1
|
Lee S, Seo YE, Choi J, Yan X, Kim T, Choi D, Lee JH. Nucleolar actions in plant development and stress responses. PLANT, CELL & ENVIRONMENT 2024; 47:5189-5204. [PMID: 39169813 DOI: 10.1111/pce.15099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
The nucleolus is conventionally acknowledged for its role in ribosomal RNA (rRNA) synthesis and ribosome biogenesis. Recent research has revealed its multifaceted involvement in plant biology, encompassing regulation of the cell cycle, development, and responses to environmental stresses. This comprehensive review explores the diverse roles of the nucleolus in plant growth and responses to environmental stresses. The introduction delves into its traditional functions in rRNA synthesis and potential participation in nuclear liquid-liquid phase separation. By examining the multifaceted roles of nucleolar proteins in plant development, we highlight the impacts of various nucleolar mutants on growth, development, and embryogenesis. Additionally, we reviewed the involvement of nucleoli in responses to abiotic and biotic stresses. Under abiotic stress conditions, the nucleolar structure undergoes morphological changes. In the context of biotic stress, the nucleolus emerges as a common target for effectors of pathogens for manipulation of host immunity to enhance pathogenicity. The detailed exploration of how pathogens interact with nucleoli and manipulate host responses provides valuable insights into plant stress responses as well as plant growth and development. Understanding these processes may pave the way for promising strategies to enhance crop resilience and mitigate the impact of biotic and abiotic stresses in agricultural systems.
Collapse
Affiliation(s)
- Soeui Lee
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Ye-Eun Seo
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Jeen Choi
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Xin Yan
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Taewon Kim
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Doil Choi
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Joo Hyun Lee
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
2
|
Inada N. Regulation of heterochromatin organization in plants. JOURNAL OF PLANT RESEARCH 2024; 137:685-693. [PMID: 38914831 DOI: 10.1007/s10265-024-01550-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024]
Abstract
Heterochromatin is a nuclear area that contains highly condensed and transcriptionally inactive chromatin. Alterations in the organization of heterochromatin are correlated with changes in gene expression and genome stability, which affect various aspects of plant life. Thus, studies of the molecular mechanisms that regulate heterochromatin organization are important for understanding the regulation of plant physiology. Microscopically, heterochromatin can be characterized as chromocenters that are intensely stained with DNA-binding fluorescent dyes. Arabidopsis thaliana exhibits distinctive chromocenters in interphase nuclei, and genetic studies combined with cytological analyses have identified a number of factors that are involved in heterochromatin assembly and organization. In this review, I will summarize the factors involved in the regulation of heterochromatin organization in plants.
Collapse
Affiliation(s)
- Noriko Inada
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, 599-8531, Osaka, Japan.
| |
Collapse
|
3
|
Muñoz-Díaz E, Fuenzalida-Valdivia I, Darrière T, de Bures A, Blanco-Herrera F, Rompais M, Carapito C, Sáez-Vásquez J. Proteomic profiling of Arabidopsis nuclei reveals distinct protein accumulation kinetics upon heat stress. Sci Rep 2024; 14:18914. [PMID: 39143125 PMCID: PMC11324732 DOI: 10.1038/s41598-024-65558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/20/2024] [Indexed: 08/16/2024] Open
Abstract
Heat stress (HS) impacts the nuclear proteome and, subsequently, protein activities in different nuclear compartments. In Arabidopsis thaliana, a short exposure to 37 °C leads to loss of the standard tripartite architecture of the nucleolus, the most prominent nuclear substructure, and, consequently, affects the assembly of ribosomes. Here, we report a quantitative label-free LC‒MS/MS (Liquid Chromatography coupled to tandem Mass Spectrometry) analysis to determine the nuclear proteome of Arabidopsis at 22 °C, HS (37 °C for 4 and 24 h), and a recovery phase. This analysis identified ten distinct groups of proteins based on relative abundance changes in the nucleus before, during and after HS: Early, Late, Transient, Early Persistent, Late Persistent, Recovery, Early-Like, Late-Like, Transient-Like and Continuous Groups (EG, LG, TG, EPG, LPG, RG, ELG, LLG, TLG and CG, respectively). Interestingly, the RNA polymerase I subunit NRPA3 and other main nucleolar proteins, including NUCLEOLIN 1 and FIBRILLARIN 1 and 2, were detected in RG and CG, suggesting that plants require increased nucleolar activity and likely ribosome assembly to restore protein synthesis after HS.
