1
|
Totland MZ, Omori Y, Sørensen V, Kryeziu K, Aasen T, Brech A, Leithe E. Endocytic trafficking of connexins in cancer pathogenesis. Biochim Biophys Acta Mol Basis Dis 2023:166812. [PMID: 37454772 DOI: 10.1016/j.bbadis.2023.166812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Gap junctions are specialized regions of the plasma membrane containing clusters of channels that provide for the diffusion of ions and small molecules between adjacent cells. A fundamental role of gap junctions is to coordinate the functions of cells in tissues. Cancer pathogenesis is usually associated with loss of intercellular communication mediated by gap junctions, which may affect tumor growth and the response to radio- and chemotherapy. Gap junction channels consist of integral membrane proteins termed connexins. In addition to their canonical roles in cell-cell communication, connexins modulate a range of signal transduction pathways via interactions with proteins such as β-catenin, c-Src, and PTEN. Consequently, connexins can regulate cellular processes such as cell growth, migration, and differentiation through both channel-dependent and independent mechanisms. Gap junctions are dynamic plasma membrane entities, and by modulating the rate at which connexins undergo endocytosis and sorting to lysosomes for degradation, cells rapidly adjust the level of gap junctions in response to alterations in the intracellular or extracellular milieu. Current experimental evidence indicates that aberrant trafficking of connexins in the endocytic system is intrinsically involved in mediating the loss of gap junctions during carcinogenesis. This review highlights the role played by the endocytic system in controlling connexin degradation, and consequently gap junction levels, and discusses how dysregulation of these processes contributes to the loss of gap junctions during cancer development. We also discuss the therapeutic implications of aberrant endocytic trafficking of connexins in cancer cells.
Collapse
Affiliation(s)
| | - Yasufumi Omori
- Department of Molecular and Tumour Pathology, Akita University Graduate School of Medicine, Akita, Japan
| | | | | | - Trond Aasen
- Patologia Molecular Translacional, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron, Barcelona, Spain
| | - Andreas Brech
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway; Section for Physiology and Cell Biology, Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
2
|
Gene-Transcript Expression in Urine Supernatant and Urine Cell-Sediment Are Different but Equally Useful for Detecting Prostate Cancer. Cancers (Basel) 2023; 15:cancers15030789. [PMID: 36765747 PMCID: PMC9913640 DOI: 10.3390/cancers15030789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 02/02/2023] Open
Abstract
There is considerable interest in urine as a non-invasive liquid biopsy to detect prostate cancer (PCa). PCa-specific transcripts such as the TMPRSS2:ERG fusion gene can be found in both urine extracellular vesicles (EVs) and urine cell-sediment (Cell) but the relative usefulness of these and other genes in each fraction in PCa detection has not been fully elucidated. Urine samples from 76 men (PCa n = 40, non-cancer n = 36) were analysed by NanoString for 154 PCa-associated genes-probes, 11 tissue-specific, and six housekeeping. Comparison to qRT-PCR data for four genes (PCA3, OR51E2, FOLH1, and RPLP2) was strong (r = 0.51-0.95, Spearman p < 0.00001). Comparing EV to Cells, differential gene expression analysis found 57 gene-probes significantly more highly expressed in 100 ng of amplified cDNA products from the EV fraction, and 26 in Cells (p < 0.05; edgeR). Expression levels of prostate-specific genes (KLK2, KLK3) measured were ~20× higher in EVs, while PTPRC (white-blood Cells) was ~1000× higher in Cells. Boruta analysis identified 11 gene-probes as useful in detecting PCa: two were useful in both fractions (PCA3, HOXC6), five in EVs alone (GJB1, RPS10, TMPRSS2:ERG, ERG_Exons_4-5, HPN) and four from Cell (ERG_Exons_6-7, OR51E2, SPINK1, IMPDH2), suggesting that it is beneficial to fractionate whole urine prior to analysis. The five housekeeping genes were not significantly differentially expressed between PCa and non-cancer samples. Expression signatures from Cell, EV and combined data did not show evidence for one fraction providing superior information over the other.
Collapse
|
3
|
Zhou M, Zheng M, Zhou X, Tian S, Yang X, Ning Y, Li Y, Zhang S. The roles of connexins and gap junctions in the progression of cancer. Cell Commun Signal 2023; 21:8. [PMID: 36639804 PMCID: PMC9837928 DOI: 10.1186/s12964-022-01009-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/03/2022] [Indexed: 01/15/2023] Open
Abstract
Gap junctions (GJs), which are composed of connexins (Cxs), provide channels for direct information exchange between cells. Cx expression has a strong spatial specificity; however, its influence on cell behavior and information exchange between cells cannot be ignored. A variety of factors in organisms can modulate Cxs and subsequently trigger a series of responses that have important effects on cellular behavior. The expression and function of Cxs and the number and function of GJs are in dynamic change. Cxs have been characterized as tumor suppressors in the past, but recent studies have highlighted the critical roles of Cxs and GJs in cancer pathogenesis. The complex mechanism underlying Cx and GJ involvement in cancer development is a major obstacle to the evolution of therapy targeting Cxs. In this paper, we review the post-translational modifications of Cxs, the interactions of Cxs with several chaperone proteins, and the effects of Cxs and GJs on cancer. Video Abstract.
Collapse
Affiliation(s)
- Mingming Zhou
- grid.265021.20000 0000 9792 1228Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300121 People’s Republic of China
| | - Xinyue Zhou
- grid.265021.20000 0000 9792 1228Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Shifeng Tian
- grid.265021.20000 0000 9792 1228Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Xiaohui Yang
- grid.216938.70000 0000 9878 7032Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yidi Ning
- grid.216938.70000 0000 9878 7032Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yuwei Li
- grid.417031.00000 0004 1799 2675Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121 People’s Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300121 People’s Republic of China
| |
Collapse
|
4
|
Ray A, Mehta PP. Cysteine residues in the C-terminal tail of connexin32 regulate its trafficking. Cell Signal 2021; 85:110063. [PMID: 34146657 DOI: 10.1016/j.cellsig.2021.110063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 05/26/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022]
Abstract
Gap junctions (GJs) are formed by the assembly of constituent transmembrane proteins called connexins (Cxs). Aberrations in this assembly of Cxs are observed in several genetic diseases as well as in cancers. Hence it becomes imperative to understand the molecular mechanisms underlying such assembly defect. The polarized cells in the epithelia express Connexin32 (Cx32). The C-terminal tail (CT) of Cx32 orchestrates several aspects of GJ dynamics, function and growth. The study here was aimed at determining if post-translational modifications, specifically, palmitoylation of cysteine residues, present in the CT of Cx32, has any effect on GJ assembly. The CT of Cx32 was found to harbor three cysteine residues, which are likely to be modified by palmitoylation. The study here has revealed for the first time that Cx32 is palmitoylated at cysteine 217 (C217) in cell line derived from prostate tumors. However, it was found that mutating C217 to alanine affected neither the trafficking nor the ability of Cx32 to assemble into GJs. Intriguingly, it was discovered that mutating cysteine 280 and 283, only in combination, blocked the trafficking of Cx32 from the trans-Golgi network to the cell surface. The mutants showed reduced stability due to enhanced lysosomal degradation. Overall, the findings reveal the importance of the two C-terminal cysteine residues of Cx32 in regulating its trafficking and stability and hence its ability to assemble into GJs.
