1
|
Cleary CM, Milla BM, Kuo FS, James S, Flynn WF, Robson P, Mulkey DK. Somatostatin-expressing parafacial neurons are CO 2/H + sensitive and regulate baseline breathing. eLife 2021; 10:e60317. [PMID: 34013884 PMCID: PMC8169115 DOI: 10.7554/elife.60317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 05/19/2021] [Indexed: 01/16/2023] Open
Abstract
Glutamatergic neurons in the retrotrapezoid nucleus (RTN) function as respiratory chemoreceptors by regulating breathing in response to tissue CO2/H+. The RTN and greater parafacial region may also function as a chemosensing network composed of CO2/H+-sensitive excitatory and inhibitory synaptic interactions. In the context of disease, we showed that loss of inhibitory neural activity in a mouse model of Dravet syndrome disinhibited RTN chemoreceptors and destabilized breathing (Kuo et al., 2019). Despite this, contributions of parafacial inhibitory neurons to control of breathing are unknown, and synaptic properties of RTN neurons have not been characterized. Here, we show the parafacial region contains a limited diversity of inhibitory neurons including somatostatin (Sst)-, parvalbumin (Pvalb)-, and cholecystokinin (Cck)-expressing neurons. Of these, Sst-expressing interneurons appear uniquely inhibited by CO2/H+. We also show RTN chemoreceptors receive inhibitory input that is withdrawn in a CO2/H+-dependent manner, and chemogenetic suppression of Sst+ parafacial neurons, but not Pvalb+ or Cck+ neurons, increases baseline breathing. These results suggest Sst-expressing parafacial neurons contribute to RTN chemoreception and respiratory activity.
Collapse
Affiliation(s)
- Colin M Cleary
- Department of Physiology and Neurobiology, University of ConnecticutStorrsUnited States
| | - Brenda M Milla
- Department of Physiology and Neurobiology, University of ConnecticutStorrsUnited States
| | - Fu-Shan Kuo
- Department of Physiology and Neurobiology, University of ConnecticutStorrsUnited States
| | - Shaun James
- Department of Physiology and Neurobiology, University of ConnecticutStorrsUnited States
| | - William F Flynn
- The Jackson Laboratory for Genomic MedicineFarmingtonUnited States
| | - Paul Robson
- The Jackson Laboratory for Genomic MedicineFarmingtonUnited States
- Institute for Systems Genomics, University of ConnecticutFarmingtonUnited States
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of ConnecticutStorrsUnited States
| |
Collapse
|
2
|
Tsujioka T, Yokoi A, Uesugi M, Kishimoto M, Tochigi A, Suemori S, Tohyama Y, Tohyama K. Effects of DNA methyltransferase inhibitors (DNMTIs) on MDS-derived cell lines. Exp Hematol 2012; 41:189-97. [PMID: 23085465 DOI: 10.1016/j.exphem.2012.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 10/03/2012] [Accepted: 10/12/2012] [Indexed: 10/27/2022]
Abstract
DNA methyltransferase inhibitors (DNMTIs), including decitabine (DAC) and azacitidine (AZA), have recently been highlighted for the treatment of high-risk myelodysplastic syndrome (MDS); however, their action mechanisms have not been clearly defined. Therefore, we investigated the effects of DNMTIs on MDS-derived cell lines in vitro. An MDS-derived cell line MDS92 and its blastic subline MDS-L and HL-60 were used. All three cell lines were sensitive to DNMTIs, but MDS-L was the most susceptible. DAC-induced cell death in MDS-L was preceded by DNA damage-induced G2 arrest via a p53-independent pathway. AZA did not influence the pattern of cell cycle, although it induced DNA damage response. The IC(50) of DAC or AZA on MDS-L cells was associated with the dose inducing the maximal hypomethylation in long interspersed nuclear elements-1 (LINE-1) methylation assay. AZA suppressed the level of methylation in a time-dependent manner (days 4, 7, and 10), whereas DAC maintained the level of methylation from day 4 to 11. The protein expression of DNMT1 and DNMT3a decreased with the suppression of growth and methylation. We conclude that this study provides in vitro models for understanding the effects of DNMTIs on cell growth and gene regulation, including differences in the possible action mechanism of DAC and AZA.
