1
|
Osadska M, Selicky T, Kretova M, Jurcik J, Sivakova B, Cipakova I, Cipak L. The Interplay of Cohesin and RNA Processing Factors: The Impact of Their Alterations on Genome Stability. Int J Mol Sci 2022; 23:3939. [PMID: 35409298 PMCID: PMC8999970 DOI: 10.3390/ijms23073939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
Cohesin, a multi-subunit protein complex, plays important roles in sister chromatid cohesion, DNA replication, chromatin organization, gene expression, transcription regulation, and the recombination or repair of DNA damage. Recently, several studies suggested that the functions of cohesin rely not only on cohesin-related protein-protein interactions, their post-translational modifications or specific DNA modifications, but that some RNA processing factors also play an important role in the regulation of cohesin functions. Therefore, the mutations and changes in the expression of cohesin subunits or alterations in the interactions between cohesin and RNA processing factors have been shown to have an impact on cohesion, the fidelity of chromosome segregation and, ultimately, on genome stability. In this review, we provide an overview of the cohesin complex and its role in chromosome segregation, highlight the causes and consequences of mutations and changes in the expression of cohesin subunits, and discuss the RNA processing factors that participate in the regulation of the processes involved in chromosome segregation. Overall, an understanding of the molecular determinants of the interplay between cohesin and RNA processing factors might help us to better understand the molecular mechanisms ensuring the integrity of the genome.
Collapse
Affiliation(s)
- Michaela Osadska
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Tomas Selicky
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Miroslava Kretova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Jan Jurcik
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Barbara Sivakova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, 845 38 Bratislava, Slovakia;
| | - Ingrid Cipakova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Lubos Cipak
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| |
Collapse
|
2
|
Puvvula PK, Moon AM. Novel Cell-Penetrating Peptides Derived From Scaffold-Attachment- Factor A Inhibits Cancer Cell Proliferation and Survival. Front Oncol 2021; 11:621825. [PMID: 33859938 PMCID: PMC8042391 DOI: 10.3389/fonc.2021.621825] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Scaffold-attachment-factor A (SAFA) has important roles in many normal and pathologic cellular processes but the scope of its function in cancer cells is unknown. Here, we report dominant-negative activity of novel peptides derived from the SAP and RGG-domains of SAFA and their effects on proliferation, survival and the epigenetic landscape in a range of cancer cell types. The RGG-derived peptide dysregulates SAFA binding and regulation of alternatively spliced targets and decreases levels of key spliceosome proteins in a cell-type specific manner. In contrast, the SAP-derived peptide reduces active histone marks, promotes chromatin compaction, and activates the DNA damage response and cell death in a subset of cancer cell types. Our findings reveal an unprecedented function of SAFA-derived peptides in regulating diverse SAFA molecular functions as a tumor suppressive mechanism and demonstrate the potential therapeutic utility of SAFA-peptides in a wide range of cancer cells.
Collapse
Affiliation(s)
- Pavan Kumar Puvvula
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, United States
| | - Anne M Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, United States.,Department of Human Genetics, University of Utah, Salt Lake City, UT, United States.,The Mindich Child Health and Development Institute, Hess Center for Science and Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
3
|
Yao J, Ding D, Li X, Shen T, Fu H, Zhong H, Wei G, Ni T. Prevalent intron retention fine-tunes gene expression and contributes to cellular senescence. Aging Cell 2020; 19:e13276. [PMID: 33274830 PMCID: PMC7744961 DOI: 10.1111/acel.13276] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/24/2020] [Accepted: 10/18/2020] [Indexed: 12/20/2022] Open
Abstract
Intron retention (IR) is the least well‐understood alternative splicing type in animals, and its prevalence and function in physiological and pathological processes have long been underestimated. Cellular senescence contributes to individual aging and age‐related diseases and can also serve as an important cancer prevention mechanism. Dynamic IR events have been observed in senescence models and aged tissues; however, whether and how IR impacts senescence remain unclear. Through analyzing polyA+ RNA‐seq data from human replicative senescence models, we found IR was prevalent and dynamically regulated during senescence and IR changes negatively correlated with expression alteration of corresponding genes. We discovered that knocking down (KD) splicing factor U2AF1, which showed higher binding density to retained introns and decreased expression during senescence, led to senescence‐associated phenotypes and global IR changes. Intriguingly, U2AF1‐KD‐induced IR changes also negatively correlated with gene expression. Furthermore, we demonstrated that U2AF1‐mediated IR of specific gene (CPNE1 as an example) contributed to cellular senescence. Decreased expression of U2AF1, higher IR of CPNE1, and reduced expression of CPNE1 were also discovered in dermal fibroblasts with age. We discovered prevalent IR could fine‐tune gene expression and contribute to senescence‐associated phenotypes, largely extending the biological significance of IR.
Collapse
Affiliation(s)
- Jun Yao
- State Key Laboratory of Genetic Engineering Collaborative Innovation Center of Genetics and Development Human Phenome Institute School of Life Sciences Fudan University Shanghai P.R. China
| | - Dong Ding
- State Key Laboratory of Genetic Engineering Collaborative Innovation Center of Genetics and Development Human Phenome Institute School of Life Sciences Fudan University Shanghai P.R. China
| | - Xueping Li
- State Key Laboratory of Genetic Engineering Collaborative Innovation Center of Genetics and Development Human Phenome Institute School of Life Sciences Fudan University Shanghai P.R. China
| | - Ting Shen
- State Key Laboratory of Genetic Engineering Collaborative Innovation Center of Genetics and Development Human Phenome Institute School of Life Sciences Fudan University Shanghai P.R. China
| | - Haihui Fu
- State Key Laboratory of Genetic Engineering Collaborative Innovation Center of Genetics and Development Human Phenome Institute School of Life Sciences Fudan University Shanghai P.R. China
| | - Hua Zhong
- Department of Population Health NYU Langone School of Medicine New York NY USA
| | - Gang Wei
- State Key Laboratory of Genetic Engineering Collaborative Innovation Center of Genetics and Development Human Phenome Institute School of Life Sciences Fudan University Shanghai P.R. China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering Collaborative Innovation Center of Genetics and Development Human Phenome Institute School of Life Sciences Fudan University Shanghai P.R. China
| |
Collapse
|
4
|
Petasny M, Bentata M, Pawellek A, Baker M, Kay G, Salton M. Splicing to Keep Cycling: The Importance of Pre-mRNA Splicing during the Cell Cycle. Trends Genet 2020; 37:266-278. [PMID: 32950269 DOI: 10.1016/j.tig.2020.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/09/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Pre-mRNA splicing is a fundamental process in mammalian gene expression, and alternative splicing plays an extensive role in generating protein diversity. Because the majority of genes undergo pre-mRNA splicing, most cellular processes depend on proper spliceosome function. We focus on the cell cycle and describe its dependence on pre-mRNA splicing and accurate alternative splicing. We outline the key cell-cycle factors and their known alternative splicing isoforms. We discuss different levels of pre-mRNA splicing regulation such as post-translational modifications and changes in the expression of splicing factors. We describe the effect of chromatin dynamics on pre-mRNA splicing during the cell cycle. In addition, we focus on spliceosome component SF3B1, which is mutated in many types of cancer, and describe the link between SF3B1 and its inhibitors and the cell cycle.
Collapse
Affiliation(s)
- Mayra Petasny
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Mercedes Bentata
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Andrea Pawellek
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Mai Baker
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Gillian Kay
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| |
Collapse
|
5
|
Kováčová T, Souček P, Hujová P, Freiberger T, Grodecká L. Splicing Enhancers at Intron-Exon Borders Participate in Acceptor Splice Sites Recognition. Int J Mol Sci 2020; 21:ijms21186553. [PMID: 32911621 PMCID: PMC7554774 DOI: 10.3390/ijms21186553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/05/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023] Open
Abstract
Acceptor splice site recognition (3′ splice site: 3′ss) is a fundamental step in precursor messenger RNA (pre-mRNA) splicing. Generally, the U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor (U2AF) heterodimer recognizes the 3′ss, of which U2AF35 has a dual function: (i) It binds to the intron–exon border of some 3′ss and (ii) mediates enhancer-binding splicing activators’ interactions with the spliceosome. Alternative mechanisms for 3′ss recognition have been suggested, yet they are still not thoroughly understood. Here, we analyzed 3′ss recognition where the intron–exon border is bound by a ubiquitous splicing regulator SRSF1. Using the minigene analysis of two model exons and their mutants, BRCA2 exon 12 and VARS2 exon 17, we showed that the exon inclusion correlated much better with the predicted SRSF1 affinity than 3′ss quality, which were assessed using the Catalog of Inferred Sequence Binding Preferences of RNA binding proteins (CISBP-RNA) database and maximum entropy algorithm (MaxEnt) predictor and the U2AF35 consensus matrix, respectively. RNA affinity purification proved SRSF1 binding to the model 3′ss. On the other hand, knockdown experiments revealed that U2AF35 also plays a role in these exons’ inclusion. Most probably, both factors stochastically bind the 3′ss, supporting exon recognition, more apparently in VARS2 exon 17. Identifying splicing activators as 3′ss recognition factors is crucial for both a basic understanding of splicing regulation and human genetic diagnostics when assessing variants’ effects on splicing.
Collapse
Affiliation(s)
- Tatiana Kováčová
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic; (T.K.); (P.S.); (P.H.); (T.F.)
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Přemysl Souček
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic; (T.K.); (P.S.); (P.H.); (T.F.)
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Pavla Hujová
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic; (T.K.); (P.S.); (P.H.); (T.F.)
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Tomáš Freiberger
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic; (T.K.); (P.S.); (P.H.); (T.F.)
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Lucie Grodecká
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic; (T.K.); (P.S.); (P.H.); (T.F.)
- Correspondence:
| |
Collapse
|
6
|
Chang JW, Yeh HS, Park M, Erber L, Sun J, Cheng S, Bui AM, Fahmi NA, Nasti R, Kuang R, Chen Y, Zhang W, Yong J. mTOR-regulated U2af1 tandem exon splicing specifies transcriptome features for translational control. Nucleic Acids Res 2019; 47:10373-10387. [PMID: 31504847 PMCID: PMC6821156 DOI: 10.1093/nar/gkz761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/23/2019] [Accepted: 08/23/2019] [Indexed: 01/13/2023] Open
Abstract
U2 auxiliary factor 1 (U2AF1) functions in 3′-splice site selection during pre-mRNA processing. Alternative usage of duplicated tandem exons in U2AF1 produces two isoforms, U2AF1a and U2AF1b, but their functional differences are unappreciated due to their homology. Through integrative approaches of genome editing, customized-transcriptome profiling and crosslinking-mediated interactome analyses, we discovered that the expression of U2AF1 isoforms is controlled by mTOR and they exhibit a distinctive molecular profile for the splice site and protein interactomes. Mechanistic dissection of mutually exclusive alternative splicing events revealed that U2AF1 isoforms’ inherent differential preferences of nucleotide sequences and their stoichiometry determine the 3′-splice site. Importantly, U2AF1a-driven transcriptomes feature alternative splicing events in the 5′-untranslated region (5′-UTR) that are favorable for translation. These findings unveil distinct roles of duplicated tandem exon-derived U2AF1 isoforms in the regulation of the transcriptome and suggest U2AF1a-driven 5′-UTR alternative splicing as a molecular mechanism of mTOR-regulated translational control.