Collapse
Affiliation(s)
- Anuttoma Ray
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Parmender P Mehta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
5
|
Tang SN, Jiang P, Kim S, Zhang J, Jiang C, Lü J. Interception Targets of Angelica Gigas Nakai Root Extract versus Pyranocoumarins in Prostate Early Lesions and Neuroendocrine Carcinomas in TRAMP Mice. Cancer Prev Res (Phila) 2021; 14:635-648. [PMID: 33648943 PMCID: PMC8225574 DOI: 10.1158/1940-6207.capr-20-0589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/19/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022]
Abstract
We reported efficacy of Angelica gigas Nakai (AGN) root ethanol extract and equimolar decursin (D)/decursinol angelate (DA) through daily gavage starting at 8 weeks of age (WOA) to male transgenic adenocarcinoma of mouse prostate (TRAMP) mice such that these modalities suppressed precancerous epithelial lesions in their dorsolateral prostate (DLP) to similar extent, but AGN extract was better than the D/DA mixture at promoting the survival of mice bearing prostate neuroendocrine carcinomas to 28 WOA. Here, we compared by microarray hybridization the mRNA levels in pooled DLP tissues and individual neuroendocrine carcinomas to characterize potential molecular targets of AGN extract and D/DA. Clustering and principal component analyses supported distinct gene expression profiles of TRAMP DLP versus neuroendocrine carcinomas. Pathway Enrichment, Gene Ontology, and Ingenuity Pathway Analyses of differential genes indicated that AGN and D/DA affected chiefly processes of lipid and mitochondrial energy metabolism and oxidation-reduction in TRAMP DLP, while AGN affected neuronal signaling, immune systems and cell cycling in neuroendocrine carcinomas. Protein-Protein Interaction Network analysis predicted and reverse transcription-PCR verified multiple hub genes common in the DLP of AGN- and D/DA-treated TRAMP mice at 28 WOA and select hub genes attributable to the non-D/DA AGN components. The vast majority of hub genes in the AGN-treated neuroendocrine carcinomas differed from those in TRAMP DLP. In summary, the transcriptomic approach illuminated vastly different signaling pathways and networks, cellular processes, and hub genes of two TRAMP prostate malignancy lineages and their associations with the interception efficacy of AGN and D/DA. PREVENTION RELEVANCE: This study explores potential molecular targets associated with in vivo activity of AGN root alcoholic extract and its major pyranocoumarins to intercept precancerous epithelial lesions and early malignancies of the prostate. Without an ethically-acceptable, clearly defined cancer initiation risk reduction strategy available for the prostate, using natural products like AGN to delay formation of malignant tumors could be a plausible approach for prostate cancer prevention.
Collapse
Affiliation(s)
- Su-Ni Tang
- School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Peixin Jiang
- School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Sangyub Kim
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Jinhui Zhang
- School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Cheng Jiang
- School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Junxuan Lü
- School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas.
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
- Penn State Cancer Institute, Pennsylvania State University, Hershey, Pennsylvania
| |
Collapse
|
6
|
Zheng L, Chenavas S, Kieken F, Trease A, Brownell S, Anbanandam A, Sorgen PL, Spagnol G. Calmodulin Directly Interacts with the Cx43 Carboxyl-Terminus and Cytoplasmic Loop Containing Three ODDD-Linked Mutants (M147T, R148Q, and T154A) that Retain α-Helical Structure, but Exhibit Loss-of-Function and Cellular Trafficking Defects. Biomolecules 2020; 10:biom10101452. [PMID: 33080786 PMCID: PMC7602980 DOI: 10.3390/biom10101452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
The autosomal-dominant pleiotropic disorder called oculodentodigital dysplasia (ODDD) is caused by mutations in the gap junction protein Cx43. Of the 73 mutations identified to date, over one-third are localized in the cytoplasmic loop (Cx43CL) domain. Here, we determined the mechanism by which three ODDD mutations (M147T, R148Q, and T154A), all of which localize within the predicted 1-5-10 calmodulin-binding motif of the Cx43CL, manifest the disease. Nuclear magnetic resonance (NMR) and circular dichroism revealed that the three ODDD mutations had little-to-no effect on the ability of the Cx43CL to form α-helical structure as well as bind calmodulin. Combination of microscopy and a dye-transfer assay uncovered these mutations increased the intracellular level of Cx43 and those that trafficked to the plasma membrane did not form functional channels. NMR also identify that CaM can directly interact with the Cx43CT domain. The Cx43CT residues involved in the CaM interaction overlap with tyrosines phosphorylated by Pyk2 and Src. In vitro and in cyto data provide evidence that the importance of the CaM interaction with the Cx43CT may lie in restricting Pyk2 and Src phosphorylation, and their subsequent downstream effects.
Collapse
Affiliation(s)
- Li Zheng
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.Z.); (S.C.); (F.K.); (A.T.); (S.B.)
| | - Sylvie Chenavas
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.Z.); (S.C.); (F.K.); (A.T.); (S.B.)
| | - Fabien Kieken
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.Z.); (S.C.); (F.K.); (A.T.); (S.B.)
| | - Andrew Trease
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.Z.); (S.C.); (F.K.); (A.T.); (S.B.)
| | - Sarah Brownell
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.Z.); (S.C.); (F.K.); (A.T.); (S.B.)
| | - Asokan Anbanandam
- Biomolecular NMR Core Facility, University of Kansas, Lawrence, KS 66045, USA;
| | - Paul L. Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.Z.); (S.C.); (F.K.); (A.T.); (S.B.)
- Correspondence: (P.L.S.); (G.S.)
| | - Gaelle Spagnol
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.Z.); (S.C.); (F.K.); (A.T.); (S.B.)
- Correspondence: (P.L.S.); (G.S.)
| |
Collapse
|
7
|
Totland MZ, Rasmussen NL, Knudsen LM, Leithe E. Regulation of gap junction intercellular communication by connexin ubiquitination: physiological and pathophysiological implications. Cell Mol Life Sci 2020; 77:573-591. [PMID: 31501970 PMCID: PMC7040059 DOI: 10.1007/s00018-019-03285-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/10/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022]
Abstract
Gap junctions consist of arrays of intercellular channels that enable adjacent cells to communicate both electrically and metabolically. Gap junctions have a wide diversity of physiological functions, playing critical roles in both excitable and non-excitable tissues. Gap junction channels are formed by integral membrane proteins called connexins. Inherited or acquired alterations in connexins are associated with numerous diseases, including heart failure, neuropathologies, deafness, skin disorders, cataracts and cancer. Gap junctions are highly dynamic structures and by modulating the turnover rate of connexins, cells can rapidly alter the number of gap junction channels at the plasma membrane in response to extracellular or intracellular cues. Increasing evidence suggests that ubiquitination has important roles in the regulation of endoplasmic reticulum-associated degradation of connexins as well as in the modulation of gap junction endocytosis and post-endocytic sorting of connexins to lysosomes. In recent years, researchers have also started to provide insights into the physiological roles of connexin ubiquitination in specific tissue types. This review provides an overview of the advances made in understanding the roles of connexin ubiquitination in the regulation of gap junction intercellular communication and discusses the emerging physiological and pathophysiological implications of these processes.
Collapse
Affiliation(s)
- Max Zachrisson Totland
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Nikoline Lander Rasmussen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
- Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Lars Mørland Knudsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway.
