1
|
Stein J, Ericsson M, Nofal M, Magni L, Aufmkolk S, McMillan RB, Breimann L, Herlihy CP, Lee SD, Willemin A, Wohlmann J, Arguedas-Jimenez L, Yin P, Pombo A, Church GM, Wu CT. Cryosectioning-enhanced super-resolution microscopy for single-protein imaging across cells and tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.05.576943. [PMID: 38370628 PMCID: PMC10871237 DOI: 10.1101/2024.02.05.576943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
DNA-PAINT enables nanoscale imaging with virtually unlimited multiplexing and molecular counting. Here, we address challenges, such as variable imaging performance and target accessibility, that can limit its broader applicability. Specifically, we enhance its capacity for robust single-protein imaging and molecular counting by optimizing the integration of TIRF microscopy with physical sectioning, in particular, Tokuyasu cryosectioning. Our method, tomographic & kinetically enhanced DNA-PAINT (tkPAINT), achieves 3 nm localization precision across diverse samples, enhanced imager binding, and improved cellular integrity. tkPAINT can facilitate molecular counting with DNA-PAINT inside the nucleus, as demonstrated through its quantification of the in situ abundance of RNA Polymerase II in both HeLa cells as well as mouse tissues. Anticipating that tkPAINT could become a versatile tool for the exploration of biomolecular organization and interactions across cells and tissues, we also demonstrate its capacity to support multiplexing, multimodal targeting of proteins and nucleic acids, and 3D imaging.
Collapse
Affiliation(s)
- Johannes Stein
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Maria Ericsson
- Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Michel Nofal
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, USA
| | - Lorenzo Magni
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, USA
| | - Sarah Aufmkolk
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ryan B. McMillan
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, USA
| | - Laura Breimann
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | - S. Dean Lee
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Andréa Willemin
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany
| | - Jens Wohlmann
- Department of Biosciences, University of Oslo, Norway
| | - Laura Arguedas-Jimenez
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
| | - Peng Yin
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, USA
| | - Ana Pombo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany
| | - George M. Church
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Chao-ting Wu
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Szczepankiewicz AA, Parobczak K, Zaręba-Kozioł M, Ruszczycki B, Bijata M, Trzaskoma P, Hajnowski G, Holm-Kaczmarek D, Włodarczyk J, Sas-Nowosielska H, Wilczyński GM, Rędowicz MJ, Magalska A. Neuronal activation affects the organization and protein composition of the nuclear speckles. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119829. [PMID: 39197592 DOI: 10.1016/j.bbamcr.2024.119829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Nuclear speckles, also known as interchromatin granule clusters (IGCs), are subnuclear domains highly enriched in proteins involved in transcription and mRNA metabolism and, until recently, have been regarded primarily as their storage and modification hubs. However, several recent studies on non-neuronal cell types indicate that nuclear speckles may directly contribute to gene expression as some of the active genes have been shown to associate with these structures. Neuronal activity is one of the key transcriptional regulators and may lead to the rearrangement of some nuclear bodies. Notably, the impact of neuronal activation on IGC/nuclear speckles organization and function remains unexplored. To address this research gap, we examined whether and how neuronal stimulation affects the organization of these bodies in granular neurons from the rat hippocampal formation. Our findings demonstrate that neuronal stimulation induces morphological and proteomic remodelling of the nuclear speckles under both in vitro and in vivo conditions. Importantly, these changes are not associated with cellular stress or cell death but are dependent on transcription and splicing.
Collapse
Affiliation(s)
- Andrzej Antoni Szczepankiewicz
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Kamil Parobczak
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Monika Zaręba-Kozioł
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Błażej Ruszczycki
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; AGH University of Krakow, Faculty of Physics and Applied Computer Science, Department of Medical Physics and Biophysics, al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Monika Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Paweł Trzaskoma
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Grzegorz Hajnowski
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Dagmara Holm-Kaczmarek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Hanna Sas-Nowosielska
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology Polish Academy of Science, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Grzegorz Marek Wilczyński
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Maria Jolanta Rędowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology Polish Academy of Science, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Adriana Magalska
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
3
|
Li M, Yang X, Zhang D, Tian Y, Jia ZC, Liu WH, Hao RR, Chen YS, Chen MX, Liu YG. A story of two kingdoms: unravelling the intricacies of protein phase separation in plants and animals. Crit Rev Biotechnol 2024:1-21. [PMID: 39592156 DOI: 10.1080/07388551.2024.2425989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/17/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
The biomolecular condensates (BCs) formed by proteins through phase separation provide the necessary space and raw materials for the orderly progression of cellular activities, and on this basis, various membraneless organelles (MLOs) are formed. The occurrence of eukaryotic phase separation is driven by multivalent interactions from intrinsically disordered regions (IDRs) and/or specific protein/nucleic acid binding domains and is regulated by various environmental factors. In plant and animal cells, the MLOs involved in gene expression regulation, stress response, and mitotic control display similar functions and mechanisms. In contrast, the phase separation related to reproductive development and immune regulation differs significantly between the two kingdoms owing to their distinct cell structures and nutritional patterns. In addition, animals and plants each exhibit unique protein phase separation activities, such as neural regulation and light signal response. By comparing the similarities and differences in the formation mechanism and functional regulation of known protein phase separation, we elucidated its importance in the evolution, differentiation, and environmental adaptation of both animals and plants. The significance of studying protein phase separation for enhancing biological quality of life has been further emphasized.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Xue Yang
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Di Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yuan Tian
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Zi-Chang Jia
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Wen-Hui Liu
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Rui-Rui Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Yun-Sheng Chen
- Clinical Laboratory, Shenzhen Children's Hospital, Shenzhen, China
| | - Mo-Xian Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Ying-Gao Liu
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| |
Collapse
|
4
|
Pessoa J, Carvalho C. Human RNA Polymerase II Segregates from Genes and Nascent RNA and Transcribes in the Presence of DNA-Bound dCas9. Int J Mol Sci 2024; 25:8411. [PMID: 39125980 PMCID: PMC11312690 DOI: 10.3390/ijms25158411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
RNA polymerase II (Pol II) dysfunction is frequently implied in human disease. Understanding its functional mechanism is essential for designing innovative therapeutic strategies. To visualize its supra-molecular interactions with genes and nascent RNA, we generated a human cell line carrying ~335 consecutive copies of a recombinant β-globin gene. Confocal microscopy showed that Pol II was not homogeneously concentrated around these identical gene copies. Moreover, Pol II signals partially overlapped with the genes and their nascent RNA, revealing extensive compartmentalization. Using a cell line carrying a single copy of the β-globin gene, we also tested if the binding of catalytically dead CRISPR-associated system 9 (dCas9) to different gene regions affected Pol II transcriptional activity. We assessed Pol II localization and nascent RNA levels using chromatin immunoprecipitation and droplet digital reverse transcription PCR, respectively. Some enrichment of transcriptionally paused Pol II accumulated in the promoter region was detected in a strand-specific way of gRNA binding, and there was no decrease in nascent RNA levels. Pol II preserved its transcriptional activity in the presence of DNA-bound dCas9. Our findings contribute further insight into the complex mechanism of mRNA transcription in human cells.
Collapse
Affiliation(s)
- João Pessoa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal;
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Célia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal;
| |
Collapse
|
5
|
Bhat P, Chow A, Emert B, Ettlin O, Quinodoz SA, Strehle M, Takei Y, Burr A, Goronzy IN, Chen AW, Huang W, Ferrer JLM, Soehalim E, Goh ST, Chari T, Sullivan DK, Blanco MR, Guttman M. Genome organization around nuclear speckles drives mRNA splicing efficiency. Nature 2024; 629:1165-1173. [PMID: 38720076 PMCID: PMC11164319 DOI: 10.1038/s41586-024-07429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
The nucleus is highly organized, such that factors involved in the transcription and processing of distinct classes of RNA are confined within specific nuclear bodies1,2. One example is the nuclear speckle, which is defined by high concentrations of protein and noncoding RNA regulators of pre-mRNA splicing3. What functional role, if any, speckles might play in the process of mRNA splicing is unclear4,5. Here we show that genes localized near nuclear speckles display higher spliceosome concentrations, increased spliceosome binding to their pre-mRNAs and higher co-transcriptional splicing levels than genes that are located farther from nuclear speckles. Gene organization around nuclear speckles is dynamic between cell types, and changes in speckle proximity lead to differences in splicing efficiency. Finally, directed recruitment of a pre-mRNA to nuclear speckles is sufficient to increase mRNA splicing levels. Together, our results integrate the long-standing observations of nuclear speckles with the biochemistry of mRNA splicing and demonstrate a crucial role for dynamic three-dimensional spatial organization of genomic DNA in driving spliceosome concentrations and controlling the efficiency of mRNA splicing.
Collapse
Affiliation(s)
- Prashant Bhat
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Amy Chow
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Benjamin Emert
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Olivia Ettlin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sofia A Quinodoz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Mackenzie Strehle
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yodai Takei
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alex Burr
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Isabel N Goronzy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Allen W Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Wesley Huang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jose Lorenzo M Ferrer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Elizabeth Soehalim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Say-Tar Goh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tara Chari
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Delaney K Sullivan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mario R Blanco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
6
|
Beagrie RA, Thieme CJ, Annunziatella C, Baugher C, Zhang Y, Schueler M, Kukalev A, Kempfer R, Chiariello AM, Bianco S, Li Y, Davis T, Scialdone A, Welch LR, Nicodemi M, Pombo A. Multiplex-GAM: genome-wide identification of chromatin contacts yields insights overlooked by Hi-C. Nat Methods 2023:10.1038/s41592-023-01903-1. [PMID: 37336949 PMCID: PMC10333126 DOI: 10.1038/s41592-023-01903-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/01/2023] [Indexed: 06/21/2023]
Abstract
Technology for measuring 3D genome topology is increasingly important for studying gene regulation, for genome assembly and for mapping of genome rearrangements. Hi-C and other ligation-based methods have become routine but have specific biases. Here, we develop multiplex-GAM, a faster and more affordable version of genome architecture mapping (GAM), a ligation-free technique that maps chromatin contacts genome-wide. We perform a detailed comparison of multiplex-GAM and Hi-C using mouse embryonic stem cells. When examining the strongest contacts detected by either method, we find that only one-third of these are shared. The strongest contacts specifically found in GAM often involve 'active' regions, including many transcribed genes and super-enhancers, whereas in Hi-C they more often contain 'inactive' regions. Our work shows that active genomic regions are involved in extensive complex contacts that are currently underestimated in ligation-based approaches, and highlights the need for orthogonal advances in genome-wide contact mapping technologies.
