubule cytoskeletons and their associated molecular motors. Here we review how motors contribute to the correct functioning of the Golgi in higher eukaryotes and discuss the secretory pathway as a model system for studying cooperation between motor proteins.
Collapse
Affiliation(s)
- Kim Brownhill
- University of Manchester, Faculty of Life Sciences, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
30
|
Dissecting colony development of Neurospora crassa using mRNA profiling and comparative genomics approaches. EUKARYOTIC CELL 2008; 7:1549-64. [PMID: 18676954 DOI: 10.1128/ec.00195-08] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Colony development, which includes hyphal extension, branching, anastomosis, and asexual sporulation, is a fundamental aspect of the life cycle of filamentous fungi; genetic mechanisms underlying these phenomena are poorly understood. We conducted transcriptional profiling during colony development of the model filamentous fungus Neurospora crassa, using 70-mer oligonucleotide microarrays. Relative mRNA expression levels were determined for six sections of defined age excised from a 27-h-old N. crassa colony. Functional category analysis showed that the expression of genes involved in cell membrane biosynthesis, polar growth, and cellular signaling was enriched at the periphery of the colony. The relative expression of genes involved in protein synthesis and energy production was enriched in the middle section of the colony, while sections of the colony undergoing asexual development (conidiogenesis) were enriched in expression of genes involved in protein/peptide degradation and unclassified proteins. A cross-examination of the N. crassa data set with a published data set of Aspergillus niger revealed shared patterns in the spatiotemporal regulation of gene orthologs during colony development. At present, less than 50% of genes in N. crassa have functional annotation, which imposes the chief limitation on data analysis. Using an evolutionary approach, we observed that the expression of phylogenetically conserved groups of genes was enriched in the middle section of an N. crassa colony whereas expression of genes unique to euascomycete species and of N. crassa orphan genes was enriched at the colony periphery and in the older, conidiating sections of a fungal colony.
Collapse
|
31
|
Campellone KG, Webb NJ, Znameroski EA, Welch MD. WHAMM is an Arp2/3 complex activator that binds microtubules and functions in ER to Golgi transport. Cell 2008; 134:148-61. [PMID: 18614018 DOI: 10.1016/j.cell.2008.05.032] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 03/11/2008] [Accepted: 05/12/2008] [Indexed: 11/29/2022]
Abstract
The Arp2/3 complex is an actin nucleator that plays a critical role in many cellular processes. Its activities are regulated by nucleation-promoting factors (NPFs) that function primarily during plasma membrane dynamics. Here we identify a mammalian NPF called WHAMM (WASP homolog associated with actin, membranes, and microtubules) that localizes to the cis-Golgi apparatus and tubulo-vesicular membrane transport intermediates. The modular organization of WHAMM includes an N-terminal domain that mediates Golgi membrane association, a coiled-coil region that binds microtubules, and a WCA segment that stimulates Arp2/3-mediated actin polymerization. Overexpression and depletion studies indicate that WHAMM is important for maintaining Golgi structure and facilitating anterograde membrane transport. The ability of WHAMM to interact with microtubules plays a role in membrane tubulation, while its capacity to induce actin assembly promotes tubule elongation. Thus, WHAMM is an important regulator of membrane dynamics functioning at the interface of the microtubule and actin cytoskeletons.
Collapse
Affiliation(s)
- Kenneth G Campellone
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
32
|
Danson CM, Pocha SM, Bloomberg GB, Cory GO. Phosphorylation of WAVE2 by MAP kinases regulates persistent cell migration and polarity. J Cell Sci 2008; 120:4144-54. [PMID: 18032787 PMCID: PMC2690415 DOI: 10.1242/jcs.013714] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The WAVE family of proteins has long been implicated in the stimulus-dependent generation of lamellipodia at the leading edge of migrating cells, with WAVE2 in particular implicated in the formation of peripheral ruffles and chemotactic migration. However, the lack of direct visualisation of cell migration in WAVE2 mutants or knockdowns has made defining the mechanisms of WAVE2 regulation during cell migration difficult. We have characterised three MAP kinase phosphorylation sites within WAVE2 and analysed fibroblast behaviour in a scratch-wound model following introduction of transgenes encoding phospho-defective WAVE2. The cells exhibited an increase in migration speed, a decrease in the persistence of migration, and disruption of polarisation of the Golgi apparatus. All these effects could be mimicked by acute knockdown of endogenous WAVE2 expression with RNAi, indicating that phosphorylation of WAVE2 by MAP kinases regulates cell polarity during migration.