Collapse
Affiliation(s)
- Jae-Woong Chang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Hsin-Sung Yeh
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Meeyeon Park
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Luke Erber
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Jiao Sun
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Sze Cheng
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Alexander M Bui
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Naima Ahmed Fahmi
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Ryan Nasti
- Department of Genetics, Cell and Developmental Biology, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Rui Kuang
- Department of Computer Science and Engineering, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Wei Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Yin F, Wang J, Zhao K, Xin C, Shi Y, Zeng X, Xu H, Li J, Chen Q. The significance of PA28γ and U2AF1 in oral mucosal carcinogenesis. Oral Dis 2019; 26:53-61. [PMID: 31605415 DOI: 10.1111/odi.13213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/20/2019] [Accepted: 10/06/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Fengying Yin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management West China Hospital of Stomatology Sichuan University Chengdu China
| | - Jiongke Wang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management West China Hospital of Stomatology Sichuan University Chengdu China
| | - Kui Zhao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management West China Hospital of Stomatology Sichuan University Chengdu China
| | - Chuan Xin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management West China Hospital of Stomatology Sichuan University Chengdu China
| | - Yujie Shi
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management West China Hospital of Stomatology Sichuan University Chengdu China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management West China Hospital of Stomatology Sichuan University Chengdu China
| | - Hao Xu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management West China Hospital of Stomatology Sichuan University Chengdu China
| | - Jing Li
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management West China Hospital of Stomatology Sichuan University Chengdu China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management West China Hospital of Stomatology Sichuan University Chengdu China
| |
Collapse
|
8
|
Dvinge H, Guenthoer J, Porter PL, Bradley RK. RNA components of the spliceosome regulate tissue- and cancer-specific alternative splicing. Genome Res 2019; 29:1591-1604. [PMID: 31434678 PMCID: PMC6771400 DOI: 10.1101/gr.246678.118] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 08/15/2019] [Indexed: 01/08/2023]
Abstract
Alternative splicing of pre-mRNAs plays a pivotal role during the establishment and maintenance of human cell types. Characterizing the trans-acting regulatory proteins that control alternative splicing has therefore been the focus of much research. Recent work has established that even core protein components of the spliceosome, which are required for splicing to proceed, can nonetheless contribute to splicing regulation by modulating splice site choice. We here show that the RNA components of the spliceosome likewise influence alternative splicing decisions. Although these small nuclear RNAs (snRNAs), termed U1, U2, U4, U5, and U6 snRNA, are present in equal stoichiometry within the spliceosome, we found that their relative levels vary by an order of magnitude during development, across tissues, and across cancer samples. Physiologically relevant perturbation of individual snRNAs drove widespread gene-specific differences in alternative splicing but not transcriptome-wide splicing failure. Genes that were particularly sensitive to variations in snRNA abundance in a breast cancer cell line model were likewise preferentially misspliced within a clinically diverse cohort of invasive breast ductal carcinomas. As aberrant mRNA splicing is prevalent in many cancers, we propose that a full understanding of such dysregulated pre-mRNA processing requires study of snRNAs, as well as protein splicing factors. Together, our data show that the RNA components of the spliceosome are not merely basal factors, as has long been assumed. Instead, these noncoding RNAs constitute a previously uncharacterized layer of regulation of alternative splicing, and contribute to the establishment of global splicing programs in both healthy and malignant cells.
Collapse
Affiliation(s)
- Heidi Dvinge
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Jamie Guenthoer
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Peggy L Porter
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
9
|
Zhang J, Zhao H, Wu K, Peng Y, Han X, Zhang H, Liang L, Chen H, Hu J, Qu X, Zhang S, Chen L, Liu J. Knockdown of spliceosome U2AF1 significantly inhibits the development of human erythroid cells. J Cell Mol Med 2019; 23:5076-5086. [PMID: 31144421 PMCID: PMC6652819 DOI: 10.1111/jcmm.14370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/14/2019] [Accepted: 04/21/2019] [Indexed: 11/30/2022] Open
Abstract
U2AF1 (U2AF35) is the small subunit of the U2 auxiliary factor (U2AF) that constitutes the U2 snRNP (small nuclear ribonucleoproteins) of the spliceosome. Here, we examined the function of U2AF1 in human erythropoiesis. First, we examined the expression of U2AF1 during in vitro human erythropoiesis and showed that U2AF1 was highly expressed in the erythroid progenitor burst-forming-unit erythroid (BFU-E) cell stage. A colony assay revealed that U2AF1 knockdown cells failed to form BFU-E and colony-forming-unit erythroid (CFU-E) colonies. Our results further showed that knockdown of U2AF1 significantly inhibited cell growth and induced apoptosis in erythropoiesis. Additionally, knockdown of U2AF1 also delayed terminal erythroid differentiation. To explore the molecular basis of the impaired function of erythroid development, RNA-seq was performed and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis results showed that several biological pathways, including the p53 signalling pathway, MAPK signalling pathway and haematopoietic cell lineage, were involved, with the p53 signalling pathway showing the greatest involvement. Western blot analysis revealed an increase in the protein levels of downstream targets of p53 following U2AF1 knockdown. The data further showed that depletion of U2AF1 altered alternatively spliced apoptosis-associated gene transcripts in CFU-E cells. Our findings elucidate the role of U2AF1 in human erythropoiesis and reveal the underlying mechanisms.
Collapse
Affiliation(s)
- Jieying Zhang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Huizhi Zhao
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Kunlu Wu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Yuanliang Peng
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Xu Han
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Huan Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Long Liang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Huiyong Chen
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jingping Hu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Xiaoli Qu
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Shijie Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Lixiang Chen
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Jing Liu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
10
|
Pellacani C, Bucciarelli E, Renda F, Hayward D, Palena A, Chen J, Bonaccorsi S, Wakefield JG, Gatti M, Somma MP. Splicing factors Sf3A2 and Prp31 have direct roles in mitotic chromosome segregation. eLife 2018; 7:40325. [PMID: 30475206 PMCID: PMC6287947 DOI: 10.7554/elife.40325] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/14/2018] [Indexed: 12/26/2022] Open
Abstract
Several studies have shown that RNAi-mediated depletion of splicing factors (SFs) results in mitotic abnormalities. However, it is currently unclear whether these abnormalities reflect defective splicing of specific pre-mRNAs or a direct role of the SFs in mitosis. Here, we show that two highly conserved SFs, Sf3A2 and Prp31, are required for chromosome segregation in both Drosophila and human cells. Injections of anti-Sf3A2 and anti-Prp31 antibodies into Drosophila embryos disrupt mitotic division within 1 min, arguing strongly against a splicing-related mitotic function of these factors. We demonstrate that both SFs bind spindle microtubules (MTs) and the Ndc80 complex, which in Sf3A2- and Prp31-depleted cells is not tightly associated with the kinetochores; in HeLa cells the Ndc80/HEC1-SF interaction is restricted to the M phase. These results indicate that Sf3A2 and Prp31 directly regulate interactions among kinetochores, spindle microtubules and the Ndc80 complex in both Drosophila and human cells.
Collapse
Affiliation(s)
- Claudia Pellacani
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Roma, Italy
| | - Elisabetta Bucciarelli
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Roma, Italy
| | - Fioranna Renda
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Roma, Italy
| | - Daniel Hayward
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Antonella Palena
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Roma, Italy
| | - Jack Chen
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Silvia Bonaccorsi
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Roma, Italy
| | - James G Wakefield
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Maurizio Gatti
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Roma, Italy.,Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Roma, Italy
| | - Maria Patrizia Somma
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Roma, Italy
| |
Collapse
|
11
|
Merkuri F, Fish JL. Developmental processes regulate craniofacial variation in disease and evolution. Genesis 2018; 57:e23249. [PMID: 30207415 DOI: 10.1002/dvg.23249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/29/2018] [Accepted: 09/06/2018] [Indexed: 12/30/2022]
Abstract
Variation in development mediates phenotypic differences observed in evolution and disease. Although the mechanisms underlying phenotypic variation are still largely unknown, recent research suggests that variation in developmental processes may play a key role. Developmental processes mediate genotype-phenotype relationships and consequently play an important role regulating phenotypes. In this review, we provide an example of how shared and interacting developmental processes may explain convergence of phenotypes in spliceosomopathies and ribosomopathies. These data also suggest a shared pathway to disease treatment. We then discuss three major mechanisms that contribute to variation in developmental processes: genetic background (gene-gene interactions), gene-environment interactions, and developmental stochasticity. Finally, we comment on evolutionary alterations to developmental processes, and the evolution of disease buffering mechanisms.
Collapse
Affiliation(s)
- Fjodor Merkuri
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts
| | - Jennifer L Fish
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts
| |
Collapse
|
12
|
Kim S, Park C, Jun Y, Lee S, Jung Y, Kim J. Integrative Profiling of Alternative Splicing Induced by U2AF1 S34F Mutation in Lung Adenocarcinoma Reveals a Mechanistic Link to Mitotic Stress. Mol Cells 2018; 41:733-741. [PMID: 29991672 PMCID: PMC6125417 DOI: 10.14348/molcells.2018.0176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 11/27/2022] Open
Abstract
Mutations in spliceosome components have been implicated in carcinogenesis of various types of cancer. One of the most frequently found is U2AF1 S34F missense mutation. Functional analyses of this mutation have been largely limited to hematological malignancies although the mutation is also frequently seen in other cancer types including lung adenocarcinoma (LUAD). We examined the impact of knockdown (KD) of wild type (wt) U2AF1 and ectopic expression of two splice variant S34F mutant proteins in terms of alternative splicing (AS) pattern and cell cycle progression in A549 lung cancer cells. We demonstrate that induction of distinct AS events and disruption of mitosis at distinct sub-stages result from KD and ectopic expression of the mutant proteins. Importantly, when compared with the splicing pattern seen in LUAD patients with U2AF1 S34F mutation, ectopic expression of S34F mutants but not KD was shown to result in common AS events in several genes involved in cell cycle progression. Our study thus points to an active role of U2AF1 S34F mutant protein in inducing cell cycle dysregulation and mitotic stress. In addition, alternatively spliced genes which we describe here may represent novel potential markers of lung cancer development.