Collapse
Affiliation(s)
- Robert A Beagrie
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Laboratory of Gene Regulation, Weatherall Institute of Molecular Medicine, Oxford, UK
- Chromatin and Disease Group, Wellcome Centre for Human Genetics, Oxford, UK
| | - Christoph J Thieme
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
| | - Carlo Annunziatella
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, CNR-SPIN, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Catherine Baugher
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA
| | - Yingnan Zhang
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA
| | - Markus Schueler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
| | - Alexander Kukalev
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
| | - Rieke Kempfer
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrea M Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, CNR-SPIN, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Simona Bianco
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, CNR-SPIN, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Yichao Li
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA
| | - Trenton Davis
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München - German Research Center for Environmental Health, Munich, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Lonnie R Welch
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA.
| | - Mario Nicodemi
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany.
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, CNR-SPIN, Complesso Universitario di Monte Sant'Angelo, Naples, Italy.
- Berlin Institute of Health (BIH), MDC-Berlin, Berlin, Germany.
| | - Ana Pombo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany.
- Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Spitzer H, Berry S, Donoghoe M, Pelkmans L, Theis FJ. Learning consistent subcellular landmarks to quantify changes in multiplexed protein maps. Nat Methods 2023:10.1038/s41592-023-01894-z. [PMID: 37248388 PMCID: PMC10333128 DOI: 10.1038/s41592-023-01894-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 04/25/2023] [Indexed: 05/31/2023]
Abstract
Highly multiplexed imaging holds enormous promise for understanding how spatial context shapes the activity of the genome and its products at multiple length scales. Here, we introduce a deep learning framework called CAMPA (Conditional Autoencoder for Multiplexed Pixel Analysis), which uses a conditional variational autoencoder to learn representations of molecular pixel profiles that are consistent across heterogeneous cell populations and experimental perturbations. Clustering these pixel-level representations identifies consistent subcellular landmarks, which can be quantitatively compared in terms of their size, shape, molecular composition and relative spatial organization. Using high-resolution multiplexed immunofluorescence, this reveals how subcellular organization changes upon perturbation of RNA synthesis, RNA processing or cell size, and uncovers links between the molecular composition of membraneless organelles and cell-to-cell variability in bulk RNA synthesis rates. By capturing interpretable cellular phenotypes, we anticipate that CAMPA will greatly accelerate the systematic mapping of multiscale atlases of biological organization to identify the rules by which context shapes physiology and disease.
Collapse
Affiliation(s)
- Hannah Spitzer
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Scott Berry
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark Donoghoe
- Stats Central, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany.
- School of Computation, Information and Technology CIT, Technical University of Munich, Munich, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.
| |
Collapse
|
8
|
Li S, Shen X. Long interspersed nuclear element 1 and B1/Alu repeats blueprint genome compartmentalization. Curr Opin Genet Dev 2023; 80:102049. [PMID: 37229928 DOI: 10.1016/j.gde.2023.102049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/27/2023]
Abstract
The organization of the genome into euchromatin and heterochromatin has been known for almost 100 years [1]. More than 50% of mammalian genomes contain repetitive sequences [2,3]. Recently, a functional link between the genome and its folding has been identified [4,5]. Homotypic clustering of long interspersed nuclear element 1 (LINE1 or L1) and B1/Alu retrotransposons forms grossly exclusive nuclear domains that characterize and predict heterochromatin and euchromatin, respectively. The spatial segregation of L1 and B1/Alu-rich compartments is conserved in mammalian cells and can be rebuilt during the cell cycle and established de novo in early embryogenesis. Inhibition of L1 RNA drastically weakened homotypic repeat contacts and compartmental segregation, indicating that L1 plays a more significant role than just being a compartmental marker. This simple and inclusive genetic coding model of L1 and B1/Alu in shaping the macroscopic structure of the genome provides a plausible explanation for the remarkable conservation and robustness of its folding in mammalian cells. It also proposes a conserved core structure on which subsequent dynamic regulation takes place.
Collapse
Affiliation(s)
- Siyang Li
- Department of Basic Medical Sciences, School of Medicine, Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaohua Shen
- Department of Basic Medical Sciences, School of Medicine, Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Abstract
RNA granules are mesoscale assemblies that form in the absence of limiting membranes. RNA granules contain factors for RNA biogenesis and turnover and are often assumed to represent specialized compartments for RNA biochemistry. Recent evidence suggests that RNA granules assemble by phase separation of subsoluble ribonucleoprotein (RNP) complexes that partially demix from the cytoplasm or nucleoplasm. We explore the possibility that some RNA granules are nonessential condensation by-products that arise when RNP complexes exceed their solubility limit as a consequence of cellular activity, stress, or aging. We describe the use of evolutionary and mutational analyses and single-molecule techniques to distinguish functional RNA granules from "incidental condensates."
Collapse
Affiliation(s)
- Andrea Putnam
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Laura Thomas
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Geraldine Seydoux
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
10
|
Bhat P, Chow A, Emert B, Ettlin O, Quinodoz SA, Takei Y, Huang W, Blanco MR, Guttman M. 3D genome organization around nuclear speckles drives mRNA splicing efficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522632. [PMID: 36711853 PMCID: PMC9881923 DOI: 10.1101/2023.01.04.522632] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The nucleus is highly organized such that factors involved in transcription and processing of distinct classes of RNA are organized within specific nuclear bodies. One such nuclear body is the nuclear speckle, which is defined by high concentrations of protein and non-coding RNA regulators of pre-mRNA splicing. What functional role, if any, speckles might play in the process of mRNA splicing remains unknown. Here we show that genes localized near nuclear speckles display higher spliceosome concentrations, increased spliceosome binding to their pre-mRNAs, and higher co-transcriptional splicing levels relative to genes that are located farther from nuclear speckles. We show that directed recruitment of a pre-mRNA to nuclear speckles is sufficient to drive increased mRNA splicing levels. Finally, we show that gene organization around nuclear speckles is highly dynamic with differential localization between cell types corresponding to differences in Pol II occupancy. Together, our results integrate the longstanding observations of nuclear speckles with the biochemistry of mRNA splicing and demonstrate a critical role for dynamic 3D spatial organization of genomic DNA in driving spliceosome concentrations and controlling the efficiency of mRNA splicing.
Collapse
|
11
|
Marenda M, Lazarova E, van de Linde S, Gilbert N, Michieletto D. Parameter-free molecular super-structures quantification in single-molecule localization microscopy. J Cell Biol 2021; 220:211893. [PMID: 33734291 PMCID: PMC7980255 DOI: 10.1083/jcb.202010003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/06/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Understanding biological function requires the identification and characterization of complex patterns of molecules. Single-molecule localization microscopy (SMLM) can quantitatively measure molecular components and interactions at resolutions far beyond the diffraction limit, but this information is only useful if these patterns can be quantified and interpreted. We provide a new approach for the analysis of SMLM data that develops the concept of structures and super-structures formed by interconnected elements, such as smaller protein clusters. Using a formal framework and a parameter-free algorithm, (super-)structures formed from smaller components are found to be abundant in classes of nuclear proteins, such as heterogeneous nuclear ribonucleoprotein particles (hnRNPs), but are absent from ceramides located in the plasma membrane. We suggest that mesoscopic structures formed by interconnected protein clusters are common within the nucleus and have an important role in the organization and function of the genome. Our algorithm, SuperStructure, can be used to analyze and explore complex SMLM data and extract functionally relevant information.
Collapse
Affiliation(s)
- Mattia Marenda
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.,Scottish Universities Physics Alliance, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Elena Lazarova
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Sebastian van de Linde
- Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, Glasgow, UK
| | - Nick Gilbert
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Davide Michieletto
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.,Scottish Universities Physics Alliance, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
12
|
Marenda M, Lazarova E, van de Linde S, Gilbert N, Michieletto D. Parameter-free molecular super-structures quantification in single-molecule localization microscopy. J Cell Biol 2021. [PMID: 33734291 DOI: 10.1101/2020.08.19.254540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Understanding biological function requires the identification and characterization of complex patterns of molecules. Single-molecule localization microscopy (SMLM) can quantitatively measure molecular components and interactions at resolutions far beyond the diffraction limit, but this information is only useful if these patterns can be quantified and interpreted. We provide a new approach for the analysis of SMLM data that develops the concept of structures and super-structures formed by interconnected elements, such as smaller protein clusters. Using a formal framework and a parameter-free algorithm, (super-)structures formed from smaller components are found to be abundant in classes of nuclear proteins, such as heterogeneous nuclear ribonucleoprotein particles (hnRNPs), but are absent from ceramides located in the plasma membrane. We suggest that mesoscopic structures formed by interconnected protein clusters are common within the nucleus and have an important role in the organization and function of the genome. Our algorithm, SuperStructure, can be used to analyze and explore complex SMLM data and extract functionally relevant information.
