1
|
Huang C, Zhong Q, Lian W, Kang T, Hu J, Lei M. Ankrd1 inhibits the FAK/Rho-GTPase/F-actin pathway by downregulating ITGA6 transcriptional to regulate myoblast functions. J Cell Physiol 2024; 239:e31359. [PMID: 38988048 DOI: 10.1002/jcp.31359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
Skeletal muscle constitutes the largest percentage of tissue in the animal body and plays a pivotal role in the development of normal life activities in the organism. However, the regulation mechanism of skeletal muscle growth and development remains largely unclear. This study investigated the effects of Ankrd1 on the proliferation and differentiation of C2C12 myoblasts. Here, we identified Ankrd1 as a potential regulator of muscle cell development, and found that Ankrd1 knockdown resulted in the proliferation ability decrease but the differentiation level increase of C2C12 cells. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyzes as well as RNA-seq results showed that Ankrd1 knockdown activated focal adhesion kinase (FAK)/F-actin signal pathway with most genes significantly enriched in this pathway upregulated. The integrin subunit Itga6 promoter activity is increased when Ankrd1 knockdown, as demonstrated by a dual-luciferase reporter assay. This study revealed the molecular mechanism by which Ankrd1 knockdown enhanced FAK phosphorylation activity through the alteration of integrin subunit levels, thus activating FAK/Rho-GTPase/F-actin signal pathway, eventually promoting myoblast differentiation. Our data suggested that Ankrd1 might serve as a potential regulator of muscle cell development. Our findings provide new insights into skeletal muscle growth and development and valuable references for further study of human muscle-related diseases.
Collapse
Affiliation(s)
- Cheng Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qiqi Zhong
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weisi Lian
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tingting Kang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinling Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Minggang Lei
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- National Engineering Research Center for Livestock, Huazhong Agricultural University, Wuhan, Hubei, China
- Department of Pig Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| |
Collapse
|
2
|
Tei R. The dynamic regulatory network of phosphatidic acid metabolism: a spotlight on substrate cycling between phosphatidic acid and diacylglycerol. Biochem Soc Trans 2024; 52:2123-2132. [PMID: 39417337 PMCID: PMC11555698 DOI: 10.1042/bst20231511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Mammalian cells utilize over 1000 different lipid species to maintain cell and organelle membrane properties, control cell signaling and processes, and store energy. Lipid synthesis and metabolism are mediated by highly interconnected and spatiotemporally regulated networks of lipid-metabolizing enzymes and supported by vesicle trafficking and lipid-transfer at membrane contact sites. However, the regulatory mechanisms that achieve lipid homeostasis are largely unknown. Phosphatidic acid (PA) serves as the central hub for phospholipid biosynthesis, acting as a key intermediate in both the Kennedy pathway and the CDP-DAG pathway. Additionally, PA is a potent signaling molecule involved in various cellular processes. This dual role of PA, both as a critical intermediate in lipid biosynthesis and as a significant signaling molecule, suggests that it is tightly regulated within cells. This minireview will summarize the functional diversity of PA molecules based on their acyl tail structures and subcellular localization, highlighting recent tools and findings that shed light on how the physical, chemical, and spatial properties of PA species contribute to their differential metabolic fates and functions. Dysfunctional effects of altered PA metabolism as well as the strategies cells employ to maintain PA regulation and homeostasis will also be discussed. Furthermore, this review will explore the differential regulation of PA metabolism across distinct subcellular membranes. Our recent proximity labeling studies highlight the possibility that substrate cycling between PA and DAG may be location-dependent and have functional significance in cell signaling and lipid homeostasis.
Collapse
Affiliation(s)
- Reika Tei
- Department of Genetics, Stanford University, Stanford, CA 94305, U.S.A
| |
Collapse
|
3
|
Kumar S, Jeevaraj T, Yunus MH, Chakraborty S, Chakraborty N. The plant cytoskeleton takes center stage in abiotic stress responses and resilience. PLANT, CELL & ENVIRONMENT 2023; 46:5-22. [PMID: 36151598 DOI: 10.1111/pce.14450] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Stress resilience behaviours in plants are defensive mechanisms that develop under adverse environmental conditions to promote growth, development and yield. Over the past decades, improving stress resilience, especially in crop species, has been a focus of intense research for global food security and economic growth. Plants have evolved specific mechanisms to sense external stress and transmit information to the cell interior and generate appropriate responses. Plant cytoskeleton, comprising microtubules and actin filaments, takes a center stage in stress-induced signalling pathways, either as a direct target or as a signal transducer. In the past few years, it has become apparent that the function of the plant cytoskeleton and other associated proteins are not merely limited to elementary processes of cell growth and proliferation, but they also function in stress response and resilience. This review summarizes recent advances in the role of plant cytoskeleton and associated proteins in abiotic stress management. We provide a thorough overview of the mechanisms that plant cells employ to withstand different abiotic stimuli such as hypersalinity, dehydration, high temperature and cold, among others. We also discuss the crucial role of the plant cytoskeleton in organellar positioning under the influence of high light intensity.
Collapse
Affiliation(s)
- Sunil Kumar
- Stress Biology, National Institute of Plant Genome Research, New Delhi, India
| | - Theboral Jeevaraj
- Stress Biology, National Institute of Plant Genome Research, New Delhi, India
| | - Mohd H Yunus
- Stress Biology, National Institute of Plant Genome Research, New Delhi, India
| | - Subhra Chakraborty
- Stress Biology, National Institute of Plant Genome Research, New Delhi, India
| | | |
Collapse
|
4
|
Vilen Z, Joeh E, Critcher M, Parker CG, Huang ML. Proximity Tagging Identifies the Glycan-Mediated Glycoprotein Interactors of Galectin-1 in Muscle Stem Cells. ACS Chem Biol 2021; 16:1994-2003. [PMID: 34181849 DOI: 10.1021/acschembio.1c00313] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myogenic differentiation, the irreversible developmental process where precursor myoblast muscle stem cells become contractile myotubes, is heavily regulated by glycosylation and glycan-protein interactions at the cell surface and the extracellular matrix. The glycan-binding protein galectin-1 has been found to be a potent activator of myogenic differentiation. While it is being explored as a potential therapeutic for muscle repair, a precise understanding of its glycoprotein interactors is lacking. These gaps are due in part to the difficulties of capturing glycan-protein interactions in live cells. Here, we demonstrate the use of a proximity tagging strategy coupled with quantitative mass-spectrometry-based proteomics to capture, enrich, and identify the glycan-mediated glycoprotein interactors of galectin-1 in cultured live mouse myoblasts. Our interactome dataset can serve as a resource to aid the determination of mechanisms through which galectin-1 promotes myogenic differentiation. Moreover, it can also facilitate the determination of the physiological glycoprotein counter-receptors of galectin-1. Indeed, we identify several known and novel glycan-mediated ligands of galectin-1 as well as validate that galectin-1 binds the native CD44 glycoprotein in a glycan-mediated manner.
Collapse
Affiliation(s)
- Zak Vilen
- Department of Molecular Medicine, Scripps Research, 120 Scripps Way, Jupiter, Florida 33458-5284, United States
| | - Eugene Joeh
- Department of Molecular Medicine, Scripps Research, 120 Scripps Way, Jupiter, Florida 33458-5284, United States
| | - Meg Critcher
- Department of Molecular Medicine, Scripps Research, 120 Scripps Way, Jupiter, Florida 33458-5284, United States
| | - Christopher G. Parker
- Department of Chemistry, Scripps Research, 120 Scripps Way, Jupiter, Florida 33458-5284, United States
| | - Mia L. Huang
- Department of Molecular Medicine, Scripps Research, 120 Scripps Way, Jupiter, Florida 33458-5284, United States
- Department of Chemistry, Scripps Research, 120 Scripps Way, Jupiter, Florida 33458-5284, United States
| |
Collapse
|
5
|
Peng LX, Wang MD, Xie P, Yang JP, Sun R, Zheng LS, Mei Y, Meng DF, Peng XS, Lang YH, Qiang YY, Li CZ, Xu L, Liu ZJ, Guo LL, Xie DH, Shu DT, Lin ST, Luo FF, Huang BJ, Qian CN. LACTB promotes metastasis of nasopharyngeal carcinoma via activation of ERBB3/EGFR-ERK signaling resulting in unfavorable patient survival. Cancer Lett 2020; 498:165-177. [PMID: 33152401 DOI: 10.1016/j.canlet.2020.10.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022]
Abstract
Nasopharyngeal carcinoma (NPC) originates in the nasopharyngeal epithelium and has the highest metastatic rate among head and neck cancers. Distant metastasis is the main reason for treatment failure with the underlying mechanisms remaining unclear. By comparing the expression profiling of NPCs versus non-cancerous nasopharyngeal tissues, we found LACTB was highly expressed in the tumor tissues. We found that elevated expression of the LACTB protein in primary NPCs correlated with poorer patient survival. LACTB is known to be a serine protease and a ubiquitous mitochondrial protein localized in the intermembrane space. Its role in tumor biology remains controversial. We found that the different methylation pattern of LACTB promoter led to its differential expression in NPC cells. Overexpressing LACTB in NPC cells promoted their motility in vitro and metastasis in vivo. While knocking down LACTB reduced the metastasis capability of NPC cells. However, LACTB did not influence cellular proliferation. We further found the role of LACTB in promoting NPC metastasis depended on the activation of ERBB3/EGFR-ERK signaling, which in turn, affected the stability and the following acetylation of histone H3. These findings may shed light on unveiling the mechanisms of NPC metastasis.
