1
|
Loh YP, Xiao L, Park JJ. Trafficking of hormones and trophic factors to secretory and extracellular vesicles: a historical perspective and new hypothesis. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:568-587. [PMID: 38435713 PMCID: PMC10906782 DOI: 10.20517/evcna.2023.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
It is well known that peptide hormones and neurotrophic factors are intercellular messengers that are packaged into secretory vesicles in endocrine cells and neurons and released by exocytosis upon the stimulation of the cells in a calcium-dependent manner. These secreted molecules bind to membrane receptors, which then activate signal transduction pathways to mediate various endocrine/trophic functions. Recently, there is evidence that these molecules are also in extracellular vesicles, including small extracellular vesicles (sEVs), which appear to be taken up by recipient cells. This finding raised the hypothesis that they may have functions differentiated from their classical secretory hormone/neurotrophic factor actions. In this article, the historical perspective and updated mechanisms for the sorting and packaging of hormones and neurotrophic factors into secretory vesicles and their transport in these organelles for release at the plasma membrane are reviewed. In contrast, little is known about the packaging of hormones and neurotrophic factors into extracellular vesicles. One proposal is that these molecules could be sorted at the trans-Golgi network, which then buds to form Golgi-derived vesicles that can fuse to endosomes and subsequently form intraluminal vesicles. They are then taken up by multivesicular bodies to form extracellular vesicles, which are subsequently released. Other possible mechanisms for packaging RSP proteins into sEVs are discussed. We highlight some studies in the literature that suggest the dual vesicular pathways for the release of hormones and neurotrophic factors from the cell may have some physiological significance in intercellular communication.
Collapse
Affiliation(s)
- Y. Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lan Xiao
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua J. Park
- Scientific Review Branch, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Armoza-Eilat S, Malis Y, Caspi M, Shomron O, Hirschberg K, Rosin-Arbesfeld R. Title: The C-terminal amphipathic helix of Carboxypeptidase E mediates export from the ER and secretion via lysosomes. J Mol Biol 2023:168171. [PMID: 37285900 DOI: 10.1016/j.jmb.2023.168171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Carboxypeptidase E (CPE), an essential enzyme in the biosynthetic production line of most peptide hormones and neuropeptides, is predominantly expressed in endocrine tissues and in the nervous system. CPE is active in acidic environments where it cleaves the C'-terminal basic residues of peptide precursors to generate their bioactive form. Consequently, this highly conserved enzyme regulates numerous fundamental biological processes. Here, we combined live-cell microscopy and molecular analysis to examine the intracellular distribution and secretion dynamics of fluorescently tagged CPE. We show that, in non-endocrine cells, tagged-CPE is a soluble luminal protein that is efficiently exported from the ER via the Golgi apparatus to lysosomes. The C'-terminal conserved amphipathic helix serves as a lysosomal and secretory granule targeting and a secretion motif. Following secretion, CPE may be reinternalized into the lysosomes of neighboring cells.
Collapse
Affiliation(s)
- Shir Armoza-Eilat
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yehonathan Malis
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Caspi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Olga Shomron
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Koret Hirschberg
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Diaz-Rohrer B, Castello-Serrano I, Chan SH, Wang HY, Shurer CR, Levental KR, Levental I. Rab3 mediates a pathway for endocytic sorting and plasma membrane recycling of ordered microdomains. Proc Natl Acad Sci U S A 2023; 120:e2207461120. [PMID: 36848577 PMCID: PMC10013782 DOI: 10.1073/pnas.2207461120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023] Open
Abstract
The composition of the plasma membrane (PM) must be tightly controlled despite constant, rapid endocytosis, which requires active, selective recycling of endocytosed membrane components. For many proteins, the mechanisms, pathways, and determinants of this PM recycling remain unknown. We report that association with ordered, lipid-driven membrane microdomains (known as rafts) is sufficient for PM localization of a subset of transmembrane proteins and that abrogation of raft association disrupts their trafficking and leads to degradation in lysosomes. Using orthogonal, genetically encoded probes with tunable raft partitioning, we screened for the trafficking machinery required for efficient recycling of engineered microdomain-associated cargo from endosomes to the PM. Using this screen, we identified the Rab3 family as an important mediator of PM localization of microdomain-associated proteins. Disruption of Rab3 reduced PM localization of raft probes and led to their accumulation in Rab7-positive endosomes, suggesting inefficient recycling. Abrogation of Rab3 function also mislocalized the endogenous raft-associated protein Linker for Activation of T cells (LAT), leading to its intracellular accumulation and reduced T cell activation. These findings reveal a key role for lipid-driven microdomains in endocytic traffic and suggest Rab3 as a mediator of microdomain recycling and PM composition.
Collapse
Affiliation(s)
- Barbara Diaz-Rohrer
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA22904
| | - Ivan Castello-Serrano
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA22904
| | - Sze Ham Chan
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA22904
| | - Hong-Yin Wang
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA22904
| | - Carolyn R. Shurer
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA22904
| | - Kandice R. Levental
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA22904
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA22904
| |
Collapse
|
4
|
Harris MT, Hussain SS, Inouye CM, Castle AM, Castle JD. Reinterpretation of the localization of the ATP binding cassette transporter ABCG1 in insulin-secreting cells and insights regarding its trafficking and function. PLoS One 2018; 13:e0198383. [PMID: 30235209 PMCID: PMC6147399 DOI: 10.1371/journal.pone.0198383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023] Open
Abstract
The ABC transporter ABCG1 contributes to the regulation of cholesterol efflux from cells and to the distribution of cholesterol within cells. We showed previously that ABCG1 deficiency inhibits insulin secretion by pancreatic beta cells and, based on its immunolocalization to insulin granules, proposed its essential role in forming granule membranes that are enriched in cholesterol. While we confirm elsewhere that ABCG1, alongside ABCA1 and oxysterol binding protein OSBP, supports insulin granule formation, the aim here is to clarify the localization of ABCG1 within insulin-secreting cells and to provide added insight regarding ABCG1's trafficking and sites of function. We show that stably expressed GFP-tagged ABCG1 closely mimics the distribution of endogenous ABCG1 in pancreatic INS1 cells and accumulates in the trans-Golgi network (TGN), endosomal recycling compartment (ERC) and on the cell surface but not on insulin granules, early or late endosomes. Notably, ABCG1 is short-lived, and proteasomal and lysosomal inhibitors both decrease its degradation. Following blockade of protein synthesis, GFP-tagged ABCG1 first disappears from the ER and TGN and later from the ERC and plasma membrane. In addition to aiding granule formation, our findings raise the prospect that ABCG1 may act beyond the TGN to regulate activities involving the endocytic pathway, especially as the amount of transferrin receptor is increased in ABCG1-deficient cells. Thus, ABCG1 may function at multiple intracellular sites and the plasma membrane as a roving sensor and modulator of cholesterol distribution, membrane trafficking and cholesterol efflux.