Collapse
Affiliation(s)
- Mattia Marenda
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Scottish Universities Physics Alliance, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Elena Lazarova
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Sebastian van de Linde
- Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, Glasgow, UK
| | - Nick Gilbert
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Davide Michieletto
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Scottish Universities Physics Alliance, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Kempfer R, Pombo A. Methods for mapping 3D chromosome architecture. Nat Rev Genet 2019; 21:207-226. [PMID: 31848476 DOI: 10.1038/s41576-019-0195-2] [Citation(s) in RCA: 317] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Determining how chromosomes are positioned and folded within the nucleus is critical to understanding the role of chromatin topology in gene regulation. Several methods are available for studying chromosome architecture, each with different strengths and limitations. Established imaging approaches and proximity ligation-based chromosome conformation capture (3C) techniques (such as DNA-FISH and Hi-C, respectively) have revealed the existence of chromosome territories, functional nuclear landmarks (such as splicing speckles and the nuclear lamina) and topologically associating domains. Improvements to these methods and the recent development of ligation-free approaches, including GAM, SPRITE and ChIA-Drop, are now helping to uncover new aspects of 3D genome topology that confirm the nucleus to be a complex, highly organized organelle.
Collapse
Affiliation(s)
- Rieke Kempfer
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany. .,Institute for Biology, Humboldt University of Berlin, Berlin, Germany.
| | - Ana Pombo
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany. .,Institute for Biology, Humboldt University of Berlin, Berlin, Germany.
| |
Collapse
|
14
|
Chen Y, Belmont AS. Genome organization around nuclear speckles. Curr Opin Genet Dev 2019; 55:91-99. [PMID: 31394307 DOI: 10.1016/j.gde.2019.06.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 01/08/2023]
Abstract
Higher eukaryotic cell nuclei are highly compartmentalized into bodies and structural assemblies of specialized functions. Nuclear speckles/IGCs are one of the most prominent nuclear bodies, yet their functional significance remains largely unknown. Recent advances in sequence-based mapping of nuclear genome organization now provide genome-wide analysis of chromosome organization relative to nuclear speckles. Here we review older microscopy-based studies on a small number of genes with the new genomic mapping data suggesting a significant fraction of the genome is almost deterministically positioned near nuclear speckles. Both microscopy and genomic-based approaches support the concept of the nuclear speckle periphery as a major active chromosomal compartment which may play an important role in fine-tuning gene regulation.
Collapse
Affiliation(s)
- Yu Chen
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, Berkeley, CA 94720, USA
| | - Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, B107 CLSL, 601 S. Goodwin Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
15
|
Skourti-Stathaki K, Torlai Triglia E, Warburton M, Voigt P, Bird A, Pombo A. R-Loops Enhance Polycomb Repression at a Subset of Developmental Regulator Genes. Mol Cell 2019; 73:930-945.e4. [PMID: 30709709 PMCID: PMC6414425 DOI: 10.1016/j.molcel.2018.12.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 09/14/2018] [Accepted: 12/14/2018] [Indexed: 12/26/2022]
Abstract
R-loops are three-stranded nucleic acid structures that form during transcription, especially over unmethylated CpG-rich promoters of active genes. In mouse embryonic stem cells (mESCs), CpG-rich developmental regulator genes are repressed by the Polycomb complexes PRC1 and PRC2. Here, we show that R-loops form at a subset of Polycomb target genes, and we investigate their contribution to Polycomb repression. At R-loop-positive genes, R-loop removal leads to decreased PRC1 and PRC2 recruitment and Pol II activation into a productive elongation state, accompanied by gene derepression at nascent and processed transcript levels. Stable removal of PRC2 derepresses R-loop-negative genes, as expected, but does not affect R-loops, PRC1 recruitment, or transcriptional repression of R-loop-positive genes. Our results highlight that Polycomb repression does not occur via one mechanism but consists of different layers of repression, some of which are gene specific. We uncover that one such mechanism is mediated by an interplay between R-loops and RING1B recruitment. R-loops form at a subset of PcG target genes R-loops contribute to PcG recruitment genome-wide Loss of R-loops leads to transcriptional activation of R-loop-positive PcG targets R-loops and PRC1 contribute to transcriptional repression of PcG targets
Collapse
Affiliation(s)
- Konstantina Skourti-Stathaki
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, UK; Berlin Institute for Medical Systems Biology, Max Delbrueck Centre for Molecular Medicine, Berlin-Buch 13092, Germany.
| | - Elena Torlai Triglia
- Berlin Institute for Medical Systems Biology, Max Delbrueck Centre for Molecular Medicine, Berlin-Buch 13092, Germany
| | - Marie Warburton
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, UK
| | - Philipp Voigt
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, UK
| | - Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, UK
| | - Ana Pombo
- Berlin Institute for Medical Systems Biology, Max Delbrueck Centre for Molecular Medicine, Berlin-Buch 13092, Germany; Berlin Institute of Health, Berlin, Germany; Institute for Biology, Humboldt-Universitat zu Berlin, Berlin, Germany.
| |
Collapse
|
16
|
Thompson VF, Victor RA, Morera AA, Moinpour M, Liu MN, Kisiel CC, Pickrel K, Springhower CE, Schwartz JC. Transcription-Dependent Formation of Nuclear Granules Containing FUS and RNA Pol II. Biochemistry 2018; 57:7021-7032. [PMID: 30488693 DOI: 10.1021/acs.biochem.8b01097] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purified recombinant FUsed in Sarcoma (FUS) assembles into an oligomeric state in an RNA-dependent manner to form large condensates. FUS condensates bind and concentrate the C-terminal domain of RNA polymerase II (RNA Pol II). We asked whether a granule in cells contained FUS and RNA Pol II as suggested by the binding of FUS condensates to the polymerase. We developed cross-linking protocols to recover protein particles containing FUS from cells and separated them by size exclusion chromatography. We found a significant fraction of RNA Pol II in large granules containing FUS with diameters of >50 nm or twice that of the RNA Pol II holoenzyme. Inhibition of transcription prevented the polymerase from associating with the granules. Altogether, we found physical evidence of granules containing FUS and RNA Pol II in cells that possess properties comparable to those of in vitro FUS condensates.
Collapse
|
17
|
Bliim N, Leshchyns'ka I, Keable R, Chen BJ, Curry-Hyde A, Gray L, Sytnyk V, Janitz M. Early transcriptome changes in response to chemical long-term potentiation induced via activation of synaptic NMDA receptors in mouse hippocampal neurons. Genomics 2018; 111:1676-1686. [PMID: 30465913 DOI: 10.1016/j.ygeno.2018.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/07/2018] [Accepted: 11/16/2018] [Indexed: 01/23/2023]
Abstract
Long term potentiation (LTP) is a form of synaptic plasticity. In the present study LTP was induced via activation of synaptic NMDA receptors in primary hippocampal neuron cultures from neonate mice and RNA was isolated for RNA sequencing at 20 min following LTP induction. RNA sequencing and differential expression testing was performed to determine the identity and abundance of protein-coding and non-coding RNAs in control and LTP induced neuron cultures. We show that expression levels of a small group of transcripts encoding proteins involved in negative regulation of gene expression (Adcyap1, Id3), protein translation (Rpl22L1), extracellular structure organization (Bgn), intracellular signalling (Ppm1H, Ntsr2, Cldn10) and protein citrullination (PAD2) are downregulated in the stimulated neurons. Our results suggest that the early stages of LTP are accompanied by the remodelling of the biosynthetic machinery, interactions with the extracellular matrix and intracellular signalling pathways at the transcriptional level.
Collapse
Affiliation(s)
- Nicola Bliim
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ryan Keable
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Bei Jun Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ashton Curry-Hyde
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lachlan Gray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
18
|
Chen Y, Zhang Y, Wang Y, Zhang L, Brinkman EK, Adam SA, Goldman R, van Steensel B, Ma J, Belmont AS. Mapping 3D genome organization relative to nuclear compartments using TSA-Seq as a cytological ruler. J Cell Biol 2018; 217:4025-4048. [PMID: 30154186 PMCID: PMC6219710 DOI: 10.1083/jcb.201807108] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 02/03/2023] Open
Abstract
Chen et al. present TSA-Seq, a new mapping method that measures cytological distances relative to spatially distinct nuclear subcompartments. From novel nuclear organization maps of human cells, they identify transcription hot zones of high gene density that are near nuclear speckles and enriched in highly expressed genes, housekeeping genes, and genes with low transcriptional pausing. While nuclear compartmentalization is an essential feature of three-dimensional genome organization, no genomic method exists for measuring chromosome distances to defined nuclear structures. In this study, we describe TSA-Seq, a new mapping method capable of providing a “cytological ruler” for estimating mean chromosomal distances from nuclear speckles genome-wide and for predicting several Mbp chromosome trajectories between nuclear compartments without sophisticated computational modeling. Ensemble-averaged results in K562 cells reveal a clear nuclear lamina to speckle axis correlated with a striking spatial gradient in genome activity. This gradient represents a convolution of multiple spatially separated nuclear domains including two types of transcription “hot zones.” Transcription hot zones protruding furthest into the nuclear interior and positioning deterministically very close to nuclear speckles have higher numbers of total genes, the most highly expressed genes, housekeeping genes, genes with low transcriptional pausing, and super-enhancers. Our results demonstrate the capability of TSA-Seq for genome-wide mapping of nuclear structure and suggest a new model for spatial organization of transcription and gene expression.