Collapse
Affiliation(s)
- Li-Xia Peng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ming-Dian Wang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ping Xie
- Department of Radiation Oncology, Xiang an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jun-Ping Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Rui Sun
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Li-Sheng Zheng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yan Mei
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Dong-Fang Meng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xing-Si Peng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yan-Hong Lang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yuan-Yuan Qiang
- Ningxia Key Laboratory for Cerebrocranical Disease, Ningxia Medical University, Yinchuan, 750001, Ningxia, China
| | - Chang-Zhi Li
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Liang Xu
- Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Zhi-Jie Liu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ling-Ling Guo
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - De-Huan Xie
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Di-Tian Shu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Si-Ting Lin
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Fei-Fei Luo
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bi-Jun Huang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chao-Nan Qian
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
6
|
Borel M, Lollo G, Magne D, Buchet R, Brizuela L, Mebarek S. Prostate cancer-derived exosomes promote osteoblast differentiation and activity through phospholipase D2. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165919. [PMID: 32800947 DOI: 10.1016/j.bbadis.2020.165919] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCa) is the most frequent cancer in men aged 65 and over. PCa mainly metastasizes in the bone, forming osteosclerotic lesions, inducing pain, fractures, and nerve compression. Cancer cell-derived exosomes participate in the metastatic spread, ranging from oncogenic reprogramming to the formation of pre-metastatic niches. Moreover, exosomes were recently involved in the dialog between PCa cells and the bone metastasis microenvironment. Phospholipase D (PLD) isoforms PLD1/2 catalyze the hydrolysis of phosphatidylcholine to yield phosphatidic acid (PA), regulating tumor progression and metastasis. PLD is suspected to play a role in exosomes biogenesis. We aimed to determine whether PCa-derived exosomes, through PLD, interact with the bone microenvironment, especially osteoblasts, during the metastatic process. Here we demonstrate for the first time that PLD2 is present in exosomes of C4-2B and PC-3 cells. C4-2B-derived exosomes activate proliferation and differentiation of osteoblasts models, by stimulating ERK 1/2 phosphorylation, by increasing the tissue-nonspecific alkaline phosphatase activity and the expression of osteogenic differentiation markers. Contrariwise, when C4-2B exosomes are generated in the presence of halopemide, a PLD pan-inhibitor, they lose their ability to stimulate osteoblasts. Furthermore, the number of released exosomes diminishes significantly (-40%). When the PLD product PA is combined with halopemide, exosome secretion is fully restored. Taken together, our results indicate that PLD2 stimulates exosome secretion in PCa cell models as well as their ability to increase osteoblast activity. Thus, PLD2 could be considered as a potent player in the establishment of PCa bone metastasis acting through tumor cell derived-exosomes.
Collapse
Affiliation(s)
- Mathieu Borel
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Lyon, France
| | - Giovanna Lollo
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, UMR 5007, LAGEPP, F-69622 Lyon, France
| | - David Magne
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Lyon, France
| | - René Buchet
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Lyon, France
| | - Leyre Brizuela
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Lyon, France
| | - Saida Mebarek
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Lyon, France.
| |
Collapse
|
7
|
Bhat SS, Ali R, Khanday FA. Syntrophins entangled in cytoskeletal meshwork: Helping to hold it all together. Cell Prolif 2019; 52:e12562. [PMID: 30515904 PMCID: PMC6496184 DOI: 10.1111/cpr.12562] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/23/2018] [Accepted: 11/08/2018] [Indexed: 01/10/2023] Open
Abstract
Syntrophins are a family of 59 kDa peripheral membrane-associated adapter proteins, containing multiple protein-protein and protein-lipid interaction domains. The syntrophin family consists of five isoforms that exhibit specific tissue distribution, distinct sub-cellular localization and unique expression patterns implying their diverse functional roles. These syntrophin isoforms form multiple functional protein complexes and ensure proper localization of signalling proteins and their binding partners to specific membrane domains and provide appropriate spatiotemporal regulation of signalling pathways. Syntrophins consist of two PH domains, a PDZ domain and a conserved SU domain. The PH1 domain is split by the PDZ domain. The PH2 and the SU domain are involved in the interaction between syntrophin and the dystrophin-glycoprotein complex (DGC). Syntrophins recruit various signalling proteins to DGC and link extracellular matrix to internal signalling apparatus via DGC. The different domains of the syntrophin isoforms are responsible for modulation of cytoskeleton. Syntrophins associate with cytoskeletal proteins and lead to various cellular responses by modulating the cytoskeleton. Syntrophins are involved in many physiological processes which involve cytoskeletal reorganization like insulin secretion, blood pressure regulation, myogenesis, cell migration, formation and retraction of focal adhesions. Syntrophins have been implicated in various pathologies like Alzheimer's disease, muscular dystrophy, cancer. Their role in cytoskeletal organization and modulation makes them perfect candidates for further studies in various cancers and other ailments that involve cytoskeletal modulation. The role of syntrophins in cytoskeletal organization and modulation has not yet been comprehensively reviewed till now. This review focuses on syntrophins and highlights their role in cytoskeletal organization, modulation and dynamics via its involvement in different cell signalling networks.
Collapse
Affiliation(s)
- Sahar S. Bhat
- Division of BiotechnologySher‐e‐Kashmir University of Agricultural Sciences and Technology of KashmirSrinagarIndia
| | - Roshia Ali
- Department of BiotechnologyUniversity of KashmirSrinagarIndia
- Department of BiochemistryUniversity of KashmirSrinagarIndia
| | | |
Collapse
|
8
|
Abdallah D, Skafi N, Hamade E, Borel M, Reibel S, Vitale N, El Jamal A, Bougault C, Laroche N, Vico L, Badran B, Hussein N, Magne D, Buchet R, Brizuela L, Mebarek S. Effects of phospholipase D during cultured osteoblast mineralization and bone formation. J Cell Biochem 2018; 120:5923-5935. [DOI: 10.1002/jcb.27881] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/20/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Dina Abdallah
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS Lyon France
- Lebanese University, Faculty of Sciences, Campus Rafic Hariri‐Hadath‐Beirut‐Liban Genomic and Health Laboratory/PRASE‐EDST Beirut Lebanon
| | - Najwa Skafi
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS Lyon France
- Lebanese University, Faculty of Sciences, Campus Rafic Hariri‐Hadath‐Beirut‐Liban Genomic and Health Laboratory/PRASE‐EDST Beirut Lebanon
| | - Eva Hamade
- Lebanese University, Faculty of Sciences, Campus Rafic Hariri‐Hadath‐Beirut‐Liban Genomic and Health Laboratory/PRASE‐EDST Beirut Lebanon
| | - Mathieu Borel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS Lyon France
| | | | - Nicolas Vitale
- Centre National de la Recherche Scientifique (CNRS) UPR‐3212 and Université de Strasbourg Strasbourg France
| | - Alaeddine El Jamal
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS Lyon France
| | - Carole Bougault
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS Lyon France
| | - Norbert Laroche
- Univ Lyon, Université Jean Monnet, Faculté de Médecine, Campus Santé Innovation, INSERM UMR 1059, Sainbiose, LBTO Saint‐Etienne France
| | - Laurence Vico
- Univ Lyon, Université Jean Monnet, Faculté de Médecine, Campus Santé Innovation, INSERM UMR 1059, Sainbiose, LBTO Saint‐Etienne France
| | - Bassam Badran
- Lebanese University, Faculty of Sciences, Campus Rafic Hariri‐Hadath‐Beirut‐Liban Genomic and Health Laboratory/PRASE‐EDST Beirut Lebanon
| | - Nader Hussein
- Lebanese University, Faculty of Sciences, Campus Rafic Hariri‐Hadath‐Beirut‐Liban Genomic and Health Laboratory/PRASE‐EDST Beirut Lebanon
| | - David Magne
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS Lyon France
| | - Rene Buchet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS Lyon France
| | - Leyre Brizuela
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS Lyon France
| | - Saida Mebarek
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS Lyon France
| |
Collapse
|
9
|
Ding J, Peng Z, Wu D, Miao J, Liu B, Wang L. A transcriptomics study of differentiated C2C12 myoblasts identified novel functional responses to 17β-estradiol. Cell Biol Int 2018; 42:965-974. [PMID: 29570902 DOI: 10.1002/cbin.10962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/17/2018] [Indexed: 11/11/2022]
Affiliation(s)
- JingJing Ding
- Medical Research Center of Shengjing Hospital; China Medical University; Shenyang 110004 China
| | - ZhaoHong Peng
- Medical Research Center of Shengjing Hospital; China Medical University; Shenyang 110004 China
| | - Di Wu
- Medical Research Center of Shengjing Hospital; China Medical University; Shenyang 110004 China
| | - JiaNing Miao
- Medical Research Center of Shengjing Hospital; China Medical University; Shenyang 110004 China
| | - Bo Liu
- Medical Research Center of Shengjing Hospital; China Medical University; Shenyang 110004 China
| | - LiLi Wang
- Medical Research Center of Shengjing Hospital; China Medical University; Shenyang 110004 China
| |
Collapse
|
10
|
Conde MA, Alza NP, Iglesias González PA, Scodelaro Bilbao PG, Sánchez Campos S, Uranga RM, Salvador GA. Phospholipase D1 downregulation by α-synuclein: Implications for neurodegeneration in Parkinson's disease. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:639-650. [PMID: 29571767 DOI: 10.1016/j.bbalip.2018.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 03/14/2018] [Accepted: 03/18/2018] [Indexed: 11/17/2022]
Abstract
We have previously shown that phospholipase D (PLD) pathways have a role in neuronal degeneration; in particular, we found that PLD activation is associated with synaptic injury induced by oxidative stress. In the present study, we investigated the effect of α-synuclein (α-syn) overexpression on PLD signaling. Wild Type (WT) α-syn was found to trigger the inhibition of PLD1 expression as well as a decrease in ERK1/2 phosphorylation and expression levels. Moreover, ERK1/2 subcellular localization was shown to be modulated by WT α-syn in a PLD1-dependent manner. Indeed, PLD1 inhibition was found to alter the neurofilament network and F-actin distribution regardless of the presence of WT α-syn. In line with this, neuroblastoma cells expressing WT α-syn exhibited a degenerative-like phenotype characterized by a marked reduction in neurofilament light subunit (NFL) expression and the rearrangement of the F-actin organization, compared with either the untransfected or the empty vector-transfected cells. The gain of function of PLD1 through the overexpression of its active form had the effect of restoring NFL expression in WT α-syn neurons. Taken together, our findings reveal an unforeseen role for α-syn in PLD regulation: PLD1 downregulation may constitute an early mechanism in the initial stages of WT α-syn-triggered neurodegeneration.