Collapse
Affiliation(s)
- Christopher M Danson
- Department of Biochemistry, Faculty of Medical and Veterinary Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
33
|
Abstract
The movement of leukocytes from the blood into peripheral tissues plays a key role in immunity as well as chronic inflammatory and autoimmune diseases. The shear force of blood flow presents special challenges to leukocytes as they establish adhesion on the vascular endothelium and migrate into the underlying tissues. Integrins are a family of cell adhesion and signaling molecules, whose function can be regulated to meet these challenges. The affinity of integrins for their vascular ligands can be stimulated in subseconds by chemoattractant signaling. This aids in inducing leukocyte adhesion under flow conditions. Further, linkage of these integrins to the actin cytoskeleton also helps to establish adhesion to the endothelium under flow conditions. In the case of alpha4beta1 integrins, this linkage of the integrin to the cytoskeleton is mediated in part by the binding of paxillin to the alpha4 integrin subunit and the subsequent binding of paxillin to the cytoskeleton molecule talin. The movement of leukocytes along the vascular endothelium and in between endothelial cells requires the temporal and spatial regulation of small guanosine triphosphatases, such as Rac1. We describe mechanisms through which alpha4beta1 integrin signaling regulates appropriate Rac activation to drive leukocyte migration.
Collapse
Affiliation(s)
- David M Rose
- Department of Medicine, University of California, and VA Healthcare System, San Diego, CA, USA
| | | | | |
Collapse
|
34
|
Iwaya K, Oikawa K, Semba S, Tsuchiya B, Mukai Y, Otsubo T, Nagao T, Izumi M, Kuroda M, Domoto H, Mukai K. Correlation between liver metastasis of the colocalization of actin-related protein 2 and 3 complex and WAVE2 in colorectal carcinoma. Cancer Sci 2007; 98:992-9. [PMID: 17459058 PMCID: PMC11158612 DOI: 10.1111/j.1349-7006.2007.00488.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Directed movement of normal cells occurs when actin-related protein 2 and 3 complex (Arp2/3 complex) triggers the actin polymerization that forms lamellipodia immediately after binding to WAVE2. In order to determine whether the same mechanism correlates with liver metastasis from colorectal cancer, paired mirror sections of 154 cancer specimens (29 cases with liver metastasis and 125 cases without liver metastasis in which T factor, gender, primary tumor site, and age at operation were matched) were examined immunohistochemically for the localization of Arp2 and WAVE2. Expression of both Arp2 and WAVE2 was detected in the same cancer cells in 55 (35.7%) of the 154 cases, but not detected in the normal colonic epithelial cells. Univariate analysis showed that the colocalization was significantly predictive of liver metastasis (risk ratio [RR] 8.760. Likewise, histological grade (RR 2.46), lymphatic invasion (RR 9.95), and tumor budding (RR 4.00) were significant predictors. Among these, colocalization and lymphatic invasion were shown to be independent risk factors by multivariate analysis. Another 59 colorectal specimens were examined for mRNA expression of Arp2 by real time polymerase chain reaction. High mRNA levels of Arp2, that in situ hybridization revealed to be expressed by the cancer cells, were significantly associated with liver metastasis. However, its effect was absorbed by the influence of risk of the colocalization that is closely related to high expression of Arp2. These results indicate that the colocalization of Arp2 and WAVE2 is an independent risk factor for liver metastasis of colorectal carcinoma.
Collapse
Affiliation(s)
- Keiichi Iwaya
- Department of Diagnostic Pathology, Tokyo Medical University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Carabeo RA, Dooley CA, Grieshaber SS, Hackstadt T. Rac interacts with Abi-1 and WAVE2 to promote an Arp2/3-dependent actin recruitment during chlamydial invasion. Cell Microbiol 2007; 9:2278-88. [PMID: 17501982 DOI: 10.1111/j.1462-5822.2007.00958.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chlamydiae are Gram-negative obligate intracellular pathogens to which access to an intracellular environment is fundamental to their development. Chlamydial attachment to host cells induces the activation of the Rac GTPase, which is required for the localization of WAVE2 at the sites of chlamydial entry. Co-immunoprecipitation experiments demonstrated that Chlamydia trachomatis infection promoted the interaction of Rac with WAVE2 and Abi-1, but not with IRSp53. siRNA depletion of WAVE2 and Abi-1 abrogated chlamydia-induced actin recruitment and significantly reduced the uptake of the pathogen by the depleted cells. Chlamydia invasion also requires the Arp2/3 complex as demonstrated by its localization to the sites of chlamydial attachment and the reduced efficiency of chlamydial invasion in cells overexpressing the VCA domain of the neural Wiskott-Aldrich syndrome protein. Thus, C. trachomatis activates Rac and promotes its interaction with WAVE2 and Abi-1 to activate the Arp2/3 complex resulting in the induction of actin cytoskeletal rearrangements that are required for invasion.