Collapse
Affiliation(s)
- Megan T. Harris
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Syed Saad Hussain
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Candice M. Inouye
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Anna M. Castle
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - J. David Castle
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| |
Collapse
|
5
|
Hussain SS, Harris MT, Kreutzberger AJB, Inouye CM, Doyle CA, Castle AM, Arvan P, Castle JD. Control of insulin granule formation and function by the ABC transporters ABCG1 and ABCA1 and by oxysterol binding protein OSBP. Mol Biol Cell 2018. [PMID: 29540530 PMCID: PMC5935073 DOI: 10.1091/mbc.e17-08-0519] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In pancreatic β-cells, insulin granule membranes are enriched in cholesterol and are both recycled and newly generated. Cholesterol’s role in supporting granule membrane formation and function is poorly understood. ATP binding cassette transporters ABCG1 and ABCA1 regulate intracellular cholesterol and are important for insulin secretion. RNAi interference–induced depletion in cultured pancreatic β-cells shows that ABCG1 is needed to stabilize newly made insulin granules against lysosomal degradation; ABCA1 is also involved but to a lesser extent. Both transporters are also required for optimum glucose-stimulated insulin secretion, likely via complementary roles. Exogenous cholesterol addition rescues knockdown-induced granule loss (ABCG1) and reduced secretion (both transporters). Another cholesterol transport protein, oxysterol binding protein (OSBP), appears to act proximally as a source of endogenous cholesterol for granule formation. Its knockdown caused similar defective stability of young granules and glucose-stimulated insulin secretion, neither of which were rescued with exogenous cholesterol. Dual knockdowns of OSBP and ABC transporters support their serial function in supplying and concentrating cholesterol for granule formation. OSBP knockdown also decreased proinsulin synthesis consistent with a proximal endoplasmic reticulum defect. Thus, membrane cholesterol distribution contributes to insulin homeostasis at production, packaging, and export levels through the actions of OSBP and ABCs G1 and A1.
Collapse
Affiliation(s)
- Syed Saad Hussain
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Megan T Harris
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Alex J B Kreutzberger
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908.,Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Candice M Inouye
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Catherine A Doyle
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Anna M Castle
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Peter Arvan
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105
| | - J David Castle
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908.,Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
6
|
Zhang X, Jiang S, Mitok KA, Li L, Attie AD, Martin TFJ. BAIAP3, a C2 domain-containing Munc13 protein, controls the fate of dense-core vesicles in neuroendocrine cells. J Cell Biol 2017; 216:2151-2166. [PMID: 28626000 PMCID: PMC5496627 DOI: 10.1083/jcb.201702099] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 12/31/2022] Open
Abstract
Dense-core vesicle (DCV) exocytosis is a SNARE (soluble N-ethylmaleimide-sensitive fusion attachment protein receptor)-dependent anterograde trafficking pathway that requires multiple proteins for regulation. Several C2 domain-containing proteins are known to regulate Ca2+-dependent DCV exocytosis in neuroendocrine cells. In this study, we identified others by screening all (∼139) human C2 domain-containing proteins by RNA interference in neuroendocrine cells. 40 genes were identified, including several encoding proteins with known roles (CAPS [calcium-dependent activator protein for secretion 1], Munc13-2, RIM1, and SYT10) and many with unknown roles. One of the latter, BAIAP3, is a secretory cell-specific Munc13-4 paralog of unknown function. BAIAP3 knockdown caused accumulation of fusion-incompetent DCVs in BON neuroendocrine cells and lysosomal degradation (crinophagy) of insulin-containing DCVs in INS-1 β cells. BAIAP3 localized to endosomes was required for Golgi trans-Golgi network 46 (TGN46) recycling, exhibited Ca2+-stimulated interactions with TGN SNAREs, and underwent Ca2+-stimulated TGN recruitment. Thus, unlike other Munc13 proteins, BAIAP3 functions indirectly in DCV exocytosis by affecting DCV maturation through its role in DCV protein recycling. Ca2+ rises that stimulate DCV exocytosis may stimulate BAIAP3-dependent retrograde trafficking to maintain DCV protein homeostasis and DCV function.
Collapse
Affiliation(s)
- Xingmin Zhang
- Department of Biochemistry, University of Wisconsin, Madison, WI
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison, WI
| | - Shan Jiang
- School of Pharmacy, University of Wisconsin, Madison, WI
| | - Kelly A Mitok
- Department of Biochemistry, University of Wisconsin, Madison, WI
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, Madison, WI
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin, Madison, WI
| | | |
Collapse
|
7
|
Armento A, Ilina EI, Kaoma T, Muller A, Vallar L, Niclou SP, Krüger MA, Mittelbronn M, Naumann U. Carboxypeptidase E transmits its anti-migratory function in glioma cells via transcriptional regulation of cell architecture and motility regulating factors. Int J Oncol 2017; 51:702-714. [DOI: 10.3892/ijo.2017.4051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/06/2017] [Indexed: 11/06/2022] Open
|
8
|
Ji L, Wu HT, Qin XY, Lan R. Dissecting carboxypeptidase E: properties, functions and pathophysiological roles in disease. Endocr Connect 2017; 6:R18-R38. [PMID: 28348001 PMCID: PMC5434747 DOI: 10.1530/ec-17-0020] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 01/02/2023]
Abstract
Since discovery in 1982, carboxypeptidase E (CPE) has been shown to be involved in the biosynthesis of a wide range of neuropeptides and peptide hormones in endocrine tissues, and in the nervous system. This protein is produced from pro-CPE and exists in soluble and membrane forms. Membrane CPE mediates the targeting of prohormones to the regulated secretory pathway, while soluble CPE acts as an exopeptidase and cleaves C-terminal basic residues from peptide intermediates to generate bioactive peptides. CPE also participates in protein internalization, vesicle transport and regulation of signaling pathways. Therefore, in two types of CPE mutant mice, Cpefat/Cpefat and Cpe knockout, loss of normal CPE leads to a lot of disorders, including diabetes, hyperproinsulinemia, low bone mineral density and deficits in learning and memory. In addition, the potential roles of CPE and ΔN-CPE, an N-terminal truncated form, in tumorigenesis and diagnosis were also addressed. Herein, we focus on dissecting the pathophysiological roles of CPE in the endocrine and nervous systems, and related diseases.