Collapse
Affiliation(s)
- Melisa A Conde
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Argentina; Departamento de Biología, Bioquímica y Farmacia-Universidad Nacional del Sur (UNS), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Natalia P Alza
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Argentina; Departamento de Química-UNS, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Pablo A Iglesias González
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Paola G Scodelaro Bilbao
- Departamento de Biología, Bioquímica y Farmacia-Universidad Nacional del Sur (UNS), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Sofía Sánchez Campos
- Departamento de Biología, Bioquímica y Farmacia-Universidad Nacional del Sur (UNS), Argentina
| | - Romina M Uranga
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Argentina; Departamento de Biología, Bioquímica y Farmacia-Universidad Nacional del Sur (UNS), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Gabriela A Salvador
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Argentina; Departamento de Biología, Bioquímica y Farmacia-Universidad Nacional del Sur (UNS), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.
| |
Collapse
|
11
|
Keckesova Z, Donaher JL, De Cock J, Freinkman E, Lingrell S, Bachovchin DA, Bierie B, Tischler V, Noske A, Okondo MC, Reinhardt F, Thiru P, Golub TR, Vance JE, Weinberg RA. LACTB is a tumour suppressor that modulates lipid metabolism and cell state. Nature 2017; 543:681-686. [PMID: 28329758 PMCID: PMC6246920 DOI: 10.1038/nature21408] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/18/2017] [Indexed: 02/05/2023]
Abstract
Post-mitotic, differentiated cells exhibit a variety of characteristics that contrast with those of actively growing neoplastic cells, such as the expression of cell-cycle inhibitors and differentiation factors. We hypothesized that the gene expression profiles of these differentiated cells could reveal the identities of genes that may function as tumour suppressors. Here we show, using in vitro and in vivo studies in mice and humans, that the mitochondrial protein LACTB potently inhibits the proliferation of breast cancer cells. Its mechanism of action involves alteration of mitochondrial lipid metabolism and differentiation of breast cancer cells. This is achieved, at least in part, through reduction of the levels of mitochondrial phosphatidylserine decarboxylase, which is involved in the synthesis of mitochondrial phosphatidylethanolamine. These observations uncover a novel mitochondrial tumour suppressor and demonstrate a connection between mitochondrial lipid metabolism and the differentiation program of breast cancer cells, thereby revealing a previously undescribed mechanism of tumour suppression.
Collapse
Affiliation(s)
- Zuzana Keckesova
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Joana Liu Donaher
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Jasmine De Cock
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Elizaveta Freinkman
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
- Metabolon, Inc., PO Box 110407, Research Triangle Park, North Carolina 27709, USA
| | - Susanne Lingrell
- Department of Medicine and the Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Daniel A Bachovchin
- Broad Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Brian Bierie
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Verena Tischler
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Aurelia Noske
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Marian C Okondo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Ferenc Reinhardt
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Prathapan Thiru
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Todd R Golub
- Broad Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Jean E Vance
- Department of Medicine and the Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- MIT Ludwig Center for Molecular Oncology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
12
|
Auh QSC, Park KR, Lee MO, Hwang MJ, Kang SK, Hong JP, Yun HM, Kim EC. N-methyl-D-aspartate (NMDA) impairs myogenesis in C2C12 cells. Muscle Nerve 2016; 56:510-518. [PMID: 27977864 DOI: 10.1002/mus.25511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/07/2016] [Accepted: 12/07/2016] [Indexed: 11/08/2022]
Abstract
INTRODUCTION N-methyl-d-aspartate (NMDA) is expressed in sensory neurons and plays important roles in peripheral pain mechanisms. The aim of this study was to examine the effects and molecular mechanisms of NMDA on C2C12 myoblast proliferation and differentiation. METHODS Cytotoxicity and differentiation were examined by the MTT assay, reverse transcription-polymerase chain reaction, and immunofluorescence. RESULTS NMDA had no cytotoxicity (10-500 μM) and inhibited myoblastic differentiation of C2C12 cells, as assessed by F-actin immunofluorescence and levels of mRNAs encoding myogenic markers such as myogenin and myosin heavy-chain 2. It inhibited phosphorylation of mammalian target of rapamycin (mTOR) by inactivating mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38. It induced reactive oxygen species production. Furthermore, NMDA-suppressed expression of F-actin was reversed by adding the antioxidant N-acetylcysteine. CONCLUSIONS Collectively, these results indicate that NMDA impairs myogenesis or myogenic differentiation in C2C12 cells through the mTOR/MAPK signaling pathways and may lead to skeletal muscle degeneration. Muscle Nerve 56: 510-518, 2017.
Collapse
Affiliation(s)
- Q-SChick Auh
- Department of Oral Medicine, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Kyung-Ran Park
- Department of Oral and Maxillofacial Pathology, MRC, School of Dentistry, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Myeong-Ok Lee
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, Korea
| | - Mi-Jin Hwang
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, Korea
| | - Soo-Kyung Kang
- Department of Oral Medicine, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Jung-Pyo Hong
- Department of Oral Medicine, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, MRC, School of Dentistry, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Eun-Cheol Kim
- Department of Oral and Maxillofacial Pathology, MRC, School of Dentistry, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| |
Collapse
|
13
|
Myogenic differentiation depends on the interplay of Grb2 and N-WASP. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:487-497. [PMID: 27965114 DOI: 10.1016/j.bbamcr.2016.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 12/02/2016] [Accepted: 12/09/2016] [Indexed: 12/19/2022]
Abstract
Myogenesis requires a well-coordinated withdrawal from cell cycle, morphological changes and cell fusion mediated by actin cytoskeleton. Grb2 is an adaptor protein whose central SH2 domain binds to phosphorylated tyrosine residues of activated receptors and activates intracellular signaling pathway, while its N-terminal and C-terminal SH3 domains bind to proline rich proteins such as N-WASP (Neural-Wiskott Aldrich Syndrome Protein). We found that the expression of Grb2 was increased at the beginning of differentiation and remained constant during differentiation in C2C12 myoblasts. Knocking down endogenous Grb2 expression caused a significant increase in the fusion index and expression of MyHC, a terminal differentiation marker when compared with the control. Over expression of Grb2 in C2C12 (C2C12Grb2-Myc) reduced myotube formation and expression of MyHC. Similarly over expression of Grb2P49L-Myc (N-terminal SH3 domain mutant) or Grb2R86K-Myc (SH2 domain mutant) inhibited myogenic differentiation of C2C12 cells. However, the expression of Grb2P206L-Myc (C-terminal SH3 domain mutant) did not inhibit myotube formation and expression of MyHC. This suggests that the C-terminal SH3 domain of Grb2 is critical for the inhibition of myogenic differentiation. The C2C12Grb2-Myc cells have reduced phalloidin staining at late stages of differentiation. Expression of N-WASP in C2C12Grb2-Myc cells rescued the myogenic defect and increased phalloidin staining (increased F-actin) in these cells. Thus our results suggest that Grb2 is a negative regulator of myogenesis and reduces myogenic differentiation by inhibiting actin polymerization/remodeling through its C-terminal SH3 domain.
Collapse
|
14
|
Jiang Y, Sverdlov MS, Toth PT, Huang LS, Du G, Liu Y, Natarajan V, Minshall RD. Phosphatidic Acid Produced by RalA-activated PLD2 Stimulates Caveolae-mediated Endocytosis and Trafficking in Endothelial Cells. J Biol Chem 2016; 291:20729-38. [PMID: 27510034 DOI: 10.1074/jbc.m116.752485] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Indexed: 11/06/2022] Open
Abstract
Caveolae are the primary route for internalization and transendothelial transport of macromolecules, such as insulin and albumin. Caveolae-mediated endocytosis is activated by Src-dependent caveolin-1 (Cav-1) phosphorylation and subsequent recruitment of dynamin-2 and filamin A (FilA), which facilitate vesicle fission and trafficking, respectively. Here, we tested the role of RalA and phospholipase D (PLD) signaling in the regulation of caveolae-mediated endocytosis and trafficking. The addition of albumin to human lung microvascular endothelial cells induced the activation of RalA within minutes, and siRNA-mediated down-regulation of RalA abolished fluorescent BSA uptake. Co-immunoprecipitation studies revealed that albumin induced the association between RalA, Cav-1, and FilA; however, RalA knockdown with siRNA did not affect FilA recruitment to Cav-1, suggesting that RalA was not required for FilA and Cav-1 complex formation. Rather, RalA probably facilitates caveolae-mediated endocytosis by activating downstream effectors. PLD2 was shown to be activated by RalA, and inhibition of PLD2 abolished Alexa-488-BSA uptake, indicating that phosphatidic acid (PA) generated by PLD2 may facilitate caveolae-mediated endocytosis. Furthermore, using a PA biosensor, GFP-PASS, we observed that BSA induced an increase in PA co-localization with Cav-1-RFP, which could be blocked by a dominant negative PLD2 mutant. Total internal reflection fluorescence microscopy studies of Cav-1-RFP also showed that fusion of caveolae with the basal plasma membrane was dependent on PLD2 activity. Thus, our results suggest that the small GTPase RalA plays an important role in promoting invagination and trafficking of caveolae, not by potentiating the association between Cav-1 and FilA but by stimulating PLD2-mediated generation of phosphatidic acid.
Collapse
Affiliation(s)
- Ying Jiang
- From the School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China, the Departments of Anesthesiology
| | | | | | - Long Shuang Huang
- Pharmacology, and Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | - Guangwei Du
- the Departments of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas 77030
| | - Yiyao Liu
- From the School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Viswanathan Natarajan
- Pharmacology, and Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | | |
Collapse
|
15
|
Hong Y, Zhao J, Guo L, Kim SC, Deng X, Wang G, Zhang G, Li M, Wang X. Plant phospholipases D and C and their diverse functions in stress responses. Prog Lipid Res 2016; 62:55-74. [DOI: 10.1016/j.plipres.2016.01.002] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 12/23/2015] [Accepted: 01/01/2016] [Indexed: 12/25/2022]
|
16
|
Bruntz RC, Lindsley CW, Brown HA. Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer. Pharmacol Rev 2015; 66:1033-79. [PMID: 25244928 DOI: 10.1124/pr.114.009217] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein-coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions.