Collapse
Affiliation(s)
- Yu Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Yang Zhang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL.,Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
| | - Yuchuan Wang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
| | - Liguo Zhang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Eva K Brinkman
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Stephen A Adam
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Robert Goldman
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
| | - Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL .,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
19
|
Albero R, Enjuanes A, Demajo S, Castellano G, Pinyol M, García N, Capdevila C, Clot G, Suárez-Cisneros H, Shimada M, Karube K, López-Guerra M, Colomer D, Beà S, Martin-Subero JI, Campo E, Jares P. Cyclin D1 overexpression induces global transcriptional downregulation in lymphoid neoplasms. J Clin Invest 2018; 128:4132-4147. [PMID: 29990311 DOI: 10.1172/jci96520] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 06/28/2018] [Indexed: 01/05/2023] Open
Abstract
Cyclin D1 is an oncogene frequently overexpressed in human cancers that has a dual function as cell cycle and transcriptional regulator, although the latter is widely unexplored. Here, we investigated the transcriptional role of cyclin D1 in lymphoid tumor cells with cyclin D1 oncogenic overexpression. Cyclin D1 showed widespread binding to the promoters of most actively transcribed genes, and the promoter occupancy positively correlated with the transcriptional output of targeted genes. Despite this association, the overexpression of cyclin D1 in lymphoid cells led to a global transcriptional downmodulation that was proportional to cyclin D1 levels. This cyclin D1-dependent global transcriptional downregulation was associated with a reduced nascent transcription and an accumulation of promoter-proximal paused RNA polymerase II (Pol II) that colocalized with cyclin D1. Concordantly, cyclin D1 overexpression promoted an increase in the Poll II pausing index. This transcriptional impairment seems to be mediated by the interaction of cyclin D1 with the transcription machinery. In addition, cyclin D1 overexpression sensitized cells to transcription inhibitors, revealing a synthetic lethality interaction that was also observed in primary mantle cell lymphoma cases. This finding of global transcriptional dysregulation expands the known functions of oncogenic cyclin D1 and suggests the therapeutic potential of targeting the transcriptional machinery in cyclin D1-overexpressing tumors.
Collapse
Affiliation(s)
| | - Anna Enjuanes
- Genomics Unit, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | | | | | - Magda Pinyol
- Genomics Unit, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | | | | | | | - Helena Suárez-Cisneros
- Genomics Unit, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Mariko Shimada
- Hematopathology Unit and Cell Biology, Graduate School of Medicine and Faculty of Medicine, University of the Ryukyus, Nishihara, Japan.,Haematopathology Unit, Department of Anatomic Pathology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Kennosuke Karube
- Hematopathology Unit and Cell Biology, Graduate School of Medicine and Faculty of Medicine, University of the Ryukyus, Nishihara, Japan.,Haematopathology Unit, Department of Anatomic Pathology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Mónica López-Guerra
- Lymphoid Neoplasm Program and.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.,Haematopathology Unit, Department of Anatomic Pathology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Dolors Colomer
- Lymphoid Neoplasm Program and.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.,Haematopathology Unit, Department of Anatomic Pathology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Sílvia Beà
- Lymphoid Neoplasm Program and.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - José Ignacio Martin-Subero
- Lymphoid Neoplasm Program and.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Elías Campo
- Lymphoid Neoplasm Program and.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.,Haematopathology Unit, Department of Anatomic Pathology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Pedro Jares
- Lymphoid Neoplasm Program and.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.,Molecular Biology Core, Hospital Clinic of Barcelona, Barcelona, Spain.,Haematopathology Unit, Department of Anatomic Pathology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Schaub A, Glasmacher E. Splicing in immune cells-mechanistic insights and emerging topics. Int Immunol 2018; 29:173-181. [PMID: 28498981 PMCID: PMC5890895 DOI: 10.1093/intimm/dxx026] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 04/27/2017] [Indexed: 11/26/2022] Open
Abstract
Differential splicing of mRNAs not only enables regulation of gene expression levels, but also ensures a high degree of gene-product diversity. The extent to which splicing of mRNAs is utilized as a mechanism in immune cells has become evident within the last few years. Still, only a few of these mechanisms have been well studied. In this review, we discuss some of the best-understood mechanisms, for instance the differential splicing of CD45 in T cells, as well as immunoglobulin genes in B cells. Beyond that we provide general mechanistic insights on how, when and where this process takes place and discuss the current knowledge regarding these topics in immune cells. We also highlight some of the reported links to immune-related diseases, genome-wide sequencing studies that revealed thousands of differentially spliced transcripts, as well as splicing studies on immune cells that remain mechanistically not fully understood. We thereby display potential emerging topics for future studies centered on splicing mechanisms in immune cells.
Collapse
Affiliation(s)
- Annalisa Schaub
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Elke Glasmacher
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| |
Collapse
|
21
|
Guo W, Zhu C, Yin Z, Wang Q, Sun M, Cao H, Greaser ML. Splicing Factor RBM20 Regulates Transcriptional Network of Titin Associated and Calcium Handling Genes in The Heart. Int J Biol Sci 2018; 14:369-380. [PMID: 29725258 PMCID: PMC5930469 DOI: 10.7150/ijbs.24117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/27/2018] [Indexed: 01/28/2023] Open
Abstract
RNA binding motif 20 (RBM20) regulates pre-mRNA splicing of over thirty genes, among which titin is a major target. With RBM20 expression, titin expresses a larger isoform at fetal stage to a smaller isoform at adult resulting from alternative splicing, while, without RBM20, titin expresses exclusively a larger isoform throughout all ages. In addition to splicing regulation, it is unknown whether RBM20 also regulates gene expression. In this study, we employed Rbm20 knockout rats to investigate gene expression profile using Affymetrix expression array. We compared wild type to Rbm20 knockout at day1, 20 and 49. Bioinformatics analysis showed RBM20 regulates fewer genes expression at younger age and more at older age and commonly expressed genes have the same trends. GSEA indicated up-regulated genes are associated with heart failure. We examined titin binding partners. All titin direct binding partners are up-regulated and their increased expression is associated with dilated cardiomyopathy. Particularly, we found that genes involving calcium handling and muscle contraction are changed by RBM20. Intracellular calcium level measurement with individual cardiomyocytes further confirmed that changes of these proteins impact calcium handling. Selected genes from titin binding partners and calcium handling were validated with QPCR and western blotting. These data demonstrate that RBM20 regulates gene splicing as well as gene expression. Altered gene expression by RBM20 influences protein-protein interaction, calcium releasing and thus muscle contraction. Our results first reported gene expression impacted by RBM20 with heart maturation, and provided new insights into the role of RBM20 in the progression of heart failure.
Collapse
Affiliation(s)
- Wei Guo
- Animal Science, University of Wyoming, Laramie, WY 82071, USA.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Chaoqun Zhu
- Animal Science, University of Wyoming, Laramie, WY 82071, USA.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Zhiyong Yin
- Animal Science, University of Wyoming, Laramie, WY 82071, USA.,Department of Cardiology, Xi Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Qiurong Wang
- Animal Science, University of Wyoming, Laramie, WY 82071, USA.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Mingming Sun
- Animal Science, University of Wyoming, Laramie, WY 82071, USA.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Huojun Cao
- Iowa Institute for Oral Health Research, College of Dentistry.,Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Marion L Greaser
- Animal Science, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
22
|
Fei J, Jadaliha M, Harmon TS, Li ITS, Hua B, Hao Q, Holehouse AS, Reyer M, Sun Q, Freier SM, Pappu RV, Prasanth KV, Ha T. Quantitative analysis of multilayer organization of proteins and RNA in nuclear speckles at super resolution. J Cell Sci 2017; 130:4180-4192. [PMID: 29133588 DOI: 10.1242/jcs.206854] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/01/2017] [Indexed: 12/30/2022] Open
Abstract
Nuclear speckles are self-assembled organelles composed of RNAs and proteins. They are proposed to act as structural domains that control distinct steps in gene expression, including transcription, splicing and mRNA export. Earlier studies identified differential localization of a few components within the speckles. It was speculated that the spatial organization of speckle components might contribute directly to the order of operations that coordinate distinct processes. Here, by performing multi-color structured illumination microscopy, we characterized the multilayer organization of speckles at a higher resolution. We found that SON and SC35 (also known as SRSF2) localize to the central region of the speckle, whereas MALAT1 and small nuclear (sn)RNAs are enriched at the speckle periphery. Coarse-grained simulations indicate that the non-random organization arises due to the interplay between favorable sequence-encoded intermolecular interactions of speckle-resident proteins and RNAs. Finally, we observe positive correlation between the total amount of RNA present within a speckle and the speckle size. These results imply that speckle size may be regulated to accommodate RNA accumulation and processing. Accumulation of RNA from various actively transcribed speckle-associated genes could contribute to the observed speckle size variations within a single cell.
Collapse
Affiliation(s)
- Jingyi Fei
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA .,Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Mahdieh Jadaliha
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tyler S Harmon
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Isaac T S Li
- Department of Chemistry, University of British Columbia Okanagan, Kelowna, British Columbia, Canada, V1V 1V7
| | - Boyang Hua
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Qinyu Hao
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Alex S Holehouse
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Matthew Reyer
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Qinyu Sun
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Taekjip Ha
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
23
|
Oqani RK, Lin T, Lee JE, Kim SY, Sa SJ, Woo JS, Jin DI. Inhibition of P-TEFb disrupts global transcription, oocyte maturation, and embryo development in the mouse. Genesis 2016; 54:470-82. [PMID: 27488304 DOI: 10.1002/dvg.22961] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/30/2016] [Accepted: 08/01/2016] [Indexed: 11/11/2022]
Abstract
Positive transcription elongation factor b (P-TEFb) is an RNA polymerase II kinase that phosphorylates Ser2 of the carboxyl-terminal domain and promotes the elongation phase of transcription. Despite the fact that P-TEFb has role in many cellular processes, the role of this kinase complex remains to be understood in early developmental events. In this study, using immunocytochemical analyses, we find that the P-TEFb components, Cyclin T1, CDK9, and its T-loop phosphorylated form, are localized to nuclear speckles, as well as in nucleoli in mouse germinal vesicle oocytes. Moreover, using fluorescence in situ hybridization, we show that in absence of CDK9 activity, nucleolar integration, as well as production of 28S rRNA is impaired in oocytes and embryos. We also present evidence indicating that P-TEFb kinase activity is essential for completion of mouse oocyte maturation and embryo development. Treatment with CDK9 inhibitor, flavopiridol resulted in metaphase I arrest in maturing oocytes. Inhibition of CDK9 kinase activity did not interfere with in vitro fertilization and pronuclear formation. However, when zygotes or 2-cell embryos were treated with flavopiridol only in their G2 phase of the cell cycle, development to the blastocyst stage was impaired. Inhibition of the CDK9 activity after embryonic genome activation resulted in failure to form normal blastocysts and aberrant phosphorylation of RNA polymerase II CTD. In all stages analyzed, treatment with flavopiridol abrogated global transcriptional activity. Collectively, our data suggest that P-TEFb kinase activity is crucial for oocyte maturation, embryo development, and regulation of global RNA transcription in mouse early development.