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
8
|
Direct Intercellular Communications and Cancer: A Snapshot of the Biological Roles of Connexins in Prostate Cancer. Cancers (Basel) 2019; 11:cancers11091370. [PMID: 31540089 PMCID: PMC6770088 DOI: 10.3390/cancers11091370] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/04/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
Tissue homeostasis is the result of a complex intercellular network controlling the behavior of every cell for the survival of the whole organism. In mammalian tissues, cells do communicate via diverse long- and short-range communication mechanisms. While long-range communication involves hormones through blood circulation and neural transmission, short-range communication mechanisms include either paracrine diffusible factors or direct interactions (e.g., gap junctions, intercellular bridges and tunneling nanotubes) or a mixture of both (e.g., exosomes). Tumor growth represents an alteration of tissue homeostasis and could be the consequence of intercellular network disruption. In this network, direct short-range intercellular communication seems to be particularly involved. The first type of these intercellular communications thought to be involved in cancer progression were gap junctions and their protein subunits, the connexins. From these studies came the general assumption that global decreased connexin expression is correlated to tumor progression and increased cell proliferation. However, this assumption appeared more complicated by the fact that connexins may act also as pro-tumorigenic. Then, the concept that direct intercellular communication could be involved in cancer has been expanded to include new forms of intercellular communication such as tunneling nanotubes (TNTs) and exosomes. TNTs are intercellular bridges that allow free exchange of small molecules or even mitochondria depending on the presence of gap junctions. The majority of current research shows that such exchanges promote cancer progression by increasing resistance to hypoxia and chemotherapy. If exosomes are also involved in these mechanisms, more studies are needed to understand their precise role. Prostate cancer (PCa) represents a type of malignancy with one of the highest incidence rates worldwide. The precise role of these types of direct short-range intercellular communication has been considered in the progression of PCa. However, even though data are in favor of connexins playing a key role in PCa progression, a clear understanding of the role of TNTs and exosomes is needed to define their precise role in this malignancy. This review article summarizes the current view of the main mechanisms involved in short-range intercellular communication and their implications in cancer and delves into the biological, predictive and therapeutic role of connexins in PCa.
Collapse
|
9
|
Hejmej A, Bilinska B. The effects of flutamide on cell-cell junctions in the testis, epididymis, and prostate. Reprod Toxicol 2018; 81:1-16. [PMID: 29958919 DOI: 10.1016/j.reprotox.2018.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022]
Abstract
In this review, we summarize recent findings on the effect of the anti-androgen flutamide on cell-cell junctions in the male reproductive system. We outline developmental aspects of flutamide action on the testis, epididymis, and prostate, and describe changes in junction protein expression and organization of junctional complexes in the adult boar following prenatal and postnatal exposure. We also discuss findings on the mechanisms by which flutamide induces alterations in cell-cell junctions in reproductive tissues of adult males, with special emphasis on cytoplasmic effects. Based on the results from in vivo and in vitro studies in the rat, we propose that flutamide affects the expression of junction proteins and junction complex structure not only by inhibiting androgen receptor activity, but equally important by modulating protein kinase-dependent signaling in testicular cells. Additionally, results from studies on prostate cancer cell lines point to a role for the cellular molecular outfit in response to flutamide.
Collapse
Affiliation(s)
- Anna Hejmej
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Barbara Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
10
|
Ray A, Katoch P, Jain N, Mehta PP. Dileucine-like motifs in the C-terminal tail of connexin32 control its endocytosis and assembly into gap junctions. J Cell Sci 2018; 131:jcs207340. [PMID: 29361528 PMCID: PMC5897717 DOI: 10.1242/jcs.207340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/11/2018] [Indexed: 12/11/2022] Open
Abstract
Defects in assembly of gap junction-forming proteins, called connexins (Cxs), are observed in a variety of cancers. Connexin32 (Cx32; also known as GJB1) is expressed by the polarized cells in epithelia. We discovered two dileucine-based motifs, which govern the intracellular sorting and endocytosis of transmembrane proteins, in the C-terminal tail of Cx32 and explored their role in regulating its endocytosis and gap junction-forming abilities in pancreatic and prostate cancer cells. One motif, designated as LI, was located near the juxtamembrane domain, whereas the other, designated as LL, was located distally. We also discovered a non-canonical motif, designated as LR, in the C-terminal tail. Our results showed that rendering these motifs non-functional had no effect on the intracellular sorting of Cx32. However, rendering the LL or LR motif nonfunctional enhanced the formation of gap junctions by inhibiting Cx32 endocytosis by the clathrin-mediated pathway. Rendering the LI motif nonfunctional inhibited gap junction formation by augmenting the endocytosis of Cx32 via the LL and LR motifs. Our studies have defined distinct roles of these motifs in regulating the endocytosis of Cx32 and its gap junction-forming ability.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Anuttoma Ray
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Parul Katoch
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nimansha Jain
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Parmender P Mehta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
11
|
The Complex Subtype-Dependent Role of Connexin 43 (GJA1) in Breast Cancer. Int J Mol Sci 2018; 19:ijms19030693. [PMID: 29495625 PMCID: PMC5877554 DOI: 10.3390/ijms19030693] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/17/2018] [Accepted: 02/26/2018] [Indexed: 12/27/2022] Open
Abstract
Gap junction transmembrane channels allow the transfer of small molecules between the cytoplasm of adjacent cells. They are formed by proteins named connexins (Cxs) that have long been considered as a tumor suppressor. This widespread view has been challenged by recent studies suggesting that the role of Connexin 43 (Cx43) in cancer is tissue- and stage-specific and can even promote tumor progression. High throughput profiling of invasive breast cancer has allowed for the construction of subtyping schemes that partition patients into at least four distinct intrinsic subtypes. This study characterizes Cx43 expression during cancer progression with each of the tumor subtypes using a compendium of publicly available gene expression data. In particular, we show that Cx43 expression depends greatly on intrinsic subtype. Tumor grade also co-varies with patient subtype, resulting in Cx43 co-expression with grade in a subtype-dependent manner. Better survival was associated with a high expression of Cx43 in unstratified and luminal tumors but with a low expression in Her2e subtype. A better understanding of Cx43 regulation in a subtype-dependent manner is needed to clarify the context in which Cx43 is associated with tumor suppression or cancer progression.
Collapse
|
12
|
Trease AJ, Capuccino JMV, Contreras J, Harris AL, Sorgen PL. Intramolecular signaling in a cardiac connexin: Role of cytoplasmic domain dimerization. J Mol Cell Cardiol 2017; 111:69-80. [PMID: 28754342 DOI: 10.1016/j.yjmcc.2017.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 06/06/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
Abstract
Gap junctions, composed of connexins, mediate electrical coupling and impulse propagation in the working myocardium. In the human heart, the spatio-temporal regulation and distinct functional properties of the three dominant connexins (Cx43, Cx45, and Cx40) suggests non-redundant physiological roles for each isoform. There are substantial differences in gating properties, expression, and trafficking among these isoforms, however, little is known about the determinants of these different phenotypes. To gain insight regarding these determinants, we focused on the carboxyl-terminal (CT) domain because of its importance in channel regulation and large degree of sequence divergence among connexin family members. Using in vitro biophysical experiments, we identified a structural feature unique to Cx45: high affinity (KD~100nM) dimerization between CT domains. In this study, we sought to determine if this dimerization occurs in cells and to identify the biological significance of the dimerization. Using a bimolecular fluorescence complementation assay, we demonstrate that the CT domains dimerize at the plasma membrane. By inhibiting CT dimerization with a mutant construct, we show that CT dimerization is necessary for proper Cx45 membrane localization, turnover, phosphorylation status, and binding to protein partners. Furthermore, CT dimerization is needed for normal intercellular communication and hemichannel activity. Altogether, our results demonstrate that CT dimerization is a structural feature important for correct Cx45 function. This study is significant because discovery of how interactions mediated by the CT domains can be modulated would open the door to strategies to ameliorate the pathological effects of altered connexin regulation in the failing heart.