Collapse
Affiliation(s)
- Takayuki Tsujioka
- Department of Laboratory Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Sellin ME, Holmfeldt P, Stenmark S, Gullberg M. Microtubules support a disk-like septin arrangement at the plasma membrane of mammalian cells. Mol Biol Cell 2011; 22:4588-601. [PMID: 21998205 PMCID: PMC3226477 DOI: 10.1091/mbc.e11-09-0754] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Septin assemblies during the interphase of animal cells remain poorly defined and are the topic of this report. The data point to a general model for assembly of higher-order septin arrangements at locations providing the greatest opportunity for binding cooperativity, which depends on both the cell type and external cues. Septin family proteins oligomerize through guanosine 5′-triphosphate–binding domains into core heteromers, which in turn polymerize at the cleavage furrow of dividing fungal and animal cells. Septin assemblies during the interphase of animal cells remain poorly defined and are the topic of this report. In this study, we developed protocols for visualization of authentic higher-order assemblies using tagged septins to effectively replace the endogenous gene product within septin core heteromers in human cells. Our analysis revealed that septins assemble into microtubule-supported, disk-like structures at the plasma membrane. In the absence of cell substrate adhesion, this is the predominant higher-order arrangement in interphase cells and each of the seven to eight septin family members expressed by the two analyzed cell types appears equally represented. However, studies of myeloid and lymphoid cell model systems revealed cell type–specific alterations of higher-order septin arrangements in response to substrate adhesion. Live-cell observations suggested that all higher-order septin assemblies are mutually exclusive with plasma membrane regions undergoing remodeling. The combined data point to a mechanism by which densely arranged cortical microtubules, which are typical for nonadhered spherical cells, support plasma membrane–bound, disk-like septin assemblies.
Collapse
Affiliation(s)
- Mikael E Sellin
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | | | |
Collapse
|
4
|
Sellin ME, Sandblad L, Stenmark S, Gullberg M. Deciphering the rules governing assembly order of mammalian septin complexes. Mol Biol Cell 2011; 22:3152-64. [PMID: 21737677 PMCID: PMC3164462 DOI: 10.1091/mbc.e11-03-0253] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vertebrates express 9–17 septin family members known to oligomerize into diverse structures, but their native assembly states have remained elusive. The results presented suggest a generic model for how the temporal order of septin assembly directs the subunit arrangement within distinct pools of six- to eight-subunit core heteromers. Septins are conserved GTP-binding proteins that assemble into lateral diffusion barriers and molecular scaffolds. Vertebrate genomes contain 9–17 septin genes that encode both ubiquitous and tissue-specific septins. Expressed septins may assemble in various combinations through both heterotypic and homotypic G-domain interactions. However, little is known regarding assembly states of mammalian septins and mechanisms directing ordered assembly of individual septins into heteromeric units, which is the focus of this study. Our analysis of the septin system in cells lacking or overexpressing selected septins reveals interdependencies coinciding with previously described homology subgroups. Hydrodynamic and single-particle data show that individual septins exist solely in the context of stable six- to eight-subunit core heteromers, all of which contain SEPT2 and SEPT6 subgroup members and SEPT7, while heteromers comprising more than six subunits also contain SEPT9. The combined data suggest a generic model for how the temporal order of septin assembly is homology subgroup-directed, which in turn determines the subunit arrangement of native heteromers. Because mammalian cells normally express multiple members and/or isoforms of some septin subgroups, our data also suggest that only a minor fraction of native heteromers are arranged as perfect palindromes.
Collapse
Affiliation(s)
- Mikael E Sellin
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | | | |
Collapse
|
5
|
Holmfeldt P, Sellin ME, Gullberg M. Upregulated Op18/stathmin activity causes chromosomal instability through a mechanism that evades the spindle assembly checkpoint. Exp Cell Res 2010; 316:2017-26. [PMID: 20399773 DOI: 10.1016/j.yexcr.2010.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 04/09/2010] [Accepted: 04/12/2010] [Indexed: 02/04/2023]
Abstract
Op18/stathmin (Op18) is a microtubule-destabilizing protein that is phosphorylation-inactivated during mitosis and its normal function is to govern tubulin subunit partitioning during interphase. Human tumors frequently overexpress Op18 and a tumor-associated Q18-->E mutation has been identified that confers hyperactivity, destabilizes spindle microtubules, and causes mitotic aberrancies, polyploidization, and chromosome loss in K562 leukemia cells. Here we determined whether wild-type and mutant Op18 have the potential to cause chromosomal instability by some means other than interference with spindle assembly, and thereby bypassing the spindle assembly checkpoint. Our approach was based on Op18 derivatives with distinct temporal order of activity during mitosis, conferred either by differential phosphorylation inactivation or by anaphase-specific degradation through fusion with the destruction box of cyclin B1. We present evidence that excessive Op18 activity generates chromosomal instability through interference occurring subsequent to the metaphase-to-anaphase transition, which reduces the fidelity of chromosome segregation to spindle poles during anaphase. Similar to uncorrected merotelic attachment, this mechanism evades detection by the spindle assembly checkpoint and thus provides an additional route to chromosomal instability.
