1
|
Zhang A, He X, Zhang C, Tang X. Molecular subtype identification and prognosis stratification based on golgi apparatus-related genes in head and neck squamous cell carcinoma. BMC Med Genomics 2024; 17:53. [PMID: 38365684 PMCID: PMC10870608 DOI: 10.1186/s12920-024-01823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Abnormal dynamics of the Golgi apparatus reshape the tumor microenvironment and immune landscape, playing a crucial role in the prognosis and treatment response of cancer. This study aims to investigate the potential role of Golgi apparatus-related genes (GARGs) in the heterogeneity and prognosis of head and neck squamous cell carcinoma (HNSCC). METHODS Transcriptional data and corresponding clinical information of HNSCC were obtained from public databases for differential expression analysis, consensus clustering, survival analysis, immune infiltration analysis, immune therapy response assessment, gene set enrichment analysis, and drug sensitivity analysis. Multiple machine learning algorithms were employed to construct a prognostic model based on GARGs. A nomogram was used to integrate and visualize the multi-gene model with clinical pathological features. RESULTS A total of 321 GARGs that were differentially expressed were identified, out of which 69 were associated with the prognosis of HNSCC. Based on these prognostic genes, two molecular subtypes of HNSCC were identified, which showed significant differences in prognosis. Additionally, a risk signature consisting of 28 GARGs was constructed and demonstrated good performance for assessing the prognosis of HNSCC. This signature divided HNSCC into the high-risk and low-risk groups with significant differences in multiple clinicopathological characteristics, including survival outcome, grade, T stage, chemotherapy. Immune response-related pathways were significantly activated in the high-risk group with better prognosis. There were significant differences in chemotherapy drug sensitivity and immune therapy response between the high-risk and low-risk groups, with the low-risk group being more suitable for receiving immunotherapy. Riskscore, age, grade, and radiotherapy were independent prognostic factors for HNSCC and were used to construct a nomogram, which had good clinical applicability. CONCLUSIONS We successfully identified molecular subtypes and prognostic signature of HNSCC that are derived from GARGs, which can be used for the assessment of HNSCC prognosis and treatment responses.
Collapse
Affiliation(s)
- Aichun Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 310006, Hangzhou, Zhejiang Province, P. R. China
| | - Xiao He
- Department of Otolaryngology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 310006, Hangzhou, Zhejiang Province, P. R. China
| | - Chen Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 310006, Hangzhou, Zhejiang Province, P. R. China
| | - Xuxia Tang
- Department of Otolaryngology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 310006, Hangzhou, Zhejiang Province, P. R. China.
| |
Collapse
|
2
|
Wang D, Zhao M, Tang X, Gao M, Liu W, Xiang M, Ruan J, Chen J, Long B, Li J. Transcriptomic analysis of spinal cord regeneration after injury in Cynops orientalis. Neural Regen Res 2023; 18:2743-2750. [PMID: 37449639 DOI: 10.4103/1673-5374.373717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Cynops orientalis (C. orientalis) has a pronounced ability to regenerate its spinal cord after injury. Thus, exploring the molecular mechanism of this process could provide new approaches for promoting mammalian spinal cord regeneration. In this study, we established a model of spinal cord thoracic transection injury in C. orientalis, which is an endemic species in China. We performed RNA sequencing of the contused axolotl spinal cord at two early time points after spinal cord injury - during the very acute stage (4 days) and the subacute stage (7 days) - and identified differentially expressed genes; additionally, we performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, at each time point. Transcriptome sequencing showed that 13,059 genes were differentially expressed during C. orientalis spinal cord regeneration compared with uninjured animals, among which 4273 were continuously down-regulated and 1564 were continuously up-regulated. Down-regulated genes were most enriched in the Gene Ontology term "multicellular organismal process" and in the ribosome pathway at 10 days following spinal cord injury. We found that multiple genes associated with energy metabolism were down-regulated and multiple genes associated with the lysosome were up-regulated after spinal cord injury, indicating the importance of low metabolic activity during wound healing. Immune response-associated pathways were activated during the early acute phase (4 days), while the expression of extracellular matrix proteins such as glycosaminoglycan and collagen, as well as tight junction proteins, was lower at 10 days post-spinal cord injury than 4 days post-spinal cord injury. However, compared with 4 days post-injury, at 10 days post-injury neuroactive ligand-receptor interactions were no longer down-regulated, up-regulated differentially expressed genes were enriched in pathways associated with cancer and the cell cycle, and SHH, VIM, and Sox2 were prominently up-regulated. Immunofluorescence staining showed that glial fibrillary acidic protein was up-regulated in axolotl ependymoglial cells after injury, similar to what is observed in mammalian astrocytes after spinal cord injury, even though axolotls do not form a glial scar during regeneration. We suggest that low intracellular energy production could slow the rapid amplification of ependymoglial cells, thereby inhibiting reactive gliosis, at early stages after spinal cord injury. Extracellular matrix degradation slows cellular responses, represses the expression of neurogenic genes, and reactivates a transcriptional program similar to that of embryonic neuroepithelial cells. These ependymoglial cells act as neural stem cells: they migrate and proliferate to repair the lesion and then differentiate to replace lost glial cells and neurons. This provides the regenerative microenvironment that allows axon growth after injury.
Collapse
Affiliation(s)
- Di Wang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, China
| | - Man Zhao
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, China
| | - Xiao Tang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, China
| | - Man Gao
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, China
| | - Wenjing Liu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, China
| | - Minghui Xiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Jian Ruan
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, China
| | - Jie Chen
- Laboratory of Reproductive Medicine, The Second People's Hospital, Wuhu, Wuhu, Anhui Province, China
| | - Bin Long
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, China
| | - Jun Li
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, China
| |
Collapse
|
3
|
Moore AA, Nelson M, Wickware C, Choi S, Moon G, Xiong E, Orta L, Brideau-Andersen A, Brin MF, Broide RS, Liedtke W, Moore C. OnabotulinumtoxinA effects on trigeminal nociceptors. Cephalalgia 2023; 43:3331024221141683. [PMID: 36751871 PMCID: PMC10652784 DOI: 10.1177/03331024221141683] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND OnabotulinumtoxinA (onabotA) is approved globally for prevention of chronic migraine; however, the classical mechanism of action of onabotA in motor and autonomic neurons cannot fully explain the effectiveness of onabotulinumtoxinA in this sensory neurological disease. We sought to explore the direct effects of onabotulinumtoxinA on mouse trigeminal ganglion sensory neurons using an inflammatory soup-based model of sensitization. METHODS Primary cultured trigeminal ganglion neurons were pre-treated with inflammatory soup, then treated with onabotulinumtoxinA (2.75 pM). Treated neurons were used to examine transient receptor potential vanilloid subtype 1 and transient receptor potential ankyrin 1 cell-surface expression, calcium influx, and neuropeptide release. RESULTS We found that onabotulinumtoxinA cleaved synaptosomal-associated protein-25 kDa in cultured trigeminal ganglion neurons; synaptosomal-associated protein-25 kDa cleavage was enhanced by inflammatory soup pre-treatment, suggesting greater uptake of toxin under sensitized conditions. OnabotulinumtoxinA also prevented inflammatory soup-mediated increases in TRPV1 and TRPA1 cell-surface expression, without significantly altering TRPV1 or TRPA1 protein expression in unsensitized conditions. We observed similar inhibitory effects of onabotulinumtoxinA on TRP-mediated calcium influx and TRPV1- and TRPA1-mediated release of calcitonin gene-related peptide and prostaglandin 2 under sensitized, but not unsensitized control, conditions. CONCLUSIONS Our data deepen the understanding of the sensory mechanism of action of onabotulinumtoxinA and support the notion that, once endocytosed, the cytosolic light chain of onabotulinumtoxinA cleaves synaptosomal-associated protein-25 kDa to prevent soluble N-ethylmaleimide-sensitive factor attachment protein receptor-mediated processes more generally in motor, autonomic, and sensory neurons.