Collapse
Affiliation(s)
- Suyeon Kim
- Ewha Research Center for Systems Biology (ERCSB), Seoul 03760,
Korea
- Department of Life Science, Ewha Womans University, Seoul 03760,
Korea
| | - Charny Park
- Research Institute, National Cancer Center, Goyang 10408,
Korea
| | - Yukyung Jun
- Ewha Research Center for Systems Biology (ERCSB), Seoul 03760,
Korea
- Department of Life Science, Ewha Womans University, Seoul 03760,
Korea
| | - Sanghyuk Lee
- Ewha Research Center for Systems Biology (ERCSB), Seoul 03760,
Korea
- Department of Life Science, Ewha Womans University, Seoul 03760,
Korea
| | - Yeonjoo Jung
- Ewha Research Center for Systems Biology (ERCSB), Seoul 03760,
Korea
- Department of Life Science, Ewha Womans University, Seoul 03760,
Korea
| | - Jaesang Kim
- Ewha Research Center for Systems Biology (ERCSB), Seoul 03760,
Korea
- Department of Life Science, Ewha Womans University, Seoul 03760,
Korea
| |
Collapse
|
13
|
Dvinge H. Regulation of alternative
mRNA
splicing: old players and new perspectives. FEBS Lett 2018; 592:2987-3006. [DOI: 10.1002/1873-3468.13119] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Heidi Dvinge
- Department of Biomolecular Chemistry School of Medicine and Public Health University of Wisconsin‐Madison WI USA
| |
Collapse
|
14
|
Kralovicova J, Vorechovsky I. Alternative splicing of U2AF1 reveals a shared repression mechanism for duplicated exons. Nucleic Acids Res 2016; 45:417-434. [PMID: 27566151 PMCID: PMC5224494 DOI: 10.1093/nar/gkw733] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 12/30/2022] Open
Abstract
The auxiliary factor of U2 small nuclear ribonucleoprotein (U2AF) facilitates branch point (BP) recognition and formation of lariat introns. The gene for the 35-kD subunit of U2AF gives rise to two protein isoforms (termed U2AF35a and U2AF35b) that are encoded by alternatively spliced exons 3 and Ab, respectively. The splicing recognition sequences of exon 3 are less favorable than exon Ab, yet U2AF35a expression is higher than U2AF35b across tissues. We show that U2AF35b repression is facilitated by weak, closely spaced BPs next to a long polypyrimidine tract of exon Ab. Each BP lacked canonical uridines at position -2 relative to the BP adenines, with efficient U2 base-pairing interactions predicted only for shifted registers reminiscent of programmed ribosomal frameshifting. The BP cluster was compensated by interactions involving unpaired cytosines in an upstream, EvoFold-predicted stem loop (termed ESL) that binds FUBP1/2. Exon Ab inclusion correlated with predicted free energies of mutant ESLs, suggesting that the ESL operates as a conserved rheostat between long inverted repeats upstream of each exon. The isoform-specific U2AF35 expression was U2AF65-dependent, required interactions between the U2AF-homology motif (UHM) and the α6 helix of U2AF35, and was fine-tuned by exon Ab/3 variants. Finally, we identify tandem homologous exons regulated by U2AF and show that their preferential responses to U2AF65-related proteins and SRSF3 are associated with unpaired pre-mRNA segments upstream of U2AF-repressed 3′ss. These results provide new insights into tissue-specific subfunctionalization of duplicated exons in vertebrate evolution and expand the repertoire of exon repression mechanisms that control alternative splicing.
Collapse
Affiliation(s)
- Jana Kralovicova
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Igor Vorechovsky
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| |
Collapse
|
15
|
Abstract
Examples of associations between human disease and defects in pre-messenger RNA splicing/alternative splicing are accumulating. Although many alterations are caused by mutations in splicing signals or regulatory sequence elements, recent studies have noted the disruptive impact of mutated generic spliceosome components and splicing regulatory proteins. This review highlights recent progress in our understanding of how the altered splicing function of RNA-binding proteins contributes to myelodysplastic syndromes, cancer, and neuropathologies.
Collapse
Affiliation(s)
- Benoit Chabot
- Centre of Excellence in RNA Biology, Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Lulzim Shkreta
- Centre of Excellence in RNA Biology, Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
16
|
Kralovicova J, Knut M, Cross NCP, Vorechovsky I. Exon-centric regulation of ATM expression is population-dependent and amenable to antisense modification by pseudoexon targeting. Sci Rep 2016; 6:18741. [PMID: 26732650 PMCID: PMC4702124 DOI: 10.1038/srep18741] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 11/25/2015] [Indexed: 01/10/2023] Open
Abstract
ATM is an important cancer susceptibility gene that encodes a critical apical kinase of the DNA damage response (DDR) pathway. We show that a key nonsense-mediated RNA decay switch exon (NSE) in ATM is repressed by U2AF, PUF60 and hnRNPA1. The NSE activation was haplotype-specific and was most promoted by cytosine at rs609621 in the NSE 3' splice-site (3'ss), which is predominant in high cancer risk populations. NSE levels were deregulated in leukemias and were influenced by the identity of U2AF35 residue 34. We also identify splice-switching oligonucleotides (SSOs) that exploit competition of adjacent pseudoexons to modulate NSE levels. The U2AF-regulated exon usage in the ATM signalling pathway was centred on the MRN/ATM-CHEK2-CDC25-cdc2/cyclin-B axis and preferentially involved transcripts implicated in cancer-associated gene fusions and chromosomal translocations. These results reveal important links between 3'ss control and ATM-dependent responses to double-strand DNA breaks, demonstrate functional plasticity of intronic variants and illustrate versatility of intronic SSOs that target pseudo-3'ss to modify gene expression.
Collapse
Affiliation(s)
- Jana Kralovicova
- University of Southampton Faculty of Medicine Southampton SO16 6YD United Kingdom
| | - Marcin Knut
- University of Southampton Faculty of Medicine Southampton SO16 6YD United Kingdom
| | - Nicholas C. P. Cross
- University of Southampton Faculty of Medicine Southampton SO16 6YD United Kingdom
- Wessex Regional Genetics Laboratory Salisbury Hospital Salisbury SP2 8BJ United Kingdom
| | - Igor Vorechovsky
- University of Southampton Faculty of Medicine Southampton SO16 6YD United Kingdom
| |
Collapse
|
17
|
Mutagenesis of ARS2 Domains To Assess Possible Roles in Cell Cycle Progression and MicroRNA and Replication-Dependent Histone mRNA Biogenesis. Mol Cell Biol 2015; 35:3753-67. [PMID: 26303529 DOI: 10.1128/mcb.00272-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/19/2015] [Indexed: 11/20/2022] Open
Abstract
ARS2 is a regulator of RNA polymerase II transcript processing through its role in the maturation of distinct nuclear cap-binding complex (CBC)-controlled RNA families. In this study, we examined ARS2 domain function in transcript processing. Structural modeling based on the plant ARS2 orthologue, SERRATE, revealed 2 previously uncharacterized domains in mammalian ARS2: an N-terminal domain of unknown function (DUF3546), which is also present in SERRATE, and an RNA recognition motif (RRM) that is present in metazoan ARS2 but not in plants. Both the DUF3546 and zinc finger domain (ZnF) were required for association with microRNA and replication-dependent histone mRNA. Mutations in the ZnF disrupted interaction with FLASH, a key component in histone pre-mRNA processing. Mutations targeting the Mid domain implicated it in DROSHA interaction and microRNA biogenesis. The unstructured C terminus was required for interaction with the CBC protein CBP20, while the RRM was required for cell cycle progression and for binding to FLASH. Together, our results support a bridging model in which ARS2 plays a central role in RNA recognition and processing through multiple protein and RNA interactions.
Collapse
|
18
|
Dolatshad H, Pellagatti A, Fernandez-Mercado M, Yip BH, Malcovati L, Attwood M, Przychodzen B, Sahgal N, Kanapin AA, Lockstone H, Scifo L, Vandenberghe P, Papaemmanuil E, Smith CWJ, Campbell PJ, Ogawa S, Maciejewski JP, Cazzola M, Savage KI, Boultwood J. Disruption of SF3B1 results in deregulated expression and splicing of key genes and pathways in myelodysplastic syndrome hematopoietic stem and progenitor cells. Leukemia 2015; 29:1092-103. [PMID: 25428262 PMCID: PMC4430703 DOI: 10.1038/leu.2014.331] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/30/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023]
Abstract
The splicing factor SF3B1 is the most commonly mutated gene in the myelodysplastic syndrome (MDS), particularly in patients with refractory anemia with ring sideroblasts (RARS). We investigated the functional effects of SF3B1 disruption in myeloid cell lines: SF3B1 knockdown resulted in growth inhibition, cell cycle arrest and impaired erythroid differentiation and deregulation of many genes and pathways, including cell cycle regulation and RNA processing. MDS is a disorder of the hematopoietic stem cell and we thus studied the transcriptome of CD34(+) cells from MDS patients with SF3B1 mutations using RNA sequencing. Genes significantly differentially expressed at the transcript and/or exon level in SF3B1 mutant compared with wild-type cases include genes that are involved in MDS pathogenesis (ASXL1 and CBL), iron homeostasis and mitochondrial metabolism (ALAS2, ABCB7 and SLC25A37) and RNA splicing/processing (PRPF8 and HNRNPD). Many genes regulated by a DNA damage-induced BRCA1-BCLAF1-SF3B1 protein complex showed differential expression/splicing in SF3B1 mutant cases. This is the first study to determine the target genes of SF3B1 mutation in MDS CD34(+) cells. Our data indicate that SF3B1 has a critical role in MDS by affecting the expression and splicing of genes involved in specific cellular processes/pathways, many of which are relevant to the known RARS pathophysiology, suggesting a causal link.