Collapse
Affiliation(s)
- Rey A Carabeo
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | | | | | | |
Collapse
|
36
|
Darenfed H, Dayanandan B, Zhang T, Hsieh SHK, Fournier AE, Mandato CA. Molecular characterization of the effects of Y-27632. ACTA ACUST UNITED AC 2007; 64:97-109. [PMID: 17009325 DOI: 10.1002/cm.20168] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Many key cellular functions, such as cell motility and cellular differentiation are mediated by Rho-associated protein kinases (ROCKs). Numerous studies have been conducted to examine the ROCK signal transduction pathways involved in these motile and contractile events with the aid of pharmacological inhibitors such as Y-27632. However the molecular mechanism of action of Y-27632 has not been fully defined. To assess the relative contribution of these Rho effectors to the effects of Y-27632, we compared the cytoskeletal phenotype, wound healing and neurite outgrowth in cells treated with Y-27632 or subjected to knockdown with ROCK-I, ROCK-II or PRK-2- specific siRNAs. Reduction of ROCK-I enhances the formation of thin actin-rich membrane extensions, a phenotype that closely resembles the effect of Y-27632. Knockdown of ROCK II or PRK-2, leads to the formation of disc-like extensions and thick actin bundles, respectively. The effect of ROCK-I knockdown also mimicked the effect of Y-27632 on wound closer rates. ROCK-I knockdown and Y-27632 enhanced wound closure rates, while ROCK-II and PRK-2 were not appreciably different from control cells. In neurite outgrowth assays, knockdown of ROCK-I, ROCK-II or PRK-2 enhances neurite lengths, however no individual knockdown stimulated neurite outgrowth as robustly as Y-27632. We conclude that several kinases contribute to the global effect of Y-27632 on cellular responses.
Collapse
Affiliation(s)
- Hassina Darenfed
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Baldassarre M, Ayala I, Beznoussenko G, Giacchetti G, Machesky LM, Luini A, Buccione R. Actin dynamics at sites of extracellular matrix degradation. Eur J Cell Biol 2006; 85:1217-31. [PMID: 17010475 DOI: 10.1016/j.ejcb.2006.08.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 08/10/2006] [Accepted: 08/10/2006] [Indexed: 10/24/2022] Open
Abstract
The degradation of extracellular matrix (ECM) by proteases is crucial in physiological and pathological cell invasion alike. In vitro, degradation occurs at specific sites where invasive cells make contact with the ECM via specialized plasma membrane protrusions termed invadopodia. Here we present an extensive morpho-functional analysis of invadopodia actively engaged in ECM degradation and show that they are actin comet-based structures, not unlike the well-known bacteria-propelling actin tails. The relative mapping of the basic molecular components of invadopodia to actin tails is also provided. Finally, a live-imaging analysis of invadopodia highlights the intrinsic long-term stability of the structures coupled to a highly dynamic actin turnover. The results offer new insight into the tight coordination between signalling, actin remodelling and trafficking activities occurring at sites of focalized ECM degradation by invadopodia. In conclusion, invadopodia-associated actin comets are a striking example of consistently arising, spontaneous expression of actin-driven propulsion events that also represent a valuable experimental paradigm.