Collapse
Affiliation(s)
- Ashley A Moore
- Department of Neurology, Duke University, Durham, NC, USA
| | | | | | - Shinbe Choi
- Department of Neurology, Duke University, Durham, NC, USA
| | - Gene Moon
- Department of Neurology, Duke University, Durham, NC, USA
| | - Emma Xiong
- Department of Neurology, Duke University, Durham, NC, USA
| | - Lily Orta
- Department of Neurology, Duke University, Durham, NC, USA
| | | | - Mitchell F Brin
- Allergan, an AbbVie company, Irvine, CA, USA
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | | | - Wolfgang Liedtke
- Department of Neurology, Duke University, Durham, NC, USA
- Department of Molecular Pathobiology – Dental Pain Research, New York University College of Dentistry, New York, NY, USA
| | - Carlene Moore
- Department of Neurology, Duke University, Durham, NC, USA
| |
Collapse
|
4
|
Gardner AP, Barbieri JT, Pellett S. How Botulinum Neurotoxin Light Chain A1 Maintains Stable Association with the Intracellular Neuronal Plasma Membrane. Toxins (Basel) 2022; 14:toxins14120814. [PMID: 36548711 PMCID: PMC9783275 DOI: 10.3390/toxins14120814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Botulinum neurotoxin serotype A (BoNT/A) is the most potent protein toxin for humans and is utilized as a therapy for numerous neurologic diseases. BoNT/A comprises a catalytic Light Chain (LC/A) and a Heavy Chain (HC/A) and includes eight subtypes (BoNT/A1-/A8). Previously we showed BoNT/A potency positively correlated with stable localization on the intracellular plasma membrane and identified a low homology domain (amino acids 268-357) responsible for LC/A1 stable co-localization with SNAP-25 on the plasma membrane, while LC/A3 was present in the cytosol of Neuro2A cells. In the present study, steady-state- and live-imaging of a cytosolic LC/A3 derivative (LC/A3V) engineered to contain individual structural elements of the A1 LDH showed that a 59 amino acid region (275-334) termed the MLD was sufficient to direct LC/A3V from the cytosol to the plasma membrane co-localized with SNAP-25. Informatics and experimental validation of the MLD-predicted R1 region (an α-helix, residues 275-300) and R2 region (a loop, α-helix, loop, residues 302-334) both contribute independent steps to the stable co-localization of LC/A1 with SNAP-25 on the plasma membrane of Neuro-2A cells. Understanding how these structural elements contribute to the overall association of LC/A1 on the plasma membrane may identify the molecular basis for the LC contribution of BoNT/A1 to high potency.
Collapse
Affiliation(s)
- Alexander P. Gardner
- Microbiology and Immunology, Medical College, Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Joseph T. Barbieri
- Microbiology and Immunology, Medical College, Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Correspondence: (J.T.B.); (S.P.)
| | - Sabine Pellett
- Department of Bacteriology, Microbial Sciences Building, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53706, USA
- Correspondence: (J.T.B.); (S.P.)
| |
Collapse
|
5
|
Gundu C, Arruri VK, Yadav P, Navik U, Kumar A, Amalkar VS, Vikram A, Gaddam RR. Dynamin-Independent Mechanisms of Endocytosis and Receptor Trafficking. Cells 2022; 11:cells11162557. [PMID: 36010634 PMCID: PMC9406725 DOI: 10.3390/cells11162557] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Endocytosis is a fundamental mechanism by which cells perform housekeeping functions. It occurs via a variety of mechanisms and involves many regulatory proteins. The GTPase dynamin acts as a “molecular scissor” to form endocytic vesicles and is a critical regulator among the proteins involved in endocytosis. Some GTPases (e.g., Cdc42, arf6, RhoA), membrane proteins (e.g., flotillins, tetraspanins), and secondary messengers (e.g., calcium) mediate dynamin-independent endocytosis. These pathways may be convergent, as multiple pathways exist in a single cell. However, what determines the specific path of endocytosis is complex and challenging to comprehend. This review summarizes the mechanisms of dynamin-independent endocytosis, the involvement of microRNAs, and factors that contribute to the cellular decision about the specific route of endocytosis.
Collapse
Affiliation(s)
- Chayanika Gundu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Vijay Kumar Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, WI 53792, USA
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata 700054, West Bengal, India
| | - Veda Sudhir Amalkar
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Ajit Vikram
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Ravinder Reddy Gaddam
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
- Correspondence:
| |
Collapse
|
6
|
The vesicle cluster as a major organizer of synaptic composition in the short-term and long-term. Curr Opin Cell Biol 2021; 71:63-68. [PMID: 33706235 DOI: 10.1016/j.ceb.2021.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/22/2021] [Accepted: 02/04/2021] [Indexed: 01/29/2023]
Abstract
For decades, the synaptic vesicle cluster has been thought of as a storage space for synaptic vesicles, whose obvious function is to provide vesicles for the depolarization-induced release of neurotransmitters; however, reports over the last few years indicate that the synaptic vesicle cluster probably plays a much broader and more fundamental role in synaptic biology. Various experiments suggest that the cluster is able to regulate protein distribution and mobility in the synapse; moreover, it probably regulates cytoskeleton architecture, mediates the selective removal of synaptic components from the bouton, and controls the responses of the presynapse to plasticity. Here we discuss these features of the vesicle cluster and conclude that it serves as a key organizer of synaptic composition and dynamics.