Collapse
Affiliation(s)
- Andrew J Trease
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Juan M V Capuccino
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Jorge Contreras
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Andrew L Harris
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Paul L Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
13
|
Boucher J, Monvoisin A, Vix J, Mesnil M, Thuringer D, Debiais F, Cronier L. Connexins, important players in the dissemination of prostate cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:202-215. [PMID: 28693897 DOI: 10.1016/j.bbamem.2017.06.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/22/2017] [Accepted: 06/29/2017] [Indexed: 12/25/2022]
Abstract
Over the past 50years, increasing experimental evidences have established that connexins (Cxs) and gap junctional intercellular communication (GJIC) ensure an important role in both the onset and development of cancerous processes. In the present review, we focus on the impact of Cxs and GJIC during the development of prostate cancer (PCa), from the primary growth mainly localized in acinar glands and ducts to the distant metastasis mainly concentrated in bone. As observed in several other types of solid tumours, Cxs and especially Cx43 exhibit an ambivalent role with a tumour suppressor effect in the early stages and, conversely, a rather pro-tumoural profile for most of invasion and dissemination steps to secondary sites. We report here the current knowledge on the function of Cxs during PCa cells migration, cytoskeletal dynamics, proteinases activities and the cross talk with the surrounding stromal cells in the microenvironment of the tumour and the bones. In addition, we discuss the role of Cxs in the bone tropism even if the prostate model is rarely used to study the complete sequence of cancer dissemination compared to breast cancer or melanoma. Even if not yet fully understood, these recent findings on Cxs provide new insights into their molecular mechanisms associated with progression and bone targeted behaviour of PCa. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Jonathan Boucher
- Laboratory Signalisation et Transports Ioniques Membranaires (STIM), ERL7368 - CNRS, University of Poitiers, Poitiers, France
| | - Arnaud Monvoisin
- Laboratory Signalisation et Transports Ioniques Membranaires (STIM), ERL7368 - CNRS, University of Poitiers, Poitiers, France
| | - Justine Vix
- Laboratory Signalisation et Transports Ioniques Membranaires (STIM), ERL7368 - CNRS, University of Poitiers, Poitiers, France; Department of Rheumatology, C.H.U. la Milétrie, Poitiers, France
| | - Marc Mesnil
- Laboratory Signalisation et Transports Ioniques Membranaires (STIM), ERL7368 - CNRS, University of Poitiers, Poitiers, France
| | | | - Françoise Debiais
- Laboratory Signalisation et Transports Ioniques Membranaires (STIM), ERL7368 - CNRS, University of Poitiers, Poitiers, France; Department of Rheumatology, C.H.U. la Milétrie, Poitiers, France
| | - Laurent Cronier
- Laboratory Signalisation et Transports Ioniques Membranaires (STIM), ERL7368 - CNRS, University of Poitiers, Poitiers, France.
| |
Collapse
|
14
|
Li H, Spagnol G, Zheng L, Stauch KL, Sorgen PL. Regulation of Connexin43 Function and Expression by Tyrosine Kinase 2. J Biol Chem 2016; 291:15867-80. [PMID: 27235399 DOI: 10.1074/jbc.m116.727008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Indexed: 11/06/2022] Open
Abstract
Connexin43 (Cx43) assembly and degradation, the regulation of electrical and metabolic coupling, as well as modulating the interaction with other proteins, involve phosphorylation. Here, we identified and characterized the biological significance of a novel tyrosine kinase that phosphorylates Cx43, tyrosine kinase 2 (Tyk2). Activation of Tyk2 led to a decrease in Cx43 gap junction communication by increasing the turnover rate of Cx43 from the plasma membrane. Tyk2 directly phosphorylated Cx43 residues Tyr-247 and Tyr-265, leading to indirect phosphorylation on residues Ser-279/Ser-282 (MAPK) and Ser-368 (PKC). Although this phosphorylation pattern is similar to what has been observed following Src activation, the response caused by Tyk2 occurred when Src was inactive in NRK cells. Knockdown of Tyk2 at the permissive temperature (active v-Src) in LA-25 cells decreased Cx43 phosphorylation, indicating that although activation of Tyk2 and v-Src leads to phosphorylation of the same Cx43CT residues, they are not identical in level at each site. Additionally, angiotensin II activation of Tyk2 increased the intracellular protein level of Cx43 via STAT3. These findings indicate that, like Src, Tyk2 can also inhibit gap junction communication by phosphorylating Cx43.
Collapse
Affiliation(s)
- Hanjun Li
- From the University of Nebraska Medical Center, Omaha, Nebraska 68105
| | - Gaelle Spagnol
- From the University of Nebraska Medical Center, Omaha, Nebraska 68105
| | - Li Zheng
- From the University of Nebraska Medical Center, Omaha, Nebraska 68105
| | - Kelly L Stauch
- From the University of Nebraska Medical Center, Omaha, Nebraska 68105
| | - Paul L Sorgen
- From the University of Nebraska Medical Center, Omaha, Nebraska 68105
| |
Collapse
|
15
|
Leithe E. Regulation of connexins by the ubiquitin system: Implications for intercellular communication and cancer. Biochim Biophys Acta Rev Cancer 2016; 1865:133-46. [DOI: 10.1016/j.bbcan.2016.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/15/2016] [Accepted: 02/04/2016] [Indexed: 12/31/2022]
|
16
|
Laura MC, Xóchitl FP, Anne S, Alberto MV. Analysis of connexin expression during seizures induced by 4-aminopyridine in the rat hippocampus. J Biomed Sci 2015; 22:69. [PMID: 26268619 PMCID: PMC4535691 DOI: 10.1186/s12929-015-0176-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 08/04/2015] [Indexed: 12/13/2022] Open
Abstract
Background In epilepsy, seizures are generated by abnormal synchronous activity in neurons. In the rat hippocampus (HIP), epileptiform activity has been found to be associated with gap junctions (GJs). GJs are formed by the combination of two hemichannels, each composed of six connexins. At low doses, the convulsive drug 4-aminopyridine (4-AP) produces epileptiform activity without affecting glutamate levels; therefore, GJs could participate in its effect. Based on this argument, in this study, the expression of Cx 32, Cx 36 and Cx 43 protein and mRNA in the HIP of rats treated with 4-AP was evaluated. The evaluation of connexins was carried out by chemifluorescent immunoassay, semiquantitative RT-PCR and immunofluorescence to detect the amount and distribution of connexins and of cellular markers in the HIP and dentate gyrus (DG) of animals treated with NaCl and 4-AP in the right entorhinal cortex. In these animals, convulsive behavior and EEG signals were analyzed. Results The animals treated with 4-AP showed convulsive behavior and epileptiform activity 60 min after the administration. A significant increase in the protein expression of Cx 32, Cx 36 and Cx 43 was found in the HIP contralateral and ipsilateral to the site of 4-AP administration. A trend toward an increase in the mRNA of Cx 32 and Cx 43 was also found. An increase in the cellular density of Cx 32 and Cx 43 was found in the right HIP and DG, and an increase in the cellular density of oligodendrocytes in the DG and a decrease in the number of cells marked with NeuN were observed in the left HIP. Conclusions Cx 32 and Cx 43 associated with oligodendrocytes and astrocytes had an important role in the first stages of seizures induced by 4-AP, whereas Cx36 localized to neurons could be associated with later stages. Additionally, these results contribute to our understanding of the role of connexins in acute seizures and allow us to direct our efforts to other new anticonvulsant strategies for seizure treatment.