Collapse
Affiliation(s)
- Massimiliano Baldassarre
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Via Nazionale 8A, I-66030 S. Maria Imbaro, Chieti, Italy
| | | | | | | | | | | | | |
Collapse
|
38
|
Fang Z, Duthoit N, Wicher G, Källskog O, Ambartsumian N, Lukanidin E, Takenaga K, Kozlova EN. Intracellular calcium-binding protein S100A4 influences injury-induced migration of white matter astrocytes. Acta Neuropathol 2006; 111:213-9. [PMID: 16463066 DOI: 10.1007/s00401-005-0019-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 10/27/2005] [Accepted: 10/27/2005] [Indexed: 12/11/2022]
Abstract
Astrocytes play a crucial role in central nervous system (CNS) pathophysiology. White and gray matter astrocytes are regionally specialized, and likely to respond differently to CNS injury and in CNS disease. We previously showed that the calcium-binding protein S100A4 is exclusively expressed in white matter astrocytes and markedly up-regulated after injury. Furthermore, down-regulation of S100A4 in vitro significantly increases the migration capacity of white matter astrocytes, a property, which might influence their function in CNS tissue repair. Here, we performed a localized injury (scratch) in confluent cultures of white matter astrocytes, which strongly express S100A4, and in cultures of white matter astrocytes, in which S100A4 was down-regulated by transfection with short interference (si) S100A4 RNA. We found that S100A4-silenced astrocytes rapidly migrated into the injury gap, whereas S100A4-expressing astrocytes extended hypertrophied processes toward the gap, but without closing it. To explore the involvement of S100A4 in migration of astrocytes in vivo, we induced focal demyelination and transient glial cell elimination in the spinal cord white matter by ethidium bromide injection in S100A4 (-/-) and (+/+) mice. The results show that astrocyte migration into the demyelinated area is promoted in S100A4 (-/-) compared to (+/+) mice, in which a pronounced glial scar was formed. These data indicate that S100A4 reduces the migratory capacity of reactive white matter astrocytes in the injured CNS and is involved in glial scar formation after injury.
Collapse
Affiliation(s)
- Z Fang
- Department of Neuroscience, Biomedical Center, Uppsala University, 587, 751 23, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Egea G, Lázaro-Diéguez F, Vilella M. Actin dynamics at the Golgi complex in mammalian cells. Curr Opin Cell Biol 2006; 18:168-78. [PMID: 16488588 DOI: 10.1016/j.ceb.2006.02.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 02/09/2006] [Indexed: 01/05/2023]
Abstract
Secretion and endocytosis are highly dynamic processes that are sensitive to external stimuli. Thus, in multicellular organisms, different cell types utilize specialised pathways of intracellular membrane traffic to facilitate specific physiological functions. In addition to the complex internal molecular factors that govern sorting functions and fission or fusion of transport carriers, the actin cytoskeleton plays an important role in both the endocytic and secretory pathways. The interaction between the actin cytoskeleton and membrane trafficking is not restricted to transport processes: it also appears to be directly involved in the biogenesis of Golgi-derived transport carriers (budding and fission processes) and in the maintenance of the unique flat shape of Golgi cisternae.
Collapse
Affiliation(s)
- Gustavo Egea
- Departament de Biologia Cel.lular i Anatomia Patològica, Facultat de Medicina and Instituts de Nanociències i Nanotecnologia (IN(2)UB) and d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, E-08036 Barcelona, Spain
| | | | | |
Collapse
|
40
|
Binz N, Graham CE, Simpson K, Lai YKY, Shen WY, Lai CM, Speed TP, Rakoczy PE. Long-term effect of therapeutic laser photocoagulation on gene expression in the eye. FASEB J 2005; 20:383-5. [PMID: 16354724 DOI: 10.1096/fj.05-3890fje] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Microarray-based gene expression analysis demonstrated that laser photocoagulation (LPC) of mouse eyes had a long-term effect on the expression of genes functionally related to tissue repair, cell migration, proliferation, ion, protein and nucleic acid metabolism, cell signaling, and angiogenesis. Six structural genes, including five crystallins (Cryaa, Cryba1, Crybb2, Crygc, Crygs) and keratin 1-12 (Krt1-12), the anti-angiogenic factor thrombospondin 1 (Tsp1), the retina- and brain-specific putative transcription factor tubby-like protein 1 (Tulp1), and transketolase (Tkt), a key enzyme in the pentose-phosphate pathway, were all shown to be up-regulated by real-time PCR and/or Western blotting. Immunohistochemistry localized five of these proteins to the laser lesions and surrounding tissue within the retina and pigmented epithelium. This is the first study demonstrating long-term changes in the expression of these genes associated with LPC. Therefore, it suggests that modulated gene expression might contribute to the long-term inhibitory effect of LPC. In addition, these genes present novel targets for gene-based therapies aimed at treating microangiopathies, especially diabetic retinopathy, a disease currently only treatable with LPC.