Collapse
Affiliation(s)
- Ronald C Bruntz
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| | - Craig W Lindsley
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| | - H Alex Brown
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
17
|
Yang F, Abdelnabby H, Xiao Y. The role of a phospholipase (PLD) in virulence of Purpureocillium lilacinum (Paecilomyces lilacinum). Microb Pathog 2015; 85:11-20. [PMID: 26026833 DOI: 10.1016/j.micpath.2015.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 05/23/2015] [Accepted: 05/26/2015] [Indexed: 01/02/2023]
Abstract
Phospholipases are key enzymes in pathogenic fungi that cleave host phospholipids, resulting in membrane destabilization and host cell penetration. However, understanding the role of phospholipases on the virulence of the filamentous fungus Purpureocillium lilacinum has been still rather limited. In this study, pld gene was characterized. It encodes the protein phospholipase D (PLD) in P. lilacinum. This gene, 3303 bp open reading frame fragment (ORF), encodes a protein of 1100 amino acids with high similarity to the same gene from Penicillium oxalicum and Aspergillus fumigatus. Secondary structure prediction showed two PLD phosphodiesterase domains (437-464 bp and 885-912 bp). The pld gene was significantly regulated during infection of Meloidogyne incognita eggs by P. lilacinum. The expression of pld gene using RT-PCR was the highest at 36 and 48 h, which introduce evidence that the presence of M. incognita may induce the expression of the pld gene in P. lilacinum. In addition, maltose and l-alanine were found to increase the expression of pld gene. An acidic environment (pH 3.0-4.0) and moderate temperatures (27-29 °C) are favorable for pld expression in P. lilacinum.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hazem Abdelnabby
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Department of Plant Protection, Faculty of Agriculture, Benha University, Qaliubia 13736, Egypt
| | - Yannong Xiao
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
18
|
Teng S, Stegner D, Chen Q, Hongu T, Hasegawa H, Chen L, Kanaho Y, Nieswandt B, Frohman MA, Huang P. Phospholipase D1 facilitates second-phase myoblast fusion and skeletal muscle regeneration. Mol Biol Cell 2014; 26:506-17. [PMID: 25428992 PMCID: PMC4310741 DOI: 10.1091/mbc.e14-03-0802] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Phospholipase D1 and its product, phosphatidic acid, facilitate muscle fiber regeneration in vivo and are required by mononuclear myocytes to fuse with nascent myotubes during second-phase myoblast fusion in vitro. Myoblast differentiation and fusion is a well-orchestrated multistep process that is essential for skeletal muscle development and regeneration. Phospholipase D1 (PLD1) has been implicated in the initiation of myoblast differentiation in vitro. However, whether PLD1 plays additional roles in myoblast fusion and exerts a function in myogenesis in vivo remains unknown. Here we show that PLD1 expression is up-regulated in myogenic cells during muscle regeneration after cardiotoxin injury and that genetic ablation of PLD1 results in delayed myofiber regeneration. Myoblasts derived from PLD1-null mice or treated with PLD1-specific inhibitor are unable to form mature myotubes, indicating defects in second-phase myoblast fusion. Concomitantly, the PLD1 product phosphatidic acid is transiently detected on the plasma membrane of differentiating myocytes, and its production is inhibited by PLD1 knockdown. Exogenous lysophosphatidylcholine, a key membrane lipid for fusion pore formation, partially rescues fusion defect resulting from PLD1 inhibition. Thus these studies demonstrate a role for PLD1 in myoblast fusion during myogenesis in which PLD1 facilitates the fusion of mononuclear myocytes with nascent myotubes.
Collapse
Affiliation(s)
- Shuzhi Teng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115 The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - David Stegner
- University Hospital and Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Qin Chen
- Department of Pharmacology, Stony Brook University, Stony Brook, NY 11794
| | - Tsunaki Hongu
- Department of Physiological Chemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hiroshi Hasegawa
- Department of Physiological Chemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Bernhard Nieswandt
- University Hospital and Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Michael A Frohman
- Department of Pharmacology, Stony Brook University, Stony Brook, NY 11794
| | - Ping Huang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115
| |
Collapse
|
19
|
Zhu X, Liu R, Kuang D, Liu J, Shi X, Zhang T, Zeng Y, Sun X, Zhang Y, Yang W. The role of phospholipase D1 in liver fibrosis induced by dimethylnitrosamine in vivo. Dig Dis Sci 2014; 59:1779-88. [PMID: 24728967 DOI: 10.1007/s10620-014-3130-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 03/21/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND Phospholipase D (PLD) has been proved to be involved in regulating function of fibroblasts and might play a role in mediating organic fibrosis. AIMS To investigate the role and mechanism of PLD on dimethylnitrosamine (DMN)-induced rat liver fibrosis. METHODS Fifty-five male Wistar rats were divided into normal control group, DMN model group, N-methylethanolamine (MEA) control group, and MEA-intervention group. We observed the effects of MEA, a PLD inhibitor on the development and progression of rat liver fibrosis by comparing the physical and biochemical indexes, tissue pathology, PLD activity, and typical markers and cytokines related to fibrosis in the four groups. RESULTS Accompanied by the down-regulation of PLD1 expression, the MEA-intervention group had improved outcomes compared with the DMN model group in terms of spleen weight, spleen/weight index, serum and tissue biochemical indexes, tissue hydroxyproline, and tissue pathology. The MEA-intervention group had lower TIMP1, COL1A1, and higher MMPs expression level than the DMN model group. The activity of PLD and PLD1, α-SMA expression level in the MEA-intervention group was much lower than those in the DMN model group. There was no significant difference between the two groups in the expression level of TGF-β1 and MCP1. Meanwhile, there were no significant differences between normal control group and MEA control group in the parameters stated above. CONCLUSION Phospholipase D1 may play an important role in the development and progression of rat liver fibrosis. Inhibition of PLD may become a new strategy to prevent or alleviate liver fibrosis.
Collapse
Affiliation(s)
- Xinyan Zhu
- Department of Gastroenterology and Digestive diseases Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jia X, Chen F, Pan W, Yu R, Tian S, Han G, Fang H, Wang S, Zhao J, Li X, Zheng D, Tao S, Liao W, Han X, Han L. Gliotoxin promotes Aspergillus fumigatus internalization into type II human pneumocyte A549 cells by inducing host phospholipase D activation. Microbes Infect 2014; 16:491-501. [PMID: 24637030 DOI: 10.1016/j.micinf.2014.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 02/27/2014] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
Abstract
The internalization of Aspergillus fumigatus into lung epithelial cells is critical for the infection process in the host. Gliotoxin is the most potent toxin produced by A. fumigatus. However, its role in A. fumigatus internalization into the lung epithelial cells is still largely unknown. In the present study, the deletion of the gliP gene regulating the production of gliotoxin in A. fumigatus suppressed the internalization of conidia into the A549 lung epithelial cells, and this suppression could be rescued by the exogenous addition of gliotoxin. At lower concentrations, gliotoxin enhanced the internalization of the conidia of A. fumigatus into A549 cells; in contrast, it inhibited the phagocytosis of J774 macrophages in a dose-dependent manner. Under a concentration of 100 ng/ml, gliotoxin had no effect on A549 cell viability but attenuated ROS production in a dose-dependent manner. Gliotoxin significantly stimulated the phospholipase D activity in the A549 cells at a concentration of 50 ng/ml. This stimulation was blocked by the pretreatment of host cells with PLD1- but not PLD2-specific inhibitor. Morphological cell changes induced by gliotoxin were observed in the A549 cells accompanying with obvious actin cytoskeleton rearrangement and a moderate alteration of phospholipase D distribution. Our data indicated that gliotoxin might be responsible for modulating the A. fumigatus internalization into epithelial cells through phospholipase D1 activation and actin cytoskeleton rearrangement.
Collapse
Affiliation(s)
- Xiaodong Jia
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Fangyan Chen
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Weihua Pan
- Shanghai Key Laboratory of Molecular Mycology, Department of Dermatology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Rentao Yu
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China; Patent Examination Cooperation Center of the Patent Office, Beijing, China
| | - Shuguang Tian
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Gaige Han
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Haiqin Fang
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Shuo Wang
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Jingya Zhao
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Xianping Li
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Dongyu Zheng
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Sha Tao
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Wanqing Liao
- Shanghai Key Laboratory of Molecular Mycology, Department of Dermatology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xuelin Han
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China.
| | - Li Han
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China.
| |
Collapse
|
21
|
Monici M, Cialdai F, Ranaldi F, Paoli P, Boscaro F, Moneti G, Caselli A. Effect of IR laser on myoblasts: a proteomic study. MOLECULAR BIOSYSTEMS 2014; 9:1147-61. [PMID: 23364335 DOI: 10.1039/c2mb25398d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Laser therapy is used in physical medicine and rehabilitation to accelerate muscle recovery and in sports medicine to prevent damages produced by metabolic disturbances and inflammatory reactions after heavy exercise. The aim of this research was to get insight into possible benefits deriving from the application of an advanced IR laser system to counteract deficits of muscle energy metabolism and stimulate the recovery of hypotrophic tissue. We studied the effect of IR laser treatment on proliferation, differentiation, cytoskeleton organization and global protein expression in C2C12 myoblasts. We found that laser treatment induced a decrease in the cell proliferation rate without affecting cell viability, while leading to cytoskeletal rearrangement and expression of the early differentiation marker MyoD. The differential proteome analysis revealed the up-regulation and/or modulation of many proteins known to be involved in cell cycle regulation, cytoskeleton organization and differentiation.
Collapse
Affiliation(s)
- Monica Monici
- ASAcampus Joint Laboratory, ASA Res. Div., Dept. Clinical Physiopathology, University of Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
22
|
Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling. Cell Commun Signal 2013; 11:55. [PMID: 23915343 PMCID: PMC3765503 DOI: 10.1186/1478-811x-11-55] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 07/18/2013] [Indexed: 12/13/2022] Open
Abstract
mTOR is a major actor of skeletal muscle mass regulation in situations of atrophy or hypertrophy. It is established that Phospholipase D (PLD) activates mTOR signaling, through the binding of its product phosphatidic acid (PA) to mTOR protein. An influence of PLD on muscle cell size could thus be suspected. We explored the consequences of altered expression and activity of PLD isoforms in differentiated L6 myotubes. Inhibition or down-regulation of the PLD1 isoform markedly decreased myotube size and muscle specific protein content. Conversely, PLD1 overexpression induced muscle cell hypertrophy, both in vitro in myotubes and in vivo in mouse gastrocnemius. In the presence of atrophy-promoting dexamethasone, PLD1 overexpression or addition of exogenous PA protected myotubes against atrophy. Similarly, exogenous PA protected myotubes against TNFα-induced atrophy. Moreover, the modulation of PLD expression or activity in myotubes showed that PLD1 negatively regulates the expression of factors involved in muscle protein degradation, such as the E3-ubiquitin ligases Murf1 and Atrogin-1, and the Foxo3 transcription factor. Inhibition of mTOR by PP242 abolished the positive effects of PLD1 on myotubes, whereas modulating PLD influenced the phosphorylation of both S6K1 and Akt, which are respectively substrates of mTORC1 and mTORC2 complexes. These observations suggest that PLD1 acts through the activation of both mTORC1 and mTORC2 to induce positive trophic effects on muscle cells. This pathway may offer interesting therapeutic potentialities in the treatment of muscle wasting.