Collapse
|
7
|
Wilhelmi I, Grunwald S, Gimber N, Popp O, Dittmar G, Arumughan A, Wanker EE, Laeger T, Schmoranzer J, Daumke O, Schürmann A. The ARFRP1-dependent Golgi scaffolding protein GOPC is required for insulin secretion from pancreatic β-cells. Mol Metab 2020; 45:101151. [PMID: 33359402 PMCID: PMC7811047 DOI: 10.1016/j.molmet.2020.101151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Objective Hormone secretion from metabolically active tissues, such as pancreatic islets, is governed by specific and highly regulated signaling pathways. Defects in insulin secretion are among the major causes of diabetes. The molecular mechanisms underlying regulated insulin secretion are, however, not yet completely understood. In this work, we studied the role of the GTPase ARFRP1 on insulin secretion from pancreatic β-cells. Methods A β-cell-specific Arfrp1 knockout mouse was phenotypically characterized. Pulldown experiments and mass spectrometry analysis were employed to screen for new ARFRP1-interacting proteins. Co-immunoprecipitation assays as well as super-resolution microscopy were applied for validation. Results The GTPase ARFRP1 interacts with the Golgi-associated PDZ and coiled-coil motif-containing protein (GOPC). Both proteins are co-localized at the trans-Golgi network and regulate the first and second phase of insulin secretion by controlling the plasma membrane localization of the SNARE protein SNAP25. Downregulation of both GOPC and ARFRP1 in Min6 cells interferes with the plasma membrane localization of SNAP25 and enhances its degradation, thereby impairing glucose-stimulated insulin release from β-cells. In turn, overexpression of SNAP25 as well as GOPC restores insulin secretion in islets from β-cell-specific Arfrp1 knockout mice. Conclusion Our results identify a hitherto unrecognized pathway required for insulin secretion at the level of trans-Golgi sorting. β-cell specific deletion of the trans-Golgi residing small GTPase ARFRP1 leads to elevated blood glucose levels in mice. GOPC is a newly identified ARFRP1 dependent scaffolding protein. ARFRP1 and GOPC are required for glucose-stimulated insulin secretion from pancreatic β-cells.
Collapse
Affiliation(s)
- Ilka Wilhelmi
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD) Munich Neuherberg, Germany
| | - Stephan Grunwald
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - Niclas Gimber
- Advanced Medical Bioimaging Core Facility - AMBIO, Charité-Universitätsmedizin Berlin, Germany
| | - Oliver Popp
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Germany
| | - Gunnar Dittmar
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Germany
| | - Anup Arumughan
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) Berlin, Germany
| | - Erich E Wanker
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) Berlin, Germany
| | - Thomas Laeger
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD) Munich Neuherberg, Germany
| | - Jan Schmoranzer
- Advanced Medical Bioimaging Core Facility - AMBIO, Charité-Universitätsmedizin Berlin, Germany
| | - Oliver Daumke
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - Annette Schürmann
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD) Munich Neuherberg, Germany; University of Potsdam, Institute of Nutritional Sciences, Nuthetal, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Germany.
| |
Collapse
|
8
|
Shaaban A, Dhara M, Frisch W, Harb A, Shaib AH, Becherer U, Bruns D, Mohrmann R. The SNAP-25 linker supports fusion intermediates by local lipid interactions. eLife 2019; 8:41720. [PMID: 30883328 PMCID: PMC6422494 DOI: 10.7554/elife.41720] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/05/2019] [Indexed: 12/22/2022] Open
Abstract
SNAP-25 is an essential component of SNARE complexes driving fast Ca2+-dependent exocytosis. Yet, the functional implications of the tandem-like structure of SNAP-25 are unclear. Here, we have investigated the mechanistic role of the acylated “linker” domain that concatenates the two SNARE motifs within SNAP-25. Refuting older concepts of an inert connector, our detailed structure-function analysis in murine chromaffin cells demonstrates that linker motifs play a crucial role in vesicle priming, triggering, and fusion pore expansion. Mechanistically, we identify two synergistic functions of the SNAP-25 linker: First, linker motifs support t-SNARE interactions and accelerate ternary complex assembly. Second, the acylated N-terminal linker segment engages in local lipid interactions that facilitate fusion triggering and pore evolution, putatively establishing a favorable membrane configuration by shielding phospholipid headgroups and affecting curvature. Hence, the linker is a functional part of the fusion complex that promotes secretion by SNARE interactions as well as concerted lipid interplay.
Collapse
Affiliation(s)
- Ahmed Shaaban
- ZHMB, Saarland University, Homburg, Germany.,Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Madhurima Dhara
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Walentina Frisch
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Ali Harb
- ZHMB, Saarland University, Homburg, Germany
| | - Ali H Shaib
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Ute Becherer
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Dieter Bruns
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Ralf Mohrmann
- ZHMB, Saarland University, Homburg, Germany.,Institute for Physiology, Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Science, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
9
|
Dingjan I, Linders PTA, Verboogen DRJ, Revelo NH, Ter Beest M, van den Bogaart G. Endosomal and Phagosomal SNAREs. Physiol Rev 2018; 98:1465-1492. [PMID: 29790818 DOI: 10.1152/physrev.00037.2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein family is of vital importance for organelle communication. The complexing of cognate SNARE members present in both the donor and target organellar membranes drives the membrane fusion required for intracellular transport. In the endocytic route, SNARE proteins mediate trafficking between endosomes and phagosomes with other endosomes, lysosomes, the Golgi apparatus, the plasma membrane, and the endoplasmic reticulum. The goal of this review is to provide an overview of the SNAREs involved in endosomal and phagosomal trafficking. Of the 38 SNAREs present in humans, 30 have been identified at endosomes and/or phagosomes. Many of these SNAREs are targeted by viruses and intracellular pathogens, which thereby reroute intracellular transport for gaining access to nutrients, preventing their degradation, and avoiding their detection by the immune system. A fascinating picture is emerging of a complex transport network with multiple SNAREs being involved in consecutive trafficking routes.
Collapse
Affiliation(s)
- Ilse Dingjan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Peter T A Linders
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Danielle R J Verboogen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Natalia H Revelo
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
10
|
Klein O, Roded A, Zur N, Azouz NP, Pasternak O, Hirschberg K, Hammel I, Roche PA, Yatsu A, Fukuda M, Galli SJ, Sagi-Eisenberg R. Rab5 is critical for SNAP23 regulated granule-granule fusion during compound exocytosis. Sci Rep 2017; 7:15315. [PMID: 29127297 PMCID: PMC5681557 DOI: 10.1038/s41598-017-15047-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/19/2017] [Indexed: 12/22/2022] Open
Abstract
Compound exocytosis is considered the most massive mode of exocytosis, during which the membranes of secretory granules (SGs) fuse with each other to form a channel through which the entire contents of their granules is released. The underlying mechanisms of compound exocytosis remain largely unresolved. Here we show that the small GTPase Rab5, a known regulator of endocytosis, is pivotal for compound exocytosis in mast cells. Silencing of Rab5 shifts receptor-triggered secretion from a compound to a full exocytosis mode, in which SGs individually fuse with the plasma membrane. Moreover, we show that Rab5 is essential for FcεRI-triggered association of the SNARE protein SNAP23 with the SGs. Direct evidence is provided for SNAP23 involvement in homotypic SG fusion that occurs in the activated cells. Finally, we show that this fusion event is prevented by inhibition of the IKKβ2 kinase, however, neither a phosphorylation-deficient nor a phosphomimetic mutant of SNAP23 can mediate homotypic SG fusion in triggered cells. Taken together our findings identify Rab5 as a heretofore-unrecognized regulator of compound exocytosis that is essential for SNAP23-mediated granule-granule fusion. Our results also implicate phosphorylation cycles in controlling SNAP23 SNARE function in homotypic SG fusion.