Collapse
Affiliation(s)
- Nicolette Binz
- Molecular Ophthalmology, Lions Eye Institute, Nedlands, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Lefebvre-Lavoie J, Lussier JG, Theoret CL. Profiling of differentially expressed genes in wound margin biopsies of horses using suppression subtractive hybridization. Physiol Genomics 2005; 22:157-70. [PMID: 15870397 DOI: 10.1152/physiolgenomics.00018.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Disturbed gene expression may disrupt the normal process of repair and lead to pathological situations resulting in excessive scarring. To prevent and treat impaired healing, it is necessary to first define baseline gene expression during normal repair. The objective of this study was to compare gene expression in normal intact skin (IS) and wound margin (WM) biopsies using suppression subtractive hybridization (SSH) to identify genes differentially expressed during wound repair in horses. Tissue samples included both normal IS and biopsies from 7-day-old wounds. IS cDNAs were subtracted from WM cDNAs to establish a subtracted (WM-IS) cDNA library; 226 nonredundant cDNAs were identified. Detection of genes previously shown to be expressed 7 days after trauma, including the pro-α2-chain of type 1 pro-collagen (COL1A2), annexin A2, the pro-α3-chain of type 6 pro-collagen, β-actin, fibroblast growth factor 7, laminin receptor 1, matrix metalloproteinase 1 (MMP1), secreted protein acidic cystein rich, and tissue inhibitor of metalloproteinase 2, supported the validity of the experimental design. A RT-PCR assay confirmed an increase or induction of the cDNAs of specific genes (COL1A2, MMP1, dermatan sulfate proteoglycan 2, cluster differentiation 68, cluster differentiation 163, and disintegrin and metalloproteinase domain 9) within wound biopsies. Among these, COL1A2 and MMP1 had previously been documented in horses; 68.8% of the cDNAs had not previously been attributed a role during wound repair, of which spermidine/spermine- N-acetyltransferase, serin proteinase inhibitor B10, and sorting nexin 9 were highly expressed and whose known functions in other processes made them potential candidates in regulating the proliferative response to wounding. In conclusion, we identified novel genes that are differentially expressed in equine wound biopsies and that may modulate repair. Future experiments must correlate changes in mRNA levels for precise molecules with spatiotemporal protein expression within tissues.
Collapse
Affiliation(s)
- Josiane Lefebvre-Lavoie
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | | | | |
Collapse
|
42
|
Parsons M, Monypenny J, Ameer-Beg SM, Millard TH, Machesky LM, Peter M, Keppler MD, Schiavo G, Watson R, Chernoff J, Zicha D, Vojnovic B, Ng T. Spatially distinct binding of Cdc42 to PAK1 and N-WASP in breast carcinoma cells. Mol Cell Biol 2005; 25:1680-95. [PMID: 15713627 PMCID: PMC549353 DOI: 10.1128/mcb.25.5.1680-1695.2005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 08/12/2004] [Accepted: 11/26/2004] [Indexed: 12/27/2022] Open
Abstract
While a significant amount is known about the biochemical signaling pathways of the Rho family GTPase Cdc42, a better understanding of how these signaling networks are coordinated in cells is required. In particular, the predominant subcellular sites where GTP-bound Cdc42 binds to its effectors, such as p21-activated kinase 1 (PAK1) and N-WASP, a homolog of the Wiskott-Aldritch syndrome protein, are still undetermined. Recent fluorescence resonance energy transfer (FRET) imaging experiments using activity biosensors show inconsistencies between the site of local activity of PAK1 or N-WASP and the formation of specific membrane protrusion structures in the cell periphery. The data presented here demonstrate the localization of interactions by using multiphoton time-domain fluorescence lifetime imaging microscopy (FLIM). Our data here establish that activated Cdc42 interacts with PAK1 in a nucleotide-dependent manner in the cell periphery, leading to Thr-423 phosphorylation of PAK1, particularly along the lengths of cell protrusion structures. In contrast, the majority of GFP-N-WASP undergoing FRET with Cy3-Cdc42 is localized within a transferrin receptor- and Rab11-positive endosomal compartment in breast carcinoma cells. These data reveal for the first time distinct spatial association patterns between Cdc42 and its key effector proteins controlling cytoskeletal remodeling.