Collapse
Affiliation(s)
- Rami Jaafar
- Lyon 1 University, INSERM U1060, CarMeN Laboratory, Institut National de la Recherche Agronomique USC1235, F-69600 Oullins, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Usatyuk PV, Kotha SR, Parinandi NL, Natarajan V. Phospholipase D signaling mediates reactive oxygen species-induced lung endothelial barrier dysfunction. Pulm Circ 2013; 3:108-15. [PMID: 23662182 PMCID: PMC3641713 DOI: 10.4103/2045-8932.109925] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Reactive oxygen species (ROS) have emerged as critical players in the pathophysiology of pulmonary disorders and diseases. Earlier, we have demonstrated that ROS stimulate lung endothelial cell (EC) phospholipase D (PLD) that generates phosphatidic acid (PA), a second messenger involved in signal transduction. In the current study, we investigated the role of PLD signaling in the ROS-induced lung vascular EC barrier dysfunction. Our results demonstrated that hydrogen peroxide (H2O2), a typical physiological ROS, induced PLD activation and altered the barrier function in bovine pulmonary artery ECs (BPAECs). 1-Butanol, the quencher of PLD, generated PA leading to the formation of physiologically inactive phosphatidyl butanol but not its biologically inactive analog, 2-butanol, blocked the H2O2-mediated barrier dysfunction. Furthermore, cell permeable C2 ceramide, an inhibitor of PLD but not the C2 dihydroceramide, attenuated the H2O2-induced PLD activation and enhancement of paracellular permeability of Evans blue conjugated albumin across the BPAEC monolayers. In addition, transfection of BPAECs with adenoviral constructs of hPLD1 and mPLD2 mutants attenuated the H2O2-induced barrier dysfunction, cytoskeletal reorganization and distribution of focal adhesion proteins. For the first time, this study demonstrated that the PLD-generated intracellular bioactive lipid signal mediator, PA, played a critical role in the ROS-induced barrier dysfunction in lung vascular ECs. This study also underscores the importance of PLD signaling in vascular leak and associated tissue injury in the etiology of lung diseases among critically ill patients encountering oxygen toxicity and excess ROS production during ventilator-assisted breathing.
Collapse
Affiliation(s)
- Peter V Usatyuk
- Department of Pharmacology and Institute for Personalized Respiratory Medicine, University of Illinois, Chicago, IL, USA
| | | | | | | |
Collapse
|
24
|
Usatyuk PV, Burns M, Mohan V, Pendyala S, He D, Ebenezer DL, Harijith A, Fu P, Huang LS, Bear JE, Garcia JGN, Natarajan V. Coronin 1B regulates S1P-induced human lung endothelial cell chemotaxis: role of PLD2, protein kinase C and Rac1 signal transduction. PLoS One 2013; 8:e63007. [PMID: 23667561 PMCID: PMC3648575 DOI: 10.1371/journal.pone.0063007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 03/27/2013] [Indexed: 11/18/2022] Open
Abstract
Coronins are a highly conserved family of actin binding proteins that regulate actin-dependent processes such as cell motility and endocytosis. We found that treatment of human pulmonary artery endothelial cells (HPAECs) with the bioactive lipid, sphingosine-1-phosphate (S1P) rapidly stimulates coronin 1B translocation to lamellipodia at the cell leading edge, which is required for S1P-induced chemotaxis. Further, S1P-induced chemotaxis of HPAECs was attenuated by pretreatment with small interfering RNA (siRNA) targeting coronin 1B (∼36%), PLD2 (∼45%) or Rac1 (∼50%) compared to scrambled siRNA controls. Down regulation PLD2 expression by siRNA also attenuated S1P-induced coronin 1B translocation to the leading edge of the cell periphery while PLD1 silencing had no effect. Also, S1P-induced coronin 1B redistribution to cell periphery and chemotaxis was attenuated by inhibition of Rac1 and over-expression of dominant negative PKC δ, ε and ζ isoforms in HPAECs. These results demonstrate that S1P activation of PLD2, PKC and Rac1 is part of the signaling cascade that regulates coronin 1B translocation to the cell periphery and the ensuing cell chemotaxis.
Collapse
Affiliation(s)
- Peter V Usatyuk
- Institute for Personalized Respiratory Medicine, University of Illinois, Chicago, Illinois, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lee SY, Lee Y, Choi JS, Park JS, Choi MU. Stimulation of Phospholipase D in HepG2 Cells After Transfection Using Cationic Liposomes. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.3.931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Myogenic differentiation and lipid-raft composition of L6 skeletal muscle cells are modulated by PUFAs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:602-13. [DOI: 10.1016/j.bbamem.2012.10.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 10/08/2012] [Accepted: 10/10/2012] [Indexed: 11/20/2022]
|
27
|
Bizzarro V, Belvedere R, Dal Piaz F, Parente L, Petrella A. Annexin A1 induces skeletal muscle cell migration acting through formyl peptide receptors. PLoS One 2012; 7:e48246. [PMID: 23144744 PMCID: PMC3483218 DOI: 10.1371/journal.pone.0048246] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/21/2012] [Indexed: 01/04/2023] Open
Abstract
Annexin A1 (ANXA1, lipocortin-1) is a glucocorticoid-regulated 37-kDa protein, so called since its main property is to bind (i.e. to annex) to cellular membranes in a Ca(2+)-dependent manner. Although ANXA1 has predominantly been studied in the context of immune responses and cancer, the protein can affect a larger variety of biological phenomena, including cell proliferation and migration. Our previous results show that endogenous ANXA1 positively modulates myoblast cell differentiation by promoting migration of satellite cells and, consequently, skeletal muscle differentiation. In this work, we have evaluated the hypothesis that ANXA1 is able to exert effects on myoblast cell migration acting through formyl peptide receptors (FPRs) following changes in its subcellular localization as in other cell types and tissues. The analysis of the subcellular localization of ANXA1 in C2C12 myoblasts during myogenic differentiation showed an interesting increase of extracellular ANXA1 starting from the initial phases of skeletal muscle cell differentiation. The investigation of intracellular Ca(2+) perturbation following exogenous administration of the ANXA1 N-terminal derived peptide Ac2-26 established the engagement of the FPRs which expression in C2C12 cells was assessed by qualitative PCR. Wound healing assay experiments showed that Ac2-26 peptide is able to increase migration of C2C12 skeletal muscle cells and to induce cell surface translocation and secretion of ANXA1. Our results suggest a role for ANXA1 as a highly versatile component in the signaling chains triggered by the proper calcium perturbation that takes place during active migration and differentiation or membrane repair since the protein is strongly redistributed onto the plasma membranes after an rapid increase of intracellular levels of Ca(2+). These properties indicate that ANXA1 may be involved in a novel repair mechanism for skeletal muscle and may have therapeutic implications with respect to the development of ANXA1 mimetics.
Collapse
Affiliation(s)
- Valentina Bizzarro
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy
| | - Raffaella Belvedere
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy
| | - Fabrizio Dal Piaz
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy
| | - Luca Parente
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy
| | - Antonello Petrella
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy
- * E-mail:
| |
Collapse
|
28
|
Abstract
Neurons have characteristic dendritic arborization patterns that contribute to information processing. One essential component of dendritic arborization is the formation of a specific number of branches. Although intracellular pathways promoting dendritic growth and branching are being elucidated, the mechanisms that negatively regulate the branching of dendrites remain enigmatic. In this study, using gain-of-function and loss-of-function studies, we show that phospholipase D1 (PLD1) acts as a negative regulator of dendritic branching in cultured hippocampal neurons from embryonic day 18 rat embryos. Overexpression of wild-type PLD1 (WT-PLD1) decreases the complexity of dendrites, whereas knockdown or inhibition of PLD1 increases dendritic branching. We further demonstrated that PLD1 acts downstream of RhoA, one of the small Rho GTPases, to suppress dendritic branching. The restriction of dendritic branching by constitutively active RhoA (V14-RhoA) can be partially rescued by knockdown of PLD1. Moreover, the inhibition of dendritic branching by V14-RhoA and WT-PLD1 can be partially ameliorated by reducing the level of phosphatidic acid (PA), which is the enzymatic product of PLD1. Together, these results suggest that RhoA-PLD1-PA may represent a novel signaling pathway in the restriction of dendritic branching and may thus provide insight into the mechanisms of dendritic morphogenesis.
Collapse
|
29
|
Wallert M, McCoy A, Voog J, Rastedt D, Taves-Patterson J, Korpi-Steiner N, Canine J, Ngyuen T, Nguyen C, Provost J. α1 -Adrenergic receptor-induced cytoskeletal organization and cell motility in CCL39 fibroblasts requires phospholipase D1. J Cell Biochem 2012; 112:3025-34. [PMID: 21678474 DOI: 10.1002/jcb.23227] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The role of phospholipase D (PLD) in cytoskeletal reorganization, ERK activation, and migration is well established. Both isoforms of PLD (PLD1 and PLD2) can independently activate stress fiber formation and increase ERK phosphorylation. However, the isoform's specificity, upstream activators, and downstream targets of PLD that coordinate this process are less well understood. This study explores the role of α(1) -adrenergic receptor stimulation and its effect on PLD activity. We demonstrate that PLD1 activators, RhoA, and PKCα are critical for stress fiber formation and ERK activation, and enhance the production of phosphatidic acid (PA) upon phenylephrine addition. Ectopic expression of dominant negative PLD1 and not PLD2 blocks ERK activation, inhibits stress fiber formation, and reduces cell motility in CCL39 fibroblasts. Furthermore, we demonstrate the mechanism for PLD1 activation of ERK involves Ras. This work indicates that PLD1 plays a novel role mediating growth factor and cell motility events in α(1) -adrenergic receptor-activated cells.
Collapse
Affiliation(s)
- M Wallert
- Departments of Biosciences and Chemistry, Minnesota State University Moorhead, Moorhead, Minnesota 56563, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Nazari H, Khaleghian A, Takahashi A, Harada N, Webster NJG, Nakano M, Kishi K, Ebina Y, Nakaya Y. Cortactin, an actin binding protein, regulates GLUT4 translocation via actin filament remodeling. BIOCHEMISTRY (MOSCOW) 2012; 76:1262-9. [PMID: 22117553 DOI: 10.1134/s0006297911110083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Insulin regulates glucose uptake into fat and skeletal muscle cells by modulating the translocation of GLUT4 between the cell surface and interior. We investigated a role for cortactin, a cortical actin binding protein, in the actin filament organization and translocation of GLUT4 in Chinese hamster ovary (CHO-GLUT4myc) and L6-GLUT4myc myotube cells. Overexpression of wild-type cortactin enhanced insulin-stimulated GLUT4myc translocation but did not alter actin fiber formation. Conversely, cortactin mutants lacking the Src homology 3 (SH3) domain inhibited insulin-stimulated formation of actin stress fibers and GLUT4 translocation similar to the actin depolymerizing agent cytochalasin D. Wortmannin, genistein, and a PP1 analog completely blocked insulin-induced Akt phosphorylation, formation of actin stress fibers, and GLUT4 translocation indicating the involvement of both PI3-K/Akt and the Src family of kinases. The effect of these inhibitors was even more pronounced in the presence of overexpressed cortactin suggesting that the same pathways are involved. Knockdown of cortactin by siRNA did not inhibit insulin-induced Akt phosphorylation but completely inhibited actin stress fiber formation and glucose uptake. These results suggest that the actin binding protein cortactin is required for actin stress fiber formation in muscle cells and that this process is absolutely required for translocation of GLUT4-containing vesicles to the plasma membrane.