Collapse
Affiliation(s)
- E Muñoz-Díaz
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860, Perpignan, France
- LGDP, UMR 5096, Univ. Perpignan Via Domitia, 66860, Perpignan, France
| | - I Fuenzalida-Valdivia
- Facultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andrés Bello, 8370146, Santiago, RM, Chile
- ANID - Millennium Institute for Integrative Biology (IBio), Santiago, Chile
- ANID - Millennium Science Initiative Program, Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), 8331150, Santiago, Chile
| | - T Darrière
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860, Perpignan, France
- LGDP, UMR 5096, Univ. Perpignan Via Domitia, 66860, Perpignan, France
| | - A de Bures
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860, Perpignan, France
- LGDP, UMR 5096, Univ. Perpignan Via Domitia, 66860, Perpignan, France
| | - F Blanco-Herrera
- Facultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andrés Bello, 8370146, Santiago, RM, Chile
- ANID - Millennium Institute for Integrative Biology (IBio), Santiago, Chile
- ANID - Millennium Science Initiative Program, Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), 8331150, Santiago, Chile
| | - M Rompais
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, CNRS, Université de Strasbourg, Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - C Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, CNRS, Université de Strasbourg, Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - J Sáez-Vásquez
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860, Perpignan, France.
- LGDP, UMR 5096, Univ. Perpignan Via Domitia, 66860, Perpignan, France.
| |
Collapse
|
4
|
Franek M, Koptašíková L, Mikšátko J, Liebl D, Macíčková E, Pospíšil J, Esner M, Dvořáčková M, Fajkus J. In-section Click-iT detection and super-resolution CLEM analysis of nucleolar ultrastructure and replication in plants. Nat Commun 2024; 15:2445. [PMID: 38503728 PMCID: PMC10950858 DOI: 10.1038/s41467-024-46324-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Correlative light and electron microscopy (CLEM) is an important tool for the localisation of target molecule(s) and their spatial correlation with the ultrastructural map of subcellular features at the nanometre scale. Adoption of these advanced imaging methods has been limited in plant biology, due to challenges with plant tissue permeability, fluorescence labelling efficiency, indexing of features of interest throughout the complex 3D volume and their re-localization on micrographs of ultrathin cross-sections. Here, we demonstrate an imaging approach based on tissue processing and embedding into methacrylate resin followed by imaging of sections by both, single-molecule localization microscopy and transmission electron microscopy using consecutive CLEM and same-section CLEM correlative workflow. Importantly, we demonstrate that the use of a particular type of embedding resin is not only compatible with single-molecule localization microscopy but shows improvements in the fluorophore blinking behavior relative to the whole-mount approaches. Here, we use a commercially available Click-iT ethynyl-deoxyuridine cell proliferation kit to visualize the DNA replication sites of wild-type Arabidopsis thaliana seedlings, as well as fasciata1 and nucleolin1 plants and apply our in-section CLEM imaging workflow for the analysis of S-phase progression and nucleolar organization in mutant plants with aberrant nucleolar phenotypes.
Collapse
Affiliation(s)
- Michal Franek
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic.
| | - Lenka Koptašíková
- Charles University, Faculty of Science, Biology Section, Imaging Methods Core Facility at BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
- University of Exeter, Faculty of Health and Life Sciences, Bioimaging Centre, Geoffrey Pope Building, Stocker Road, EX4 4QD, Exeter, UK
| | - Jíří Mikšátko
- Charles University, Faculty of Science, Biology Section, Imaging Methods Core Facility at BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - David Liebl
- Charles University, Faculty of Science, Biology Section, Imaging Methods Core Facility at BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Eliška Macíčková
- Charles University, Faculty of Science, Biology Section, Imaging Methods Core Facility at BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Jakub Pospíšil
- Cellular Imaging Core Facility CELLIM, Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology Masaryk University (CEITEC MU), Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Milan Esner
- Cellular Imaging Core Facility CELLIM, Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology Masaryk University (CEITEC MU), Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic.