Collapse
Affiliation(s)
- Lin Ji
- Department of Cell Biology & Medical GeneticsSchool of Medicine, Shenzhen University, Shenzhen, China
| | - Huan-Tong Wu
- Beijing Engineering Research Center of Food Environment and HealthCollege of Life & Environmental Sciences, Minzu University of China, Beijing, China
| | - Xiao-Yan Qin
- Beijing Engineering Research Center of Food Environment and HealthCollege of Life & Environmental Sciences, Minzu University of China, Beijing, China
| | - Rongfeng Lan
- Department of Cell Biology & Medical GeneticsSchool of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
9
|
Cawley NX, Li Z, Loh YP. 60 YEARS OF POMC: Biosynthesis, trafficking, and secretion of pro-opiomelanocortin-derived peptides. J Mol Endocrinol 2016; 56:T77-97. [PMID: 26880796 PMCID: PMC4899099 DOI: 10.1530/jme-15-0323] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 12/15/2022]
Abstract
Pro-opiomelanocortin (POMC) is a prohormone that encodes multiple smaller peptide hormones within its structure. These peptide hormones can be generated by cleavage of POMC at basic residue cleavage sites by prohormone-converting enzymes in the regulated secretory pathway (RSP) of POMC-synthesizing endocrine cells and neurons. The peptides are stored inside the cells in dense-core secretory granules until released in a stimulus-dependent manner. The complexity of the regulation of the biosynthesis, trafficking, and secretion of POMC and its peptides reflects an impressive level of control over many factors involved in the ultimate role of POMC-expressing cells, that is, to produce a range of different biologically active peptide hormones ready for action when signaled by the body. From the discovery of POMC as the precursor to adrenocorticotropic hormone (ACTH) and β-lipotropin in the late 1970s to our current knowledge, the understanding of POMC physiology remains a monumental body of work that has provided insight into many aspects of molecular endocrinology. In this article, we describe the intracellular trafficking of POMC in endocrine cells, its sorting into dense-core secretory granules and transport of these granules to the RSP. Additionally, we review the enzymes involved in the maturation of POMC to its various peptides and the mechanisms involved in the differential processing of POMC in different cell types. Finally, we highlight studies pertaining to the regulation of ACTH secretion in the anterior and intermediate pituitary and POMC neurons of the hypothalamus.
Collapse
Affiliation(s)
- Niamh X Cawley
- Section on Cellular NeurobiologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhaojin Li
- Section on Cellular NeurobiologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Y Peng Loh
- Section on Cellular NeurobiologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Blouin CM. [Clathrin-independent endocytosis: free the way!]. Med Sci (Paris) 2013; 29:890-6. [PMID: 24148128 DOI: 10.1051/medsci/20132910017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Along the years, the interest paid to the study of endocytosis has never wavered as this process plays such an essential role in many cellular functions. Cell growth, adhesion and differentiation, regulation of signaling induced by membrane receptors or infection by viral particles are all dependent on the entry of molecules into the cell. Once the clathrin-dependent endocytosis well characterized, it has become apparent that other entry pathways also existed in the cell. This review is intended to provide an update on recent advances that establish with certainty the existence of endocytic pathways independent of clathrin and highlight their specific regulators.
Collapse
Affiliation(s)
- Cédric M Blouin
- Institut Curie, CNRS UMR144, Laboratoire Trafic, signalisation et ciblages intracellulaires, 26, rue d'Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
11
|
Cawley NX, Sridhar M, Hong H, Loh P. Exploring the membrane topology of prohormone convertase 1 in AtT20 Cells: in situ analysis by immunofluorescence microscopy. F1000Res 2012; 1:9. [PMID: 24163733 PMCID: PMC3799554 DOI: 10.12688/f1000research.1-9.v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2012] [Indexed: 11/20/2022] Open
Abstract
Prohormone convertase 1 (PC1) was previously characterized as a partially transmembrane protein in purified chromaffin granules of bovine adrenal medulla1. This was challenged with experiments on transfected PC1 in COS1 cells, a non-endocrine cell line2. To address this issue, we undertook to analyze its extraction properties in vitro and its immunocytochemical localization in situ in AtT20 cells, an endocrine cell line that expresses PC1. Most of the 87 kDa form of PC1 was resistant to carbonate extraction suggesting that it had properties of a transmembrane protein. Under semi-permeabilized conditions whereby only the plasma membrane was permeabilized, the carboxy-terminus of PC1 was specifically immunostained whereas the amino-terminus was not. These results indicate that the amino-terminus of PC1 was within the lumen of the Golgi and granules, and some of the C-terminus was exposed to the cytosol. Thus, endogenous PC1 can assume a transmembrane orientation in situ in AtT20 cells.
Collapse
Affiliation(s)
- Niamh X Cawley
- Section on Cellular Neurobiology, Program in Developmental Neuroscience, Eunice Shriver Kennedy National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA ; National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | | |
Collapse
|
12
|
Cawley NX, Wetsel WC, Murthy SRK, Park JJ, Pacak K, Loh YP. New roles of carboxypeptidase E in endocrine and neural function and cancer. Endocr Rev 2012; 33:216-53. [PMID: 22402194 PMCID: PMC3365851 DOI: 10.1210/er.2011-1039] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 01/18/2012] [Indexed: 01/14/2023]
Abstract
Carboxypeptidase E (CPE) or carboxypeptidase H was first discovered in 1982 as an enkephalin-convertase that cleaved a C-terminal basic residue from enkephalin precursors to generate enkephalin. Since then, CPE has been shown to be a multifunctional protein that subserves many essential nonenzymatic roles in the endocrine and nervous systems. Here, we review the phylogeny, structure, and function of CPE in hormone and neuropeptide sorting and vesicle transport for secretion, alternative splicing of the CPE transcript, and single nucleotide polymorphisms in humans. With this and the analysis of mutant and knockout mice, the data collectively support important roles for CPE in the modulation of metabolic and glucose homeostasis, bone remodeling, obesity, fertility, neuroprotection, stress, sexual behavior, mood and emotional responses, learning, and memory. Recently, a splice variant form of CPE has been found to be an inducer of tumor growth and metastasis and a prognostic biomarker for metastasis in endocrine and nonendocrine tumors.