Collapse
Affiliation(s)
- Reza K Oqani
- Department of Animal Science and Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Tao Lin
- Department of Animal Science and Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jae Eun Lee
- Department of Animal Science and Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - So Yeon Kim
- Department of Animal Science and Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Soo Jin Sa
- Department of Animal Resource Development, National Institute of Animal Science, Cheonan, 31001, Korea
| | - Je Seok Woo
- Department of Animal Resource Development, National Institute of Animal Science, Cheonan, 31001, Korea
| | - Dong Il Jin
- Department of Animal Science and Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
24
|
Dias JD, Rito T, Torlai Triglia E, Kukalev A, Ferrai C, Chotalia M, Brookes E, Kimura H, Pombo A. Methylation of RNA polymerase II non-consensus Lysine residues marks early transcription in mammalian cells. eLife 2015; 4. [PMID: 26687004 PMCID: PMC4758952 DOI: 10.7554/elife.11215] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 12/18/2015] [Indexed: 12/16/2022] Open
Abstract
Dynamic post-translational modification of RNA polymerase II (RNAPII) coordinates the co-transcriptional recruitment of enzymatic complexes that regulate chromatin states and processing of nascent RNA. Extensive phosphorylation of serine residues at the largest RNAPII subunit occurs at its structurally-disordered C-terminal domain (CTD), which is composed of multiple heptapeptide repeats with consensus sequence Y1-S2-P3-T4-S5-P6-S7. Serine-5 and Serine-7 phosphorylation mark transcription initiation, whereas Serine-2 phosphorylation coincides with productive elongation. In vertebrates, the CTD has eight non-canonical substitutions of Serine-7 into Lysine-7, which can be acetylated (K7ac). Here, we describe mono- and di-methylation of CTD Lysine-7 residues (K7me1 and K7me2). K7me1 and K7me2 are observed during the earliest transcription stages and precede or accompany Serine-5 and Serine-7 phosphorylation. In contrast, K7ac is associated with RNAPII elongation, Serine-2 phosphorylation and mRNA expression. We identify an unexpected balance between RNAPII K7 methylation and acetylation at gene promoters, which fine-tunes gene expression levels.
Collapse
Affiliation(s)
- João D Dias
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany.,Genome Function Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom.,Graduate Program in Areas of Basic and Applied Biology, University of Porto, Porto, Portugal
| | - Tiago Rito
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Elena Torlai Triglia
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Alexander Kukalev
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Carmelo Ferrai
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany.,Genome Function Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| | - Mita Chotalia
- Genome Function Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| | - Emily Brookes
- Genome Function Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| | - Hiroshi Kimura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ana Pombo
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany.,Genome Function Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| |
Collapse
|
25
|
Khalouei S, Chow AM, Brown IR. Localization of heat shock protein HSPA6 (HSP70B') to sites of transcription in cultured differentiated human neuronal cells following thermal stress. J Neurochem 2014; 131:743-54. [DOI: 10.1111/jnc.12970] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/05/2014] [Accepted: 10/06/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Sam Khalouei
- Centre for the Neurobiology of Stress; Department of Biological Sciences; University of Toronto Scarborough; Toronto Ontario Canada
| | - Ari M. Chow
- Centre for the Neurobiology of Stress; Department of Biological Sciences; University of Toronto Scarborough; Toronto Ontario Canada
| | - Ian R. Brown
- Centre for the Neurobiology of Stress; Department of Biological Sciences; University of Toronto Scarborough; Toronto Ontario Canada
| |
Collapse
|
26
|
Jullien J, Miyamoto K, Pasque V, Allen GE, Bradshaw CR, Garrett NJ, Halley-Stott RP, Kimura H, Ohsumi K, Gurdon JB. Hierarchical molecular events driven by oocyte-specific factors lead to rapid and extensive reprogramming. Mol Cell 2014; 55:524-36. [PMID: 25066233 PMCID: PMC4156308 DOI: 10.1016/j.molcel.2014.06.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/15/2014] [Accepted: 06/12/2014] [Indexed: 12/31/2022]
Abstract
Nuclear transfer to oocytes is an efficient way to transcriptionally reprogram somatic nuclei, but its mechanisms remain unclear. Here, we identify a sequence of molecular events that leads to rapid transcriptional reprogramming of somatic nuclei after transplantation to Xenopus oocytes. RNA-seq analyses reveal that reprogramming by oocytes results in a selective switch in transcription toward an oocyte rather than pluripotent type, without requiring new protein synthesis. Time-course analyses at the single-nucleus level show that transcriptional reprogramming is induced in most transplanted nuclei in a highly hierarchical manner. We demonstrate that an extensive exchange of somatic- for oocyte-specific factors mediates reprogramming and leads to robust oocyte RNA polymerase II binding and phosphorylation on transplanted chromatin. Moreover, genome-wide binding of oocyte-specific linker histone B4 supports its role in transcriptional reprogramming. Thus, our study reveals the rapid, abundant, and stepwise loading of oocyte-specific factors onto somatic chromatin as important determinants for successful reprogramming. Xenopus oocytes induce an oocyte transcription pattern in mouse nuclei in 2 days Reprogramming requires a switch from somatic to oocyte transcriptional components Unusually high amounts of oocyte-derived RNA polymerase II drive reprogramming The pattern of oocyte linker histone binding to somatic chromatin is revealed
Collapse
Affiliation(s)
- Jerome Jullien
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Zoology, University of Cambridge, Cambridge CB2 1QN, UK
| | - Kei Miyamoto
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Zoology, University of Cambridge, Cambridge CB2 1QN, UK
| | - Vincent Pasque
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Zoology, University of Cambridge, Cambridge CB2 1QN, UK
| | - George E Allen
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Zoology, University of Cambridge, Cambridge CB2 1QN, UK
| | - Charles R Bradshaw
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Zoology, University of Cambridge, Cambridge CB2 1QN, UK
| | - Nigel J Garrett
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Zoology, University of Cambridge, Cambridge CB2 1QN, UK
| | - Richard P Halley-Stott
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Zoology, University of Cambridge, Cambridge CB2 1QN, UK
| | - Hiroshi Kimura
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Keita Ohsumi
- Laboratory of Molecular Genetics, Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - John B Gurdon
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Zoology, University of Cambridge, Cambridge CB2 1QN, UK.
| |
Collapse
|
27
|
Diao YF, Oqani RK, Li XX, Lin T, Kang JW, Jin DI. Changes in histone H3 lysine 36 methylation in porcine oocytes and preimplantation embryos. PLoS One 2014; 9:e100205. [PMID: 24927323 PMCID: PMC4057445 DOI: 10.1371/journal.pone.0100205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/23/2014] [Indexed: 01/31/2023] Open
Abstract
Histone H3 lysine 36 (H3K36) methylation is known to be associated with transcriptionally active genes, and is considered a genomic marker of active loci. To investigate the changes in H3K36 methylation in pig, we determined the mono-, di-, and tri-methylations of H3K36 (H3K36me1, H3K36me2 and H3K36me3, respectively) in porcine fetal fibroblasts, oocytes and preimplantation embryos by immunocytochemistry using specific antibodies and confocal microscopy. These analyses revealed that only H3K36me3 in porcine fetal fibroblasts consistently colocalized with transcription sites identified as actively synthesizing RNA based on fluorouridine (FU) incorporation. Treatment of cells with flavopiridol, which blocks transcription elongation, completely abrogated both H3K36me3 signals and RNA synthesis. All three types of H3K36 methylation were present and did not significantly differ during oocyte maturation. In parthenogenetic embryos, H3K36me1 and -me2 were detected in 1-cell through blastocyst-stage embryos. In contrast, H3K36me3 was not detected in most 1-cell stage embryos. H3K36me3 signals became detectable in 2-cell stage embryos, peaked at the 4-cell stage, decreased at the 8-cell stage, and then became undetectable at blastocyst stages in both parthenogenetic and in vitro-fertilized (IVF) embryos. Unlike the case in IVF embryos, H3K36me3 could not be demethylated completely during the 1-cell stage in somatic cell nuclear transfer (SCNT) embryos. These results collectively indicate that H3K36me3, but not H3K36me1 or -me2, is associated with transcription elongation in porcine fetal fibroblasts. H3K36me3 is developmentally regulated and may be a histone mark of embryonic gene activation in pig. Aberrant H3K36 tri-methylation occurred during the nuclear reprogramming of SCNT embryos.
Collapse
Affiliation(s)
- Yun Fei Diao
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, Korea
| | - Reza K Oqani
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, Korea
| | - Xiao Xia Li
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, Korea
| | - Tao Lin
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, Korea
| | - Jung Won Kang
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, Korea
| | - Dong Il Jin
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, Korea
| |
Collapse
|
28
|
Hett A, West S. Inhibition of U4 snRNA in human cells causes the stable retention of polyadenylated pre-mRNA in the nucleus. PLoS One 2014; 9:e96174. [PMID: 24796696 PMCID: PMC4010461 DOI: 10.1371/journal.pone.0096174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/04/2014] [Indexed: 01/25/2023] Open
Abstract
Most human pre-mRNAs contain introns that are removed by splicing. Such a complex process needs strict control and regulation in order to prevent the expression of aberrant or unprocessed transcripts. To analyse the fate of pre-mRNAs that cannot be spliced, we inhibited splicing using an anti-sense morpholino (AMO) against U4 snRNA. As a consequence, splicing of several selected transcripts was strongly inhibited. This was accompanied by the formation of enlarged nuclear speckles containing polyadenylated RNA, splicing factors and the nuclear poly(A) binding protein. Consistently, more polyadenylated pre-mRNA could be isolated from nucleoplasmic as well as chromatin-associated RNA fractions following U4 inhibition. Further analysis demonstrated that accumulated pre-mRNAs were stable in the nucleus and that nuclear RNA degradation factors did not re-localise to nuclear speckles following splicing inhibition. The accumulation of pre-mRNA and the formation of enlarged speckles were sensitive to depletion of the 3′ end processing factor, CPSF73, suggesting a requirement for poly(A) site processing in this mechanism. Finally, we provide evidence that the pre-mRNAs produced following U4 snRNA inhibition remain competent for splicing, perhaps providing a biological explanation for their stability. These data further characterise processes ensuring the nuclear retention of pre-mRNA that cannot be spliced and suggest that, in some cases, unspliced transcripts can complete splicing sometime after their initial synthesis.