Collapse
Affiliation(s)
- H Dolatshad
- LLR Molecular Haematology Unit, NDCLS, RDM, University of Oxford, Oxford, UK
| | - A Pellagatti
- LLR Molecular Haematology Unit, NDCLS, RDM, University of Oxford, Oxford, UK
| | - M Fernandez-Mercado
- LLR Molecular Haematology Unit, NDCLS, RDM, University of Oxford, Oxford, UK
| | - B H Yip
- LLR Molecular Haematology Unit, NDCLS, RDM, University of Oxford, Oxford, UK
| | - L Malcovati
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| | - M Attwood
- LLR Molecular Haematology Unit, NDCLS, RDM, University of Oxford, Oxford, UK
| | - B Przychodzen
- Department of Translational Haematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - N Sahgal
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - A A Kanapin
- Department of Oncology, University of Oxford, Oxford, UK
| | - H Lockstone
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - L Scifo
- LLR Molecular Haematology Unit, NDCLS, RDM, University of Oxford, Oxford, UK
| | - P Vandenberghe
- Center for Human Genetics, Katholieke Universiteit Leuven/University Hospital Leuven, Leuven, Belgium
| | - E Papaemmanuil
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - C W J Smith
- Department of Biochemistry, Downing Site, University of Cambridge, Cambridge, UK
| | - P J Campbell
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - S Ogawa
- Cancer Genomics Projects, Graduate School of Medicine, Tokyo, Japan
| | - J P Maciejewski
- Department of Translational Haematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - M Cazzola
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| | - K I Savage
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - J Boultwood
- LLR Molecular Haematology Unit, NDCLS, RDM, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Kralovicova J, Knut M, Cross NCP, Vorechovsky I. Identification of U2AF(35)-dependent exons by RNA-Seq reveals a link between 3' splice-site organization and activity of U2AF-related proteins. Nucleic Acids Res 2015; 43:3747-63. [PMID: 25779042 PMCID: PMC4402522 DOI: 10.1093/nar/gkv194] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 02/24/2015] [Indexed: 01/05/2023] Open
Abstract
The auxiliary factor of U2 small nuclear RNA (U2AF) is a heterodimer consisting of 65- and 35-kD proteins that bind the polypyrimidine tract (PPT) and AG dinucleotides at the 3′ splice site (3′ss). The gene encoding U2AF35 (U2AF1) is alternatively spliced, giving rise to two isoforms U2AF35a and U2AF35b. Here, we knocked down U2AF35 and each isoform and characterized transcriptomes of HEK293 cells with varying U2AF35/U2AF65 and U2AF35a/b ratios. Depletion of both isoforms preferentially modified alternative RNA processing events without widespread failure to recognize 3′ss or constitutive exons. Over a third of differentially used exons were terminal, resulting largely from the use of known alternative polyadenylation (APA) sites. Intronic APA sites activated in depleted cultures were mostly proximal whereas tandem 3′UTR APA was biased toward distal sites. Exons upregulated in depleted cells were preceded by longer AG exclusion zones and PPTs than downregulated or control exons and were largely activated by PUF60 and repressed by CAPERα. The U2AF(35) repression and activation was associated with a significant interchange in the average probabilities to form single-stranded RNA in the optimal PPT and branch site locations and sequences further upstream. Although most differentially used exons were responsive to both U2AF subunits and their inclusion correlated with U2AF levels, a small number of transcripts exhibited distinct responses to U2AF35a and U2AF35b, supporting the existence of isoform-specific interactions. These results provide new insights into function of U2AF and U2AF35 in alternative RNA processing.
Collapse
Affiliation(s)
- Jana Kralovicova
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Marcin Knut
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Nicholas C P Cross
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury SP2 8BJ, UK
| | - Igor Vorechovsky
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| |
Collapse
|
20
|
Pawellek A, McElroy S, Samatov T, Mitchell L, Woodland A, Ryder U, Gray D, Lührmann R, Lamond AI. Identification of small molecule inhibitors of pre-mRNA splicing. J Biol Chem 2014; 289:34683-98. [PMID: 25281741 PMCID: PMC4263873 DOI: 10.1074/jbc.m114.590976] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/02/2014] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic pre-mRNA splicing is an essential step in gene expression for all genes that contain introns. In contrast to transcription and translation, few well characterized chemical inhibitors are available with which to dissect the splicing process, particularly in cells. Therefore, the identification of specific small molecules that either inhibit or modify pre-mRNA splicing would be valuable for research and potentially also for therapeutic applications. We have screened a highly curated library of 71,504 drug-like small molecules using a high throughput in vitro splicing assay. This identified 10 new compounds that both inhibit pre-mRNA splicing in vitro and modify splicing of endogenous pre-mRNA in cells. One of these splicing modulators, DDD00107587 (termed "madrasin," i.e. 2-((7methoxy-4-methylquinazolin-2-yl)amino)-5,6-dimethylpyrimidin-4(3H)-one RNAsplicing inhibitor), was studied in more detail. Madrasin interferes with the early stages of spliceosome assembly and stalls spliceosome assembly at the A complex. Madrasin is cytotoxic at higher concentrations, although at lower concentrations it induces cell cycle arrest, promotes a specific reorganization of subnuclear protein localization, and modulates splicing of multiple pre-mRNAs in both HeLa and HEK293 cells.
Collapse
Affiliation(s)
| | - Stuart McElroy
- the Drug Discovery Unit, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom and
| | - Timur Samatov
- the Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Lee Mitchell
- the Drug Discovery Unit, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom and
| | - Andrew Woodland
- the Drug Discovery Unit, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom and
| | - Ursula Ryder
- From the Centre of Gene Regulation and Expression and
| | - David Gray
- the Drug Discovery Unit, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom and
| | - Reinhard Lührmann
- the Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | |
Collapse
|
21
|
van der Lelij P, Stocsits RR, Ladurner R, Petzold G, Kreidl E, Koch B, Schmitz J, Neumann B, Ellenberg J, Peters JM. SNW1 enables sister chromatid cohesion by mediating the splicing of sororin and APC2 pre-mRNAs. EMBO J 2014; 33:2643-58. [PMID: 25257309 DOI: 10.15252/embj.201488202] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Although splicing is essential for the expression of most eukaryotic genes, inactivation of splicing factors causes specific defects in mitosis. The molecular cause of this defect is unknown. Here, we show that the spliceosome subunits SNW1 and PRPF8 are essential for sister chromatid cohesion in human cells. A transcriptome-wide analysis revealed that SNW1 or PRPF8 depletion affects the splicing of specific introns in a subset of pre-mRNAs, including pre-mRNAs encoding the cohesion protein sororin and the APC/C subunit APC2. SNW1 depletion causes cohesion defects predominantly by reducing sororin levels, which causes destabilisation of cohesin on DNA. SNW1 depletion also reduces APC/C activity and contributes to cohesion defects indirectly by delaying mitosis and causing "cohesion fatigue". Simultaneous expression of sororin and APC2 from intron-less cDNAs restores cohesion in SNW1-depleted cells. These results indicate that the spliceosome is required for mitosis because it enables expression of genes essential for cohesion. Our transcriptome-wide identification of retained introns in SNW1- and PRPF8-depleted cells may help to understand the aetiology of diseases associated with splicing defects, such as retinosa pigmentosum and cancer.
Collapse
Affiliation(s)
| | | | - Rene Ladurner
- IMP Research Institute of Molecular Pathology, Vienna, Austria
| | - Georg Petzold
- IMP Research Institute of Molecular Pathology, Vienna, Austria
| | - Emanuel Kreidl
- IMP Research Institute of Molecular Pathology, Vienna, Austria
| | - Birgit Koch
- IMP Research Institute of Molecular Pathology, Vienna, Austria EMBL Heidelberg, Heidelberg, Germany
| | - Julia Schmitz
- IMP Research Institute of Molecular Pathology, Vienna, Austria
| | | | | | | |
Collapse
|
22
|
Kralovicova J, Lages A, Patel A, Dhir A, Buratti E, Searle M, Vorechovsky I. Optimal antisense target reducing INS intron 1 retention is adjacent to a parallel G quadruplex. Nucleic Acids Res 2014; 42:8161-73. [PMID: 24944197 PMCID: PMC4081105 DOI: 10.1093/nar/gku507] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Splice-switching oligonucleotides (SSOs) have been widely used to inhibit exon usage
but antisense strategies that promote removal of entire introns to increase
splicing-mediated gene expression have not been developed. Here we show reduction of
INS intron 1 retention by SSOs that bind transcripts derived from
a human haplotype expressing low levels of proinsulin. This haplotype is tagged by a
polypyrimidine tract variant rs689 that decreases the efficiency of
intron 1 splicing and increases the relative abundance of mRNAs with extended 5'
untranslated region (5' UTR), which curtails translation. Co-expression of
haplotype-specific reporter constructs with SSOs bound to splicing regulatory motifs
and decoy splice sites in primary transcripts revealed a motif that significantly
reduced intron 1-containing mRNAs. Using an antisense microwalk at a single
nucleotide resolution, the optimal target was mapped to a splicing silencer
containing two pseudoacceptor sites sandwiched between predicted RNA guanine (G)
quadruplex structures. Circular dichroism spectroscopy and nuclear magnetic resonance
of synthetic G-rich oligoribonucleotide tracts derived from this region showed
formation of a stable parallel 2-quartet G-quadruplex on the 3' side of the antisense
retention target and an equilibrium between quadruplexes and stable hairpin-loop
structures bound by optimal SSOs. This region interacts with heterogeneous nuclear
ribonucleoproteins F and H that may interfere with conformational transitions
involving the antisense target. The SSO-assisted promotion of weak intron removal
from the 5' UTR through competing noncanonical and canonical RNA structures may
facilitate development of novel strategies to enhance gene expression.
Collapse
Affiliation(s)
- Jana Kralovicova
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Ana Lages
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Alpa Patel
- University of Nottingham, School of Chemistry, Centre for Biomolecular Sciences, Nottingham NG7 2RD, UK
| | | | | | - Mark Searle
- University of Nottingham, School of Chemistry, Centre for Biomolecular Sciences, Nottingham NG7 2RD, UK
| | - Igor Vorechovsky
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| |
Collapse
|
23
|
Mirabella F, Murison A, Aronson LI, Wardell CP, Thompson AJ, Hanrahan SJ, Fok JHL, Pawlyn C, Kaiser MF, Walker BA, Davies FE, Morgan GJ. A novel functional role for MMSET in RNA processing based on the link between the REIIBP isoform and its interaction with the SMN complex. PLoS One 2014; 9:e99493. [PMID: 24923560 PMCID: PMC4055699 DOI: 10.1371/journal.pone.0099493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/15/2014] [Indexed: 11/18/2022] Open
Abstract
The chromosomal translocation t(4;14) deregulates MMSET (WHSC1/NSD2) expression and is a poor prognostic factor in multiple myeloma (MM). MMSET encodes two major protein isoforms. We have characterized the role of the shorter isoform (REIIBP) in myeloma cells and identified a clear and novel interaction of REIIBP with members of the SMN (survival of motor neuron) complex that directly affects the assembly of the spliceosomal ribonucleic particles. Using RNA-seq we show that REIIBP influences the RNA splicing pattern of the cell. This new discovery provides novel insights into the understanding of MM pathology, and potential new leads for therapeutic targeting.