Collapse
Affiliation(s)
- Medina-Ceja Laura
- Laboratory of Neurophysiology and Neurochemistry, Department of Cellular and Molecular Biology, CUCBA,University of Guadalajara, Camino Ing. R. Padilla Sánchez 2100, Las Agujas, Nextipac, Zapopan, Jalisco, Mexico.
| | - Flores-Ponce Xóchitl
- Laboratory of Neurophysiology and Neurochemistry, Department of Cellular and Molecular Biology, CUCBA,University of Guadalajara, Camino Ing. R. Padilla Sánchez 2100, Las Agujas, Nextipac, Zapopan, Jalisco, Mexico.
| | - Santerre Anne
- Laboratory of Molecular Biomarkers and Molecular Genetic, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Jalisco, Mexico.
| | - Morales-Villagrán Alberto
- Laboratory of Neurophysiology and Neurochemistry, Department of Cellular and Molecular Biology, CUCBA,University of Guadalajara, Camino Ing. R. Padilla Sánchez 2100, Las Agujas, Nextipac, Zapopan, Jalisco, Mexico.
| |
Collapse
|
17
|
Katoch P, Mitra S, Ray A, Kelsey L, Roberts BJ, Wahl JK, Johnson KR, Mehta PP. The carboxyl tail of connexin32 regulates gap junction assembly in human prostate and pancreatic cancer cells. J Biol Chem 2015; 290:4647-4662. [PMID: 25548281 PMCID: PMC4335205 DOI: 10.1074/jbc.m114.586057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 12/23/2014] [Indexed: 12/20/2022] Open
Abstract
Connexins, the constituent proteins of gap junctions, are transmembrane proteins. A connexin (Cx) traverses the membrane four times and has one intracellular and two extracellular loops with the amino and carboxyl termini facing the cytoplasm. The transmembrane and the extracellular loop domains are highly conserved among different Cxs, whereas the carboxyl termini, often called the cytoplasmic tails, are highly divergent. We have explored the role of the cytoplasmic tail of Cx32, a Cx expressed in polarized and differentiated cells, in regulating gap junction assembly. Our results demonstrate that compared with the full-length Cx32, the cytoplasmic tail-deleted Cx32 is assembled into small gap junctions in human pancreatic and prostatic cancer cells. Our results further document that the expression of the full-length Cx32 in cells, which express the tail-deleted Cx32, increases the size of gap junctions, whereas the expression of the tail-deleted Cx32 in cells, which express the full-length Cx32, has the opposite effect. Moreover, we show that the tail is required for the clustering of cell-cell channels and that in cells expressing the tail-deleted Cx32, the expression of cell surface-targeted cytoplasmic tail alone is sufficient to enhance the size of gap junctions. Our live-cell imaging data further demonstrate that gap junctions formed of the tail-deleted Cx32 are highly mobile compared with those formed of full-length Cx32. Our results suggest that the cytoplasmic tail of Cx32 is not required to initiate the assembly of gap junctions but for their subsequent growth and stability. Our findings suggest that the cytoplasmic tail of Cx32 may be involved in regulating the permeability of gap junctions by regulating their size.
Collapse
Affiliation(s)
- Parul Katoch
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Shalini Mitra
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Anuttoma Ray
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Linda Kelsey
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Brett J Roberts
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - James K Wahl
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Keith R Johnson
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Parmender P Mehta
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198.
| |
Collapse
|
18
|
Kelsey L, Katoch P, Ray A, Mitra S, Chakraborty S, Lin MF, Mehta PP. Vitamin D3 regulates the formation and degradation of gap junctions in androgen-responsive human prostate cancer cells. PLoS One 2014; 9:e106437. [PMID: 25188420 PMCID: PMC4154685 DOI: 10.1371/journal.pone.0106437] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 08/06/2014] [Indexed: 11/19/2022] Open
Abstract
1α-25(OH)2 vitamin D3 (1-25D), an active hormonal form of Vitamin D3, is a well-known chemopreventive and pro-differentiating agent. It has been shown to inhibit the growth of several prostate cancer cell lines. Gap junctions, formed of proteins called connexins (Cx), are ensembles of cell-cell channels, which permit the exchange of small growth regulatory molecules between adjoining cells. Cell-cell communication mediated by gap junctional channels is an important homeostatic control mechanism for regulating cell growth and differentiation. We have investigated the effect of 1-25D on the formation and degradation of gap junctions in an androgen-responsive prostate cancer cell line, LNCaP, which expresses retrovirally-introduced Cx32. Connexin32 is expressed by the luminal and well-differentiated cells of normal prostate and prostate tumors. Our results document that 1-25D enhances the expression of Cx32 and its subsequent assembly into gap junctions. Our results further show that 1-25D prevents androgen-regulated degradation of Cx32, post-translationally, independent of androgen receptor (AR)-mediated signaling. Finally, our findings document that formation of gap junctions sensitizes Cx32-expressing LNCaP cells to the growth inhibitory effects of 1-25D and alters their morphology. These findings suggest that the growth-inhibitory effects of 1-25D in LNCaP cells may be related to its ability to modulate the assembly of Cx32 into gap junctions.
Collapse
Affiliation(s)
- Linda Kelsey
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Parul Katoch
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Anuttoma Ray
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Shalini Mitra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Souvik Chakraborty
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ming-Fong Lin
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Parmender P. Mehta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
19
|
Li H, Spagnol G, Naslavsky N, Caplan S, Sorgen PL. TC-PTP directly interacts with connexin43 to regulate gap junction intercellular communication. J Cell Sci 2014; 127:3269-79. [PMID: 24849651 DOI: 10.1242/jcs.145193] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Protein kinases have long been reported to regulate connexins; however, little is known about the involvement of phosphatases in the modulation of intercellular communication through gap junctions and the subsequent downstream effects on cellular processes. Here, we identify an interaction between the T-cell protein tyrosine phosphatase (TC-PTP, officially known as PTPN2) and the carboxyl terminus of connexin43 (Cx43, officially known as GJA1). Two cell lines, normal rat kidney (NRK) cells endogenously expressing Cx43 and an NRK-derived cell line expressing v-Src with temperature-sensitive activity, were used to demonstrate that EGF and v-Src stimulation, respectively, induced TC-PTP to colocalize with Cx43 at the plasma membrane. Cell biology experiments using phospho-specific antibodies and biophysical assays demonstrated that the interaction is direct and that TC-PTP dephosphorylates Cx43 residues Y247 and Y265, but does not affect v-Src. Transfection of TC-PTP also indirectly led to the dephosphorylation of Cx43 S368, by inactivating PKCα and PKCδ, with no effect on the phosphorylation of S279 and S282 (MAPK-dependent phosphorylation sites). Dephosphorylation maintained Cx43 gap junctions at the plaque and partially reversed the channel closure caused by v-Src-mediated phosphorylation of Cx43. Understanding dephosphorylation, along with the well-documented roles of Cx43 phosphorylation, might eventually lead to methods to modulate the regulation of gap junction channels, with potential benefits for human health.