| | - Jíří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-61137, Brno, Czech Republic
| |
Collapse
|
5
|
Neumann SA, Gaspin C, Sáez-Vásquez J. Plant ribosomes as a score to fathom the melody of 2'- O-methylation across evolution. RNA Biol 2024; 21:70-81. [PMID: 39508203 PMCID: PMC11542601 DOI: 10.1080/15476286.2024.2417152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
2'-O-ribose methylation (2'-O-Me) is one of the most common RNA modifications detected in ribosomal RNAs (rRNA) from bacteria to eukaryotic cells. 2'-O-Me favours a specific RNA conformation and protects RNA from hydrolysis. Moreover, rRNA 2'-O-Me might stabilize its interactions with messenger RNA (mRNA), transfer RNA (tRNA) or proteins. The extent of rRNA 2'-O-Me fluctuates between species from 3-4 sites in bacteria to tens of sites in archaea, yeast, algae, plants and human. Depending on the organism as well as the rRNA targeting site and position, the 2'-O-Me reaction can be carried out by several site-specific RNA methyltransferases (RMTase) or by a single RMTase associated to specific RNA guides. Here, we review current progresses in rRNA 2'-O-Me (sites/Nm and RMTases) in plants and compare the results with molecular clues from unicellular (bacteria, archaea, algae and yeast) as well as multicellular (human and plants) organisms.
Collapse
MESH Headings
- Methylation
- Ribosomes/metabolism
- RNA, Ribosomal/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/chemistry
- Plants/metabolism
- Plants/genetics
- Humans
- Evolution, Molecular
- Methyltransferases/metabolism
- Methyltransferases/genetics
- Methyltransferases/chemistry
- RNA, Plant/metabolism
- RNA, Plant/genetics
- RNA, Plant/chemistry
- Archaea/genetics
- Archaea/metabolism
- RNA, Transfer/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/chemistry
Collapse
Affiliation(s)
- Sara Alina Neumann
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, Perpignan, France
- University Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, France
| | - Christine Gaspin
- Université Fédérale de Toulouse, INRAE, MIAT, Castanet-Tolosan, France
- Université Fédérale de Toulouse, INRAE, BioinfOmics, Genotoul Bioinformatics Facility, Castanet-Tolosan, France
| | - Julio Sáez-Vásquez
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, Perpignan, France
- University Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, France
| |
Collapse
|
6
|
Ando S, Nomoto M, Iwakawa H, Vial-Pradel S, Luo L, Sasabe M, Ohbayashi I, Yamamoto KT, Tada Y, Sugiyama M, Machida Y, Kojima S, Machida C. Arabidopsis ASYMMETRIC LEAVES2 and Nucleolar Factors Are Coordinately Involved in the Perinucleolar Patterning of AS2 Bodies and Leaf Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:3621. [PMID: 37896084 PMCID: PMC10610122 DOI: 10.3390/plants12203621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
Arabidopsis ASYMMETRIC LEAVES2 (AS2) plays a key role in the formation of flat symmetric leaves. AS2 represses the expression of the abaxial gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3). AS2 interacts in vitro with the CGCCGC sequence in ETT/ARF3 exon 1. In cells of leaf primordia, AS2 localizes at peripheral regions of the nucleolus as two AS2 bodies, which are partially overlapped with chromocenters that contain condensed 45S ribosomal DNA repeats. AS2 contains the AS2/LOB domain, which consists of three sequences conserved in the AS2/LOB family: the zinc finger (ZF) motif, the ICG sequence including the conserved glycine residue, and the LZL motif. AS2 and the genes NUCLEOLIN1 (NUC1), RNA HELICASE10 (RH10), and ROOT INITIATION DEFECTIVE2 (RID2) that encode nucleolar proteins coordinately act as repressors against the expression of ETT/ARF3. Here, we examined the formation and patterning of AS2 bodies made from as2 mutants with amino acid substitutions in the ZF motif and the ICG sequence in cells of cotyledons and leaf primordia. Our results showed that the amino acid residues next to the cysteine residues in the ZF motif were essential for both the formation of AS2 bodies and the interaction with ETT/ARF3 DNA. The conserved glycine residue in the ICG sequence was required for the formation of AS2 bodies, but not for the DNA interaction. We also examined the effects of nuc1, rh10, and rid2 mutations, which alter the metabolism of rRNA intermediates and the morphology of the nucleolus, and showed that more than two AS2 bodies were observed in the nucleolus and at its periphery. These results suggested that the patterning of AS2 bodies is tightly linked to the morphology and functions of the nucleolus and the development of flat symmetric leaves in plants.