Collapse
Affiliation(s)
- Anne Hett
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Steven West
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Wakai M, Abe S, Kazuki Y, Oshimura M, Ishikawa F. A human artificial chromosome recapitulates the metabolism of native telomeres in mammalian cells. PLoS One 2014; 9:e88530. [PMID: 24558398 PMCID: PMC3928237 DOI: 10.1371/journal.pone.0088530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/07/2014] [Indexed: 01/03/2023] Open
Abstract
Telomeric and subtelomeric regions of human chromosomes largely consist of highly repetitive and redundant DNA sequences, resulting in a paucity of unique DNA sequences specific to individual telomeres. Accordingly, it is difficult to analyze telomere metabolism on a single-telomere basis. To circumvent this problem, we have exploited a human artificial chromosome (HAC#21) derived from human chromosome 21 (hChr21). HAC#21 was generated through truncation of the long arm of native hChr21 by the targeted telomere seeding technique. The newly established telomere of HAC#21 lacks canonical subtelomere structures but possesses unique sequences derived from the target vector backbone and the internal region of hChr21 used for telomere targeting, which enabled us to molecularly characterize the single HAC telomere. We established HeLa and NIH-3T3 sub-lines containing a single copy of HAC#21, where it was robustly maintained. The seeded telomere is associated with telomeric proteins over a length similar to that reported in native telomeres, and is faithfully replicated in mid-S phase in HeLa cells. We found that the seeded telomere on HAC#21 is transcribed from the newly juxtaposed site. The transcript, HAC-telRNA, shares several features with TERRA (telomeric repeat-containing RNA): it is a short-lived RNA polymerase II transcript, rarely contains a poly(A) tail, and associates with chromatin. Interestingly, HAC-telRNA undergoes splicing. These results suggest that transcription into TERRA is locally influenced by the subtelomeric context. Taken together, we have established human and mouse cell lines that will be useful for analyzing the behavior of a uniquely identifiable, functional telomere.
Collapse
Affiliation(s)
- Michihito Wakai
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Satoshi Abe
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan
| | - Yasuhiro Kazuki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | - Mitsuo Oshimura
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | - Fuyuki Ishikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
- * E-mail:
| |
Collapse
|
30
|
Corden JL. RNA polymerase II C-terminal domain: Tethering transcription to transcript and template. Chem Rev 2013; 113:8423-55. [PMID: 24040939 PMCID: PMC3988834 DOI: 10.1021/cr400158h] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jeffry L Corden
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore Maryland 21205, United States
| |
Collapse
|
31
|
Nishimoto Y, Nakagawa S, Hirose T, Okano HJ, Takao M, Shibata S, Suyama S, Kuwako KI, Imai T, Murayama S, Suzuki N, Okano H. The long non-coding RNA nuclear-enriched abundant transcript 1_2 induces paraspeckle formation in the motor neuron during the early phase of amyotrophic lateral sclerosis. Mol Brain 2013; 6:31. [PMID: 23835137 PMCID: PMC3729541 DOI: 10.1186/1756-6606-6-31] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/28/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND A long non-coding RNA (lncRNA), nuclear-enriched abundant transcript 1_2 (NEAT1_2), constitutes nuclear bodies known as "paraspeckles". Mutations of RNA binding proteins, including TAR DNA-binding protein-43 (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS/TLS), have been described in amyotrophic lateral sclerosis (ALS). ALS is a devastating motor neuron disease, which progresses rapidly to a total loss of upper and lower motor neurons, with consciousness sustained. The aim of this study was to clarify the interaction of paraspeckles with ALS-associated RNA-binding proteins, and to identify increased occurrence of paraspeckles in the nucleus of ALS spinal motor neurons. RESULTS In situ hybridization (ISH) and ultraviolet cross-linking and immunoprecipitation were carried out to investigate interactions of NEAT1_2 lncRNA with ALS-associated RNA-binding proteins, and to test if paraspeckles form in ALS spinal motor neurons. As the results, TDP-43 and FUS/TLS were enriched in paraspeckles and bound to NEAT1_2 lncRNA directly. The paraspeckles were localized apart from the Cajal bodies, which were also known to be related to RNA metabolism. Analyses of 633 human spinal motor neurons in six ALS cases showed NEAT1_2 lncRNA was upregulated during the early stage of ALS pathogenesis. In addition, localization of NEAT1_2 lncRNA was identified in detail by electron microscopic analysis combined with ISH for NEAT1_2 lncRNA. The observation indicating specific assembly of NEAT1_2 lncRNA around the interchromatin granule-associated zone in the nucleus of ALS spinal motor neurons verified characteristic paraspeckle formation. CONCLUSIONS NEAT1_2 lncRNA may act as a scaffold of RNAs and RNA binding proteins in the nuclei of ALS motor neurons, thereby modulating the functions of ALS-associated RNA-binding proteins during the early phase of ALS. These findings provide the first evidence of a direct association between paraspeckle formation and a neurodegenerative disease, and may shed light on the development of novel therapeutic targets for the treatment of ALS.
Collapse
Affiliation(s)
- Yoshinori Nishimoto
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Freire-Picos MA, Landeira-Ameijeiras V, Mayán MD. Stalled RNAP-II molecules bound to non-coding rDNA spacers are required for normal nucleolus architecture. Yeast 2013; 30:267-77. [PMID: 23703787 DOI: 10.1002/yea.2961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/16/2013] [Accepted: 05/19/2013] [Indexed: 11/10/2022] Open
Abstract
The correct distribution of nuclear domains is critical for the maintenance of normal cellular processes such as transcription and replication, which are regulated depending on their location and surroundings. The most well-characterized nuclear domain, the nucleolus, is essential for cell survival and metabolism. Alterations in nucleolar structure affect nuclear dynamics; however, how the nucleolus and the rest of the nuclear domains are interconnected is largely unknown. In this report, we demonstrate that RNAP-II is vital for the maintenance of the typical crescent-shaped structure of the nucleolar rDNA repeats and rRNA transcription. When stalled RNAP-II molecules are not bound to the chromatin, the nucleolus loses its typical crescent-shaped structure. However, the RNAP-II interaction with Seh1p, or cryptic transcription by RNAP-II, is not critical for morphological changes.
Collapse
Affiliation(s)
- M A Freire-Picos
- MRC Clinical Sciences Centre, Imperial College, London, W12 0NN, UK
| | | | | |
Collapse
|
33
|
Davidson S, Macpherson N, Mitchell JA. Nuclear organization of RNA polymerase II transcription. Biochem Cell Biol 2013; 91:22-30. [PMID: 23442138 DOI: 10.1139/bcb-2012-0059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transcription occurs at distinct nuclear compartments termed transcription factories that are specialized for transcription by 1 of the 3 polymerase complexes (I, II, or III). Protein-coding genes appear to move in and out of RNA polymerase II (RNAPII) compartments as they are expressed and silenced. In addition, transcription factories are sites where several transcription units, either from the same chromosome or different chromosomes, are transcribed. Chromosomes occupy distinct territories in the interphase nucleus with active genes preferentially positioned on the periphery or even looped out of the territory. These chromosome territories have been observed to intermingle in the nucleus, and multiple interactions among different chromosomes have been identified in genome-wide studies. Deep sequencing of the transcriptome and RNAPII associated on DNA obtained by chromatin immunoprecipitation have revealed a plethora of noncoding transcription and intergenic accumulations of RNAPII that must also be considered in models of genome function. The organization of transcription into distinct regions of the nucleus has changed the way we view transcription with the evolving model for silencing or activation of gene expression involving physical relocation of the transcription unit to a silencing or activation compartment, thus, highlighting the need to consider the process of transcription in the 3-dimensional nuclear space.
Collapse
Affiliation(s)
- Scott Davidson
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | | | | |
Collapse
|
34
|
RNAP-II molecules participate in the anchoring of the ORC to rDNA replication origins. PLoS One 2013; 8:e53405. [PMID: 23308214 PMCID: PMC3537633 DOI: 10.1371/journal.pone.0053405] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 11/29/2012] [Indexed: 12/29/2022] Open
Abstract
The replication of genomic DNA is limited to a single round per cell cycle. The first component, which recognises and remains bound to origins from recognition until activation and replication elongation, is the origin recognition complex. How origin recognition complex (ORC) proteins remain associated with chromatin throughout the cell cycle is not yet completely understood. Several genome-wide studies have undoubtedly demonstrated that RNA polymerase II (RNAP-II) binding sites overlap with replication origins and with the binding sites of the replication components. RNAP-II is no longer merely associated with transcription elongation. Several reports have demonstrated that RNAP-II molecules affect chromatin structure, transcription, mRNA processing, recombination and DNA repair, among others. Most of these activities have been reported to directly depend on the interaction of proteins with the C-terminal domain (CTD) of RNAP-II. Two-dimensional gels results and ChIP analysis presented herein suggest that stalled RNAP-II molecules bound to the rDNA chromatin participate in the anchoring of ORC proteins to origins during the G1 and S-phases. The results show that in the absence of RNAP-II, Orc1p, Orc2p and Cdc6p do not bind to origins. Moreover, co-immunoprecipitation experiments suggest that Ser2P-CTD and hypophosphorylated RNAP-II interact with Orc1p. In the context of rDNA, cryptic transcription by RNAP-II did not negatively interfere with DNA replication. However, the results indicate that RNAP-II is not necessary to maintain the binding of ORCs to the origins during metaphase. These findings highlight for the first time the potential importance of stalled RNAP-II in the regulation of DNA replication.