Collapse
Affiliation(s)
- Per Holmfeldt
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | | |
Collapse
|
6
|
Vedin V, Molander M, Bohm S, Berghard A. Regional differences in olfactory epithelial homeostasis in the adult mouse. J Comp Neurol 2009; 513:375-84. [PMID: 19177519 DOI: 10.1002/cne.21973] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The olfactory sensory neurons in the nasal cavity of the adult mouse are organized into a few regions that differ in their molecular properties, as several classes of genes show regional expression. Most renowned is the fact that expression of each of hundreds of different odorant receptor genes is limited to one such region, or zone, of the olfactory neuroepithelial sheet. Zone differences are in place at birth, as exemplified here by the expression of neuronal progenitor marker Foxg1. We herein describe that an adult pattern showing regional differences in neurogenesis develops during the first few weeks of postnatal life which, e.g., is reflected in the temporal and regional regulation of the neuronal progenitor marker Ascl1. The most dorsomedial zone shows significantly fewer cells in S-phase in the adult but not in newborn mice by two different measures. Moreover, we show that there are regional differences in the relative differentiation, cell survival, and thickness of the olfactory epithelium. These findings are compatible with the view that zones are inherently distinct and that such differences contribute to generate regional differences in cellular homeostasis that in turn may modulate the capacity of a region to adjust to extrinsic influence.
Collapse
Affiliation(s)
- Viktoria Vedin
- Department of Molecular Biology, Umeå University, Sweden
| | | | | | | |
Collapse
|
7
|
Myc sensitizes p53-deficient cancer cells to the DNA-damaging effects of the DNA methyltransferase inhibitor decitabine. Blood 2009; 113:4281-8. [PMID: 19179467 DOI: 10.1182/blood-2008-10-183475] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Decitabine (also referred to as 5-aza-2'-deoxycytidine) is a drug that has recently been approved by the Food and Drug Administration (FDA) for the treatment of myelodysplastic syndrome (MDS). The mechanism of action is believed to be the blocking of DNA methylation and thereby reactivating silenced genes involved in harnessing MDS. When analyzing reactivation of genes involved in Burkitt lymphoma (BL), we discovered that decitabine also sensitizes tumor cells by inducing DNA damage. This sensitization is grossly augmented by the MYC oncogene, which is overexpressed in BL, and occurs in cells lacking a functional p53 tumor suppressor pathway. In p53-deficient BL cells and p53(-/-) mouse embryo fibroblasts, Myc overrides a transient G2-block exerted by decitabine via activation of Chk1. This triggers aneuploidy and cell death that correlates with, but can occur in the absence of, Epstein-Barr virus (EBV) reactivation, caspase activation, and/or expression of the BH3-only protein Puma. In vivo modeling of Myc-induced lymphoma suggests that decitabine constitutes a potential new drug against lymphoma that would selectively sensitize tumor cells but spare normal tissue.
Collapse
|
8
|
The Schistosoma mansoni protein Sm16/SmSLP/SmSPO-1 assembles into a nine-subunit oligomer with potential To inhibit Toll-like receptor signaling. Infect Immun 2009; 77:1144-54. [PMID: 19124604 DOI: 10.1128/iai.01126-08] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sm16/SmSLP/SmSPO-1 (Sm16) protein is secreted by the parasite Schistosoma mansoni during skin penetration and has been ascribed immunosuppressive activities. Here we describe the strategy behind the design of a modified Sm16 protein with a decreased aggregation propensity, thus facilitating the expression and purification of an Sm16 protein that is soluble in physiological buffers. The Stokes radii and sedimentation coefficients of recombinant and native proteins indicate that Sm16 is an approximately nine-subunit oligomer. Analysis of truncated Sm16 derivatives showed that both oligomerization and binding to the plasma membrane of human cells depend on multiple C-terminal regions. For analysis of immunomodulatory activities, Sm16 was expressed in Pichia pastoris to facilitate the preparation of a pyrogen/endotoxin-free purified protein. Recombinant Sm16 was found to have no effect on T-lymphocyte activation, cell proliferation, or the basal level of cytokine production by whole human blood or monocytic cells. However, Sm16 exerts potent inhibition of the cytokine response to the Toll-like receptor (TLR) ligands lipopolysaccharide (LPS) and poly(I:C) while being less efficient at inhibiting the response to the TLR ligand peptidoglycan or a synthetic lipopeptide. Since Sm16 specifically inhibits the degradation of the IRAK1 signaling protein in LPS-stimulated monocytes, our findings indicate that inhibition is exerted proximal to the TLR complex.