Collapse
Affiliation(s)
- Ofir Klein
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Amit Roded
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Neta Zur
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Nurit P Azouz
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.,Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Olga Pasternak
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Koret Hirschberg
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ilan Hammel
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Paul A Roche
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Ayaka Yatsu
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Stephen J Galli
- Departments of Pathology and of Microbiology and Immunology, and Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, 94305-5176, USA
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
11
|
Cai BB, Francis J, Brin MF, Broide RS. Botulinum neurotoxin type A-cleaved SNAP25 is confined to primary motor neurons and localized on the plasma membrane following intramuscular toxin injection. Neuroscience 2017; 352:155-169. [PMID: 28389376 DOI: 10.1016/j.neuroscience.2017.03.049] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/01/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
The mechanism of action of botulinum neurotoxin type A (BoNT/A) is well characterized, but some published evidence suggests the potential for neuronal retrograde transport and cell-to-cell transfer (transcytosis) under certain experimental conditions. The present study evaluated the potential for these processes using a highly selective antibody for the BoNT/A-cleaved substrate (SNAP25197) combined with 3-dimensional imaging. SNAP25197 was characterized in a rat motor neuron (MN) pathway following toxin intramuscular injections at various doses to determine whether SNAP25197 is confined to MNs or also found in neighboring cells or nerve fibers within spinal cord (SC). Results demonstrated that SNAP25197 immuno-reactive staining was colocalized with biomarkers for MNs, but not with markers for neighboring neurons, nerve fibers or glial cells. Additionally, a high dose of BoNT/A, but not a lower dose, resulted in sporadic SNAP25197 signal in distal muscles and associated SC regions without evidence for transcytosis, suggesting that the staining was due to systemic spread of the toxin. Despite this spread, functional effects were not detected in the distal muscles. Therefore, under the present experimental conditions, our results suggest that BoNT/A is confined to MNs and any evidence of distal activity is due to limited systemic spread of the toxin at higher doses and not through transcytosis within SC. Lastly, at higher doses of BoNT/A, SNAP25197 was expressed throughout MNs and colocalized with synaptic markers on the plasma membrane at 6 days post-treatment. These data support previous studies suggesting that SNAP25197 may be incorporated into SNARE-protein complexes within the affected MNs.
Collapse
Affiliation(s)
- Brian B Cai
- Department of Biological Sciences, Allergan plc, Irvine, CA 92612, United States
| | - Joseph Francis
- Department of Biological Sciences, Allergan plc, Irvine, CA 92612, United States
| | - Mitchell F Brin
- Department of Biological Sciences, Allergan plc, Irvine, CA 92612, United States; Department of Neurology, University of California, Irvine, CA, 92697, United States
| | - Ron S Broide
- Department of Biological Sciences, Allergan plc, Irvine, CA 92612, United States.
| |
Collapse
|
12
|
Weber P, Batoulis H, Rink KM, Dahlhoff S, Pinkwart K, Söllner TH, Lang T. Electrostatic anchoring precedes stable membrane attachment of SNAP25/SNAP23 to the plasma membrane. eLife 2017; 6. [PMID: 28240595 PMCID: PMC5362264 DOI: 10.7554/elife.19394] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 02/26/2017] [Indexed: 11/15/2022] Open
Abstract
The SNAREs SNAP25 and SNAP23 are proteins that are initially cytosolic after translation, but then become stably attached to the cell membrane through palmitoylation of cysteine residues. For palmitoylation to occur, membrane association is a prerequisite, but it is unclear which motif may increase the affinities of the proteins for the target membrane. In experiments with rat neuroendocrine cells, we find that a few basic amino acids in the cysteine-rich region of SNAP25 and SNAP23 are essential for plasma membrane targeting. Reconstitution of membrane-protein binding in a liposome assay shows that the mechanism involves protein electrostatics between basic amino acid residues and acidic lipids such as phosphoinositides that play a primary role in these interactions. Hence, we identify an electrostatic anchoring mechanism underlying initial plasma membrane contact by SNARE proteins, which subsequently become palmitoylated at the plasma membrane. DOI:http://dx.doi.org/10.7554/eLife.19394.001 Cells often communicate with each other by releasing chemicals that normally are stored in small membrane-bound compartments called vesicles. For example, when a neuron is stimulated, vesicles merge with its cell membrane and release their content into a gap between itself and other neurons. This complicated process involves many steps and molecules, including proteins called SNAREs. Some SNARE proteins reside at the inner side of the cell membrane and help vesicles to fuse with this membrane. Two SNARE proteins called SNAP25 and SNAP23 are produced in the liquid inside the cell and initially float freely. Eventually, these proteins become directly anchored to the cell membrane, however, not much is known about what happens to these proteins in between these stages, or how they first attach to the membrane before anchoring to it. Electrostatic forces between oppositely charged molecules are known to be important for them to bind with each other. Here, electrostatic forces are less likely to occur because SNAP25 and SNAP23 are both mostly negatively charged, and should therefore be repelled from the cell membrane, which also typically has a negative charge. However, both SNAP25 and SNAP23 have a small cluster of positively charged amino acids (the building blocks of proteins) near the attachment site, and Weber et al. have now tested whether this charge is sufficient to overcome the predicted repulsion. The approach involved making mutant proteins with either more or less positively charged attachment regions. Mutant SNAP25 or SNAP23 proteins with more positive charges may stick more tightly but not necessarily more permanently to the membrane. However, when the number of positive charges was lowered, more of the proteins remained floating freely in the liquid inside the cell. These results suggest that even a small number of positively charged amino acids is sufficient to help a protein bind to a cell membrane for further processing. The findings of Weber et al. reveal an early step in the life cycle of SNAP25 and SNAP23 before they anchor to the cell membrane. They suggest that finely tuned protein electrostatics can regulate how long a protein spends at a specific site and thereby indirectly determine its fate. Such fine-tuned protein electrostatics are difficult to recognize and could represent an underestimated regulatory mechanism in all types of cells. DOI:http://dx.doi.org/10.7554/eLife.19394.002
Collapse
Affiliation(s)
- Pascal Weber
- Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Helena Batoulis
- Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Kerstin M Rink
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Stefan Dahlhoff
- Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Kerstin Pinkwart
- Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Thomas H Söllner
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Thorsten Lang
- Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
13
|
Zhong ZQ, Xiang Y, Hu X, Wang YC, Zeng X, Wang XM, Xia QJ, Wang TH, Zhang X. Synaptosomal-associated protein 25 may be an intervention target for improving sensory and locomotor functions after spinal cord contusion. Neural Regen Res 2017; 12:969-976. [PMID: 28761431 PMCID: PMC5514873 DOI: 10.4103/1673-5374.208592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Synaptosomal-associated protein 25 kDa (SNAP-25) is localized on the synapse and participates in exocytosis and neurotransmitter release. Decreased expression of SNAP-25 is associated with Alzheimer's disease and attention deficit/hyperactivity disorder. However, the expression of SNAP-25 in spinal cord contusion injury is still unclear. We hypothesized that SNAP-25 is associated with sensory and locomotor functions after spinal cord injury. We established rat models of spinal cord contusion injury to detect gene changes with a gene array. A decreased level of SNAP-25 was detected by quantitative real time-polymerase chain reaction and western blot assay at 1, 3, 7, 14 and 28 days post injury. SNAP-25 was localized in the cytoplasm of neurons of the anterior and posterior horns, which are involved in locomotor and sensory functions. Our data suggest that reduced levels of SNAP-25 are associated with sensory and locomotor functions in rats with spinal cord contusion injury.