Collapse
Affiliation(s)
- Fabio Mirabella
- Centre for Myeloma Research, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Alexander Murison
- Centre for Myeloma Research, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Lauren I. Aronson
- Centre for Myeloma Research, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Christopher P. Wardell
- Centre for Myeloma Research, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Andrew J. Thompson
- Proteomics Core Facility, The Institute of Cancer Research, London, United Kingdom
| | - Sarah J. Hanrahan
- Proteomics Core Facility, The Institute of Cancer Research, London, United Kingdom
| | - Jacqueline H. L. Fok
- Centre for Myeloma Research, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Charlotte Pawlyn
- Centre for Myeloma Research, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Martin F. Kaiser
- Centre for Myeloma Research, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Brian A. Walker
- Centre for Myeloma Research, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Faith E. Davies
- Centre for Myeloma Research, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Gareth J. Morgan
- Centre for Myeloma Research, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom
| |
Collapse
|
24
|
Sulfur dioxide inhibits vascular smooth muscle cell proliferation via suppressing the Erk/MAP kinase pathway mediated by cAMP/PKA signaling. Cell Death Dis 2014; 5:e1251. [PMID: 24853429 PMCID: PMC4047873 DOI: 10.1038/cddis.2014.229] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 04/18/2014] [Accepted: 04/22/2014] [Indexed: 01/27/2023]
Abstract
The present study was designed to investigate the role of endogenous sulfur dioxide (SO2) in vascular smooth muscle cell (VSMC) proliferation, and explore the possible role of cross-talk between cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and extracellular signal-regulated kinase (Erk)/mitogen-activated protein kinase (MAPK) pathways in this action. By cell counting, growth curve depict, flow cytometry and bromodeoxyuridine (BrdU) labeling assays, we found that SO2 inhibited VSMC proliferation by preventing cell cycle progression from G1 to S phase and by reducing DNA synthesis. SO2 synthase aspartate aminotransferase (AAT1 and AAT2) overexpression significantly inhibited serum-induced proliferating cell nuclear antigen (PCNA) protein expression in VSMCs, demonstrated by western blot analysis. Moreover, overexpression of AAT1 or AAT2 markedly reduced incorporation of BrdU in serum-treated VSMCs. By contrast, either AAT1 or AAT2 knockdown significantly exacerbated serum-stimulated VSMC proliferation. Thus, both exogenous- and endogenous-derived SO2 suppressed serum-induced VSMC proliferation. However, annexin V-propidium iodide (PI) staining and cell cycle analysis demonstrated that SO2 did not influence VSMC apoptosis in the serum-induced proliferation model. In a platelet-derived growth factor (PDGF)-BB-stimulated VSMC proliferation model, SO2 dephosphorylated the active sites of Erk1/2, MAPK kinase 1/2 and RAF proto-oncogene serine/threonine-protein kinase (c-Raf) induced by PDGF-BB. However, the inactivation of the three kinases of the Erk/MAPK pathway was not due to the separate interferences on them by SO2 simultaneously, but a consequence of the influence on the upstream activity of the c-Raf molecule. Hence, we examined the cAMP/PKA pathway, which could inhibit Erk/MAPK transduction in VSMCs. The results showed that SO2 could stimulate the cAMP/PKA pathway to block c-Raf activation, whereas the Ser259 site on c-Raf had an important role in SO2-induced suppression of Erk/MAPK pathway. The present study firstly demonstrated that SO2 exerted a negative regulation of VSMC proliferation via suppressing the Erk/MAPK pathway mediated by cAMP/PKA signaling.
Collapse
|
25
|
Brooks AN, Choi PS, de Waal L, Sharifnia T, Imielinski M, Saksena G, Pedamallu CS, Sivachenko A, Rosenberg M, Chmielecki J, Lawrence MS, DeLuca DS, Getz G, Meyerson M. A pan-cancer analysis of transcriptome changes associated with somatic mutations in U2AF1 reveals commonly altered splicing events. PLoS One 2014; 9:e87361. [PMID: 24498085 PMCID: PMC3909098 DOI: 10.1371/journal.pone.0087361] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 12/20/2013] [Indexed: 01/23/2023] Open
Abstract
Although recurrent somatic mutations in the splicing factor U2AF1 (also known as U2AF35) have been identified in multiple cancer types, the effects of these mutations on the cancer transcriptome have yet to be fully elucidated. Here, we identified splicing alterations associated with U2AF1 mutations across distinct cancers using DNA and RNA sequencing data from The Cancer Genome Atlas (TCGA). Using RNA-Seq data from 182 lung adenocarcinomas and 167 acute myeloid leukemias (AML), in which U2AF1 is somatically mutated in 3-4% of cases, we identified 131 and 369 splicing alterations, respectively, that were significantly associated with U2AF1 mutation. Of these, 30 splicing alterations were statistically significant in both lung adenocarcinoma and AML, including three genes in the Cancer Gene Census, CTNNB1, CHCHD7, and PICALM. Cell line experiments expressing U2AF1 S34F in HeLa cells and in 293T cells provide further support that these altered splicing events are caused by U2AF1 mutation. Consistent with the function of U2AF1 in 3' splice site recognition, we found that S34F/Y mutations cause preferences for CAG over UAG 3' splice site sequences. This report demonstrates consistent effects of U2AF1 mutation on splicing in distinct cancer cell types.
Collapse
Affiliation(s)
- Angela N. Brooks
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Peter S. Choi
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Luc de Waal
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Tanaz Sharifnia
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Marcin Imielinski
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Gordon Saksena
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Chandra Sekhar Pedamallu
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Andrey Sivachenko
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Mara Rosenberg
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Juliann Chmielecki
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Michael S. Lawrence
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - David S. DeLuca
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Gad Getz
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Matthew Meyerson
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
26
|
Martínez-Fábregas J, Díaz-Moreno I, González-Arzola K, Janocha S, Navarro JA, Hervás M, Bernhardt R, Díaz-Quintana A, De la Rosa MÁ. New Arabidopsis thaliana cytochrome c partners: a look into the elusive role of cytochrome c in programmed cell death in plants. Mol Cell Proteomics 2013; 12:3666-76. [PMID: 24019145 DOI: 10.1074/mcp.m113.030692] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Programmed cell death is an event displayed by many different organisms along the evolutionary scale. In plants, programmed cell death is necessary for development and the hypersensitive response to stress or pathogenic infection. A common feature in programmed cell death across organisms is the translocation of cytochrome c from mitochondria to the cytosol. To better understand the role of cytochrome c in the onset of programmed cell death in plants, a proteomic approach was developed based on affinity chromatography and using Arabidopsis thaliana cytochrome c as bait. Using this approach, ten putative new cytochrome c partners were identified. Of these putative partners and as indicated by bimolecular fluorescence complementation, nine of them bind the heme protein in plant protoplasts and human cells as a heterologous system. The in vitro interaction between cytochrome c and such soluble cytochrome c-targets was further corroborated using surface plasmon resonance. Taken together, the results obtained in the study indicate that Arabidopsis thaliana cytochrome c interacts with several distinct proteins involved in protein folding, translational regulation, cell death, oxidative stress, DNA damage, energetic metabolism, and mRNA metabolism. Interestingly, some of these novel Arabidopsis thaliana cytochrome c-targets are closely related to those for Homo sapiens cytochrome c (Martínez-Fábregas et al., unpublished). These results indicate that the evolutionarily well-conserved cytosolic cytochrome c, appearing in organisms from plants to mammals, interacts with a wide range of targets on programmed cell death. The data have been deposited to the ProteomeXchange with identifier PXD000280.
Collapse
Affiliation(s)
- Jonathan Martínez-Fábregas
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla-Consejo Superior de Investigaciones Científicas (CSIC), Seville, 41092, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chen PH, Lee CI, Weng YT, Tarn WY, Tsao YP, Kuo PC, Hsu PH, Huang CW, Huang CS, Lee HH, Wu JT, Chen SL. BCAS2 is essential for Drosophila viability and functions in pre-mRNA splicing. RNA (NEW YORK, N.Y.) 2013; 19:208-218. [PMID: 23249746 PMCID: PMC3543084 DOI: 10.1261/rna.034835.112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 11/14/2012] [Indexed: 06/01/2023]
Abstract
Here, we show that dBCAS2 (CG4980, human Breast Carcinoma Amplified Sequence 2 ortholog) is essential for the viability of Drosophila melanogaster. We find that ubiquitous or tissue-specific depletion of dBCAS2 leads to larval lethality, wing deformities, impaired splicing, and apoptosis. More importantly, overexpression of hBCAS2 rescues these defects. Furthermore, the C-terminal coiled-coil domain of hBCAS2 binds directly to CDC5L and recruits hPrp19/PLRG1 to form a core complex for splicing in mammalian cells and can partially restore wing damage induced by knocking down dBCAS2 in flies. In summary, Drosophila and human BCAS2 share a similar function in RNA splicing, which affects cell viability.
Collapse
Affiliation(s)
- Po-Han Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chia-I Lee
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Tzu Weng
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yeou-Ping Tsao
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Ping-Chang Kuo
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Pang-Hung Hsu
- Department of Life Science, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan
- Institute of Bioscience and Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Chu-Wei Huang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chiun-Sheng Huang
- Department of Surgery, College of Medicine, National Taiwan University and Hospital, Taipei 100, Taiwan
| | - Hsiu-Hsiang Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - June-Tai Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
28
|
Gupta SK, Carmi S, Waldman Ben-Asher H, Tkacz ID, Naboishchikov I, Michaeli S. Basal splicing factors regulate the stability of mature mRNAs in trypanosomes. J Biol Chem 2013; 288:4991-5006. [PMID: 23283975 DOI: 10.1074/jbc.m112.416578] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gene expression in trypanosomes is mainly regulated post-transcriptionally. Genes are transcribed as polycistronic mRNAs that are dissected by the concerted action of trans-splicing and polyadenylation. In trans-splicing, a common exon, the spliced leader, is added to all mRNAs from a small RNA. In this study, we examined by microarray analysis the transcriptome following RNAi silencing of the basal splicing factors U2AF65, SF1, and U2AF35. The transcriptome data revealed correlations between the affected genes and their splicing and polyadenylation signaling properties, suggesting that differential binding of these factors to pre-mRNA regulates trans-splicing and hence expression of specific genes. Surprisingly, all these factors were shown to affect not only splicing but also mRNA stability. Affinity purification of SF1 and U2AF35 complexes supported their role in mRNA stability. U2AF35 but not SF1 was shown to bind to ribosomes. To examine the role of splicing factors in mRNA stability, mutations were introduced into the polypyrimidine tract located in the 3' UTR of a mini-gene, and the results demonstrate that U2AF65 binds to such a site and controls the mRNA stability. We propose that transcripts carrying splicing signals in their 3' UTR bind the splicing factors and control their stability.
Collapse
Affiliation(s)
- Sachin Kumar Gupta
- Mina and Everard Goodman Faculty of Life Sciences, and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | |
Collapse
|
29
|
Qian J, Yao DM, Lin J, Qian W, Wang CZ, Chai HY, Yang J, Li Y, Deng ZQ, Ma JC, Chen XX. U2AF1 mutations in Chinese patients with acute myeloid leukemia and myelodysplastic syndrome. PLoS One 2012; 7:e45760. [PMID: 23029227 PMCID: PMC3446943 DOI: 10.1371/journal.pone.0045760] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 08/24/2012] [Indexed: 12/22/2022] Open
Abstract
Somatic mutations of U2AF1 gene have recently been identified in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). In this study, we analyzed the frequency and clinical impact of U2AF1 mutations in a cohort of 452 Chinese patients with myeloid neoplasms. Mutations in U2AF1 were found in 2.5% (7/275) of AML and 6.3% (6/96) of MDS patients, but in none of 81 CML. All mutations were heterozygous missense mutations affecting codon S34 or Q157. There was no significant association of U2AF1 mutation with blood parameters, FAB subtypes, karyotypes and other gene mutations in AML. The overall survival (OS) of AML patients with U2AF1 mutation (median 3 months) was shorter than those without mutation (median 7 months) (P = 0.035). No difference in the OS was observed between MDS patients with and without U2AF1 mutations. Our data show that U2AF1 mutation is a recurrent event at a low frequency in AML and MDS.