Collapse
Affiliation(s)
- Niamh X Cawley
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
13
|
Cellular Mechanisms for the Biogenesis and Transport of Synaptic and Dense-Core Vesicles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 299:27-115. [DOI: 10.1016/b978-0-12-394310-1.00002-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Lou H, Park JJ, Cawley NX, Sarcon A, Sun L, Adams T, Loh YP. Carboxypeptidase E cytoplasmic tail mediates localization of synaptic vesicles to the pre-active zone in hypothalamic pre-synaptic terminals. J Neurochem 2010; 114:886-96. [PMID: 20492353 DOI: 10.1111/j.1471-4159.2010.06820.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
How synaptic vesicles (SVs) are localized to the pre-active zone (5-200 nm beneath the active zone) in the nerve terminal, which may represent the slow response SV pool, is not fully understood. Electron microscopy revealed the number of SVs located in the pre-active zone, was significantly decreased in hypothalamic neurons of carboxypeptidase E knockout (CPE-KO) mice compared with wild-type mice. Additionally, we found K(+)-stimulated glutamate secretion from hypothalamic embryonic neurons was impaired in CPE-KO mice. Biochemical studies indicate that SVs from the hypothalamus of wild-type mice and synaptic-like microvesicles from PC12 cells contain a transmembrane form of CPE, with a cytoplasmic tail (CPE(C10)), maybe involved in synaptic function. Yeast two-hybrid and pull-down experiments showed that the CPE cytoplasmic tail interacted with gamma-adducin, which binds actin enriched at the nerve terminal. Total internal reflective fluorescence (TIRF) microscopy using PC12 cells as a model showed that expression of GFP-CPE(C15) reduced the steady-state level of synaptophysin-mRFP containing synaptic-like microvesicles accumulated in the area within 200 nm from the sub-plasma membrane (TIRF zone). Our findings identify the CPE cytoplasmic tail, as a new mediator for the localization of SVs in the actin-rich pre-active zone in hypothalamic neurons and the TIRF zone of PC12 cells.
Collapse
Affiliation(s)
- Hong Lou
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Endocytosis occurs at the cell surface and involves internalization of the plasma membrane (PM) along with its constituent membrane proteins and lipids. Endocytosis is involved in sampling of the extracellular milieu and also serves to regulate various processes initiated at the cell surface. These include nutrient uptake, signaling from cell-surface receptors, and many other processes essential for cell and tissue functioning in metazoans. It is also central to the maintenance of PM lipid and protein homeostasis. There are multiple means of internalization that operate concurrently, at the cell surface. With advancement in high-resolution visualization techniques, it is now possible to track multiple endocytic cargo at the same time, revealing a remarkable diversity of endocytic processes in a single cell. A combination of live cell imaging and efficient genetic manipulations has also aided in understanding the functional hierarchy of molecular players in these mechanisms of internalization. Here we provide an account of various endocytic routes, their mechanisms of operation and occurrence across phyla.
Collapse
|
16
|
Xu C, Zhang YH, Thangavel M, Richardson MM, Liu L, Zhou B, Zheng Y, Ostrom RS, Zhang XA. CD82 endocytosis and cholesterol-dependent reorganization of tetraspanin webs and lipid rafts. FASEB J 2009; 23:3273-88. [PMID: 19497983 DOI: 10.1096/fj.08-123414] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tetraspanin CD82 suppresses cell migration, tumor invasion, and tumor metastasis. To determine the mechanism by which CD82 inhibits motility, most studies have focused on the cell surface CD82, which forms tetraspanin-enriched microdomains (TEMs) with other transmembrane proteins, such as integrins. In this study, we found that CD82 undergoes endocytosis and traffics to endosomes and lysosomes. To determine the endocytic mechanism of CD82, we demonstrated that dynamin and clathrin are not essential for CD82 internalization. Depletion or sequestration of sterol in the plasma membrane markedly inhibited the endocytosis of CD82. Despite the demand on Cdc42 activity, CD82 endocytosis is distinct from macropinocytosis and the documented dynamin-independent pinocytosis. As a TEM component, CD82 reorganizes TEMs and lipid rafts by redistributing cholesterol into these membrane microdomains. CD82-containing TEMs are characterized by the cholesterol-containing microdomains in the extreme light- and intermediate-density fractions. Moreover, the endocytosis of CD82 appears to alleviate CD82-mediated inhibition of cell migration. Taken together, our studies demonstrate that lipid-dependent endocytosis drives CD82 trafficking to late endosomes and lysosomes, and CD82 reorganizes TEMs and lipid rafts through redistribution of cholesterol.
Collapse
Affiliation(s)
- Congfeng Xu
- Vascular Biology Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Oiso S, Takeda Y, Futagawa T, Miura T, Kuchiiwa S, Nishida K, Ikeda R, Kariyazono H, Watanabe K, Yamada K. Contactin-associated protein (Caspr) 2 interacts with carboxypeptidase E in the CNS. J Neurochem 2009; 109:158-67. [PMID: 19166515 DOI: 10.1111/j.1471-4159.2009.05928.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To identify proteins interacting with the intracellular domain of the neural cell adhesion molecule contactin-associated protein 2 (Caspr2), yeast two-hybrid screening was performed. We identified carboxypeptidase E (CPE) as a Caspr2-interacting candidate protein. Glutathione S-transferase pull-down and immunoprecipitation analyses indicated that Caspr2 was associated with CPE in vitro and in vivo. Both Caspr2 and CPE were expressed predominantly in the CNS. Immunohistochemical analyses revealed that both Caspr2- and CPE-like immunoreactivities were found to co-localize in the apical dendrites and cell bodies of rat cortical neurons. In subcellular localization analysis, Caspr2- and CPE-like immunoreactivities were co-migrated in the fractions of Golgi/ER. Additionally, in COS-7 cells co-transfected with CPE and Caspr2 cDNAs, Caspr2- and CPE-immunoreactivities were co-localized in both Golgi and membrane, whereas it was only observed in Golgi of either COS-7 cell transfected with CPE or Caspr2 cDNA alone. It is known that the membrane-bound form of CPE functions as a sorting receptor of prohormones in the trans-Golgi network. Taken together, our data suggest that CPE may be a key molecule to regulate Caspr2 trafficking to the cell membrane.