Collapse
Affiliation(s)
- Zhan-Qiong Zhong
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China.,School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yang Xiang
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Xi Hu
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - You-Cui Wang
- Institute of Neurological Diseases, Center for Translational Neuroscience, Western China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xi Zeng
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Xiao-Meng Wang
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Qing-Jie Xia
- Institute of Neurological Diseases, Center for Translational Neuroscience, Western China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ting-Hua Wang
- Institute of Neurological Diseases, Center for Translational Neuroscience, Western China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiao Zhang
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China
| |
Collapse
|
14
|
Liu YS, Dai X, Wu W, Yuan FF, Gu X, Chen JG, Zhu LQ, Wu J. The Association of SNAP25 Gene Polymorphisms in Attention Deficit/Hyperactivity Disorder: a Systematic Review and Meta-Analysis. Mol Neurobiol 2016; 54:2189-2200. [PMID: 26941099 DOI: 10.1007/s12035-016-9810-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/22/2016] [Indexed: 11/30/2022]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is one of the most highly heritable psychiatric disorders in childhood. The risk gene mutation accounts for about 60 to 90 % cases. Synaptosomal-associated protein of 25 kDa (SNAP-25) is a presynaptic plasma membrane protein which is expressed highly and specifically in the neuronal cells. A number of evidences have suggested the role of SNAP-25 in the etiology of ADHD. Notably, the animal model of coloboma mouse mutant bears a ∼2-cM deletion encompassing genes including SNAP25 and displays spontaneous hyperkinetic behavior. Previous investigators have reported association between SNPs in SNAP25 and ADHD, and controversial results were observed. In this study, we analyzed the possible association between six polymorphisms (rs3746544, rs363006, rs1051312, rs8636, rs362549, and rs362998) of SNAP25 and ADHD in a pooled sample of ten family-based studies and four case-control studies by using meta-analysis. The combined analysis results were significant only for rs3746544 (P = 0.010) with mild association (odds ratio (OR) = 1.14). And, the meta-analysis data for rs8636, rs362549, and rs362998 are the first time to be reported; however, no positive association was detected. In conclusion, we report some evidence supporting the association of SNAP25 to ADHD. Future research should emphasize genome-wide association studies in more specific subgroups and larger independent samples.
Collapse
Affiliation(s)
- Yun-Sheng Liu
- Key Laboratory of Environment and Health, Ministry of Education & Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xuan Dai
- Key Laboratory of Environment and Health, Ministry of Education & Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Wei Wu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Fang-Fen Yuan
- Key Laboratory of Environment and Health, Ministry of Education & Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xue Gu
- Key Laboratory of Environment and Health, Ministry of Education & Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jian-Guo Chen
- Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.,Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ling-Qiang Zhu
- Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China. .,Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Jing Wu
- Key Laboratory of Environment and Health, Ministry of Education & Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
15
|
Wang W, Wang F, Liu J, Zhao W, Zhao Q, He M, Qian BJ, Xu Y, Liu R, Liu SJ, Liu W, Liu J, Zhou XF, Wang TH. SNAP25 ameliorates sensory deficit in rats with spinal cord transection. Mol Neurobiol 2014; 50:290-304. [PMID: 24519330 DOI: 10.1007/s12035-014-8642-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/03/2014] [Indexed: 02/05/2023]
Abstract
Spinal cord injury causes sensory loss below the level of lesion. Synaptosomal-associated protein 25 (SNAP25) is a t-SNARE protein essential for exocytosis and neurotransmitter release, but its role in sensory functional recovery has not been determined. The aim of the present study is therefore to investigate whether SNAP25 can promote sensory recovery. By 2D proteomics, we found a downregulation of SNAP25 and then constructed two lentiviral vectors, Lv-exSNAP25 and Lv-shSNAP25, which allows efficient and stable RNAi-mediated silencing of endogenous SNAP25. Overexpression of SNAP25 enhanced neurite outgrowth in vitro and behavior response to thermal and mechanical stimuli in vivo, while the silencing of SNAP25 had the opposite effect. These results suggest that SNAP25 plays a crucial role in sensory functional recovery following spinal cord injury (SCI). Our study therefore provides a novel target for the management of SCI for sensory dysfunction.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anesthesiology and Institute of Neurological Disease, Translation Neuroscience Center, The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Porat-Shliom N, Weigert R, Donaldson JG. Endosomes derived from clathrin-independent endocytosis serve as precursors for endothelial lumen formation. PLoS One 2013; 8:e81987. [PMID: 24282620 PMCID: PMC3839925 DOI: 10.1371/journal.pone.0081987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/28/2013] [Indexed: 11/18/2022] Open
Abstract
Clathrin-independent endocytosis (CIE) is a form of bulk plasma membrane (PM) endocytosis that allows cells to sample and evaluate PM composition. Once in endosomes, the internalized proteins and lipids can be recycled back to the PM or delivered to lysosomes for degradation. Endosomes arising from CIE contain lipid and signaling molecules suggesting that they might be involved in important biological processes. During vasculogenesis, new blood vessels are formed from precursor cells in a process involving internalization and accumulation of endocytic vesicles. Here, we found that CIE has a role in endothelial lumen formation. Specifically, we found that human vascular endothelial cells (HUVECs) utilize CIE for internalization of distinct cargo molecules and that in three-dimensional cultures CIE membranes are delivered to the newly formed lumen.
Collapse
Affiliation(s)
- Natalie Porat-Shliom
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Intracellular Membrane Trafficking Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Roberto Weigert
- Intracellular Membrane Trafficking Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Julie G. Donaldson
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
|
18
|
Involvement of gecko SNAP25b in spinal cord regeneration by promoting outgrowth and elongation of neurites. Int J Biochem Cell Biol 2012; 44:2288-98. [DOI: 10.1016/j.biocel.2012.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/12/2012] [Accepted: 09/14/2012] [Indexed: 01/17/2023]
|
19
|
Greaves J, Chamberlain LH. Differential palmitoylation regulates intracellular patterning of SNAP25. J Cell Sci 2011; 124:1351-60. [PMID: 21429935 DOI: 10.1242/jcs.079095] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SNAP25 regulates membrane fusion events at the plasma membrane and in the endosomal system, and a functional pool of the protein is delivered to recycling endosomes (REs) and the trans Golgi network (TGN) through an ARF6-dependent cycling pathway. SNAP25 is a peripheral membrane protein, and palmitoylation of a cluster of four cysteine residues mediates its stable association with the membrane. Here, we report that palmitoylation also determines the precise intracellular distribution of SNAP25, and that mutating single palmitoylation sites enhances the amount of SNAP25 at the RE and TGN. The farnesylated CAAX motif from Hras was ligated onto a SNAP25 mutant truncated immediately distal to the cysteine-rich domain. This construct displayed the same intracellular distribution as full-length SNAP25, and decreasing the number of cysteine residues in this construct increased its association with the RE and TGN, confirming the dominant role of the cysteine-rich domain in directing the intracellular distribution of SNAP25. Marked differences in the localisations of SNAP25-CAAX and Hras constructs, each with two palmitoylation sites, were observed, showing that subtle differences in palmitoylated sequences can have a major impact upon intracellular targeting. We propose that the cysteine-rich domain of SNAP25 is designed to facilitate the dual function of this SNARE protein at the plasma membrane and endosomes, and that dynamic palmitoylation acts as a mechanism to regulate the precise intracellular patterning of SNAP25.