Collapse
Affiliation(s)
- H Nazari
- Department of Nutrition and Metabolism, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gomez-Cambronero J. The exquisite regulation of PLD2 by a wealth of interacting proteins: S6K, Grb2, Sos, WASp and Rac2 (and a surprise discovery: PLD2 is a GEF). Cell Signal 2011; 23:1885-95. [PMID: 21740967 PMCID: PMC3204931 DOI: 10.1016/j.cellsig.2011.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 06/21/2011] [Indexed: 11/28/2022]
Abstract
Phospholipase D (PLD) catalyzes the conversion of the membrane phospholipid phosphatidylcholine to choline and phosphatidic acid (PA). PLD's mission in the cell is two-fold: phospholipid turnover with maintenance of the structural integrity of cellular/intracellular membranes and cell signaling through PA and its metabolites. Precisely, through its product of the reaction, PA, PLD has been implicated in a variety of physiological cellular functions, such as intracellular protein trafficking, cytoskeletal dynamics, chemotaxis of leukocytes and cell proliferation. The catalytic (HKD) and regulatory (PH and PX) domains were studied in detail in the PLD1 isoform, but PLD2 was traditionally studied in lesser detail and much less was known about its regulation. Our laboratory has been focusing on the study of PLD2 regulation in mammalian cells. Over the past few years, we have reported, in regards to the catalytic action of PLD, that PA is a chemoattractant agent that binds to and signals inside the cell through the ribosomal S6 kinases (S6K). Regarding the regulatory domains of PLD2, we have reported the discovery of the PLD2 interaction with Grb2 via Y169 in the PX domain, and further association to Sos, which results in an increase of de novo DNA synthesis and an interaction (also with Grb2) via the adjacent residue Y179, leading to the regulation of cell ruffling, chemotaxis and phagocytosis of leukocytes. We also present the complex regulation by tyrosine phosphorylation by epidermal growth factor receptor (EGF-R), Janus Kinase 3 (JAK3) and Src and the role of phosphatases. Recently, there is evidence supporting a new level of regulation of PLD2 at the PH domain, by the discovery of CRIB domains and a Rac2-PLD2 interaction that leads to a dual (positive and negative) effect on its enzymatic activity. Lastly, we review the surprising finding of PLD2 acting as a GEF. A phospholipase such as PLD that exists already in the cell membrane that acts directly on Rac allows a quick response of the cell without intermediary signaling molecules. This provides only the latest level of PLD2 regulation in a field that promises newer and exciting advances in the next few years.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, OH 45435, USA.
| |
Collapse
|
32
|
Disruption of the phospholipase D gene attenuates the virulence of Aspergillus fumigatus. Infect Immun 2011; 80:429-40. [PMID: 22083709 DOI: 10.1128/iai.05830-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aspergillus fumigatus is the most prevalent airborne fungal pathogen that induces serious infections in immunocompromised patients. Phospholipases are key enzymes in pathogenic fungi that cleave host phospholipids, resulting in membrane destabilization and host cell penetration. However, knowledge of the impact of phospholipases on A. fumigatus virulence is rather limited. In this study, disruption of the pld gene encoding phospholipase D (PLD), an important member of the phospholipase protein family in A. fumigatus, was confirmed to significantly decrease both intracellular and extracellular PLD activity of A. fumigatus. The pld gene disruption did not alter conidial morphological characteristics, germination, growth, and biofilm formation but significantly suppressed the internalization of A. fumigatus into A549 epithelial cells without affecting conidial adhesion to epithelial cells. Importantly, the suppressed internalization was fully rescued in the presence of 100 μM phosphatidic acid, the PLD product. Indeed, complementation of pld restored the PLD activity and internalization capacity of A. fumigatus. Phagocytosis of A. fumigatus conidia by J774 macrophages was not affected by the absence of the pld gene. Pretreatment of conidia with 1-butanol and a specific PLD inhibitor decreased the internalization of A. fumigatus into A549 epithelial cells but had no effect on phagocytosis by J774 macrophages. Finally, loss of the pld gene attenuated the virulence of A. fumigatus in mice immunosuppressed with hydrocortisone acetate but not with cyclophosphamide. These data suggest that PLD of A. fumigatus regulates its internalization into lung epithelial cells and may represent an important virulence factor for A. fumigatus infection.
Collapse
|
33
|
Toschi A, Severi A, Coletti D, Catizone A, Musarò A, Molinaro M, Nervi C, Adamo S, Scicchitano BM. Skeletal muscle regeneration in mice is stimulated by local overexpression of V1a-vasopressin receptor. Mol Endocrinol 2011; 25:1661-73. [PMID: 21816902 PMCID: PMC5417231 DOI: 10.1210/me.2011-1049] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/05/2011] [Indexed: 01/25/2023] Open
Abstract
Skeletal muscle has a remarkable capacity to regenerate after mechanical or pathological injury. We show that the V1a receptor (V1aR) for vasopressin, a potent myogenic-promoting factor that stimulates differentiation and hypertrophy in vitro, is expressed in mouse skeletal muscle and modulated during regeneration after experimental injury. We used gene delivery by electroporation to overexpress the myc-tagged vasopressin V1aR in specific muscles, thus sensitizing them to circulating vasopressin. The correct localization on the surface of the fibers of the recombinant product was demonstrated by confocal immunofluorescence directed against the myc tag. V1aR overexpression dramatically enhanced regeneration. When compared with mock-transfected controls, V1aR overexpressing muscles exhibited significantly accelerated activation of satellite cells and increased expression of differentiation markers. Downstream of V1aR activation, calcineurin was strongly up-regulated and stimulated the expression of IL-4, a potent mediator of myogenic cell fusion. The central role of calcineurin in mediating V1aR-dependent myogenesis was also demonstrated by using its specific inhibitor, cyclosporine A. This study identifies skeletal muscle as a physiological target of hormones of the vasopressin family and reveals a novel in vivo role for vasopressin-dependent pathways. These findings unveil several steps, along a complex signaling pathway, that may be exploited as potential targets for the therapy of diseases characterized by altered muscle homeostasis and regeneration.
Collapse
MESH Headings
- Animals
- Arginine Vasopressin/pharmacology
- Biomarkers/metabolism
- Calcineurin/metabolism
- Cell Differentiation/drug effects
- Desmin/metabolism
- Female
- Gene Expression Regulation/drug effects
- Interleukin-4/genetics
- Interleukin-4/metabolism
- Mice
- Mice, Inbred C57BL
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Vasopressin/genetics
- Receptors, Vasopressin/metabolism
- Regeneration/drug effects
- Regeneration/physiology
- Satellite Cells, Skeletal Muscle/drug effects
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/pathology
- Signal Transduction/drug effects
- Transfection
Collapse
Affiliation(s)
- Angelica Toschi
- Department of Anatomical, Histological, Forensic, and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Han X, Yu R, Zhen D, Tao S, Schmidt M, Han L. β-1,3-Glucan-induced host phospholipase D activation is involved in Aspergillus fumigatus internalization into type II human pneumocyte A549 cells. PLoS One 2011; 6:e21468. [PMID: 21760893 PMCID: PMC3132740 DOI: 10.1371/journal.pone.0021468] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 05/30/2011] [Indexed: 12/21/2022] Open
Abstract
The internalization of Aspergillus fumigatus into lung epithelial cells is a process that depends on host cell actin dynamics. The host membrane phosphatidylcholine cleavage driven by phospholipase D (PLD) is closely related to cellular actin dynamics. However, little is known about the impact of PLD on A. fumigatus internalization into lung epithelial cells. Here, we report that once germinated, A. fumigatus conidia were able to stimulate host PLD activity and internalize more efficiently in A549 cells without altering PLD expression. The internalization of A. fumigatus in A549 cells was suppressed by the downregulation of host cell PLD using chemical inhibitors or siRNA interference. The heat-killed swollen conidia, but not the resting conidia, were able to activate host PLD. Further, β-1,3-glucan, the core component of the conidial cell wall, stimulated host PLD activity. This PLD activation and conidia internalization were inhibited by anti-dectin-1 antibody. Indeed, dectin-1, a β-1,3-glucan receptor, was expressed in A549 cells, and its expression profile was not altered by conidial stimulation. Finally, host cell PLD1 and PLD2 accompanied A. fumigatus conidia during internalization. Our data indicate that host cell PLD activity induced by β-1,3-glucan on the surface of germinated conidia is important for the efficient internalization of A. fumigatus into A549 lung epithelial cells.
Collapse
Affiliation(s)
- Xuelin Han
- Department for Hospital Infection Control and Research, Institute of Disease Control and Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Rentao Yu
- Department for Hospital Infection Control and Research, Institute of Disease Control and Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Dongyu Zhen
- Department for Hospital Infection Control and Research, Institute of Disease Control and Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Sha Tao
- Department for Hospital Infection Control and Research, Institute of Disease Control and Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Martina Schmidt
- Department Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Li Han
- Department for Hospital Infection Control and Research, Institute of Disease Control and Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
35
|
Han X, Yu R, Ji L, Zhen D, Tao S, Li S, Sun Y, Huang L, Feng Z, Li X, Han G, Schmidt M, Han L. InlB-mediated Listeria monocytogenes internalization requires a balanced phospholipase D activity maintained through phospho-cofilin. Mol Microbiol 2011; 81:860-80. [PMID: 21722201 DOI: 10.1111/j.1365-2958.2011.07726.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Internalization of Listeria monocytogenes into non-phagocytic cells is tightly controlled by host cell actin dynamics and cell membrane alterations. However, knowledge about the impact of phosphatidylcholine cleavage driven by host cell phospholipase D (PLD) on Listeria internalization into epithelial cells is limited. Here, we report that L. monocytogenes activates PLD in Vero cells during the internalization. With immunostaining it was shown that both PLD1 and PLD2 surrounded partially or completely the phagocytic cup of most L. monocytogenes. Either up- or down-regulation of PLD expression (activity) diminished Listeria internalization. Both PLD1 and PLD2 in Vero cells were required for efficient Listeria internalization, and could substitute for each other in the regulation of Listeria internalization. Further, exogenous InlB activated host cell PLD1 and PLD2 via the Met receptor, and restored host PLD activation by InlB-deficient L. monocytogenes. InlB-induced PLD activation and Listeria internalization were tightly controlled by phospho-cycling of cofilin. PLD1, but not PLD2, was involved in cofilin-mediated PLD activation and Listeria internalization. These data indicate that cofilin-dependent PLD activation induced by InlB may represent a novel regulation mechanism for efficient Listeria internalization into epithelial cells.