Collapse
Affiliation(s)
- Jun Qian
- Department of Haematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Dong-ming Yao
- Department of Laboratory Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jiang Lin
- Department of Haematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
- * E-mail: (JL); (WQ)
| | - Wei Qian
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
- * E-mail: (JL); (WQ)
| | - Cui-zhu Wang
- Department of Haematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Hai-yan Chai
- Department of Haematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jing Yang
- Department of Haematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yun Li
- Department of Haematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Zhao-qun Deng
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Ji-chun Ma
- Department of Haematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xing-xing Chen
- Department of Haematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
30
|
Abstract
Proper splicing of pre-mRNA is required for protein synthesis and therefore is a fundamental cellular function. The discovery of a variety of somatic spliceosomal mutations in haematological malignancies, including myeloid neoplasms and chronic lymphocytic leukaemia has pointed to a new leukaemogenic pathway involving spliceosomal dysfunction. Theoretically, spliceosomal mutations can lead to activation of incorrect splice sites, intron retention or aberrant alternative splicing occurring in patterns generated by mutations of individual spliceosomal proteins. Such events can produce a defective balance between protein isoforms leading to functional consequences including defective regulation of proliferation and differentiation. The observed pattern of occurrence of highly specific missense mutations, coupled with the lack of nonsense mutations and deletions, implies a gain-of-function or better gain-of-dysfunction mechanism. Incorrect splicing of downstream genes, such as tumour suppressor genes, may result in haploinsufficient expression through nonsense-mediated mRNA decay. Thus, spliceosomal mutations may, depending on the pattern of affected proteins, lead to similar functional effects on tumour suppressor genes as chromosomal deletions, epigenetic silencing or inactivating/hypomorphic mutations. The prognostic value of the most common mutations and their phenotypic association in the clinical setting is currently under investigation. It is likely that spliceosomal mutations may indicate sensitivity to spliceosome inhibitors applied in the form of a synthetic lethal approach. This review discusses the most current aspects of spliceosomal research in the context of haematological malignancies.
Collapse
Affiliation(s)
- Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Center, Cleveland, OH, USA
| | - Richard A Padgett
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
31
|
Nelson LD, Bender C, Mannsperger H, Buergy D, Kambakamba P, Mudduluru G, Korf U, Hughes D, Van Dyke MW, Allgayer H. Triplex DNA-binding proteins are associated with clinical outcomes revealed by proteomic measurements in patients with colorectal cancer. Mol Cancer 2012; 11:38. [PMID: 22682314 PMCID: PMC3537547 DOI: 10.1186/1476-4598-11-38] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 03/26/2012] [Indexed: 11/25/2022] Open
Abstract
Background Tri- and tetra-nucleotide repeats in mammalian genomes can induce formation of alternative non-B DNA structures such as triplexes and guanine (G)-quadruplexes. These structures can induce mutagenesis, chromosomal translocations and genomic instability. We wanted to determine if proteins that bind triplex DNA structures are quantitatively or qualitatively different between colorectal tumor and adjacent normal tissue and if this binding activity correlates with patient clinical characteristics. Methods Extracts from 63 human colorectal tumor and adjacent normal tissues were examined by gel shifts (EMSA) for triplex DNA-binding proteins, which were correlated with clinicopathological tumor characteristics using the Mann-Whitney U, Spearman’s rho, Kaplan-Meier and Mantel-Cox log-rank tests. Biotinylated triplex DNA and streptavidin agarose affinity binding were used to purify triplex-binding proteins in RKO cells. Western blotting and reverse-phase protein array were used to measure protein expression in tissue extracts. Results Increased triplex DNA-binding activity in tumor extracts correlated significantly with lymphatic disease, metastasis, and reduced overall survival. We identified three multifunctional splicing factors with biotinylated triplex DNA affinity: U2AF65 in cytoplasmic extracts, and PSF and p54nrb in nuclear extracts. Super-shift EMSA with anti-U2AF65 antibodies produced a shifted band of the major EMSA H3 complex, identifying U2AF65 as the protein present in the major EMSA band. U2AF65 expression correlated significantly with EMSA H3 values in all extracts and was higher in extracts from Stage III/IV vs. Stage I/II colon tumors (p = 0.024). EMSA H3 values and U2AF65 expression also correlated significantly with GSK3 beta, beta-catenin, and NF- B p65 expression, whereas p54nrb and PSF expression correlated with c-Myc, cyclin D1, and CDK4. EMSA values and expression of all three splicing factors correlated with ErbB1, mTOR, PTEN, and Stat5. Western blots confirmed that full-length and truncated beta-catenin expression correlated with U2AF65 expression in tumor extracts. Conclusions Increased triplex DNA-binding activity in vitro correlates with lymph node disease, metastasis, and reduced overall survival in colorectal cancer, and increased U2AF65 expression is associated with total and truncated beta-catenin expression in high-stage colorectal tumors.
Collapse
Affiliation(s)
- Laura D Nelson
- Dept. of Pediatrics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet 2011; 44:53-7. [PMID: 22158538 PMCID: PMC3247063 DOI: 10.1038/ng.1031] [Citation(s) in RCA: 456] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 11/09/2011] [Indexed: 12/14/2022]
Abstract
Myelodysplastic syndromes (MDS) are hematopoietic stem cell disorders that often progress to chemotherapy-resistant secondary acute myeloid leukemia (sAML). We used whole-genome sequencing to perform an unbiased comprehensive screen to discover the somatic mutations in a sample from an individual with sAML and genotyped the loci containing these mutations in the matched MDS sample. Here we show that a missense mutation affecting the serine at codon 34 (Ser34) in U2AF1 was recurrently present in 13 out of 150 (8.7%) subjects with de novo MDS, and we found suggestive evidence of an increased risk of progression to sAML associated with this mutation. U2AF1 is a U2 auxiliary factor protein that recognizes the AG splice acceptor dinucleotide at the 3' end of introns, and the alterations in U2AF1 are located in highly conserved zinc fingers of this protein. Mutant U2AF1 promotes enhanced splicing and exon skipping in reporter assays in vitro. This previously unidentified, recurrent mutation in U2AF1 implicates altered pre-mRNA splicing as a potential mechanism for MDS pathogenesis.
Collapse
|
33
|
Spliceosome assembly is coupled to RNA polymerase II dynamics at the 3' end of human genes. Nat Struct Mol Biol 2011; 18:1115-23. [PMID: 21892168 DOI: 10.1038/nsmb.2124] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 07/19/2011] [Indexed: 01/10/2023]
Abstract
In the nucleus of higher eukaryotes, maturation of mRNA precursors involves an orderly sequence of transcription-coupled interdependent steps. Transcription is well known to influence splicing, but how splicing may affect transcription remains unclear. Here we show that a splicing mutation that prevents recruitment of spliceosomal snRNPs to nascent transcripts causes co-transcriptional retention of unprocessed RNAs that remain associated with polymerases stalled predominantly at the 3' end of the gene. In contrast, treatment with spliceostatin A, which allows early spliceosome formation but destabilizes subsequent assembly of the catalytic complex, abolishes 3' end pausing of polymerases and induces leakage of unspliced transcripts to the nucleoplasm. Taken together, the data suggest that recruitment of splicing factors and correct assembly of the spliceosome are coupled to transcription termination, and this might ensure a proofreading mechanism that slows down release of unprocessed transcripts from the transcription site.
Collapse
|
34
|
Huen MSY, Sy SMH, Leung KM, Ching YP, Tipoe GL, Man C, Dong S, Chen J. SON is a spliceosome-associated factor required for mitotic progression. Cell Cycle 2011; 9:2679-85. [PMID: 20581448 DOI: 10.4161/cc.9.13.12151] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The eukaryotic RNA splicing machinery is dedicated to the daunting task of excising intronic sequences on the many nascent RNA transcripts in a cell, and in doing so facilitates proper translation of its transcriptome. Notably, emerging evidence suggests that RNA splicing may also play direct roles in maintaining genome stability. Here we report the identification of the RNA/DNA-binding protein SON as a component of spliceosome that plays pleiotropic roles during mitotic progression. We found that SON is essential for cell proliferation, and that its inactivation triggers a MAD2-dependent mitotic delay. Moreover, SON deficiency is accompanied by defective chromosome congression, compromised chromosome segregation and cytokinesis, which in turn contributes to cellular aneuploidy and cell death. In summary, our study uncovers a specific link between SON and mitosis, and highlights the potential of RNA processing as additional regulatory mechanisms that govern cell proliferation and division.
Collapse
Affiliation(s)
- Michael S Y Huen
- Genome Stability Research Laboratory, The University of Hong Kong, Hong Kong, SAR.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Saltzman AL, Pan Q, Blencowe BJ. Regulation of alternative splicing by the core spliceosomal machinery. Genes Dev 2011; 25:373-84. [PMID: 21325135 DOI: 10.1101/gad.2004811] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alternative splicing (AS) plays a major role in the generation of proteomic diversity and in gene regulation. However, the role of the basal splicing machinery in regulating AS remains poorly understood. Here we show that the core snRNP (small nuclear ribonucleoprotein) protein SmB/B' self-regulates its expression by promoting the inclusion of a highly conserved alternative exon in its own pre-mRNA that targets the spliced transcript for nonsense-mediated mRNA decay (NMD). Depletion of SmB/B' in human cells results in reduced levels of snRNPs and a striking reduction in the inclusion levels of hundreds of additional alternative exons, with comparatively few effects on constitutive exon splicing levels. The affected alternative exons are enriched in genes encoding RNA processing and other RNA-binding factors, and a subset of these exons also regulate gene expression by activating NMD. Our results thus demonstrate a role for the core spliceosomal machinery in controlling an exon network that appears to modulate the levels of many RNA processing factors.