Collapse
Affiliation(s)
- Jennifer Greaves
- Centre for Integrative Physiology, School of Biomedical Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | | |
Collapse
|
20
|
Single secretory granules of live cells recruit syntaxin-1 and synaptosomal associated protein 25 (SNAP-25) in large copy numbers. Proc Natl Acad Sci U S A 2010; 107:20810-5. [PMID: 21076040 DOI: 10.1073/pnas.1014840107] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Before secretory vesicles undergo exocytosis, they must recruit the proteins syntaxin-1 and synaptosomal associated protein 25 (SNAP-25) in the plasma membrane. GFP-labeled versions of both proteins cluster at sites where secretory granules have docked. Single-particle tracking shows that minority populations of both molecules are strongly hindered in their mobility, consistent with their confinement in nanodomains. We measured the fluorescence of granule-associated clusters, the fluorescence of single molecules, and the numbers of unlabeled syntaxin-1 and SNAP-25 molecules per cell. There was a more than 10-fold excess of SNAP-25 over syntaxin-1. Fifty to seventy copies each of syntaxin-1 and SNAP-25 molecules were associated with a single docked granule, many more than have been reported to be required for fusion.
Collapse
|
21
|
Skalski M, Yi Q, Kean MJ, Myers DW, Williams KC, Burtnik A, Coppolino MG. Lamellipodium extension and membrane ruffling require different SNARE-mediated trafficking pathways. BMC Cell Biol 2010; 11:62. [PMID: 20698987 PMCID: PMC2925818 DOI: 10.1186/1471-2121-11-62] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 08/10/2010] [Indexed: 12/26/2022] Open
Abstract
Background Intracellular membrane traffic is an essential component of the membrane remodeling that supports lamellipodium extension during cell adhesion. The membrane trafficking pathways that contribute to cell adhesion have not been fully elucidated, but recent studies have implicated SNARE proteins. Here, the functions of several SNAREs (SNAP23, VAMP3, VAMP4 and syntaxin13) are characterized during the processes of cell spreading and membrane ruffling. Results We report the first description of a SNARE complex, containing SNAP23, syntaxin13 and cellubrevin/VAMP3, that is induced by cell adhesion to an extracellular matrix. Impairing the function of the SNAREs in the complex using inhibitory SNARE domains disrupted the recycling endosome, impeded delivery of integrins to the cell surface, and reduced haptotactic cell migration and spreading. Blocking SNAP23 also inhibited the formation of PMA-stimulated, F-actin-rich membrane ruffles; however, membrane ruffle formation was not significantly altered by inhibition of VAMP3 or syntaxin13. In contrast, membrane ruffling, and not cell spreading, was sensitive to inhibition of two SNAREs within the biosynthetic secretory pathway, GS15 and VAMP4. Consistent with this, formation of a complex containing VAMP4 and SNAP23 was enhanced by treatment of cells with PMA. The results reveal a requirement for the function of a SNAP23-syntaxin13-VAMP3 complex in the formation of lamellipodia during cell adhesion and of a VAMP4-SNAP23-containing complex during PMA-induced membrane ruffling. Conclusions Our findings suggest that different SNARE-mediated trafficking pathways support membrane remodeling during ECM-induced lamellipodium extension and PMA-induced ruffle formation, pointing to important mechanistic differences between these processes.
Collapse
Affiliation(s)
- Michael Skalski
- Department of Molecular and Cellular Biology, University of Guleph, Guelph, ON N1G 2W1, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Greaves J, Gorleku OA, Salaun C, Chamberlain LH. Palmitoylation of the SNAP25 protein family: specificity and regulation by DHHC palmitoyl transferases. J Biol Chem 2010; 285:24629-38. [PMID: 20519516 DOI: 10.1074/jbc.m110.119289] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SNAP25 plays an essential role in neuronal exocytosis pathways. SNAP25a and SNAP25b are alternatively spliced isoforms differing by only nine amino acids, three of which occur within the palmitoylated cysteine-rich domain. SNAP23 is 60% identical to SNAP25 and has a distinct cysteine-rich domain to both SNAP25a and SNAP25b. Despite the conspicuous differences within the palmitoylated domains of these secretory proteins, there is no information on their comparative interactions with palmitoyl transferases. We report that membrane association of all SNAP25/23 proteins is enhanced by Golgi-localized DHHC3, DHHC7, and DHHC17. In contrast, DHHC15 promoted a statistically significant increase in membrane association of only SNAP25b. To investigate the underlying cause of this differential specificity, we examined a SNAP23 point mutant (C79F) designed to mimic the cysteine-rich domain of SNAP25b. DHHC15 promoted a marked increase in membrane binding and palmitoylation of this SNAP23 mutant, demonstrating that the distinct cysteine-rich domains of SNAP25/23 contribute to differential interactions with DHHC15. The lack of activity of DHHC15 toward wild-type SNAP23 was not overcome by replacing its DHHC domain with that from DHHC3, suggesting that substrate specificity is not determined by the DHHC domain alone. Interestingly, DHHC2, which is closely related to DHHC15, associates with the plasma membrane in PC12 cells and can palmitoylate all SNAP25 isoforms. DHHC2 is, thus, a candidate enzyme to regulate SNAP25/23 palmitoylation dynamics at the plasma membrane. Finally, we demonstrate that overexpression of specific Golgi-localized DHHC proteins active against SNAP25/23 proteins perturbs the normal secretion of human growth hormone from PC12 cells.
Collapse
Affiliation(s)
- Jennifer Greaves
- Centre for Integrative Physiology, School of Biomedical Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, Scotland, United Kingdom
| | | | | | | |
Collapse
|
23
|
Greaves J, Prescott GR, Fukata Y, Fukata M, Salaun C, Chamberlain LH. The hydrophobic cysteine-rich domain of SNAP25 couples with downstream residues to mediate membrane interactions and recognition by DHHC palmitoyl transferases. Mol Biol Cell 2009; 20:1845-54. [PMID: 19158383 DOI: 10.1091/mbc.e08-09-0944] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
SNAP25 is synthesized as a soluble protein but must associate with the plasma membrane to function in exocytosis; however, this membrane-targeting pathway is poorly defined. SNAP25 contains a palmitoylated cysteine-rich domain with four cysteines, and we show that coexpression of specific DHHC palmitoyl transferases is sufficient to promote SNAP25 membrane association in HEK293 cells. siRNA-mediated knockdown of its SNARE partner, syntaxin 1A, does not affect membrane interaction of SNAP25 in PC12 cells, whereas specific cysteine-to-alanine mutations perturb membrane binding, which is restored by leucine substitutions. These results suggest a role for cysteine hydrophobicity in initial membrane interactions of SNAP25, and indeed other hydrophobic residues in the cysteine-rich domain are also important for membrane binding. In addition to the cysteine-rich domain, proline-117 is also essential for SNAP25 membrane binding, and experiments in HEK293 cells revealed that mutation of this residue inhibits membrane binding induced by coexpression with DHHC17, but not DHHC3 or DHHC7. These results suggest a model whereby SNAP25 interacts autonomously with membranes via its hydrophobic cysteine-rich domain, requiring only sufficient expression of partner DHHC proteins for stable membrane binding. The role of proline-117 in SNAP25 palmitoylation is one of the first descriptions of elements within substrate proteins that modulate DHHC specificity.