Collapse
Affiliation(s)
- Hanjun Li
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gaelle Spagnol
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Naava Naslavsky
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Paul L Sorgen
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
20
|
Gorowska E, Zarzycka M, Chojnacka K, Bilinska B, Hejmej A. Postnatal exposure to flutamide affects CDH1 and CTNNB1 gene expression in adult pig epididymis and prostate and alters metabolism of testosterone. Andrology 2013; 2:186-97. [PMID: 24353261 DOI: 10.1111/j.2047-2927.2013.00172.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/04/2013] [Accepted: 11/18/2013] [Indexed: 12/01/2022]
Abstract
In both epididymis and prostate the dynamic cross-talk between the cells is hormonally regulated and, in part, through direct cell-to-cell interactions. Functionality of the male reproductive organs may be affected by exposure to specific chemicals, so-called 'reprotoxicants'. In this study we tested whether early postnatal and prepubertal exposure to anti-androgen flutamide altered the expression of adherens junction genes encoding E-cadherin (CDH1) and β-catenin (CTNNB1) in adult pig epididymis and prostate. In addition, the expression of mRNAs and proteins for 5α-reductase (ST5AR2) and aromatase (CYP19A1) were examined to show whether flutamide alters metabolism of testosterone. Thus, flutamide was injected into male piglets between Days 2 and 10 and between Days 90 and 98 postnatally (PD2 and PD90; 50 mg/kg bw), tissues that were obtained on postnatal Day 270. To assess the expression of the genes and proteins, real-time RT-PCR and Western blot were performed respectively. Moreover, adherens junction proteins were localized by immunohistochemistry. In response to flutamide, CDH1 and CTNNB1 expressions were down-regulated along the epididymis, mostly in PD2 group (p < 0.001, p < 0.01). In the prostate, CDH1 mRNA and protein expressions were significantly down-regulated (p < 0.01), whereas CTNNB1 mRNA was slightly up-regulated in both flutamide-treated groups. CTNNB1 protein level was markedly elevated in both PD2 (p < 0.001) and PD90 (p < 0.01) groups. In the epididymis, the expression of ST5AR2 and CYP19A1 was down- and up-regulated, respectively (p < 0.05), whereas in the prostate evident decrease in CYP19A1 expression (p < 0.001, p < 0.01, p < 0.05) was demonstrated. In both tissues, membranous immunolocalization of CTNNB1 suggests its involvement in cell-cell adhesion. Overall, flutamide administration resulted in suppression of androgen action in the epididymis and prostate leading to deregulation of CDH1 and CTNNB1 gene expressions which is probably caused by the alterations in the expression of ST5AR2 and CYP19A1 in both reproductive organs.
Collapse
Affiliation(s)
- E Gorowska
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | | | | | | | | |
Collapse
|
21
|
Johnson KE, Mitra S, Katoch P, Kelsey LS, Johnson KR, Mehta PP. Phosphorylation on Ser-279 and Ser-282 of connexin43 regulates endocytosis and gap junction assembly in pancreatic cancer cells. Mol Biol Cell 2013; 24:715-33. [PMID: 23363606 PMCID: PMC3596244 DOI: 10.1091/mbc.e12-07-0537] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The molecular mechanisms regulating the assembly of connexins (Cxs) into gap junctions are poorly understood. Using human pancreatic tumor cell lines BxPC3 and Capan-1, which express Cx26 and Cx43, we show that, upon arrival at the cell surface, the assembly of Cx43 is impaired. Connexin43 fails to assemble, because it is internalized by clathrin-mediated endocytosis. Assembly is restored upon expressing a sorting-motif mutant of Cx43, which does not interact with the AP2 complex, and by expressing mutants that cannot be phosphorylated on Ser-279 and Ser-282. The mutants restore assembly by preventing clathrin-mediated endocytosis of Cx43. Our results also document that the sorting-motif mutant is assembled into gap junctions in cells in which the expression of endogenous Cx43 has been knocked down. Remarkably, Cx43 mutants that cannot be phosphorylated on Ser-279 or Ser-282 are assembled into gap junctions only when connexons are composed of Cx43 forms that can be phosphorylated on these serines and forms in which phosphorylation on these serines is abolished. Based on the subcellular fate of Cx43 in single and contacting cells, our results document that the endocytic itinerary of Cx43 is altered upon cell-cell contact, which causes Cx43 to traffic by EEA1-negative endosomes en route to lysosomes. Our results further show that gap-junctional plaques formed of a sorting motif-deficient mutant of Cx43, which is unable to be internalized by the clathrin-mediated pathway, are predominantly endocytosed in the form of annular junctions. Thus the differential phosphorylation of Cx43 on Ser-279 and Ser-282 is fine-tuned to control Cx43's endocytosis and assembly into gap junctions.
Collapse
Affiliation(s)
- Kristen E Johnson
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | |
Collapse
|
22
|
Traish AM, Stottrup C, van Renterghem K, Achten R, Roy S. Density and distribution of connexin 43 in corpus cavernosum tissue from diabetic and hypogonadal patients with erectile dysfunction. Horm Mol Biol Clin Investig 2013; 13:7-12. [DOI: 10.1515/hmbci-2013-0001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 01/31/2013] [Indexed: 11/15/2022]
Abstract
AbstractAltered expression of connexin 43 (Cx43) has been postulated to be involved in the development and progression of various diseases including erectile dysfunction (ED). The aim of this study was to determine whether distribution and density of the gap junction protein Cx43 are altered in human corpus cavernosum (HCC) tissue samples derived from diabetic or hypogonadal patients with ED compared to those from normal subjects.HCC tissue sections derived from normal, diabetic and hypogonadal subjects were fixed in 4% formaldehyde, embedded in paraffin and immunostained with a monoclonal mouse anti-rat Cx43 antibody. Cx43 density was expressed as the cumulative number of gap junction plaques per unit area of tissue corrected for number of 4′,6-diamidino-2-phenylindole, dihydrochloride-labeled smooth muscle cells (dots per unit area corrected for number of cells).The distribution of Cx43 plaques in smooth muscle was not affected in tissues derived from diabetic or hypogonadal subjects with ED compared with those from normal subjects. However, the number of Cx43 plaques was significantly reduced in HCC tissues derived from diabetic or hypogonadal subjects (73±8% and 68±11% of normal, respectively), indicating reduced Cx43 gap junctions in diabetic and hypogonadal subjects with ED.Cx43 density in the HCC was diminished in tissue samples derived from diabetic or hypogonadal patients with ED compared to tissue samples from normal non-diabetic subjects. This marked decrease in Cx43 gap junction channels may contribute to attenuated gap junction function and to diminished erectile physiology.
Collapse
|
23
|
Firestone GL, Kapadia BJ. Minireview: regulation of gap junction dynamics by nuclear hormone receptors and their ligands. Mol Endocrinol 2012; 26:1798-807. [PMID: 22935924 DOI: 10.1210/me.2012-1065] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gap junctions are plasma membrane channels comprising connexin proteins that mediate intercellular permeability and communication. The presence, composition, and function of gap junctions can be regulated by diverse sets of physiological signals. Evidence from many hormone-responsive tissues has shown that connexin expression, modification, stability, and localization can be targeted by nuclear hormone receptors and their ligands through both transcriptional and nontranscriptional mechanisms. The focus of this review is to discuss molecular, cellular, and physiological studies that directly link receptor- and ligand-triggered signaling pathways to the regulation of gap junction dynamics.
Collapse
Affiliation(s)
- Gary L Firestone
- Department of Molecular and Cell Biology, 591 LSA, The University of California at Berkeley, Berkeley, California 94720-3200, USA.
| | | |
Collapse
|
24
|
Degradation of connexins through the proteasomal, endolysosomal and phagolysosomal pathways. J Membr Biol 2012; 245:389-400. [PMID: 22772442 DOI: 10.1007/s00232-012-9461-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/20/2012] [Indexed: 01/23/2023]
Abstract
Connexins comprise gap junction channels, which create a direct conduit between the cytoplasms of adjacent cells and provide for intercellular communication. Therefore, the level of total cellular connexin protein can have a direct influence on the level of intercellular communication. Control of connexin protein levels can occur through different mechanisms during the connexin life cycle, such as by regulation of connexin gene expression and turnover of existing protein. The degradation of connexins has been extensively studied, revealing proteasomal, endolysosomal and more recently autophagosomal degradation mechanisms that modulate connexin turnover and, subsequently, affect intercellular communication. Here, we review the current knowledge of connexin degradation pathways.