Collapse
Affiliation(s)
- Arneet L Saltzman
- Banting and Best Department of Medical Research, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | | | | |
Collapse
|
36
|
Stress-induced expression of p53 target genes is insensitive to SNW1/SKIP downregulation. Cell Mol Biol Lett 2011; 16:373-84. [PMID: 21461980 PMCID: PMC6275595 DOI: 10.2478/s11658-011-0012-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 03/28/2011] [Indexed: 12/22/2022] Open
Abstract
Pharmacological inhibition of protein kinases that are responsible for the phosphorylation of the carboxy-terminal domain (CTD) of RNA Pol II during transcription by 5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole (DRB) leads to severe inhibition of mRNA synthesis and activates p53. Transcription of the p53 effectors that are induced under these conditions, such as p21 or PUMA, must bypass the requirement for CTD phosphorylation by the positive elongation factor P-TEFb. Here, we have downregulated SNW1/SKIP, a splicing factor and a transcriptional co-regulator, which was found to interact with P-TEFb and synergistically affect Tat-dependent transcription elongation of HIV 1. Using the colon cancer derived cell line HCT116, we have found that both doxorubicin- and DRB-induced expression of p21 or PUMA is insensitive to SNW1 downregulation by siRNA. This suggests that transcription of stress response genes, unlike, e.g., the SNW1-sensitive mitosis-specific genes, can proceed uncoupled from regulators that normally function under physiological conditions.
Collapse
|
37
|
Ruepp MD, Schweingruber C, Kleinschmidt N, Schümperli D. Interactions of CstF-64, CstF-77, and symplekin: implications on localisation and function. Mol Biol Cell 2010; 22:91-104. [PMID: 21119002 PMCID: PMC3016980 DOI: 10.1091/mbc.e10-06-0543] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Important interactions controlling the function of CstF-64 in histone RNA processing and general mRNA cleavage/polyadenylation are identified, and an interesting coregulation of CstF-64 and its paralogue CstF-64Tau leads to a model for CstF regulation and its role in modulating poly(A) site choice. Cleavage/polyadenylation of mRNAs and 3′ processing of replication-dependent histone transcripts are both mediated by large complexes that share several protein components. Functional studies of these shared proteins are complicated by the cooperative binding of the individual subunits. For CstF-64, an additional difficulty is that symplekin and CstF-77 bind mutually exclusively to its hinge domain. Here we have identified CstF-64 and symplekin mutants that allowed us to distinguish between these interactions and to elucidate the role of CstF-64 in the two processing reactions. The interaction of CstF-64 with symplekin is limiting for histone RNA 3′ processing but relatively unimportant for cleavage/polyadenylation. In contrast, the nuclear accumulation of CstF-64 depends on its binding to CstF-77 and not to symplekin. Moreover, the CstF-64 paralogue CstF-64Tau can compensate for the loss of CstF-64. As CstF-64Tau has a lower affinity for CstF-77 than CstF-64 and is relatively unstable, it is the minor form. However, it may become up-regulated when the CstF-64 level decreases, which has biological implications for spermatogenesis and probably also for other regulatory events. Thus, the interactions between CstF-64/CstF-64Tau and CstF-77 are important for the maintenance of stoichiometric nuclear levels of the CstF complex components and for their intracellular localization, stability, and function.
Collapse
Affiliation(s)
- Marc-David Ruepp
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | | | | | | |
Collapse
|
38
|
Solution Structure of the Catalytic Domain of the Mitochondrial Protein ICT1 That Is Essential for Cell Vitality. J Mol Biol 2010; 404:260-73. [DOI: 10.1016/j.jmb.2010.09.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 09/14/2010] [Accepted: 09/16/2010] [Indexed: 11/17/2022]
|
39
|
Hofmann JC, Husedzinovic A, Gruss OJ. The function of spliceosome components in open mitosis. Nucleus 2010; 1:447-59. [PMID: 21327086 DOI: 10.4161/nucl.1.6.13328] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/09/2010] [Accepted: 08/13/2010] [Indexed: 12/15/2022] Open
Abstract
Spatial separation of eukaryotic cells into the nuclear and cytoplasmic compartment permits uncoupling of DNA transcription from translation of mRNAs and allows cells to modify newly transcribed pre mRNAs extensively. Intronic sequences (introns), which interrupt the coding elements (exons), are excised ("spliced") from pre-mRNAs in the nucleus to yield mature mRNAs. This not only enables alternative splicing as an important source of proteome diversity, but splicing is also an essential process in all eukaryotes and knock-out or knock-down of splicing factors frequently results in defective cell proliferation and cell division. However, higher eukaryotes progress through cell division only after breakdown of the nucleus ("open mitosis"). Open mitosis suppresses basic nuclear functions such as transcription and splicing, but allows separate, mitotic functions of nuclear proteins in cell division. Mitotic defects arising after loss-of-function of splicing proteins therefore could be an indirect consequence of compromised splicing in the closed nucleus of the preceding interphase or reflect a direct contribution of splicing proteins to open mitosis. Although experiments to directly distinguish between these two alternatives have not been reported, indirect evidence exists for either hypotheses. In this review, we survey published data supporting an indirect function of splicing in open mitosis or arguing for a direct function of spliceosomal proteins in cell division.
Collapse
|
40
|
de Almeida SF, García-Sacristán A, Custódio N, Carmo-Fonseca M. A link between nuclear RNA surveillance, the human exosome and RNA polymerase II transcriptional termination. Nucleic Acids Res 2010; 38:8015-26. [PMID: 20699273 PMCID: PMC3001075 DOI: 10.1093/nar/gkq703] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In eukaryotes, the production of mature messenger RNA that exits the nucleus to be translated into protein in the cytoplasm requires precise and extensive modification of the nascent transcript. Any failure that compromises the integrity of an mRNA may cause its retention in the nucleus and trigger its degradation. Multiple studies indicate that mRNAs with processing defects accumulate in nuclear foci or ‘dots’ located near the site of transcription, but how exactly are defective RNAs recognized and tethered is still unknown. Here, we present evidence suggesting that unprocessed β-globin transcripts render RNA polymerase II (Pol II) incompetent for termination and that this quality control process requires the integrity of the nuclear exosome. Our results show that unprocessed pre-mRNAs remain tethered to the DNA template in association with Pol II, in an Rrp6-dependent manner. This reveals an unprecedented link between nuclear RNA surveillance, the exosome and Pol II transcriptional termination.
Collapse
Affiliation(s)
- Sérgio F de Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | | | | | | |
Collapse
|
41
|
Allele-specific recognition of the 3' splice site of INS intron 1. Hum Genet 2010; 128:383-400. [PMID: 20628762 PMCID: PMC2939332 DOI: 10.1007/s00439-010-0860-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 06/30/2010] [Indexed: 10/27/2022]
Abstract
Genetic predisposition to type 1 diabetes (T1D) has been associated with a chromosome 11 locus centered on the proinsulin gene (INS) and with differential steady-state levels of INS RNA from T1D-predisposing and -protective haplotypes. Here, we show that the haplotype-specific expression is determined by INS variants that control the splicing efficiency of intron 1. The adenine allele at IVS1-6 (rs689), which rapidly expanded in modern humans, renders the 3' splice site of this intron more dependent on the auxiliary factor of U2 small nuclear ribonucleoprotein (U2AF). This interaction required both zinc fingers of the 35-kD U2AF subunit (U2AF35) and was associated with repression of a competing 3' splice site in INS exon 2. Systematic mutagenesis of reporter constructs showed that intron 1 removal was facilitated by conserved guanosine-rich enhancers and identified additional splicing regulatory motifs in exon 2. Sequencing of intron 1 in primates revealed that relaxation of its 3' splice site in Hominidae coevolved with the introduction of a short upstream open reading frame, providing a more efficient coupled splicing and translation control. Depletion of SR proteins 9G8 and transformer-2 by RNA interference was associated with exon 2 skipping whereas depletion of SRp20 with increased representation of transcripts containing a cryptic 3' splice site in the last exon. Together, these findings reveal critical interactions underlying the allele-dependent INS expression and INS-mediated risk of T1D and suggest that the increased requirement for U2AF35 in higher primates may hinder thymic presentation of autoantigens encoded by transcripts with weak 3' splice sites.
Collapse
|
42
|
Song EJ, Werner SL, Neubauer J, Stegmeier F, Aspden J, Rio D, Harper JW, Elledge SJ, Kirschner MW, Rape M. The Prp19 complex and the Usp4Sart3 deubiquitinating enzyme control reversible ubiquitination at the spliceosome. Genes Dev 2010; 24:1434-47. [PMID: 20595234 DOI: 10.1101/gad.1925010] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The spliceosome, a dynamic assembly of proteins and RNAs, catalyzes the excision of intron sequences from nascent mRNAs. Recent work has suggested that the activity and composition of the spliceosome are regulated by ubiquitination, but the underlying mechanisms have not been elucidated. Here, we report that the spliceosomal Prp19 complex modifies Prp3, a component of the U4 snRNP, with nonproteolytic K63-linked ubiquitin chains. The K63-linked chains increase the affinity of Prp3 for the U5 snRNP component Prp8, thereby allowing for the stabilization of the U4/U6.U5 snRNP. Prp3 is deubiquitinated by Usp4 and its substrate targeting factor, the U4/U6 recycling protein Sart3, which likely facilitates ejection of U4 proteins from the spliceosome during maturation of its active site. Loss of Usp4 in cells interferes with the accumulation of correctly spliced mRNAs, including those for alpha-tubulin and Bub1, and impairs cell cycle progression. We propose that the reversible ubiquitination of spliceosomal proteins, such as Prp3, guides rearrangements in the composition of the spliceosome at distinct steps of the splicing reaction.
Collapse
Affiliation(s)
- Eun Joo Song
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Berasain C, Goñi S, Castillo J, Latasa MU, Prieto J, Ávila MA. Impairment of pre-mRNA splicing in liver disease: Mechanisms and consequences. World J Gastroenterol 2010; 16:3091-102. [PMID: 20593494 PMCID: PMC2896746 DOI: 10.3748/wjg.v16.i25.3091] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pre-mRNA splicing is an essential step in the process of gene expression in eukaryotes and consists of the removal of introns and the linking of exons to generate mature mRNAs. This is a highly regulated mechanism that allows the alternative usage of exons, the retention of intronic sequences and the generation of exonic sequences of variable length. Most human genes undergo splicing events, and disruptions of this process have been associated with a variety of diseases, including cancer. Hepatocellular carcinoma (HCC) is a molecularly heterogeneous type of tumor that usually develops in a cirrhotic liver. Alterations in pre-mRNA splicing of some genes have been observed in liver cancer, and although still scarce, the available data suggest that splicing defects may have a role in hepatocarcinogenesis. Here we briefly review the general mechanisms that regulate pre-mRNA splicing, and discuss some examples that illustrate how this process is impaired in liver tumorigenesis, and may contribute to HCC development. We believe that a more thorough examination of pre-mRNA splicing is still needed to accurately draw the molecular portrait of liver cancer. This will surely contribute to a better understanding of the disease and to the development of new effective therapies.