Collapse
Affiliation(s)
- Jennifer Greaves
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | | | | | | | | | | |
Collapse
|
24
|
Pooley RD, Moynihan KL, Soukoulis V, Reddy S, Francis R, Lo C, Ma LJ, Bader DM. Murine CENPF interacts with syntaxin 4 in the regulation of vesicular transport. J Cell Sci 2008; 121:3413-21. [PMID: 18827011 DOI: 10.1242/jcs.032847] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Syntaxin 4 is a component of the SNARE complex that regulates membrane docking and fusion. Using a yeast two-hybrid screen, we identify a novel interaction between syntaxin 4 and cytoplasmic murine CENPF, a protein previously demonstrated to associate with the microtubule network and SNAP-25. The binding domain for syntaxin 4 in CENPF was defined by yeast two-hybrid assay and co-immunoprecipitation. Confocal analyses in cell culture reveal a high degree of colocalization between endogenously expressed proteins in interphase cells. Additionally, the endogenous SNARE proteins can be isolated as a complex with CENPF in immunoprecipitation experiments. Further analyses demonstrate that murine CENPF and syntaxin 4 colocalize with components of plasma membrane recycling: SNAP-25 and VAMP2. Depletion of endogenous CENPF disrupts GLUT4 trafficking whereas expression of a dominant-negative form of CENPF inhibits cell coupling. Taken together, these studies demonstrate that CENPF provides a direct link between proteins of the SNARE system and the microtubule network and indicate a diverse role for murine CENPF in vesicular transport.
Collapse
Affiliation(s)
- Ryan D Pooley
- Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6300, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
James DJ, Khodthong C, Kowalchyk JA, Martin TFJ. Phosphatidylinositol 4,5-bisphosphate regulates SNARE-dependent membrane fusion. ACTA ACUST UNITED AC 2008; 182:355-66. [PMID: 18644890 PMCID: PMC2483516 DOI: 10.1083/jcb.200801056] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI 4,5-P2) on the plasma membrane is essential for vesicle exocytosis but its role in membrane fusion has not been determined. Here, we quantify the concentration of PI 4,5-P2 as ∼6 mol% in the cytoplasmic leaflet of plasma membrane microdomains at sites of docked vesicles. At this concentration of PI 4,5-P2 soluble NSF attachment protein receptor (SNARE)–dependent liposome fusion is inhibited. Inhibition by PI 4,5-P2 likely results from its intrinsic positive curvature–promoting properties that inhibit formation of high negative curvature membrane fusion intermediates. Mutation of juxtamembrane basic residues in the plasma membrane SNARE syntaxin-1 increase inhibition by PI 4,5-P2, suggesting that syntaxin sequesters PI 4,5-P2 to alleviate inhibition. To define an essential rather than inhibitory role for PI 4,5-P2, we test a PI 4,5-P2–binding priming factor required for vesicle exocytosis. Ca2+-dependent activator protein for secretion promotes increased rates of SNARE-dependent fusion that are PI 4,5-P2 dependent. These results indicate that PI 4,5-P2 regulates fusion both as a fusion restraint that syntaxin-1 alleviates and as an essential cofactor that recruits protein priming factors to facilitate SNARE-dependent fusion.
Collapse
Affiliation(s)
- Declan J James
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
26
|
Donaldson JG, Porat-Shliom N, Cohen LA. Clathrin-independent endocytosis: a unique platform for cell signaling and PM remodeling. Cell Signal 2008; 21:1-6. [PMID: 18647649 DOI: 10.1016/j.cellsig.2008.06.020] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 06/23/2008] [Indexed: 01/08/2023]
Abstract
There is increasing interest in endocytosis that occurs independently of clathrin coats and the fates of membrane proteins internalized by this mechanism. The appearance of clathrin-independent endocytic and membrane recycling pathways seems to vary with different cell types and cargo molecules. In this review we focus on studies that have been performed using HeLa and COS cells as model systems for understanding this membrane trafficking system. These endosomal membranes contain signaling molecules including H-Ras, Rac1, Arf6 and Rab proteins, and a lipid environment rich in cholesterol and PIP(2) providing a unique platform for cell signaling. Furthermore, activation of some of these signaling molecules (H-Ras, Rac and Arf6) can switch the constitutive form of clathrin-independent endocytosis into a stimulated one, associated with PM ruffling and macropinocytosis.
Collapse
Affiliation(s)
- Julie G Donaldson
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
27
|
Montaville P, Coudevylle N, Radhakrishnan A, Leonov A, Zweckstetter M, Becker S. The PIP2 binding mode of the C2 domains of rabphilin-3A. Protein Sci 2008; 17:1025-34. [PMID: 18434502 PMCID: PMC2386734 DOI: 10.1110/ps.073326608] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 02/08/2008] [Accepted: 03/10/2008] [Indexed: 01/13/2023]
Abstract
Phosphatidylinositol-4,5-bisphosphate (PIP2) is a key player in the neurotransmitter release process. Rabphilin-3A is a neuronal C2 domain tandem containing protein that is involved in this process. Both its C2 domains (C2A and C2B) are able to bind PIP2. The investigation of the interactions of the two C2 domains with the PIP2 headgroup IP3 (inositol-1,4,5-trisphosphate) by NMR showed that a well-defined binding site can be described on the concave surface of each domain. The binding modes of the two domains are different. The binding of IP3 to the C2A domain is strongly enhanced by Ca(2+) and is characterized by a K(D) of 55 microM in the presence of a saturating concentration of Ca(2+) (5 mM). Reciprocally, the binding of IP3 increases the apparent Ca(2+)-binding affinity of the C2A domain in agreement with a Target-Activated Messenger Affinity (TAMA) mechanism. The C2B domain binds IP3 in a Ca(2+)-independent fashion with low affinity. These different PIP2 headgroup recognition modes suggest that PIP2 is a target of the C2A domain of rabphilin-3A while this phospholipid is an effector of the C2B domain.