Collapse
|
25
|
Kelsey L, Katoch P, Johnson KE, Batra SK, Mehta PP. Retinoids regulate the formation and degradation of gap junctions in androgen-responsive human prostate cancer cells. PLoS One 2012; 7:e32846. [PMID: 22514600 PMCID: PMC3326013 DOI: 10.1371/journal.pone.0032846] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/31/2012] [Indexed: 12/13/2022] Open
Abstract
The retinoids, the natural or synthetic derivatives of Vitamin A (retinol), are essential for the normal development of prostate and have been shown to modulate prostate cancer progression in vivo as well as to modulate growth of several prostate cancer cell lines. 9-cis-retinoic acid and all-trans-retinoic acid are the two most important metabolites of retinol. Gap junctions, formed of proteins called connexins, are ensembles of intercellular channels that permit the exchange of small growth regulatory molecules between adjoining cells. Gap junctional communication is instrumental in the control of cell growth. We examined the effect of 9-cis-retinoic acid and all-trans retinoic acid on the formation and degradation of gap junctions as well as on junctional communication in an androgen-responsive prostate cancer cell line, LNCaP, which expressed retrovirally introduced connexin32, a connexin expressed by the luminal cells and well-differentiated cells of prostate tumors. Our results showed that 9-cis-retinoic acid and all-trans retinoic acid enhanced the assembly of connexin32 into gap junctions. Our results further showed that 9-cis-retinoic acid and all-trans-retinoic acid prevented androgen-regulated degradation of gap junctions, post-translationally, independent of androgen receptor mediated signaling. Finally, our findings showed that formation of gap junctions sensitized connexin32-expressing LNCaP cells to the growth modifying effects of 9-cis-retinoic acid, all-trans-retinoic acid and androgens. Thus, the effects of retinoids and androgens on growth and the formation and degradation of gap junctions and their function might be related to their ability to modulate prostate growth and cancer.
Collapse
Affiliation(s)
| | | | | | | | - Parmender P. Mehta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
26
|
Czyż J, Szpak K, Madeja Z. The role of connexins in prostate cancer promotion and progression. Nat Rev Urol 2012; 9:274-82. [PMID: 22349655 DOI: 10.1038/nrurol.2012.14] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Prostate cancer is a prevalent disease that is characterized by a presumably long latency period and a moderate propensity to metastasize. Although a range of mechanisms have been implicated in prostate carcinogenesis, the factors determining the initiation of metastasis remain obscure. The synchronized function of prostate cells depends on their metabolic and electrical coupling; disturbance of these functions has long been suggested to be integral to prostate carcinogenesis. However, although connexins form intercellular channels involved in gap-junction-mediated intercellular coupling (GJIC), whether these proteins also have GJIC-independent roles in cancer progression and metastasis remains a matter of debate. Some data indicate a correlation between connexin expression and the invasive potential of prostate cancer cells, which points to stage-specific functions of connexins during prostate cancer development. For example, restoration of connexin expression seems to be crucial for the formation of invasive cell subsets within heterogeneous prostate cancer cell populations that have undergone aberrant differentiation. Consequently, the clinical application of therapeutic and prophylactic approaches focused on the modulation of connexin expression in prostate cancer cells should be reconsidered.
Collapse
Affiliation(s)
- Jarosław Czyż
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland.
| | | | | |
Collapse
|
27
|
Leithe E, Sirnes S, Fykerud T, Kjenseth A, Rivedal E. Endocytosis and post-endocytic sorting of connexins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1870-9. [PMID: 21996040 DOI: 10.1016/j.bbamem.2011.09.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/19/2011] [Accepted: 09/28/2011] [Indexed: 12/15/2022]
Abstract
The connexins constitute a family of integral membrane proteins that form intercellular channels, enabling adjacent cells in solid tissues to directly exchange ions and small molecules. These channels assemble into distinct plasma membrane domains known as gap junctions. Gap junction intercellular communication plays critical roles in numerous cellular processes, including control of cell growth and differentiation, maintenance of tissue homeostasis and embryonic development. Gap junctions are dynamic plasma membrane domains, and there is increasing evidence that modulation of endocytosis and post-endocytic trafficking of connexins are important mechanisms for regulating the level of functional gap junctions at the plasma membrane. The emerging picture is that multiple pathways exist for endocytosis and sorting of connexins to lysosomes, and that these pathways are differentially regulated in response to physiological and pathophysiological stimuli. Recent studies suggest that endocytosis and lysosomal degradation of connexins is controlled by a complex interplay between phosphorylation and ubiquitination. This review summarizes recent progress in understanding the molecular mechanisms involved in endocytosis and post-endocytic sorting of connexins, and the relevance of these processes to the regulation of gap junction intercellular communication under normal and pathophysiological conditions. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- Edward Leithe
- Department of Cancer Prevention, Oslo University Hospital, Oslo, Norway
| | | | | | | | | |
Collapse
|
28
|
Govindarajan R, Chakraborty S, Johnson KE, Falk MM, Wheelock MJ, Johnson KR, Mehta PP. Assembly of connexin43 into gap junctions is regulated differentially by E-cadherin and N-cadherin in rat liver epithelial cells. Mol Biol Cell 2010; 21:4089-107. [PMID: 20881055 PMCID: PMC2993739 DOI: 10.1091/mbc.e10-05-0403] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cadherins have been thought to facilitate the assembly of connexins (Cxs) into gap junctions (GJs) by enhancing cell-cell contact, however the molecular mechanisms involved in this process have remained unexplored. We examined the assembly of GJs composed of Cx43 in isogenic clones derived from immortalized and nontransformed rat liver epithelial cells that expressed either epithelial cadherin (E-Cad), which curbs the malignant behavior of tumor cells, or neuronal cadherin (N-Cad), which augments the invasive and motile behavior of tumor cells. We found that N-cad expression attenuated the assembly of Cx43 into GJs, whereas E-Cad expression facilitated the assembly. The expression of N-Cad inhibited GJ assembly by causing endocytosis of Cx43 via a nonclathrin-dependent pathway. Knock down of N-Cad by ShRNA restored GJ assembly. When both cadherins were simultaneously expressed in the same cell type, GJ assembly and disassembly occurred concurrently. Our findings demonstrate that E-Cad and N-Cad have opposite effects on the assembly of Cx43 into GJs in rat liver epithelial cells. These findings imply that GJ assembly and disassembly are the down-stream targets of the signaling initiated by E-Cad and N-Cad, respectively, and may provide one possible explanation for the disparate role played by these cadherins in regulating cell motility and invasion during tumor progression and invasion.