Collapse
|
35
|
Möller A, Xie SQ, Hosp F, Lang B, Phatnani HP, James S, Ramirez F, Collin GB, Naggert JK, Babu MM, Greenleaf AL, Selbach M, Pombo A. Proteomic analysis of mitotic RNA polymerase II reveals novel interactors and association with proteins dysfunctional in disease. Mol Cell Proteomics 2012; 11:M111.011767. [PMID: 22199231 PMCID: PMC3433901 DOI: 10.1074/mcp.m111.011767] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 11/19/2011] [Indexed: 11/06/2022] Open
Abstract
RNA polymerase II (RNAPII) transcribes protein-coding genes in eukaryotes and interacts with factors involved in chromatin remodeling, transcriptional activation, elongation, and RNA processing. Here, we present the isolation of native RNAPII complexes using mild extraction conditions and immunoaffinity purification. RNAPII complexes were extracted from mitotic cells, where they exist dissociated from chromatin. The proteomic content of native complexes in total and size-fractionated extracts was determined using highly sensitive LC-MS/MS. Protein associations with RNAPII were validated by high-resolution immunolocalization experiments in both mitotic cells and in interphase nuclei. Functional assays of transcriptional activity were performed after siRNA-mediated knockdown. We identify >400 RNAPII associated proteins in mitosis, among these previously uncharacterized proteins for which we show roles in transcriptional elongation. We also identify, as novel functional RNAPII interactors, two proteins involved in human disease, ALMS1 and TFG, emphasizing the importance of gene regulation for normal development and physiology.
Collapse
Affiliation(s)
- André Möller
- From the ‡MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Sheila Q. Xie
- From the ‡MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Fabian Hosp
- §Max-Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | - Benjamin Lang
- ¶MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Hemali P. Phatnani
- ‖Department of Biochemistry, Duke University, Medical Center, Durham, North Carolina 27710
| | - Sonya James
- From the ‡MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | | | | | | | - M. Madan Babu
- ¶MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Arno L. Greenleaf
- ‖Department of Biochemistry, Duke University, Medical Center, Durham, North Carolina 27710
| | - Matthias Selbach
- §Max-Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | - Ana Pombo
- From the ‡MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| |
Collapse
|
36
|
Oqani RK, Zhang JY, Lee MG, Diao YF, Jin DI. Phosphorylation Status of RNA Polymerase II Carboxyl-terminal Domain in Porcine Oocytes and Early Embryos. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2012; 25:789-93. [PMID: 25049627 PMCID: PMC4093084 DOI: 10.5713/ajas.2011.11396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/30/2012] [Accepted: 01/18/2012] [Indexed: 11/27/2022]
Abstract
Fertilization of the oocyte commences embryogenesis during which maternally inherited mRNAs are degraded and the embryonic genome is activated. Transcription of embryonic mRNA is initiated by embryonic genome activation (EGA). RNA polymerase II (RNA Pol II) is responsible for the synthesis of mRNAs and most small nuclear RNAs, and consists of 12 subunits, the largest of which characteristically harbors a unique C-terminal domain (CTD). Transcriptional activity of RNA Pol II is highly regulated, in particular, by phosphorylation of serine residues in the CTD. Here, we have shown the presence of RNA Pol II CTD phosphoisoforms in porcine oocytes and preimplantation embryos. The distribution pattern as well as phosphorylation dynamics in germinal vesicles and during embryogenesis differed in developmental stages with these isoforms, indicating a role of RNA Pol II CTD phosphorylation at the serine residue in transcriptional activation during both oocyte growth and embryonic genome activation. We additionally examined the effects of the RNA Pol II inhibitor, α-amanitin, on embryo development. Our results show that inhibition of polymerase, even at very early stages and for a short period of time, dramatically impaired blastocyst formation. These findings collectively suggest that the functionality of maternal RNA Pol II, and consequently, expression of early genes regulated by this enzyme are essential for proper embryo development.
Collapse
|
37
|
Marnef A, Weil D, Standart N. RNA-related nuclear functions of human Pat1b, the P-body mRNA decay factor. Mol Biol Cell 2012; 23:213-24. [PMID: 22090346 PMCID: PMC3248899 DOI: 10.1091/mbc.e11-05-0415] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 11/03/2011] [Accepted: 11/07/2011] [Indexed: 11/11/2022] Open
Abstract
The evolutionarily conserved Pat1 proteins are P-body components recently shown to play important roles in cytoplasmic gene expression control. Using human cell lines, we demonstrate that human Pat1b is a shuttling protein whose nuclear export is mediated via a consensus NES sequence and Crm1, as evidenced by leptomycin B (LMB) treatment. However, not all P-body components are nucleocytoplasmic proteins; rck/p54, Dcp1a, Edc3, Ge-1, and Xrn1 are insensitive to LMB and remain cytoplasmic in its presence. Nuclear Pat1b localizes to PML-associated foci and SC35-containing splicing speckles in a transcription-dependent manner, whereas in the absence of RNA synthesis, Pat1b redistributes to crescent-shaped nucleolar caps. Furthermore, inhibition of splicing by spliceostatin A leads to the reorganization of SC35 speckles, which is closely mirrored by Pat1b, indicating that it may also be involved in splicing processes. Of interest, Pat1b retention in these three nuclear compartments is mediated via distinct regions of the protein. Examination of the nuclear distribution of 4E-T(ransporter), an additional P-body nucleocytoplasmic protein, revealed that 4E-T colocalizes with Pat1b in PML-associated foci but not in nucleolar caps. Taken together, our findings strongly suggest that Pat1b participates in several RNA-related nuclear processes in addition to its multiple regulatory roles in the cytoplasm.
Collapse
Affiliation(s)
- Aline Marnef
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Dominique Weil
- UPMC University Paris 06, CNRS-FRE 3402, 75005 Paris, France
| | - Nancy Standart
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| |
Collapse
|
38
|
Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG, He C. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 2011; 7:885-7. [PMID: 22002720 PMCID: PMC3218240 DOI: 10.1038/nchembio.687] [Citation(s) in RCA: 2949] [Impact Index Per Article: 210.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 08/04/2011] [Indexed: 12/16/2022]
Abstract
We report here that fat mass and obesity-associated protein (FTO) has efficient oxidative demethylation activity targeting the abundant N6-methyladenosine (m(6)A) residues in RNA in vitro. FTO knockdown with siRNA led to increased amounts of m(6)A in mRNA, whereas overexpression of FTO resulted in decreased amounts of m(6)A in human cells. We further show the partial colocalization of FTO with nuclear speckles, which supports the notion that m(6)A in nuclear RNA is a major physiological substrate of FTO.
Collapse
Affiliation(s)
- Guifang Jia
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Ye Fu
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Xu Zhao
- Genome Structure and Stability Group, Disease Genomics and Personalized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, No.7 Beitucheng West Road, Chaoyang District, Beijing 100029, PR China
| | - Qing Dai
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Guanqun Zheng
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Ying Yang
- Genome Structure and Stability Group, Disease Genomics and Personalized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, No.7 Beitucheng West Road, Chaoyang District, Beijing 100029, PR China
| | - Chengqi Yi
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, 929 East 57 Street, Chicago, Illinois 60637, USA
| | - Tomas Lindahl
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, 929 East 57 Street, Chicago, Illinois 60637, USA
| | - Yun-Gui Yang
- Genome Structure and Stability Group, Disease Genomics and Personalized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, No.7 Beitucheng West Road, Chaoyang District, Beijing 100029, PR China
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
39
|
Bogolyubova I. Transcriptional activity of nuclei in 2-cell blocked mouse embryos. Tissue Cell 2011; 43:262-5. [DOI: 10.1016/j.tice.2011.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 03/11/2011] [Accepted: 03/18/2011] [Indexed: 11/27/2022]
|
40
|
Navarro M, Peñate X, Landeira D, López-Farfán D. Role of RPB7 in RNA pol I transcription in Trypanosoma brucei. Mol Biochem Parasitol 2011; 180:43-4. [PMID: 21816180 DOI: 10.1016/j.molbiopara.2011.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 07/11/2011] [Indexed: 10/18/2022]
|
41
|
FUS immunogold labeling TEM analysis of the neuronal cytoplasmic inclusions of neuronal intermediate filament inclusion disease: a frontotemporal lobar degeneration with FUS proteinopathy. J Mol Neurosci 2011; 45:409-21. [PMID: 21603978 DOI: 10.1007/s12031-011-9549-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 04/20/2011] [Indexed: 10/18/2022]
Abstract
Fused in sarcoma (FUS)-immunoreactive neuronal and glial inclusions define a novel molecular pathology called FUS proteinopathy. FUS has been shown to be a component of inclusions of familial amyotrophic lateral sclerosis with FUS mutation and three frontotemporal lobar degeneration entities, including neuronal intermediate filament inclusion disease (NIFID). The pathogenic role of FUS is unknown. In addition to FUS, many neuronal cytoplasmic inclusions (NCI) of NIFID contain aggregates of α-internexin and neurofilament proteins. Herein, we have shown that: (1) FUS becomes relatively insoluble in NIFID and there are no apparent posttranslational modifications, (2) there are no pathogenic abnormalities in the FUS gene in NIFID, and (3) immunoelectron microscopy demonstrates the fine structural localization of FUS in NIFID which has not previously been described. FUS localized to euchromatin, and strongly with paraspeckles, in nuclei, consistent with its RNA/DNA-binding functions. NCI of varying morphologies were observed. Most frequent were the "loosely aggregated cytoplasmic inclusions," 81% of which had moderate or high levels of FUS immunoreactivity. Much rarer "compact cytoplasmic inclusions" and "tangled twine ball inclusions" were FUS-immunoreactive at their granular peripheries, or heavily FUS-positive throughout, respectively. Thus, FUS may aggregate in the cytoplasm and then admix with neuronal intermediate filament accumulations.