Collapse
Affiliation(s)
- Xuelin Han
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Jaafar R, Zeiller C, Pirola L, Di Grazia A, Naro F, Vidal H, Lefai E, Némoz G. Phospholipase D regulates myogenic differentiation through the activation of both mTORC1 and mTORC2 complexes. J Biol Chem 2011; 286:22609-21. [PMID: 21525000 DOI: 10.1074/jbc.m110.203885] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
How phospholipase D (PLD) is involved in myogenesis remains unclear. At the onset of myogenic differentiation of L6 cells induced by the PLD agonist vasopressin in the absence of serum, mTORC1 complex was rapidly activated, as reflected by phosphorylation of S6 kinase1 (S6K1). Both the long (p85) and short (p70) S6K1 isoforms were phosphorylated in a PLD1-dependent way. Short rapamycin treatment specifically inhibiting mTORC1 suppressed p70 but not p85 phosphorylation, suggesting that p85 might be directly activated by phosphatidic acid. Vasopressin stimulation also induced phosphorylation of Akt on Ser-473 through PLD1-dependent activation of mTORC2 complex. In this model of myogenesis, mTORC2 had a positive role mostly unrelated to Akt activation, whereas mTORC1 had a negative role, associated with S6K1-induced Rictor phosphorylation. The PLD requirement for differentiation can thus be attributed to its ability to trigger via mTORC2 activation the phosphorylation of an effector that could be PKCα. Moreover, PLD is involved in a counter-regulation loop expected to limit the response. This study thus brings new insights in the intricate way PLD and mTOR cooperate to control myogenesis.
Collapse
|
37
|
Subauste AR, Elliott B, Das AK, Burant CF. A role for 1-acylglycerol-3-phosphate-O-acyltransferase-1 in myoblast differentiation. Differentiation 2010; 80:140-6. [PMID: 20561744 DOI: 10.1016/j.diff.2010.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/29/2010] [Accepted: 05/26/2010] [Indexed: 11/30/2022]
Abstract
AGPAT isoforms catalyze the acylation of lysophosphatidic acid (LPA) to form phosphatidic acid (PA). AGPAT2 mutations are associated with defective adipogenesis. Muscle and adipose tissue share common precursor cells. We investigated the role of AGPAT isoforms in skeletal muscle development. We demonstrate that small interference RNA-mediated knockdown of AGPAT1 expression prevents the induction of myogenin, a key transcriptional activator of the myogenic program, and inhibits the expression of myosin heavy chain. This effect is rescued by transfection with AGPAT1 but not AGPAT2. Knockdown of AGPAT2 has no effect. The regulation of myogenesis by AGPAT1 is associated with alterations on actin cytoskeleton. The role of AGPAT1 on actin cytoskeleton is further supported by colocalization of AGPAT1 to areas of active actin polymerization. AGPAT1 overexpression was not associated with an increase in PA levels. Our observations strongly implicate AGPAT1 in the development of skeletal muscle, specifically to terminal differentiation. These findings are linked to the regulation of actin cytoskeleton.
Collapse
Affiliation(s)
- Angela R Subauste
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-0678, USA.
| | | | | | | |
Collapse
|
38
|
Bach AS, Enjalbert S, Comunale F, Bodin S, Vitale N, Charrasse S, Gauthier-Rouvière C. ADP-ribosylation factor 6 regulates mammalian myoblast fusion through phospholipase D1 and phosphatidylinositol 4,5-bisphosphate signaling pathways. Mol Biol Cell 2010; 21:2412-24. [PMID: 20505075 PMCID: PMC2903670 DOI: 10.1091/mbc.e09-12-1063] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Here we show that ARF6 is associated with the multiproteic complex that contains M-cadherin, Trio, and Rac1 and accumulates at sites of myoblast fusion. ARF6 silencing inhibits the association of Trio and Rac1 with M-cadherin. Moreover, we demonstrate that ARF6 regulates myoblast fusion through Phospholipase D activation and PI(4,5)P2 production. Myoblast fusion is an essential step during myoblast differentiation that remains poorly understood. M-cadherin–dependent pathways that signal through Rac1 GTPase activation via the Rho-guanine nucleotide exchange factor (GEF) Trio are important for myoblast fusion. The ADP-ribosylation factor (ARF)6 GTPase has been shown to bind to Trio and to regulate Rac1 activity. Moreover, Loner/GEP100/BRAG2, a GEF of ARF6, has been involved in mammalian and Drosophila myoblast fusion, but the specific role of ARF6 has been not fully analyzed. Here, we show that ARF6 activity is increased at the time of myoblast fusion and is required for its implementation in mouse C2C12 myoblasts. Specifically, at the onset of myoblast fusion, ARF6 is associated with the multiproteic complex that contains M-cadherin, Trio, and Rac1 and accumulates at sites of myoblast fusion. ARF6 silencing inhibits the association of Trio and Rac1 with M-cadherin. Moreover, we demonstrate that ARF6 regulates myoblast fusion through phospholipase D (PLD) activation and phosphatidylinositol 4,5-bis-phosphate production. Together, these data indicate that ARF6 is a critical regulator of C2C12 myoblast fusion and participates in the regulation of PLD activities that trigger both phospholipids production and actin cytoskeleton reorganization at fusion sites.
Collapse
Affiliation(s)
- Anne-Sophie Bach
- Universités Montpellier 2 et 1, Centre de Recherche en Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Institut Fédératif de Recherche 122 1919 Route de Mende, 34293 Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Selva J, Martínez SE, Buceta D, Rodríguez-Vázquez MJ, Blanco MC, López-Quintela MA, Egea G. Silver Sub-nanoclusters Electrocatalyze Ethanol Oxidation and Provide Protection against Ethanol Toxicity in Cultured Mammalian Cells. J Am Chem Soc 2010; 132:6947-54. [DOI: 10.1021/ja907988s] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Javier Selva
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Instituts d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) i de Nanociències i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08036 Barcelona, Spain, and Laboratorio de Magnetismo y Nanotecnología (Nanomag), Instituto de Investigación Tecnológica, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Susana E. Martínez
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Instituts d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) i de Nanociències i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08036 Barcelona, Spain, and Laboratorio de Magnetismo y Nanotecnología (Nanomag), Instituto de Investigación Tecnológica, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - David Buceta
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Instituts d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) i de Nanociències i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08036 Barcelona, Spain, and Laboratorio de Magnetismo y Nanotecnología (Nanomag), Instituto de Investigación Tecnológica, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - María J. Rodríguez-Vázquez
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Instituts d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) i de Nanociències i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08036 Barcelona, Spain, and Laboratorio de Magnetismo y Nanotecnología (Nanomag), Instituto de Investigación Tecnológica, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - M. Carmen Blanco
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Instituts d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) i de Nanociències i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08036 Barcelona, Spain, and Laboratorio de Magnetismo y Nanotecnología (Nanomag), Instituto de Investigación Tecnológica, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - M. Arturo López-Quintela
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Instituts d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) i de Nanociències i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08036 Barcelona, Spain, and Laboratorio de Magnetismo y Nanotecnología (Nanomag), Instituto de Investigación Tecnológica, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Gustavo Egea
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Instituts d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) i de Nanociències i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08036 Barcelona, Spain, and Laboratorio de Magnetismo y Nanotecnología (Nanomag), Instituto de Investigación Tecnológica, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| |
Collapse
|
40
|
Tubaro C, Arcuri C, Giambanco I, Donato R. S100B protein in myoblasts modulates myogenic differentiation via NF-kappaB-dependent inhibition of MyoD expression. J Cell Physiol 2010; 223:270-82. [PMID: 20069545 DOI: 10.1002/jcp.22035] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
S100B, a Ca(2+)-binding protein of the EF-hand type, is expressed in myoblasts, the precursors of skeletal myofibers, and muscle satellite cells (this work). S100B has been shown to participate in the regulation of several intracellular processes including cell cycle progression and differentiation. We investigated regulatory activities of S100B within myoblasts by stable overexpression of S100B and by inhibition of S100B expression. Overexpression of S100B in myoblast cell lines and primary myoblasts resulted in inhibition of myogenic differentiation, evidenced by lack of expression of myogenin and myosin heavy chain (MyHC) and absence of myotube formation. S100B-overexpressing myoblasts showed reduced MyoD expression levels and unchanged Myf5 expression levels, compared with control myoblasts, and transient transfection of S100B-overexpressing myoblasts with MyoD, but not Myf5, restored differentiation and fusion in part. The transcriptional activity of NF-kappaB, a negative regulator of MyoD expression, was enhanced in S100B-overexpressing myoblasts, and blocking NF-kappaB activity resulted in reversal of S100B's inhibitory effects. Yin Yang1, a transcriptional repressor that is induced by NF-kappaB (p65) and mediates NF-kappaB inhibitory effects on several myofibrillary genes, also was upregulated in S100B-overexpressing myoblasts. Conversely, silencing S100B expression in myoblast cell lines by RNA interference resulted in reduced NF-kappaB activity and enhanced MyoD, myogenin and MyHC expression and myotube formation. Thus, intracellular S100B might modulate myoblast differentiation by interfering with MyoD expression in an NF-kappaB-dependent manner.