Collapse
|
9
|
Ozgen HM, Staal WG, Barber JC, de Jonge MV, Eleveld MJ, Beemer FA, Hochstenbach R, Poot M. A novel 6.14 Mb duplication of chromosome 8p21 in a patient with autism and self mutilation. J Autism Dev Disord 2008; 39:322-9. [PMID: 18696223 DOI: 10.1007/s10803-008-0627-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 07/15/2008] [Indexed: 11/24/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders with a strong genetic etiology. Cytogenetic abnormalities have been detected in 5-10% of the patients with autism. In this study, we present the clinical, cytogenetic and array-comparative genomic hybridization (array-CGH) evaluation of a 13-year-old male with severe developmental delay, facial dysmorphic features, autism and self mutilation. The patient was found to carry a de novo duplication of chromosome region 8p21 of minimally 6.14 and maximally 6.58 Mb as ascertained by bacterial artificial chromosome (BAC)-based array-CGH. Hitherto, only a few patients with autism with cytogenetically visible duplications involving the chromosome 8p21 region have been described, but the extent of these duplications has not been determined at the molecular level. This represents the smallest rearrangement of chromosomal region 8p21 as yet found in a patient with autism. For 11 of the 36 genes with known functions located within this duplication clear transcription in the brain was found. Of those the STMN4 and DPYSL2 genes are the most likely candidate genes to be involved in neuronal development, and, if altered in gene-dosage, in the autistic phenotype of our patient.
Collapse
Affiliation(s)
- Heval M Ozgen
- Department of Child and Adolescent Psychiatry, Rudolf Magnus Institute of Neuroscience, UMC Utrecht, HP B01.201, GA, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Sellin ME, Holmfeldt P, Stenmark S, Gullberg M. Global regulation of the interphase microtubule system by abundantly expressed Op18/stathmin. Mol Biol Cell 2008; 19:2897-906. [PMID: 18434595 DOI: 10.1091/mbc.e08-01-0058] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Op18/stathmin (Op18), a conserved microtubule-depolymerizing and tubulin heterodimer-binding protein, is a major interphase regulator of tubulin monomer-polymer partitioning in diverse cell types in which Op18 is abundant. Here, we addressed the question of whether the microtubule regulatory function of Op18 includes regulation of tubulin heterodimer synthesis. We used two human cell model systems, K562 and Jurkat, combined with strategies for regulatable overexpression or depletion of Op18. Although Op18 depletion caused extensive overpolymerization and increased microtubule content in both cell types, we did not detect any alteration in polymer stability. Interestingly, however, we found that Op18 mediates positive regulation of tubulin heterodimer content in Jurkat cells, which was not observed in K562 cells. By analysis of cells treated with microtubule-poisoning drugs, we found that Jurkat cells regulate tubulin mRNA levels by a posttranscriptional mechanism similarly to normal primary cells, whereas this mechanism is nonfunctional in K562 cells. We present evidence that Op18 mediates posttranscriptional regulation of tubulin mRNA in Jurkat cells through the same basic autoregulatory mechanism as microtubule-poisoning drugs. This, combined with potent regulation of tubulin monomer-polymer partitioning, enables Op18 to exert global regulation of the microtubule system.