Collapse
|
42
|
Stress-induced expression of p53 target genes is insensitive to SNW1/SKIP downregulation. Cell Mol Biol Lett 2011; 16:373-84. [PMID: 21461980 PMCID: PMC6275595 DOI: 10.2478/s11658-011-0012-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 03/28/2011] [Indexed: 12/22/2022] Open
Abstract
Pharmacological inhibition of protein kinases that are responsible for the phosphorylation of the carboxy-terminal domain (CTD) of RNA Pol II during transcription by 5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole (DRB) leads to severe inhibition of mRNA synthesis and activates p53. Transcription of the p53 effectors that are induced under these conditions, such as p21 or PUMA, must bypass the requirement for CTD phosphorylation by the positive elongation factor P-TEFb. Here, we have downregulated SNW1/SKIP, a splicing factor and a transcriptional co-regulator, which was found to interact with P-TEFb and synergistically affect Tat-dependent transcription elongation of HIV 1. Using the colon cancer derived cell line HCT116, we have found that both doxorubicin- and DRB-induced expression of p21 or PUMA is insensitive to SNW1 downregulation by siRNA. This suggests that transcription of stress response genes, unlike, e.g., the SNW1-sensitive mitosis-specific genes, can proceed uncoupled from regulators that normally function under physiological conditions.
Collapse
|
43
|
Sánchez-Álvarez M, Sánchez-Hernández N, Suñé C. Spatial Organization and Dynamics of Transcription Elongation and Pre-mRNA Processing in Live Cells. GENETICS RESEARCH INTERNATIONAL 2011; 2011:626081. [PMID: 22567362 PMCID: PMC3335512 DOI: 10.4061/2011/626081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 09/05/2011] [Indexed: 11/25/2022]
Abstract
During the last 30 years, systematic biochemical and functional studies have significantly expanded our knowledge of the transcriptional molecular components and the pre-mRNA processing machinery of the cell. However, our current understanding of how these functions take place spatiotemporally within the highly compartmentalized eukaryotic nucleus remains limited. Moreover, it is increasingly clear that “the whole is more than the sum of its parts” and that an understanding of the dynamic coregulation of genes is essential for fully characterizing complex biological phenomena and underlying diseases. Recent technological advances in light microscopy in addition to novel cell and molecular biology approaches have led to the development of new tools, which are being used to address these questions and may contribute to achieving an integrated and global understanding of how the genome works at a cellular level. Here, we review major hallmarks and novel insights in RNA polymerase II activity and pre-mRNA processing in the context of nuclear organization, as well as new concepts and challenges arising from our ability to gather extensive dynamic information at the single-cell resolution.
Collapse
Affiliation(s)
- Miguel Sánchez-Álvarez
- Dynamical Cell Systems Team, Section of Cellular and Molecular Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | | | | |
Collapse
|
44
|
Abstract
The visualization of cellular structures and components has become an invaluable tool in biological and medical sciences. Imaging subcellular compartments and single molecules within a cell has prompted the development of a wide range of sample preparation techniques as well as various microscope devices to obtain images with increased spatial resolution. Here, we present cryoFISH, a method for fluorescence in situ hybridization (FISH) on thin ( approximately 150 nm thick) cryosections from sucrose-embedded fixed cells or tissues. CryoFISH can be used in combination with immunodetection (IF) of other cellular components. The main advantages of cryoFISH and cryoIF over whole-cell labeling methods are increased spatial resolution with confocal microscopy, greater sensitivity of detection due to increased probe accessibility, and better image contrast. CryoFISH and cryoIF methods typically used on samples fixed in conditions that preserve ultrastructure, are compatible with the labeling of cells in their tissue context and are ideal for correlative studies that compare fluorescence with electron microscopy.
Collapse
|
45
|
Interchromatin granule clusters of the scorpionfly oocytes contain poly(A)+RNA, heterogeneous ribonucleoproteins A/B and mRNA export factor NXF1. Cell Biol Int 2010; 34:1163-70. [DOI: 10.1042/cbi20090434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Berretta R, Moscato P. Cancer biomarker discovery: the entropic hallmark. PLoS One 2010; 5:e12262. [PMID: 20805891 PMCID: PMC2923618 DOI: 10.1371/journal.pone.0012262] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 06/26/2010] [Indexed: 12/29/2022] Open
Abstract
Background It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-througput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases.
Collapse
Affiliation(s)
- Regina Berretta
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- Information Based Medicine Program, Hunter Medical Research Institute, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Pablo Moscato
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- Information Based Medicine Program, Hunter Medical Research Institute, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
- Australian Research Council Centre of Excellence in Bioinformatics, Callaghan, New South Wales, Australia
- * E-mail:
| |
Collapse
|
47
|
Abstract
Paraspeckles are a relatively new class of subnuclear bodies found in the interchromatin space of mammalian cells. They are RNA-protein structures formed by the interaction between a long nonprotein-coding RNA species, NEAT1/Men epsilon/beta, and members of the DBHS (Drosophila Behavior Human Splicing) family of proteins: P54NRB/NONO, PSPC1, and PSF/SFPQ. Paraspeckles are critical to the control of gene expression through the nuclear retention of RNA containing double-stranded RNA regions that have been subject to adenosine-to-inosine editing. Through this mechanism paraspeckles and their components may ultimately have a role in controlling gene expression during many cellular processes including differentiation, viral infection, and stress responses.
Collapse
Affiliation(s)
- Archa H Fox
- Western Australian Institute for Medical Research and Centre For Medical Research, University of Western Australia, Crawley, 6009 Western Australia, Australia.
| | | |
Collapse
|
48
|
Abstract
Eukaryotic gene expression is an intricate multistep process, regulated within the cell nucleus through the activation or repression of RNA synthesis, processing, cytoplasmic export, and translation into protein. The major regulators of gene expression are chromatin remodeling and transcription machineries that are locally recruited to genes. However, enzymatic activities that act on genes are not ubiquitously distributed throughout the nucleoplasm, but limited to specific and spatially defined foci that promote preferred higher-order chromatin arrangements. The positioning of genes within the nuclear landscape relative to specific functional landmarks plays an important role in gene regulation and disease.
Collapse
Affiliation(s)
- Carmelo Ferrai
- Genome Function Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital Campus, Du Cane Road, London, United Kingdom
| | | | | | | | | |
Collapse
|
49
|
Dow EC, Liu H, Rice AP. T-loop phosphorylated Cdk9 localizes to nuclear speckle domains which may serve as sites of active P-TEFb function and exchange between the Brd4 and 7SK/HEXIM1 regulatory complexes. J Cell Physiol 2010; 224:84-93. [PMID: 20201073 DOI: 10.1002/jcp.22096] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
P-TEFb functions to induce the elongation step of RNA polymerase II transcription by phosphorylating the carboxyl-terminal domain of the largest subunit of RNA polymerase II. Core P-TEFb is comprised of Cdk9 and a cyclin regulatory subunit, with Cyclin T1 being the predominant Cdk9-associated cyclin. The kinase activity of P-TEFb is dependent on phosphorylation of the Thr186 residue located within the T-loop domain of the Cdk9 subunit. Here, we used immunofluorescence deconvolution microscopy to examine the subcellular distribution of phospho-Thr186 Cdk9/Cyclin T1 P-TEFb heterodimers. We found that phospho-Thr186 Cdk9 displays a punctate distribution throughout the non-nucleolar nucleoplasm and it co-localizes with Cyclin T1 almost exclusively within nuclear speckle domains. Phospho-Thr186 Cdk9 predominantly co-localized with the hyperphosphorylated forms of RNA polymerase II. Transient expression of kinase-defective Cdk9 mutants revealed that neither is Thr186 phosphorylation or kinase activity required for Cdk9 speckle localization. Lastly, both the Brd4 and HEXIM1 proteins interact with P-TEFb at or very near speckle domains and treatment of cells with the Cdk9 inhibitor flavopiridol alters this distribution. These results indicate that the active form of P-TEFb resides in nuclear speckles and raises the possibility that speckles are sites of P-TEFb function and exchange between negative and positive P-TEFb regulatory complexes.
Collapse
Affiliation(s)
- Eugene C Dow
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | |
Collapse
|
50
|
Drobic B, Pérez-Cadahía B, Yu J, Kung SKP, Davie JR. Promoter chromatin remodeling of immediate-early genes is mediated through H3 phosphorylation at either serine 28 or 10 by the MSK1 multi-protein complex. Nucleic Acids Res 2010; 38:3196-208. [PMID: 20129940 PMCID: PMC2879512 DOI: 10.1093/nar/gkq030] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Upon activation of the ERK and p38 MAPK pathways, the MSK1/2-mediated nucleosomal response, including H3 phosphorylation at serine 28 or 10, is coupled with the induction of immediate-early (IE) gene transcription. The outcome of this response, varying with the stimuli and cellular contexts, ranges from neoplastic transformation to neuronal synaptic plasticity. Here, we used sequential co-immunoprecipitation assays and sequential chromatin immunoprecipitation (ChIP) assays on mouse fibroblast 10T1/2 and MSK1 knockdown 10T1/2 cells to show that H3 serine 28 and 10 phosphorylation leads to promoter remodeling. MSK1, in complexes with phospho-serine adaptor 14-3-3 proteins and BRG1 the ATPase subunit of the SWI/SNF remodeler, is recruited to the promoter of target genes by transcription factors such as Elk-1 or NF-kappaB. Following MSK1-mediated H3 phosphorylation, BRG1 associates with the promoter of target genes via 14-3-3 proteins, which act as scaffolds. The recruited SWI/SNF remodels nucleosomes at the promoter of IE genes enabling the binding of transcription factors like JUN and the onset of transcription.
Collapse
Affiliation(s)
- Bojan Drobic
- Department of Immunology, University of Manitoba, Manitoba Institute of Cell Biology, Winnipeg, Manitoba R3E 0V9, Canada
| | | | | | | | | |
Collapse
|