Collapse
Affiliation(s)
- Shigeru Oiso
- Department of Clinical Pharmacy and Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lubbe WJ, Pitari GM. Antimetastatic Therapy in Colorectal Cancer: Role of Tumor Cell Matrix Metalloproteinase 9 (Methodology). COLORECTAL CANCER 2009. [DOI: 10.1007/978-1-4020-9545-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Biogenesis of Dense-Core Secretory Granules. TRAFFICKING INSIDE CELLS 2009. [PMCID: PMC7122546 DOI: 10.1007/978-0-387-93877-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dense core granules (DCGs) are vesicular organelles derived from outbound traffic through the eukaryotic secretory pathway. As DCGs are formed, the secretory pathway can also give rise to other types of vesicles, such as those bound for endosomes, lysosomes, and the cell surface. DCGs differ from these other vesicular carriers in both content and function, storing highly concentrated cores’ of condensed cargo in vesicles that are stably maintained within the cell until a specific extracellular stimulus causes their fusion with the plasma membrane. These unique features are imparted by the activities of membrane and lumenal proteins that are specifically delivered to the vesicles during synthesis. This chapter will describe the DCG biogenesis pathway, beginning with the sorting of DCG proteins from proteins that are destined for other types of vesicle carriers. In the trans-Golgi network (TGN), sorting occurs as DCG proteins aggregate, causing physical separation from non-DCG proteins. Recent work addresses the nature of interactions that produce these aggregates, as well as potentially important interactions with membranes and membrane proteins. DCG proteins are released from the TGN in vesicles called immature secretory granules (ISGs). The mechanism of ISG formation is largely unclear but is not believed to rely on the assembly of vesicle coats like those observed in other secretory pathways. The required cytosolic factors are now beginning to be identified using in vitro systems with purified cellular components. ISG transformation into a mature fusion-competent, stimulus-dependent DCG occurs as endoproteolytic processing of many DCG proteins causes continued condensation of the lumenal contents. At the same time, proteins that fail to be incorporated into the condensing core are removed by a coat-mediated budding mechanism, which also serves to remove excess membrane and membrane proteins from the maturing vesicle. This chapter will summarize the work leading to our current view of granule synthesis, and will discuss questions that need to be addressed in order to gain a more complete understanding of the pathway.
Collapse
|
20
|
Lau AW, Chou MM. The adaptor complex AP-2 regulates post-endocytic trafficking through the non-clathrin Arf6-dependent endocytic pathway. J Cell Sci 2008; 121:4008-17. [PMID: 19033387 DOI: 10.1242/jcs.033522] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The ADP-ribosylation factor 6 (Arf6) GTPase functions as a key regulator of endocytic trafficking, participating in clathrin-independent endocytosis in most cell types. Unexpectedly, we found that siRNA-mediated depletion of clathrin or of adaptor protein 2 (AP-2)-complex subunits alters trafficking of Arf6 pathway cargo proteins, such as major histocompatibility complex class I (MHCI) and beta1 integrin. Internalization of these cargoes from the plasma membrane was not affected in cells depleted of clathrin, but was modestly delayed in cells lacking AP-2. Furthermore, depletion of clathrin or AP-2 altered the intracellular distribution of MHCI and beta1 integrin, inducing clustering in a perinuclear region. Despite this altered localization in both depleted populations, enhanced lysosomal targeting of MHCI was observed uniquely in cells that lack AP-2. Total levels of MHCI were modestly but consistently reduced in AP-2-depleted cells, and restored by the lysosomal inhibitor bafilomycin A. Furthermore, the half-life of surface-derived MHCI was reduced in AP-2-depleted cells. Consistent with enhanced degradative sorting, colocalization of Arf6 cargo with the late endosome and lysosome markers CD63 and Lamp1 was increased in cells depleted of AP-2 but not clathrin. These studies indicate a role for AP-2 in maintaining normal post-endocytic trafficking through the Arf6-regulated, non-clathrin pathway, and reveal pervasive effects of clathrin and AP-2 depletion on the endosomal and lysosomal system.
Collapse
Affiliation(s)
- Alan W Lau
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
21
|
Park JJ, Loh YP. How peptide hormone vesicles are transported to the secretion site for exocytosis. Mol Endocrinol 2008; 22:2583-95. [PMID: 18669645 DOI: 10.1210/me.2008-0209] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Post-Golgi transport of peptide hormone-containing vesicles from the site of genesis at the trans-Golgi network to the release site at the plasma membrane is essential for activity-dependent hormone secretion to mediate various endocrinological functions. It is known that these vesicles are transported on microtubules to the proximity of the release site, and they are then loaded onto an actin/myosin system for distal transport through the actin cortex to just below the plasma membrane. The vesicles are then tethered to the plasma membrane, and a subpopulation of them are docked and primed to become the readily releasable pool. Cytoplasmic tails of vesicular transmembrane proteins, as well as many cytosolic proteins including adaptor proteins, motor proteins, and guanosine triphosphatases, are involved in vesicle budding, the anchoring of the vesicles, and the facilitation of movement along the transport systems. In addition, a set of cytosolic proteins is also necessary for tethering/docking of the vesicles to the plasma membrane. Many of these proteins have been identified from different types of (neuro)endocrine cells. Here, we summarize the proteins known to be involved in the mechanisms of sorting various cargo proteins into regulated secretory pathway hormone-containing vesicles, movement of these vesicles along microtubules and actin filaments, and their eventual tethering/docking to the plasma membrane for hormone secretion.
Collapse
Affiliation(s)
- Joshua J Park
- Section on Cellular Neurobiology, National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | | |
Collapse
|
22
|
Donaldson JG, Porat-Shliom N, Cohen LA. Clathrin-independent endocytosis: a unique platform for cell signaling and PM remodeling. Cell Signal 2008; 21:1-6. [PMID: 18647649 DOI: 10.1016/j.cellsig.2008.06.020] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 06/23/2008] [Indexed: 01/08/2023]
Abstract
There is increasing interest in endocytosis that occurs independently of clathrin coats and the fates of membrane proteins internalized by this mechanism. The appearance of clathrin-independent endocytic and membrane recycling pathways seems to vary with different cell types and cargo molecules. In this review we focus on studies that have been performed using HeLa and COS cells as model systems for understanding this membrane trafficking system. These endosomal membranes contain signaling molecules including H-Ras, Rac1, Arf6 and Rab proteins, and a lipid environment rich in cholesterol and PIP(2) providing a unique platform for cell signaling. Furthermore, activation of some of these signaling molecules (H-Ras, Rac and Arf6) can switch the constitutive form of clathrin-independent endocytosis into a stimulated one, associated with PM ruffling and macropinocytosis.
Collapse
Affiliation(s)
- Julie G Donaldson
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
23
|
Park JJ, Cawley NX, Loh YP. A bi-directional carboxypeptidase E-driven transport mechanism controls BDNF vesicle homeostasis in hippocampal neurons. Mol Cell Neurosci 2008; 39:63-73. [PMID: 18573344 DOI: 10.1016/j.mcn.2008.05.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 05/12/2008] [Accepted: 05/22/2008] [Indexed: 12/14/2022] Open
Abstract
Anterograde transport of brain-derived neurotrophic factor (BDNF) vesicles from the soma to neurite terminals is necessary for activity-dependent secretion of BDNF to mediate synaptic plasticity, memory and learning, and retrograde BDNF transport back to the soma for recycling. In our study, overexpression of the cytoplasmic tail of the carboxypeptidase E (CPE) found in BDNF vesicles significantly reduced localization of BDNF in neurites of hippocampal neurons. Live-cell imaging showed that the velocity and distance of movement of fluorescent protein-tagged CPE- or BDNF-containing vesicles were reduced in both directions. In pulldown assays, the CPE tail interacted with dynactin along with kinesin-2 and kinesin-3, and cytoplasmic dynein. Competition assays using a CPE tail peptide verified specific interaction between the CPE tail and dynactin. Thus, the CPE cytoplasmic tail binds dynactin that recruits kinesins or dynein for driving bi-directional transport of BDNF vesicle to maintain vesicle homeostasis and secretion in hippocampal neurons.