Collapse
Affiliation(s)
- Maddy Parsons
- Randall Centre, King's College London, 3rd Floor, New Hunt's House, Guy's Medical School Campus, London SE1 1UL, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Directional cell migration requires proper cell polarization. The redistribution of the Golgi apparatus is an important event in the polarization and migration of many types of cells, as a polarized Golgi supplies membrane components for leading edge protrusion. Direct current electric fields induce directional cell migration in a wide variety of cells. Here we show that electric fields of 300 mV/mm induce robust Golgi polarization and directional cell migration in CHO cells. Asymmetric Src and PI 3-kinase signalling as well as actin polymerization are essential for electric field-induced Golgi polarization and directional cell migration. The Golgi polarizes at the same time as cells change morphology and migrate directionally in response to an electric field. Golgi polarization in turn significantly reinforces and maintains optimal electrotaxis. It is not known whether electrical signals, when contradicting other directional cues, are still able to polarize cells and direct cell migration. Most strikingly, Golgi polarization and cell migration simply follow the direction of an applied electric field and ignore all other cues generated by wounding a monolayer of CHO cells. Thus, an electric field of 300 mV/mm is the predominant cue to polarize the Golgi and direct cell migration mediated by PI 3-kinase and Src signalling.
Collapse
Affiliation(s)
| | - Min Zhao
- *Author for correspondence (e-mail:
)
| |
Collapse
|
44
|
Abstract
All cell types polarize, at least transiently, during division or to generate specialized shapes and functions. This capacity extends from yeast to mammals, and it is now clear that many features of the molecular mechanisms controlling polarization are conserved in all eukaryotic cells. At the centre of the action is Cdc42, a small GTPase of the Rho family. Its activity is precisely controlled both temporally and spatially, and this can be achieved by a wide variety of extracellular cues in multicellular organisms. Moreover, although the functional characteristics of cell polarity are extremely variable (depending on the cell type and the biological context), Cdc42 has an amazing capacity to co-ordinate the control of multiple signal transduction pathways.
Collapse
|
45
|
Lee JSH, Chang MI, Tseng Y, Wirtz D. Cdc42 mediates nucleus movement and MTOC polarization in Swiss 3T3 fibroblasts under mechanical shear stress. Mol Biol Cell 2004; 16:871-80. [PMID: 15548602 PMCID: PMC545918 DOI: 10.1091/mbc.e03-12-0910] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nucleus movement is essential during nucleus positioning for tissue growth and development in eukaryotic cells. However, molecular regulators of nucleus movement in interphase fibroblasts have yet to be identified. Here, we report that nuclei of Swiss 3T3 fibroblasts undergo enhanced movement when subjected to shear flows. Such movement includes both rotation and translocation and is dependent on microtubule, not F-actin, structure. Through inactivation of Rho GTPases, well-known mediators of cytoskeleton reorganization, we demonstrate that Cdc42, not RhoA or Rac1, controls the extent of nucleus translocation, and more importantly, of nucleus rotation in the cytoplasm. In addition to generating nuclei movement, we find that shear flows also causes repositioning of the MTOC in the direction of flow. This behavior is also controlled by Cdc42 via the Par6/protein kinase Czeta pathway. These results are the first to establish Cdc42 as a molecular regulator of not only shear-induced MTOC polarization in Swiss 3T3 fibroblasts, but also of shear-induced microtubule-dependent nucleus movement. We propose that the movements of MTOC and nucleus are coupled chemically, because they are both regulated by Cdc42 and dependent on microtubule structure, and physically, possibly via Hook/SUN family homologues similar to those found in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Jerry S H Lee
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
46
|
Millard TH, Sharp SJ, Machesky LM. Signalling to actin assembly via the WASP (Wiskott-Aldrich syndrome protein)-family proteins and the Arp2/3 complex. Biochem J 2004; 380:1-17. [PMID: 15040784 PMCID: PMC1224166 DOI: 10.1042/bj20040176] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 02/18/2004] [Accepted: 03/25/2004] [Indexed: 01/15/2023]
Abstract
The assembly of a branched network of actin filaments provides the mechanical propulsion that drives a range of dynamic cellular processes, including cell motility. The Arp2/3 complex is a crucial component of such filament networks. Arp2/3 nucleates new actin filaments while bound to existing filaments, thus creating a branched network. In recent years, a number of proteins that activate the filament nucleation activity of Arp2/3 have been identified, most notably the WASP (Wiskott-Aldrich syndrome protein) family. WASP-family proteins activate the Arp2/3 complex, and consequently stimulate actin assembly, in response to extracellular signals. Structural studies have provided a significant refinement in our understanding of the molecular detail of how the Arp2/3 complex nucleates actin filaments. There has also been much progress towards an understanding of the complicated signalling processes that regulate WASP-family proteins. In addition, the use of gene disruption in a number of organisms has led to new insights into the specific functions of individual WASP-family members. The present review will discuss the Arp2/3 complex and its regulators, in particular the WASP-family proteins. Emphasis will be placed on recent developments in the field that have furthered our understanding of actin dynamics and cell motility.