Collapse
Affiliation(s)
- Claudia Tubaro
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | | | | | |
Collapse
|
41
|
Hsu YL, Hung JY, Ko YC, Hung CH, Huang MS, Kuo PL. Phospholipase D signaling pathway is involved in lung cancer-derived IL-8 increased osteoclastogenesis. Carcinogenesis 2010; 31:587-96. [PMID: 20106902 DOI: 10.1093/carcin/bgq030] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bone is a frequent target of lung cancer metastasis, which is associated with significant morbidity and a dismal prognosis. This study analyzed the soluble factors secreted by lung cancer cells, which are responsible for increasing osteoclast differentiation. Addition of recombinant human interleukin-8 (rhIL-8), present in large amounts in A549-conditioned medium (CM) and NCI-H460-CM, mimicked the inductive effect of A549-CM and NCI-H460-CM on osteoclastogenesis. In contrast, depletion of interleukin-8 (IL-8) from A549-CM and NCI-H460-CM decreased the osteoclastogenesis-inductive properties of A549-CM and NCI-H460-CM. Induction of osteoclast differentiation by lung cancer-derived-CM and rhIL-8 was associated with increased phospholipase D (PLD) activation, and the activations of protein kinase C (PKC) alpha/betaII, extracellular signal-regulated kinase (ERK) 1/2 and AKT/the mammalian target of rapamycin (mTOR). Blocking PLD by a specific inhibitor significantly decreased osteoclast formation by inhibiting PKCs activation and subsequently attenuating the phosphorylation of ERK1/2. PLD inhibitor also completely decreased AKT and mTOR phosphorylation, whereas phosphatidylinositol-3-kinase (PI3K) inhibitor only partially decreased mTOR phosphorylation, suggesting that mTOR activation by PLD is through both PI3K/AKT-dependent and PI3K/AKT-independent manner. In addition, blocking AKT and ERK1/2 by a specific inhibitor also suppressed lung cancer-derived-CM and rhIL-8-induced osteoclast differentiation. Moreover, treatment of peripheral blood mononuclear cells with sera from invasive lung cancer patients increased the formation of osteoclasts. Our study suggests that IL-8 or IL-8-mediated PLD/PKC/ERK1/2 or PLD/AKT signaling is an attractive therapeutic target for osteolytic bone metastases in lung cancer patients.
Collapse
Affiliation(s)
- Ya-Ling Hsu
- Graduate Institute of Medicine, Schoolof Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
42
|
Wang C, Zhang L, Yuan M, Ge Y, Liu Y, Fan J, Ruan Y, Cui Z, Tong S, Zhang S. The microfilament cytoskeleton plays a vital role in salt and osmotic stress tolerance in Arabidopsis. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:70-8. [PMID: 20653889 DOI: 10.1111/j.1438-8677.2009.00201.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Although recent studies have suggested that the microfilament (MF) cytoskeleton of plant cells participates in the response to salt stress, it remains unclear as to whether the MF cytoskeleton actually plays an active role in a plant's ability to withstand salt stress. In the present study, we report for the first time the role of MFs in salt tolerance of Arabidopsis thaliana. Our experiments revealed that Arabidopsis seedlings treated with 150 mm NaCl maintained MF assembly and bundle formation, whereas treatment with 250 mm NaCl initially induced MF assembly but subsequently caused MF disassembly. A corresponding change in the fluorescence intensity of MFs was also observed; that is, a sustained rise in fluorescence intensity in seedlings exposed to 150 mm NaCl and an initial rise and subsequent fall in seedlings exposed to 250 mm NaCl. These results suggest that MF assembly and bundles are induced early after salt stress treatment, while MF polymerization disappears after high salt stress. Facilitation of MF assembly with phalloidin rescued wild-type seedlings from death, whereas blocking MFs assembly with latrunculin A and cytochalasin D resulted in few survivors under salt stress. Pre-treatment of seedlings with phalloidin also clearly increased plant ability to withstand salt stress. MF assembly increased survival of Arabidopsis salt-sensitive sos2 mutants under salt stress and rescued defective sos2 mutants. Polymerization of MFs and its role in promoting survival was also found in plants exposed to osmotic stress. These findings suggest that the MF cytoskeleton participates and plays a vital role in responses to salt and osmotic stress in Arabidopsis.
Collapse
Affiliation(s)
- C Wang
- Biological Science and Technology College, Shenyang Agricultural University, Shenyang, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhu L, Michel V, Bakovic M. Regulation of the mouse CTP: Phosphoethanolamine cytidylyltransferase gene Pcyt2 during myogenesis. Gene 2009; 447:51-9. [DOI: 10.1016/j.gene.2009.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/22/2009] [Accepted: 07/22/2009] [Indexed: 10/20/2022]
|
44
|
Rudge SA, Wakelam MJ. Inter-regulatory dynamics of phospholipase D and the actin cytoskeleton. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:856-61. [DOI: 10.1016/j.bbalip.2009.04.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 04/22/2009] [Accepted: 04/27/2009] [Indexed: 11/24/2022]
|
45
|
|
46
|
Modulation of caspase activity regulates skeletal muscle regeneration and function in response to vasopressin and tumor necrosis factor. PLoS One 2009; 4:e5570. [PMID: 19440308 PMCID: PMC2680623 DOI: 10.1371/journal.pone.0005570] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Accepted: 04/20/2009] [Indexed: 11/19/2022] Open
Abstract
Muscle homeostasis involves de novo myogenesis, as observed in conditions of acute or chronic muscle damage. Tumor Necrosis Factor (TNF) triggers skeletal muscle wasting in several pathological conditions and inhibits muscle regeneration. We show that intramuscular treatment with the myogenic factor Arg8-vasopressin (AVP) enhanced skeletal muscle regeneration and rescued the inhibitory effects of TNF on muscle regeneration. The functional analysis of regenerating muscle performance following TNF or AVP treatments revealed that these factors exerted opposite effects on muscle function. Principal component analysis showed that TNF and AVP mainly affect muscle tetanic force and fatigue. Importantly, AVP counteracted the effects of TNF on muscle function when delivered in combination with the latter. Muscle regeneration is, at least in part, regulated by caspase activation, and AVP abrogated TNF-dependent caspase activation. The contrasting effects of AVP and TNF in vivo are recapitulated in myogenic cell cultures, which express both PW1, a caspase activator, and Hsp70, a caspase inhibitor. We identified PW1 as a potential Hsp70 partner by screening for proteins interacting with PW1. Hsp70 and PW1 co-immunoprecipitated and co-localized in muscle cells. In vivo Hsp70 protein level was upregulated by AVP, and Hsp70 overexpression counteracted the TNF block of muscle regeneration. Our results show that AVP counteracts the effects of TNF through cross-talk at the Hsp70 level. Therefore, muscle regeneration, both in the absence and in the presence of cytokines may be enhanced by increasing Hsp70 expression.
Collapse
|
47
|
Vorland M, Holmsen H. Phospholipase D in human platelets: presence of isoenzymes and participation of autocrine stimulation during thrombin activation. Platelets 2008; 19:211-24. [PMID: 18432522 DOI: 10.1080/09537100701777329] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Phospholipase D (PLD), which hydrolyzes phosphatidylcholine to phosphatidic acid (PA) and choline, is present in human platelets. Thrombin and other agonists have been shown to activate PLD but the precise mechanisms of activation and PLDs role in platelet activation remains unclear. We measured thrombin-stimulated PLD activity in platelets as formation of phosphatidylethanol. Since no specific PLD inhibitors exist, we investigated possible roles for PLD in platelets by correlating PLD activity with platelet responses such as thrombin-mediated secretion and F-actin formation (part of platelet shape change). Extracellular Ca2+ potentiated thrombin-stimulated PLD, but did not stimulate PLD in the absence of thrombin. Thrombin-induced PLD activity was enhanced by secreted ADP and binding of fibrinogen to its receptors. In contrast to others, we also found a basal PLD activity. Comparison of time courses and dose responses of platelets with PLD showed many points of correlation between PLD activation and lysosomal secretion and F-actin formation. The finding of different PLD activities suggested that different PLD isoenzymes exist in platelets as reported for other cells. Here we present evidence for the presence of both PLD1 and PLD2 in platelets by use of specific antibodies with immunoblotting and immunohistochemistry. Both isoforms were randomly localized in resting platelets, but became rapidly translocated to the proximity of the plasma membrane upon thrombin stimulation, thus indicating a role for PLD in platelet activation.
Collapse
Affiliation(s)
- M Vorland
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Norway.
| | | |
Collapse
|
48
|
|
49
|
Yoon MS, Chen J. PLD regulates myoblast differentiation through the mTOR-IGF2 pathway. J Cell Sci 2008; 121:282-9. [PMID: 18198186 DOI: 10.1242/jcs.022566] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
A mammalian target of rapamycin (mTOR) pathway is essential for the differentiation of cultured skeletal myoblasts in response to growth factor withdrawal. Previously, phospholipase D (PLD) has been found to play a role in cell growth regulation and mitogenic activation of mTOR signaling. However, a role for PLD in the autocrine regulation of myoblast differentiation is not known. Here we show that upon induction of differentiation in mouse C2C12 satellite cells, the expression of both PLD1 and PLD2 is upregulated. C2C12 differentiation is markedly inhibited by 1-butanol, an inhibitor of the PLD-catalyzed transphosphatidylation reaction, and also by the knockdown of PLD1, but not PLD2. Further investigation has revealed that PLD1 is unlikely to regulate myogenesis through modulation of the actin cytoskeleton as previously suggested. Instead, PLD1 positively regulates mTOR signaling leading to the production of IGF2, an autocrine factor instrumental for the initiation of satellite cell differentiation. Furthermore, exogenous IGF2 fully rescues the differentiation defect resulting from PLD1 knockdown. Hence, PLD1 is critically involved in skeletal myogenesis by regulating the mTOR-IGF2 pathway.
Collapse
Affiliation(s)
- Mee-Sup Yoon
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Avenue B107, Urbana, IL 61801, USA
| | | |
Collapse
|
50
|
MOON C, KIM H, KIM S, LEE Y, SHIN MK, MIN DS, SHIN T. Transient Expression of Phospholipase D1 during Heart Development in Rats. J Vet Med Sci 2008; 70:411-3. [DOI: 10.1292/jvms.70.411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Changjong MOON
- Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University
| | - Heechul KIM
- Department of Veterinary Medicine, College of Life Sciences, Research Institute for Subtropical Agriculture and Biotechnology and Applied Radiological Science Research Institute, Cheju National University
| | - Seungjoon KIM
- Department of Veterinary Medicine, College of Life Sciences, Research Institute for Subtropical Agriculture and Biotechnology and Applied Radiological Science Research Institute, Cheju National University
| | - Yongduk LEE
- Department of Veterinary Medicine, College of Life Sciences, Research Institute for Subtropical Agriculture and Biotechnology and Applied Radiological Science Research Institute, Cheju National University
| | - Min Kyoung SHIN
- Department of Molecular Biology, College of Natural Science, Pusan National University
| | - Do Sik MIN
- Department of Molecular Biology, College of Natural Science, Pusan National University
| | - Taekyun SHIN
- Department of Veterinary Medicine, College of Life Sciences, Research Institute for Subtropical Agriculture and Biotechnology and Applied Radiological Science Research Institute, Cheju National University
| |
Collapse
|