Collapse
Affiliation(s)
- Joshua J Park
- Section on Cellular Neurobiology, Developmental Neurobiology Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | |
Collapse
|
24
|
A transient forward-targeting element for microneme-regulated secretion in Toxoplasma gondii. Biol Cell 2008; 100:253-64. [PMID: 17995454 DOI: 10.1042/bc20070076] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION Accurate sorting of proteins to the three types of secretory granules in Toxoplasma gondii is crucial for successful cell invasion by this obligate intracellular parasite. As in other eukaryotic systems, propeptide sequences are a common yet poorly understood feature of proteins destined for regulated secretion, which for Toxoplasma occurs through two distinct invasion organelles, rhoptries and micronemes. Microneme discharge during parasite apical attachment plays a pivotal role in cell invasion by delivering adhesive proteins for host receptor engagement. RESULTS We show here that the small micronemal proprotein MIC5 (microneme protein-5) undergoes proteolytic maturation at a site beyond the Golgi, and only the processed form of MIC5 is secreted via the micronemes. Proper cleavage of the MIC5 propeptide relies on an arginine residue in the P1' position, although P1' mutants are still cleaved to a lesser extent at an alternative site downstream of the primary site. Nonetheless, this aberrantly cleaved species still correctly traffics to the micronemes, indicating that correct cleavage is not necessary for micronemal targeting. In contrast, a deletion mutant lacking the propeptide was retained within the secretory system, principally in the ER (endoplasmic reticulum). The MIC5 propeptide also supported correct trafficking when exchanged for the M2AP propeptide, which was recently shown to also be required for micronemal trafficking of the TgMIC2 (T. gondii MIC2)-M2AP complex [Harper, Huynh, Coppens, Parussini, Moreno and Carruthers (2006) Mol. Biol. Cell 17, 4551-4563]. CONCLUSION Our results illuminate common and unique features of micronemal propeptides in their role as trafficking facilitators.
Collapse
|
25
|
Park JJ, Cawley NX, Loh YP. Carboxypeptidase E cytoplasmic tail-driven vesicle transport is key for activity-dependent secretion of peptide hormones. Mol Endocrinol 2008; 22:989-1005. [PMID: 18202146 DOI: 10.1210/me.2007-0473] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Vesicular transport of peptide hormones from the cell body to the plasma membrane for activity-dependent secretion is important for endocrine function, but how it is achieved is unclear. Here we uncover a mechanism in which the cytoplasmic tail of transmembrane carboxypeptidase E (CPE) found in proopiomelanocotin (POMC)/ACTH vesicles interacts with microtubule-based motors to control transport of these vesicles to the release site in pituitary cells. Overexpression of the CPE tail in live cells significantly reduced the velocity and distance of POMC/ACTH- and CPE-containing vesicle movement into the cell processes. Biochemical studies showed that the CPE tail interacted with dynactin, which, in turn, recruited microtubule plus-end motors kinesin 2 and kinesin 3. Overexpression of the CPE tail inhibited the stimulated secretion of ACTH from AtT20 cells. Thus, the CPE cytoplasmic tail interaction with dynactin-kinesin 2/kinesin 3 plays an important role in the transport of POMC vesicles for activity-dependent secretion.
Collapse
Affiliation(s)
- Joshua J Park
- Section on Cellular Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
26
|
Abstract
There are numerous ways that endocytic cargo molecules may be internalized from the surface of eukaryotic cells. In addition to the classical clathrin-dependent mechanism of endocytosis, several pathways that do not use a clathrin coat are emerging. These pathways transport a diverse array of cargoes and are sometimes hijacked by bacteria and viruses to gain access to the host cell. Here, we review our current understanding of various clathrin-independent mechanisms of endocytosis and propose a classification scheme to help organize the data in this complex and evolving field.
Collapse
Affiliation(s)
- Satyajit Mayor
- National Centre for Biological Sciences, UAS-GKVK Campus, Bangalore 560065, India.
| | | |
Collapse
|
27
|
Nishi K, Saigo K. Cellular internalization of green fluorescent protein fused with herpes simplex virus protein VP22 via a lipid raft-mediated endocytic pathway independent of caveolae and Rho family GTPases but dependent on dynamin and Arf6. J Biol Chem 2007; 282:27503-27517. [PMID: 17644515 DOI: 10.1074/jbc.m703810200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
VP22 is a structural protein of the herpes simplex virus and has been reported to possess unusual trafficking properties. Here we examined the mechanism of cellular uptake of VP22 using a fusion protein between the C-terminal half of VP22 and green fluorescent protein (GFP). Adsorption of VP22-GFP onto a cell surface required heparan sulfate proteoglycans and basic amino acids, in particular, Arg-164 of VP22. Inhibitor treatment, RNA interference, expression of dominant-negative mutant genes, and confocal microscopy all indicated that VP22-GFP enters cells through an endocytic pathway independent of clathrin and caveolae but dependent on dynamin and Arf6 activity. As with CD59 (a lipid raft marker), cell-surface VP22-GFP signals were resistant to Triton X-100 treatment but only partially overlapped cell-surface CD59 signals. Furthermore, unlike other lipid raft-mediated endocytic pathways, no Rho family GTPase was required for VP22-GFP internalization. Internalized VP22 initially entered early endosomes and then moved to lysosomes and possibly recycling endosomes.