Collapse
Affiliation(s)
- Pierre Montaville
- Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
28
|
D’Alessandro R, Klajn A, Stucchi L, Podini P, Malosio ML, Meldolesi J. Expression of the neurosecretory process in pc12 cells is governed by rest. J Neurochem 2008; 105:1369-83. [DOI: 10.1111/j.1471-4159.2008.05259.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Okayama M, Arakawa T, Mizoguchi I, Tajima Y, Takuma T. SNAP-23 is not essential for constitutive exocytosis in HeLa cells. FEBS Lett 2007; 581:4583-8. [PMID: 17825825 DOI: 10.1016/j.febslet.2007.08.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 08/09/2007] [Accepted: 08/21/2007] [Indexed: 01/28/2023]
Abstract
We applied the small interfering RNA (siRNA) technique and over-expression of a dominant-negative mutant to evaluate the role of SNAP-23, a non-neuronal isoform of SNAP-25, in constitutive exocytosis from HeLa cells. Although the protein level of SNAP-23 was reduced to less than 10% of the control value by siRNA directed against SNAP-23, exocytosis of SEAP (secreted alkaline phosphatase) was normal. Double knockdown of SNAP-23 and syntaxin-4 also failed to inhibit the secretion. Furthermore, over-expression of deltaC8-SNAP-23, a dominant-negative mutant of SNAP-23, did not abrogate SEAP secretion. These results suggest that SNAP-23 is not essential for constitutive exocytosis of SEAP.
Collapse
Affiliation(s)
- Miki Okayama
- Department of Orthodontics, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | | | | | | | | |
Collapse
|
30
|
Etkovitz N, Rubinstein S, Daniel L, Breitbart H. Role of PI3-kinase and PI4-kinase in actin polymerization during bovine sperm capacitation. Biol Reprod 2007; 77:263-73. [PMID: 17494916 DOI: 10.1095/biolreprod.106.056705] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We have recently demonstrated the involvement of phospholipase D (PLD) in actin polymerization during mammalian sperm capacitation. In the present study, we investigated the involvement of phosphatidylinositol 3- and 4-kinases (PI3K and PI4K) in actin polymerization, as well as the production of PIP(2(4,5)), which is a known cofactor for PLD activation, during bovine sperm capacitation. PIK3R1 (p85 alpha regulatory subunit of PI3K) and PIKCB (PI4K beta) in bovine sperm were detected by Western blotting and immunocytochemistry. Wortmannin (WT) inhibited PI3K and PI4K type III at concentrations of 10 nM and 10 microM, respectively. PI4K activity and PIP(2(4,5)) production were blocked by 10 microM WT but not by 10 nM WT, whereas PI3K activity and PIP(3(3,4,5)) production were blocked by 10 nM WT. Moreover, spermine, which is a known PI4K activator and a component of semen, activated sperm PI4K, resulting in increased cellular PIP(2(4,5)) and F-actin formation. The increases in PIP(2(4,5)) and F-actin intracellular levels during sperm capacitation were mediated by PI4K but not by PI3K activity. Activation of protein kinase A (PKA) by dibutyryl cAMP enhanced PIP(2(4,5)), PIP(3(3,4,5)), and F-actin formation, and these effects were mediated through PI3K. On the other hand, activation of PKC by phorbol myristate acetate enhanced PIP(2(4,5)) and F-actin formation mediated by PI4K activity, while the PI3K activity and intracellular PIP(3(3,4,5)) levels were reduced. These results suggest that two alternative pathways lead to PI4K activation: indirect activation by PKA, which is mediated by PI3K; and activation by PKC, which is independent of PI3K activity. Our results also suggest that spermine, which is present in the ejaculate, regulates PI4K activity during the capacitation process in vivo.
Collapse
Affiliation(s)
- Nir Etkovitz
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | |
Collapse
|
31
|
Pooley RD, Reddy S, Soukoulis V, Roland JT, Goldenring JR, Bader DM. CytLEK1 is a regulator of plasma membrane recycling through its interaction with SNAP-25. Mol Biol Cell 2006; 17:3176-86. [PMID: 16672379 PMCID: PMC1483049 DOI: 10.1091/mbc.e05-12-1127] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 04/17/2006] [Accepted: 04/25/2006] [Indexed: 12/26/2022] Open
Abstract
SNAP-25 is a component of the SNARE complex that is involved in membrane docking and fusion. Using a yeast two-hybrid screen, we identify a novel interaction between SNAP-25 and cytoplasmic Lek1 (cytLEK1), a protein previously demonstrated to associate with the microtubule network. The binding domains within each protein were defined by yeast two-hybrid, coimmunoprecipitation, and colocalization studies. Confocal analyses reveal a high degree of colocalization between the proteins. In addition, the endogenous proteins can be isolated as a complex by immunoprecipitation. Further analyses demonstrate that cytLEK1 and SNAP-25 colocalize and coprecipitate with Rab11a, myosin Vb, VAMP2, and syntaxin 4, components of the plasma membrane recycling pathway. Overexpression of the SNAP-25-binding domain of cytLEK1, and depletion of endogenous Lek1 alters transferrin trafficking, consistent with a function in vesicle recycling. Taken together, our studies indicate that cytLEK1 is a link between recycling vesicles and the microtubule network through its association with SNAP-25. This interaction may play a key role in the regulation of the recycling endosome pathway.
Collapse
Affiliation(s)
- Ryan D. Pooley
- *Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6300; and
| | - Samyukta Reddy
- *Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6300; and
| | - Victor Soukoulis
- *Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6300; and
| | - Joseph T. Roland
- Department of Surgery and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, and Nashville VAMC, Nashville, TN 37212-2175
| | - James R. Goldenring
- Department of Surgery and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, and Nashville VAMC, Nashville, TN 37212-2175
| | - David M. Bader
- *Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6300; and
| |
Collapse
|
32
|
Aikawa Y, Lynch KL, Boswell KL, Martin TFJ. A second SNARE role for exocytic SNAP25 in endosome fusion. Mol Biol Cell 2006; 17:2113-24. [PMID: 16481393 PMCID: PMC1446080 DOI: 10.1091/mbc.e06-01-0074] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 02/07/2006] [Accepted: 02/08/2006] [Indexed: 01/20/2023] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins play key roles in membrane fusion, but their sorting to specific membranes is poorly understood. Moreover, individual SNARE proteins can function in multiple membrane fusion events dependent upon their trafficking itinerary. Synaptosome-associated protein of 25 kDa (SNAP25) is a plasma membrane Q (containing glutamate)-SNARE essential for Ca2+-dependent secretory vesicle-plasma membrane fusion in neuroendocrine cells. However, a substantial intracellular pool of SNAP25 is maintained by endocytosis. To assess the role of endosomal SNAP25, we expressed botulinum neurotoxin E (BoNT E) light chain in PC12 cells, which specifically cleaves SNAP25. BoNT E expression altered the intracellular distribution of SNAP25, shifting it from a perinuclear recycling endosome to sorting endosomes, which indicates that SNAP25 is required for its own endocytic trafficking. The trafficking of syntaxin 13 and endocytosed cargo was similarly disrupted by BoNT E expression as was an endosomal SNARE complex comprised of SNAP25/syntaxin 13/vesicle-associated membrane protein 2. The small-interfering RNA-mediated down-regulation of SNAP25 exerted effects similar to those of BoNT E expression. Our results indicate that SNAP25 has a second function as an endosomal Q-SNARE in trafficking from the sorting endosome to the recycling endosome and that BoNT E has effects linked to disruption of the endosome recycling pathway.
Collapse
Affiliation(s)
- Yoshikatsu Aikawa
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|