Collapse
|
44
|
Sharma A, Takata H, Shibahara KI, Bubulya A, Bubulya PA. Son is essential for nuclear speckle organization and cell cycle progression. Mol Biol Cell 2010; 21:650-63. [PMID: 20053686 PMCID: PMC2820428 DOI: 10.1091/mbc.e09-02-0126] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 11/24/2009] [Accepted: 12/17/2009] [Indexed: 11/11/2022] Open
Abstract
Subnuclear organization and spatiotemporal regulation of pre-mRNA processing factors is essential for the production of mature protein-coding mRNAs. We have discovered that a large protein called Son has a novel role in maintaining proper nuclear organization of pre-mRNA processing factors in nuclear speckles. The primary sequence of Son contains a concentrated region of multiple unique tandem repeat motifs that may support a role for Son as a scaffolding protein for RNA processing factors in nuclear speckles. We used RNA interference (RNAi) approaches and high-resolution microscopy techniques to study the functions of Son in the context of intact cells. Although Son precisely colocalizes with pre-mRNA splicing factors in nuclear speckles, its depletion by RNAi leads to cell cycle arrest in metaphase and causes dramatic disorganization of small nuclear ribonuclear protein and serine-arginine rich protein splicing factors during interphase. Here, we propose that Son is essential for appropriate subnuclear organization of pre-mRNA splicing factors and for promoting normal cell cycle progression.
Collapse
Affiliation(s)
- Alok Sharma
- *Biomedical Sciences Ph.D. Program
- Department of Biological Sciences, Wright State University, Dayton, OH 45435; and
| | - Hideaki Takata
- Department of Integrated Genetics, National Institute of Genetics, Shizuoka, 411-8540, Japan
| | - Kei-ichi Shibahara
- Department of Integrated Genetics, National Institute of Genetics, Shizuoka, 411-8540, Japan
| | - Athanasios Bubulya
- Department of Biological Sciences, Wright State University, Dayton, OH 45435; and
| | - Paula A. Bubulya
- Department of Biological Sciences, Wright State University, Dayton, OH 45435; and
| |
Collapse
|
45
|
Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat Rev Mol Cell Biol 2009; 10:741-54. [PMID: 19773805 DOI: 10.1038/nrm2777] [Citation(s) in RCA: 898] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alternative splicing of mRNA precursors provides an important means of genetic control and is a crucial step in the expression of most genes. Alternative splicing markedly affects human development, and its misregulation underlies many human diseases. Although the mechanisms of alternative splicing have been studied extensively, until the past few years we had not begun to realize fully the diversity and complexity of alternative splicing regulation by an intricate protein-RNA network. Great progress has been made by studying individual transcripts and through genome-wide approaches, which together provide a better picture of the mechanistic regulation of alternative pre-mRNA splicing.
Collapse
|
46
|
Katzenberger RJ, Marengo MS, Wassarman DA. Control of alternative splicing by signal-dependent degradation of splicing-regulatory proteins. J Biol Chem 2009; 284:10737-46. [PMID: 19218244 DOI: 10.1074/jbc.m809506200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alternative pre-mRNA splicing is a major gene expression regulatory mechanism in metazoan organisms. Proteins that bind pre-mRNA elements and control assembly of splicing complexes regulate utilization of pre-mRNA alternative splice sites. To understand how signaling pathways impact this mechanism, an RNA interference screen in Drosophila S2 cells was used to identify proteins that regulate TAF1 (TBP-associated factor 1) alternative splicing in response to activation of the ATR (ATM-RAD3-related) signaling pathway by the chemotherapeutic drug camptothecin (CPT). The screen identified 15 proteins that, when knocked down, caused the same change in TAF1 alternative splicing as CPT treatment. However, combined RNA interference and CPT treatment experiments indicated that only a subset of the identified proteins are targets of the CPT-induced signal, suggesting that multiple independent pathways regulate TAF1 alternative splicing. To understand how signals modulate the function of splicing factors, we characterized one of the CPT targets, Tra2 (Transformer-2). CPT was found to down-regulate Tra2 protein levels. CPT-induced Tra2 down-regulation was ATR-dependent and temporally paralleled the change in TAF1 alternative splicing, supporting the conclusion that Tra2 directly regulates TAF1 alternative splicing. Additionally, CPT-induced Tra2 down-regulation occurred independently of new protein synthesis, suggesting a post-translational mechanism. The proteasome inhibitor MG132 reduced CPT-induced Tra2 degradation and TAF1 alternative splicing, and mutation of evolutionarily conserved Tra2 lysine 81, a potential ubiquitin conjugation site, to arginine inhibited CPT-induced Tra2 degradation, supporting a proteasome-dependent alternative splicing mechanism. We conclude that CPT-induced TAF1 alternative splicing occurs through ATR-signaled degradation of a subset of splicing-regulatory proteins.
Collapse
Affiliation(s)
- Rebeccah J Katzenberger
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
47
|
Mantina P, MacDonald L, Kulaga A, Zhao L, Hansen D. A mutation in teg-4, which encodes a protein homologous to the SAP130 pre-mRNA splicing factor, disrupts the balance between proliferation and differentiation in the C. elegans germ line. Mech Dev 2009; 126:417-29. [PMID: 19368799 DOI: 10.1016/j.mod.2009.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 01/31/2023]
Abstract
Dividing stem cells can give rise to two types of daughter cells; self-renewing cells that have virtually the same properties as the parent cell, and differentiating cells that will eventually form part of a tissue. The Caenorhabditis elegans germ line serves as a model to study how the balance between these two types of daughter cells is maintained. A mutation in teg-4 causes over-proliferation of the stem cells, thereby disrupting the balance between proliferation and differentiation. We have cloned teg-4 and found it to encode a protein homologous to the highly conserved splicing factor subunit 3 of SF3b. Our allele of teg-4 partially reduces TEG-4 function. In an effort to determine how teg-4 functions in controlling stem cell proliferation, we have performed genetic epistasis analysis with known factors controlling stem cell proliferation. We found that teg-4 is synthetic tumorous with genes in both major redundant genetic pathways that function downstream of GLP-1/Notch signaling to control the balance between proliferation and differentiation. Therefore, teg-4 is unlikely to function specifically in either of these two genetic pathways. Further, the synthetic tumorous phenotype seen with one of the genes from these pathways is epistatic to glp-1, indicating that teg-4 functions downstream of glp-1, likely as a positive regulator of meiotic entry. We propose that a reduction in teg-4 activity reduces the splicing efficiency of targets involved in controlling the balance between proliferation and differentiation. This results in a shift in the balance towards proliferation, eventually forming a germline tumor.
Collapse
Affiliation(s)
- Pallavi Mantina
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
48
|
Roles of polypyrimidine tract binding proteins in major immediate-early gene expression and viral replication of human cytomegalovirus. J Virol 2009; 83:2839-50. [PMID: 19144709 DOI: 10.1128/jvi.02407-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Human cytomegalovirus (HCMV), a member of the beta subgroup of the family Herpesviridae, causes serious health problems worldwide. HCMV gene expression in host cells is a well-defined sequential process: immediate-early (IE) gene expression, early-gene expression, DNA replication, and late-gene expression. The most abundant IE gene, major IE (MIE) gene pre-mRNA, needs to be spliced before being exported to the cytoplasm for translation. In this study, the regulation of MIE gene splicing was investigated; in so doing, we found that polypyrimidine tract binding proteins (PTBs) strongly repressed MIE gene production in cotransfection assays. In addition, we discovered that the repressive effects of PTB could be rescued by splicing factor U2AF. Taken together, the results suggest that PTBs inhibit MIE gene splicing by competing with U2AF65 for binding to the polypyrimidine tract in pre-mRNA. In intron deletion mutation assays and RNA detection experiments (reverse transcription [RT]-PCR and real-time RT-PCR), we further observed that PTBs target all the introns of the MIE gene, especially intron 2, and affect gene splicing, which was reflected in the variation in the ratio of pre-mRNA to mRNA. Using transfection assays, we demonstrated that PTB knockdown cells induce a higher degree of MIE gene splicing/expression. Consistently, HCMV can produce more viral proteins and viral particles in PTB knockdown cells after infection. We conclude that PTB inhibits HCMV replication by interfering with MIE gene splicing through competition with U2AF for binding to the polypyrimidine tract in MIE gene introns.
Collapse
|
49
|
Grosso AR, Martins S, Carmo-Fonseca M. The emerging role of splicing factors in cancer. EMBO Rep 2008; 9:1087-93. [PMID: 18846105 DOI: 10.1038/embor.2008.189] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 09/05/2008] [Indexed: 11/09/2022] Open
Abstract
Recent progress in global sequence and microarray data analysis has revealed the increasing complexity of the human transcriptome. Alternative splicing generates a huge diversity of transcript variants and disruption of splicing regulatory networks is emerging as an important contributor to various diseases, including cancer. Current efforts to establish the dynamic repertoire of transcripts that are generated in health and disease are showing that many cancer-associated alternative-splicing events occur in the absence of mutations in the affected genes. A growing body of evidence reveals changes in splicing-factor expression that correlate with cancer development, progression and response to therapy. Here, we discuss how recent links between cancer and altered expression of proteins implicated in splicing regulation are bringing the splicing machinery to the fore as a potential target for anticancer treatment.
Collapse
Affiliation(s)
- Ana Rita Grosso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | | | | |
Collapse
|
50
|
Andersen DS, Tapon N. Drosophila MFAP1 is required for pre-mRNA processing and G2/M progression. J Biol Chem 2008; 283:31256-67. [PMID: 18765666 DOI: 10.1074/jbc.m803512200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mammalian spliceosome has mainly been studied using proteomics. The isolation and comparison of different splicing intermediates has revealed the dynamic association of more than 200 splicing factors with the spliceosome, relatively few of which have been studied in detail. Here, we report the characterization of the Drosophila homologue of microfibril-associated protein 1 (dMFAP1), a previously uncharacterized protein found in some human spliceosomal fractions ( Jurica, M. S., and Moore, M. J. (2003) Mol. Cell 12, 5-14 ). We show that dMFAP1 binds directly to the Drosophila homologue of Prp38p (dPrp38), a tri-small nuclear ribonucleoprotein component ( Xie, J., Beickman, K., Otte, E., and Rymond, B. C. (1998) EMBO J. 17, 2938-2946 ), and is required for pre-mRNA processing. dMFAP1, like dPrp38, is essential for viability, and our in vivo data show that cells with reduced levels of dMFAP1 or dPrp38 proliferate more slowly than normal cells and undergo apoptosis. Consistent with this, double-stranded RNA-mediated depletion of dPrp38 or dMFAP1 causes cells to arrest in G(2)/M, and this is paralleled by a reduction in mRNA levels of the mitotic phosphatase string/cdc25. Interestingly double-stranded RNA-mediated depletion of a wide range of core splicing factors elicits a similar phenotype, suggesting that the observed G(2)/M arrest might be a general consequence of interfering with spliceosome function.
Collapse
Affiliation(s)
- Ditte S Andersen
- Cancer Research UK, London Research Institute, London WC2A 3PX, UK
| | | |
Collapse
|