Collapse
Affiliation(s)
- Kenji Nishi
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kaoru Saigo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
28
|
Tateno H, Li H, Schur MJ, Bovin N, Crocker PR, Wakarchuk WW, Paulson JC. Distinct endocytic mechanisms of CD22 (Siglec-2) and Siglec-F reflect roles in cell signaling and innate immunity. Mol Cell Biol 2007; 27:5699-710. [PMID: 17562860 PMCID: PMC1952126 DOI: 10.1128/mcb.00383-07] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sialic acid-binding immunoglobulin-like lectins (siglecs) are predominately expressed on immune cells. They are best known as regulators of cell signaling mediated by cytoplasmic tyrosine motifs and are increasingly recognized as receptors for pathogens that bear sialic acid-containing glycans. Most siglec proteins undergo endocytosis, an activity tied to their roles in cell signaling and innate immunity. Here, we investigate the endocytic pathways of two siglec proteins, CD22 (Siglec-2), a regulator of B-cell signaling, and mouse eosinophil Siglec-F, a member of the rapidly evolving CD33-related siglec subfamily that are expressed on cells of the innate immune system. CD22 exhibits hallmarks of clathrin-mediated endocytosis and traffics to recycling compartments, consistent with previous reports demonstrating its localization to clathrin domains. Like CD22, Siglec-F mediates endocytosis of anti-Siglec-F and sialoside ligands, a function requiring intact tyrosine-based motifs. In contrast, however, we find that Siglec-F endocytosis is clathrin and dynamin independent, requires ADP ribosylation factor 6, and traffics to lysosomes. The results suggest that these two siglec proteins have evolved distinct endocytic mechanisms consistent with roles in cell signaling and innate immunity.
Collapse
Affiliation(s)
- Hiroaki Tateno
- Department of Molecular Biology and Molecular and Experimental Medicine, The Scripps Research Institute, San Diego, CA, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The ADP-ribosylation factor (ARF) small GTPases regulate vesicular traffic and organelle structure by recruiting coat proteins, regulating phospholipid metabolism and modulating the structure of actin at membrane surfaces. Recent advances in our understanding of the signalling pathways that are regulated by ARF1 and ARF6, two of the best characterized ARF proteins, provide a molecular context for ARF protein function in fundamental biological processes, such as secretion, endocytosis, phagocytosis, cytokinesis, cell adhesion and tumour-cell invasion.
Collapse
Affiliation(s)
- Crislyn D'Souza-Schorey
- Department of Biological Sciences and the Walther Cancer Institute, University of Notre Dame, Notre Dame, Indiana, USA.
| | | |
Collapse
|
30
|
Yanik T, Dominguez G, Kuhar MJ, Del Giudice EM, Loh YP. The Leu34Phe ProCART mutation leads to cocaine- and amphetamine-regulated transcript (CART) deficiency: a possible cause for obesity in humans. Endocrinology 2006; 147:39-43. [PMID: 16210370 DOI: 10.1210/en.2005-0812] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) is an anorexigenic neuropeptide synthesized in the hypothalamus. A Leu34Phe missense mutation in proCART has been found in an obese family in humans. Here we show that humans bearing the Leu34Phe mutation in proCART have severely diminished levels of bioactive CART, but elevated amounts of partially processed proCART in their serum. Expression of wild-type proCART in AtT-20 cells showed that it was sorted to the regulated secretory pathway, a necessity for proper processing to bioactive CART. However, expressed Leu34Phe proCART was missorted, poorly processed, and secreted constitutively. The defective intracellular sorting of Leu34Phe proCART would account for the reduced levels of bioactive CART in affected humans. These results suggest that the obesity observed in humans bearing the Leu34Phe mutation could be due to a putative deficiency in hypothalamic bioactive CART.
Collapse
Affiliation(s)
- Tulin Yanik
- Section on Cellular Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4480, USA
| | | | | | | | | |
Collapse
|
31
|
Zhu X, Wu K, Rife L, Cawley NX, Brown B, Adams T, Teofilo K, Lillo C, Williams DS, Loh YP, Craft CM. Carboxypeptidase E is required for normal synaptic transmission from photoreceptors to the inner retina. J Neurochem 2005; 95:1351-62. [PMID: 16219026 DOI: 10.1111/j.1471-4159.2005.03460.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Defects in the gene encoding carboxypeptidase E (CPE) in either mouse or human lead to multiple endocrine disorders, including obesity and diabetes. Recent studies on Cpe-/- mice indicated neurological deficits in these animals. As a model system to study the potential role of CPE in neurophysiology, we carried out electroretinography (ERG) and retinal morphological studies on Cpe-/- and Cpe fat/fat mutant mice. Normal retinal morphology was observed by light microscopy in both Cpe-/- and Cpe(fat/fat) mice. However, with increasing age, abnormal retinal function was revealed by ERG. Both Cpe-/- and Cpe fat/fat animals had progressively reduced ERG response sensitivity, decreased b-wave amplitude and delayed implicit time with age, while maintaining a normal a-wave amplitude. Immunohistochemical staining showed specific localization of CPE in photoreceptor synaptic terminals in wild-type (WT) mice, but in both Cpe-/- and Cpe fat/fat mice, CPE was absent in this layer. Bipolar cell morphology and distribution were normal in these mutant mice. Electron microscopy of retinas from Cpe fat/fat mice revealed significantly reduced spherule size, but normal synaptic ribbons and synaptic vesicle density, implicating a reduction in total number of vesicles per synapse in the photoreceptors of these animals. These results suggest that CPE is required for normal-sized photoreceptor synaptic terminal and normal signal transmission to the inner retina.
Collapse
Affiliation(s)
- Xuemei Zhu
- The Mary D. Allen Laboratory for Vision Research, Doheny Eye Institute, and Departmentsof Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wu CM, Chang HT, Chang MT. Membrane-bound carboxypeptidase E facilitates the entry of eosinophil cationic protein into neuroendocrine cells. Biochem J 2005; 382:841-8. [PMID: 15233624 PMCID: PMC1133959 DOI: 10.1042/bj20040894] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Revised: 06/30/2004] [Accepted: 07/02/2004] [Indexed: 11/17/2022]
Abstract
ECP (eosinophil cationic protein) is a major component of eosinophil granule proteins, and is used as a clinical biomarker for asthma and allergic inflammatory disease. ECP has been implicated in damage to the cell membrane of many tissue types, but the mechanism is not well known. In the present study, mECP-eGFP-6H, a recombinant fusion protein containing mature ECP (mECP), enhanced green fluorescence protein (eGFP) and a His(6) tag (6H), has been expressed, purified and added to GH3 neuroendocrine cells to study the internalization ability of ECP. We found that mECP-eGFP-6H entered into GH3 neuroendocrine cells and inhibited the growth of the cells with an IC(50) of 0.8 microM. By yeast two-hybrid screening and immunoprecipitation, we have identified a specific protein-protein interaction between mECP and CPE (carboxypeptidase E), a well characterized metalloprotease. Further in vivo yeast two-hybrid screening has also revealed that residues 318-387 located in a region of unknown function in mature CPE are indispensable for association with mECP. In addition, the uptake of mECP-eGFP-6H is suppressed by dominant-negative expression of the recycling defect mutant pre-pro-HA-CPE(S471A,E472A) in GH3 cells, suggesting that the entry of mECP-eGFP-6H is associated with the recycling of CPE in GH3 cells. Taken together, we have demonstrated that CPE possesses a novel function to facilitate the entry of ECP to neuroendocrine cells, and such an endocytotic process allows the cytotoxic ECP to inhibit growth of the target cells.