Collapse
Affiliation(s)
- Mikael E Sellin
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
11
|
Microtubule dynamics regulated by stathmin. Comput Biol Chem 2008; 32:141-4. [DOI: 10.1016/j.compbiolchem.2007.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 12/12/2007] [Accepted: 12/12/2007] [Indexed: 11/20/2022]
|
12
|
Sellin ME, Holmfeldt P, Stenmark S, Gullberg M. Op18/Stathmin counteracts the activity of overexpressed tubulin-disrupting proteins in a human leukemia cell line. Exp Cell Res 2008; 314:1367-77. [PMID: 18262179 DOI: 10.1016/j.yexcr.2007.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 12/21/2007] [Accepted: 12/27/2007] [Indexed: 11/30/2022]
Abstract
Op18/stathmin (Op18) is a phosphorylation-regulated and differentially expressed microtubule-destabilizing protein in animal cells. Op18 regulates tubulin monomer-polymer partitioning of the interphase microtubule system and forms complexes with tubulin heterodimers. Recent reports have shown that specific tubulin-folding cofactors and related proteins may disrupt tubulin heterodimers. We therefore investigated whether Op18 protects unpolymerized tubulin from such disruptive activities. Our approach was based on inducible overexpression of two tubulin-disrupting proteins, namely TBCE, which is required for tubulin biogenesis, and E-like, which has been proposed to regulate tubulin turnover and microtubule stability. Expression of either of these proteins was found to cause a rapid degradation of both alpha-tubulin and beta-tubulin subunits of unpolymerized, but not polymeric, tubulin heterodimers. We found that depletion of Op18 by means of RNA interference increased the susceptibility of tubulin to TBCE or E-like mediated disruption, while overexpressed Op18 exerted a tubulin-protective effect. Tubulin protection was shown to depend on Op18 levels, binding affinity, and the partitioning between tubulin monomers and polymers. Hence, the present study reveals that Op18 at physiologically relevant levels functions to preserve the integrity of tubulin heterodimers, which may serve to regulate tubulin turnover rates.
Collapse
Affiliation(s)
- Mikael E Sellin
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
| | | | | | | |
Collapse
|
13
|
Holmfeldt P, Stenmark S, Gullberg M. Interphase-specific phosphorylation-mediated regulation of tubulin dimer partitioning in human cells. Mol Biol Cell 2007; 18:1909-17. [PMID: 17344472 PMCID: PMC1855035 DOI: 10.1091/mbc.e07-01-0019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The microtubule cytoskeleton is differentially regulated by a diverse array of proteins during interphase and mitosis. Op18/stathmin (Op18) and microtubule-associated protein (MAP)4 have been ascribed opposite general microtubule-directed activities, namely, microtubule destabilization and stabilization, respectively, both of which can be inhibited by phosphorylation. Here, using three human cell models, we depleted cells of Op18 and/or MAP4 by expression of interfering hairpin RNAs and we analyzed the resulting phenotypes. We found that the endogenous levels of Op18 and MAP4 have opposite and counteractive activities that largely govern the partitioning of tubulin dimers in the microtubule array at interphase. Op18 and MAP4 were also found to be the downstream targets of Ca(2+)- and calmodulin-dependent protein kinase IV and PAR-1/MARK2 kinase, respectively, that control the demonstrated counteractive phosphorylation-mediated regulation of tubulin dimer partitioning. Furthermore, to address mechanisms regulating microtubule polymerization in response to cell signals, we developed a system for inducible gene product replacement. This approach revealed that site-specific phosphorylation of Op18 is both necessary and sufficient for polymerization of microtubules in response to the multifaceted signaling event of stimulation of the T cell antigen receptor complex, which activates several signal transduction pathways.
Collapse
Affiliation(s)
- Per Holmfeldt
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | |
Collapse
|
14
|
Mitra G, Saha A, Gupta TD, Poddar A, Das KP, Das Gupta SK, Bhattacharyya B. Chaperone-mediated inhibition of tubulin self-assembly. Proteins 2007; 67:112-20. [PMID: 17243182 DOI: 10.1002/prot.21286] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Molecular chaperones are known to play an important role in facilitating the proper folding of many newly synthesized proteins. Here, we have shown that chaperone proteins exhibit another unique property to inhibit tubulin self-assembly efficiently. Chaperones tested include alpha-crystallin from bovine eye lenses, HSP16.3, HSP70 from Mycobacterium tuberculosis and alpha (s)-casein from milk. All of them inhibit polymerization in a dose-dependent manner independent of assembly inducers used. The critical concentration of MTP polymerization increases with increasing concentration of HSP16.3. Increase in chaperone concentration lowers the extent of polymerization and increases the lag time of self-assembly reaction. Although the addition of a chaperone at the early stage of elongation phase shows no effect on polymerization, the same concentration of chaperone inhibits polymerization completely when added before the initiation of polymerization. Bindings of HSP16.3 and alpha (s)-casein to tubulin have been confirmed using isothermal titration calorimetry. Affinity constants of tubulin are 5.3 xx 10(4) and 9.8 xx 10(5) M(-1) for HSP16.3 and alpha (s)-casein, respectively. Thermodynamic parameters indicate favourable entropy and enthalpy changes for both chaperones-tubulin interactions. Positive entropy change suggests that the interaction is hydrophobic in nature and desolvation occurring during formation of tubulin-chaperone complex. On the basis of thermodynamic data and observations made upon addition of chaperone at early elongation phase or before the initiation of polymerization, we hypothesize that chaperones bind tubulin at the protein-protein interaction site involved in the nucleation phase of self-assembly.