Collapse
Affiliation(s)
- Thomas H Millard
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | |
Collapse
|
47
|
Yarrow JC, Perlman ZE, Westwood NJ, Mitchison TJ. A high-throughput cell migration assay using scratch wound healing, a comparison of image-based readout methods. BMC Biotechnol 2004; 4:21. [PMID: 15357872 PMCID: PMC521074 DOI: 10.1186/1472-6750-4-21] [Citation(s) in RCA: 261] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Accepted: 09/09/2004] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Cell migration is a complex phenomenon that requires the coordination of numerous cellular processes. Investigation of cell migration and its underlying biology is of interest to basic scientists and those in search of therapeutics. Current migration assays for screening small molecules, siRNAs, or other perturbations are difficult to perform in parallel at the scale required to screen large libraries. RESULTS We have adapted the commonly used scratch wound healing assay of tissue-culture cell monolayers to a 384 well plate format. By mechanically scratching the cell substrate with a pin array, we are able to create characteristically sized wounds in all wells of a 384 well plate. Imaging of the healing wounds with an automated fluorescence microscope allows us to distinguish perturbations that affect cell migration, morphology, and division. Readout requires ~1 hr per plate but is high in information content i.e. high content. We compare readouts using different imaging technologies, automated microscopy, scanners and a fluorescence macroscope, and evaluate the trade-off between information content and data acquisition rate. CONCLUSIONS The adaptation of a wound healing assay to a 384 well format facilitates the study of aspects of cell migration, tissue reorganization, cell division, and other processes that underlie wound healing. This assay allows greater than 10,000 perturbations to be screened per day with a quantitative, high-content readout, and can also be used to characterize small numbers of perturbations in detail.
Collapse
Affiliation(s)
- Justin C Yarrow
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- The Institute of Chemistry and Cell Biology (ICCB), Harvard Medical School, Boston, MA 02115, USA
| | - Zachary E Perlman
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- The Institute of Chemistry and Cell Biology (ICCB), Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas J Westwood
- The Institute of Chemistry and Cell Biology (ICCB), Harvard Medical School, Boston, MA 02115, USA
- School of Chemistry and Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, UK
| | - Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- The Institute of Chemistry and Cell Biology (ICCB), Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
48
|
Chen JL, Lacomis L, Erdjument-Bromage H, Tempst P, Stamnes M. Cytosol-derived proteins are sufficient for Arp2/3 recruitment and ARF/coatomer-dependent actin polymerization on Golgi membranes. FEBS Lett 2004; 566:281-6. [PMID: 15147909 DOI: 10.1016/j.febslet.2004.04.061] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 04/21/2004] [Accepted: 04/22/2004] [Indexed: 11/21/2022]
Abstract
The actin cytoskeleton has been implicated in protein trafficking at the Golgi apparatus and in Golgi orientation and morphology. Actin dynamics at the Golgi are regulated in part by recruiting Cdc42 or Rac to the membrane through a binding interaction with the coatomer-coated (COPI)-vesicle coat protein, coatomer. This leads to actin polymerization through the effector, N-WASP and the Arp2/3 complex. Here, we have used reconstitution of vesicle budding to test whether Arp2/3 is recruited to membranes during the formation of COPI vesicles. Our results revealed that ARF1 activation leads to greatly increased Arp3 levels on the membranes. Coatomer-bound Cdc42 and pre-existing F-actin are important for Arp2/3 binding. ARF1-dependent Arp2/3 recruitment and actin polymerization can be reconstituted on liposomal membranes, indicating that no membrane proteins are necessary. These results show that activated ARF1 can stimulate Arp2/3 recruitment to Golgi membranes through coatomer, Cdc42 or Rac, and N-WASP.
Collapse
Affiliation(s)
- Ji-Long Chen
- Department of Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|