Collapse
Affiliation(s)
- Chia-Mao Wu
- Department of Life Science, Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
| | - Hao-Teng Chang
- Department of Life Science, Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
| | - Margaret Dah-Tsyr Chang
- Department of Life Science, Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
- To whom correspondence should be addressed (email )
| |
Collapse
|
33
|
Damm EM, Pelkmans L, Kartenbeck J, Mezzacasa A, Kurzchalia T, Helenius A. Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. ACTA ACUST UNITED AC 2005; 168:477-88. [PMID: 15668298 PMCID: PMC2171728 DOI: 10.1083/jcb.200407113] [Citation(s) in RCA: 370] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Simian Virus 40 (SV40) has been shown to enter host cells by caveolar endocytosis followed by transport via caveosomes to the endoplasmic reticulum (ER). Using a caveolin-1 (cav-1)-deficient cell line (human hepatoma 7) and embryonic fibroblasts from a cav-1 knockout mouse, we found that in the absence of caveolae, but also in wild-type embryonic fibroblasts, the virus exploits an alternative, cav-1-independent pathway. Internalization was rapid (t1/2 = 20 min) and cholesterol and tyrosine kinase dependent but independent of clathrin, dynamin II, and ARF6. The viruses were internalized in small, tight-fitting vesicles and transported to membrane-bounded, pH-neutral organelles similar to caveosomes but devoid of cav-1 and -2. The viruses were next transferred by microtubule-dependent vesicular transport to the ER, a step that was required for infectivity. Our results revealed the existence of a virus-activated endocytic pathway from the plasma membrane to the ER that involves neither clathrin nor caveolae and that can be activated also in the presence of cav-1.
Collapse
MESH Headings
- ADP-Ribosylation Factor 6
- ADP-Ribosylation Factors/genetics
- ADP-Ribosylation Factors/physiology
- Actin Cytoskeleton/drug effects
- Actin Cytoskeleton/physiology
- Adaptor Proteins, Signal Transducing
- Animals
- Antigens, Viral, Tumor/metabolism
- Brefeldin A/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Calcium-Binding Proteins/genetics
- Caveolae/physiology
- Caveolin 1
- Caveolin 2
- Caveolins/analysis
- Caveolins/genetics
- Caveolins/physiology
- Cell Line
- Cell Line, Tumor
- Cholesterol/deficiency
- Cholesterol/physiology
- Clathrin/physiology
- Detergents/chemistry
- Dynamin II/genetics
- Dynamin II/physiology
- Embryo, Mammalian/cytology
- Endocytosis/drug effects
- Endocytosis/physiology
- Endoplasmic Reticulum, Smooth/chemistry
- Endoplasmic Reticulum, Smooth/physiology
- Fibroblasts/drug effects
- Fibroblasts/ultrastructure
- Fibroblasts/virology
- Gene Expression
- Genistein/pharmacology
- Humans
- Intracellular Signaling Peptides and Proteins
- Membrane Microdomains/chemistry
- Membrane Microdomains/physiology
- Membrane Proteins/metabolism
- Mice
- Mice, Knockout
- Microscopy, Electron, Transmission
- Microscopy, Fluorescence
- Microtubules/drug effects
- Microtubules/physiology
- Nocodazole/pharmacology
- Phosphoproteins/genetics
- Semliki forest virus/physiology
- Simian virus 40/metabolism
- Thiazoles/pharmacology
- Thiazolidines
- Transferrin/metabolism
- Transport Vesicles/physiology
- Transport Vesicles/ultrastructure
- Tubulin/genetics
- Vesicular Transport Proteins
Collapse
Affiliation(s)
- Eva-Maria Damm
- Institute of Biochemistry, Swiss Federal Institute of Technology Zürich (ETHZ), CH-8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
34
|
Vo YP, Hutton JC, Angleson JK. Recycling of the dense-core vesicle membrane protein phogrin in Min6 beta-cells. Biochem Biophys Res Commun 2004; 324:1004-10. [PMID: 15485654 DOI: 10.1016/j.bbrc.2004.09.147] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2004] [Indexed: 11/18/2022]
Abstract
Phogrin (IA2-beta) is an integral membrane protein of dense-core vesicles in neuroendocrine cells. We have examined the recycling of endogenous phogrin following exocytosis in insulin secreting Min6 beta-cells by monitoring stimulus dependent-uptake of antibodies directed against the lumenal domain of the protein. While low levels of internalized phogrin accumulated in LAMP1-positive lysosomes, more than 35% of internalized phogrin recycled back to an insulin-positive compartment and could return to the cell surface during a second exocytic stimulation. The recycling phogrin transited a syntaxin 6-positive compartment but did not appear to go through the TGN38-positive trans Golgi network. The results suggest a model in which secretory membrane components can recycle from the endosomal system to immature secretory granules without interaction with the major portion of the TGN.
Collapse
Affiliation(s)
- Yen P Vo
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | | | | |
Collapse
|
35
|
Massol RH, Larsen JE, Fujinaga Y, Lencer WI, Kirchhausen T. Cholera toxin toxicity does not require functional Arf6- and dynamin-dependent endocytic pathways. Mol Biol Cell 2004; 15:3631-41. [PMID: 15146065 PMCID: PMC491824 DOI: 10.1091/mbc.e04-04-0283] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cholera toxin (CT) and related AB(5) toxins bind to glycolipids at the plasma membrane and are then transported in a retrograde manner, first to the Golgi and then to the endoplasmic reticulum (ER). In the ER, the catalytic subunit of CT is translocated into the cytosol, resulting in toxicity. Using fluorescence microscopy, we found that CT is internalized by multiple endocytic pathways. Inhibition of the clathrin-, caveolin-, or Arf6-dependent pathways by overexpression of appropriate dominant mutants had no effect on retrograde traffic of CT to the Golgi and ER, and it did not affect CT toxicity. Unexpectedly, when we blocked all three endocytic pathways at once, although fluorescent CT in the Golgi and ER became undetectable, CT-induced toxicity was largely unaffected. These results are consistent with the existence of an additional retrograde pathway used by CT to reach the ER.
Collapse
Affiliation(s)
- Ramiro H Massol
- Department of Cell Biology, Harvard Medical School and The Center for Blood Research for Biomedical Research, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|