Collapse
Affiliation(s)
- Gopa Mitra
- Department of Biochemistry, Bose Institute, Centenary Campus, Calcutta 700054, India
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
In the year 2003 there was a 17% increase in the number of publications citing work performed using optical biosensor technology compared with the previous year. We collated the 962 total papers for 2003, identified the geographical regions where the work was performed, highlighted the instrument types on which it was carried out, and segregated the papers by biological system. In this overview, we spotlight 13 papers that should be on everyone's 'must read' list for 2003 and provide examples of how to identify and interpret high-quality biosensor data. Although we still find that the literature is replete with poorly performed experiments, over-interpreted results and a general lack of understanding of data analysis, we are optimistic that these shortcomings will be addressed as biosensor technology continues to mature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
16
|
Kolterud A, Alenius M, Carlsson L, Bohm S. The Lim homeobox gene Lhx2 is required for olfactory sensory neuron identity. Development 2004; 131:5319-26. [PMID: 15456728 DOI: 10.1242/dev.01416] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Progenitor cells in the mouse olfactory epithelium generate over a thousand subpopulations of neurons, each expressing a unique odorant receptor (OR) gene. This event is under the control of spatial cues, since neurons in different epithelial regions are restricted to express region-specific subsets of OR genes. We show that progenitors and neurons express the LIM-homeobox gene Lhx2 and that neurons in Lhx2-null mutant embryos do not diversify into subpopulations expressing different OR genes and other region-restricted genes such as Nqo1 and Ncam2. Lhx2-/- embryos have, however, a normal distribution of Mash1-positive and neurogenin 1-positive neuronal progenitors that leave the cell cycle, acquire pan-neuronal traits and form axon bundles. Increased cell death in combination with increased expression of the early differentiation marker Neurod1, as well as reduced expression of late differentiation markers (Galphaolf and Omp), suggests that neuronal differentiation in the absence of Lhx2 is primarily inhibited at, or immediate prior to, onset of OR expression. Aberrant regional expression of early and late differentiation markers, taken together with unaltered region-restricted expression of the Msx1 homeobox gene in the progenitor cell layer of Lhx2-/- embryos, shows that Lhx2 function is not required for all aspects of regional specification of progenitors and neurons. Thus, these results indicate that a cell-autonomous function of Lhx2 is required for differentiation of progenitors into a heterogeneous population of individually and regionally specified mature olfactory sensory neurons.
Collapse
Affiliation(s)
- Asa Kolterud
- Department of Molecular Biology, Umeå University, Umeå, SE901 87, Sweden
| | | | | | | |
Collapse
|
17
|
Lallemand-Breitenbach V, Quesnoit M, Braun V, El Marjou A, Poüs C, Goud B, Perez F. CLIPR-59 is a lipid raft-associated protein containing a cytoskeleton-associated protein glycine-rich domain (CAP-Gly) that perturbs microtubule dynamics. J Biol Chem 2004; 279:41168-78. [PMID: 15262990 DOI: 10.1074/jbc.m406482200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We recently have identified a new cytoplasmic linker protein (CLIP), CLIPR-59, which is involved in the regulation of early endosome/trans-Golgi network dynamics. In contrast with CLIP-170, CLIPR-59 is not localized to microtubules at steady state but is associated with the trans-Golgi network and the plasma membrane. Here we show that the last 30 amino acids (C30) are sufficient for membrane targeting and that two cysteines in the C30 domain are palmitoylated. We demonstrate that CLIPR-59 is associated with lipid rafts via its C-terminal palmitoylated domain. In vitro experiments suggest that CLIPR-59 and its microtubule-binding domain alone have a better affinity for unpolymerized tubulin or small oligomers than for microtubules. In contrast with the CLIP-170 microtubule-binding domain, the CLIPR-59 microtubule-binding domain diminishes microtubule regrowth after nocodazole washout in vivo, showing that this domain can prevent microtubule polymerization. In contrast with the role of linker between membranes and microtubules that was proposed for CLIP function, CLIPR-59 thus may have an "anti-CLIP" function by preventing microtubule-raft interactions.
Collapse
|