Collapse
Affiliation(s)
- Rajgopal Govindarajan
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Maitland N, Chambers K, Georgopoulos L, Simpson-Holley M, Leadley R, Evans H, Essand M, Danielsson A, van Weerden W, de Ridder C, Kraaij R, Bangma CH. Gene Transfer Vectors Targeted to Human Prostate Cancer: Do We Need Better Preclinical Testing Systems? Hum Gene Ther 2010; 21:815-27. [DOI: 10.1089/hum.2009.210] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Norman Maitland
- Yorkshire Cancer Research Unit, Department of Biology, University of York, York YO10 5YW, United Kingdom
| | - Karen Chambers
- Yorkshire Cancer Research Unit, Department of Biology, University of York, York YO10 5YW, United Kingdom
| | - Lindsay Georgopoulos
- Yorkshire Cancer Research Unit, Department of Biology, University of York, York YO10 5YW, United Kingdom
| | - Martha Simpson-Holley
- Yorkshire Cancer Research Unit, Department of Biology, University of York, York YO10 5YW, United Kingdom
| | - Regina Leadley
- Yorkshire Cancer Research Unit, Department of Biology, University of York, York YO10 5YW, United Kingdom
| | - Helen Evans
- Yorkshire Cancer Research Unit, Department of Biology, University of York, York YO10 5YW, United Kingdom
| | - Magnus Essand
- Clinical Immunology, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden
| | - Angelika Danielsson
- Clinical Immunology, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden
| | - Wytske van Weerden
- Department of Urology, Josephine Nefkens Institute, Erasmus MC, 3000CA Rotterdam, The Netherlands
| | - Corrina de Ridder
- Department of Urology, Josephine Nefkens Institute, Erasmus MC, 3000CA Rotterdam, The Netherlands
| | - Robert Kraaij
- Department of Urology, Josephine Nefkens Institute, Erasmus MC, 3000CA Rotterdam, The Netherlands
| | - Chris H. Bangma
- Department of Urology, Josephine Nefkens Institute, Erasmus MC, 3000CA Rotterdam, The Netherlands
| |
Collapse
|
30
|
Chakraborty S, Mitra S, Falk MM, Caplan SH, Wheelock MJ, Johnson KR, Mehta PP. E-cadherin differentially regulates the assembly of Connexin43 and Connexin32 into gap junctions in human squamous carcinoma cells. J Biol Chem 2010; 285:10761-76. [PMID: 20086013 PMCID: PMC2856283 DOI: 10.1074/jbc.m109.053348] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Revised: 12/31/2009] [Indexed: 02/06/2023] Open
Abstract
It is as yet unknown how the assembly of connexins (Cx) into gap junctions (GJ) is initiated upon cell-cell contact. We investigated whether the trafficking and assembly of Cx43 and Cx32 into GJs were contingent upon cell-cell adhesion mediated by E-cadherin. We also examined the role of the carboxyl termini of these Cxs in initiating the formation of GJs. Using cadherin and Cx-null cells, and by introducing Cx43 and Cx32, either alone or in combination with E-cadherin, our studies demonstrated that E-cadherin-mediated cell-cell adhesion was neither essential nor sufficient to initiate GJ assembly de novo in A431D human squamous carcinoma cells. However, E-cadherin facilitated the growth and assembly of preformed GJs composed of Cx43, although the growth of cells on Transwell filters was required to initiate the assembly of Cx32. Our results also documented that the carboxyl termini of both Cxs were required in this cell type to initiate the formation of GJs de novo. Our findings also showed that GJ puncta composed of Cx43 co-localized extensively with ZO-1 and actin fibers at cell peripheries and that ZO-1 knockdown attenuated Cx43 assembly. These findings suggest that the assembly of Cx43 and Cx32 into GJs is differentially modulated by E-cadherin-mediated cell-cell adhesion and that direct or indirect cross-talk between carboxyl tails of Cxs and actin cytoskeleton via ZO-1 may regulate GJ assembly and growth.
Collapse
Affiliation(s)
- Souvik Chakraborty
- From the Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198 and
| | - Shalini Mitra
- From the Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198 and
| | - Matthias M. Falk
- the Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015
| | - Steve H. Caplan
- From the Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198 and
| | - Margaret J. Wheelock
- From the Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198 and
| | - Keith R. Johnson
- From the Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198 and
| | - Parmender P. Mehta
- From the Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198 and
| |
Collapse
|
31
|
Okamoto T, Akiyama M, Takeda M, Gabazza EC, Hayashi T, Suzuki K. Connexin32 is expressed in vascular endothelial cells and participates in gap-junction intercellular communication. Biochem Biophys Res Commun 2009; 382:264-8. [PMID: 19265674 DOI: 10.1016/j.bbrc.2009.02.148] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 02/26/2009] [Indexed: 10/21/2022]
Abstract
Endothelial cells (ECs) play many roles in vascular biology, including control of blood pressure, blood clotting, atherosclerosis, angiogenesis, and inflammation. Gap junctions (GJs) are channel-like assemblies of connexin (Cx) family proteins that connect neighboring cells and modulate and synchronize their intracellular environments by the transfer of intracellular mediators. It has been reported that vascular ECs express Cx37, Cx40, and Cx43, but not Cx32. Here, we showed that Cx32 mRNA and protein are expressed in various cultured human ECs. We confirmed Cx32 expression in blood vessel ECs using wild-type and Cx32 knock-out mice. We observed that dye transfer between cultured ECs through gap junctions is suppressed by an anti-Cx32 monoclonal antibody. These findings suggest that vascular ECs express Cx32, which participates in endothelial gap-junction intercellular communication.
Collapse
Affiliation(s)
- Takayuki Okamoto
- Department of Molecular Pathobiology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Junction restructuring and spermatogenesis: the biology, regulation, and implication in male contraceptive development. Curr Top Dev Biol 2007; 80:57-92. [PMID: 17950372 DOI: 10.1016/s0070-2153(07)80002-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Spermatogenesis that occurs in the seminiferous epithelium of adult mammalian testes is associated with extensive junction restructuring at the Sertoli-Sertoli cell, Sertoli-germ cell, and Sertoli-basement membrane interface. While this morphological phenomenon is known and has been described in great details for decades, the biochemical and molecular changes as well as the mechanisms/signaling pathways that define changes at the cell-cell and cell-matrix interface remain largely unknown until recently. In this chapter, we summarize and discuss findings in the field regarding the coordinated efforts of the anchoring [e.g., adherens junction (AJ), such as basal ectoplasmic specialization (basal ES)] and tight junctions (TJs) that are present in the same microenvironment, such as at the blood-testis barrier (BTB), or at distinctly opposite ends of the Sertoli cell epithelium, such as between apical ectoplasmic specialization (apical ES) in the apical compartment, and the BTB adjacent to the basal compartment of the epithelium. These efforts, in turn, regulate and coordinate different cellular events that occur during the seminiferous epithelial cycle. For instance, the events of spermiation and of preleptotene spermatocyte migration across the BTB both take place concurrently at stage VIII of the epithelial cycle of spermatogenesis. Recent findings suggest that these events are coordinated by protein complexes found at the apical and basal ES and TJ, which are located at different ends of the Sertoli cell epithelium. Besides, we highlight important areas of research that can now be undertaken, and functional studies that can be designed to tackle different issues pertinent to junction restructuring during spermatogenesis.
Collapse
|
33
|
Hervé JC, Derangeon M, Bahbouhi B, Mesnil M, Sarrouilhe D. The connexin turnover, an important modulating factor of the level of cell-to-cell junctional communication: comparison with other integral membrane proteins. J Membr Biol 2007; 217:21-33. [PMID: 17673963 DOI: 10.1007/s00232-007-9054-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 06/04/2007] [Indexed: 12/25/2022]
Abstract
The constituent proteins of gap junctions, called "connexins" (Cxs) in chordates, are generally renewed several times a day, in approximately the same rate range as many other integral plasma membrane proteins and the proteins of other channels, other intercellular junctions or different membrane receptors. This permanent renewal turns on a fine-tuned balance among various processes, such as gene transcription, mRNA stability and processing, protein synthesis and oligomerization, posttranslational modifications, transport to the plasma membrane, anchoring to the cytoskeleton, connexon aggregation and docking, regulation of endocytosis and controlled degradations of the proteins. Subtle changes at one or some of these steps would represent an exquisite level of regulation that extends beyond the rapid channel opening and closure events associated with channel gating; membrane channels and receptors are constantly able to answer to physiological requirements to either up- or downregulate their activity. The Cx turnover rate thereby appears to be a key component in the regulation of any protein, particularly of gap junctional proteins. However, the physiological stimuli that control the assembly of Cxs into gap junctions and their degradation remain poorly understood.
Collapse
Affiliation(s)
- Jean-Claude Hervé
- Institut de Physiologie et Biologie Cellulaires, Faculté des Sciences Fondamentales et Appliquées, UMR CNRS 6187, Université de Poitiers, 40, avenue du R Pineau, 86022, Poitiers, France.
| | | | | | | | | |
Collapse
|