Collapse
Affiliation(s)
- Sayuri Ando
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan; (S.A.); (H.I.); (S.V.-P.); (Y.M.)
| | - Mika Nomoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan; (M.N.); (L.L.); (Y.T.)
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | - Hidekazu Iwakawa
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan; (S.A.); (H.I.); (S.V.-P.); (Y.M.)
| | - Simon Vial-Pradel
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan; (S.A.); (H.I.); (S.V.-P.); (Y.M.)
| | - Lilan Luo
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan; (M.N.); (L.L.); (Y.T.)
| | - Michiko Sasabe
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho, Hirosaki 036-8561, Japan;
| | - Iwai Ohbayashi
- Department of Life Sciences, National Cheng Kung University, Tainan City 701, Taiwan;
| | - Kotaro T. Yamamoto
- Division of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yasuomi Tada
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan; (M.N.); (L.L.); (Y.T.)
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | - Munetaka Sugiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Yasunori Machida
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan; (S.A.); (H.I.); (S.V.-P.); (Y.M.)
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan; (M.N.); (L.L.); (Y.T.)
| | - Shoko Kojima
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan; (S.A.); (H.I.); (S.V.-P.); (Y.M.)
| | - Chiyoko Machida
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan; (S.A.); (H.I.); (S.V.-P.); (Y.M.)
| |
Collapse
|
7
|
Atsumi G, Naramoto S, Nishihara M, Nakatsuka T, Tomita R, Matsushita Y, Hoshi N, Shirakawa A, Kobayashi K, Fukuda H, Sekine KT. Identification of a novel viral factor inducing tumorous symptoms by disturbing vascular development in planta. J Virol 2023; 97:e0046323. [PMID: 37668368 PMCID: PMC10537666 DOI: 10.1128/jvi.00463-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/14/2023] [Indexed: 09/06/2023] Open
Abstract
Plant viruses induce various disease symptoms that substantially impact agriculture, but the underlying mechanisms of viral disease in plants are poorly understood. Kobu-sho is a disease in gentian that shows gall formation with ectopic development of lignified cells and vascular tissues such as xylem. Here, we show that a gene fragment of gentian Kobu-sho-associated virus, which is designated as Kobu-sho-inducing factor (KOBU), induces gall formation accompanied by ectopic development of lignified cells and xylem-like tissue in Nicotiana benthamiana. Transgenic gentian expressing KOBU exhibited tumorous symptoms, confirming the gall-forming activity of KOBU. Surprisingly, KOBU expression can also induce differentiation of an additional leaf-like tissue on the abaxial side of veins in normal N. benthamiana and gentian leaves. Transcriptome analysis with Arabidopsis thaliana expressing KOBU revealed that KOBU activates signaling pathways that regulate xylem development. KOBU protein forms granules and plate-like structures and co-localizes with mRNA splicing factors within the nucleus. Our findings suggest that KOBU is a novel pleiotropic virulence factor that stimulates vascular and leaf development. IMPORTANCE While various mechanisms determine disease symptoms in plants depending on virus-host combinations, the details of how plant viruses induce symptoms remain largely unknown in most plant species. Kobu-sho is a disease in gentian that shows gall formation with ectopic development of lignified cells and vascular tissues such as xylem. Our findings demonstrate that a gene fragment of gentian Kobu-sho-associated virus (GKaV), which is designated as Kobu-sho-inducing factor, induces the gall formation accompanied by the ectopic development of lignified cells and xylem-like tissue in Nicotiana benthamiana. The molecular mechanism by which gentian Kobu-sho-associated virus induces the Kobu-sho symptoms will provide new insight into not only plant-virus interactions but also the regulatory mechanisms underlying vascular and leaf development.
Collapse
Affiliation(s)
- Go Atsumi
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, Hokkaido, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Satoshi Naramoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | - Reiko Tomita
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Yosuke Matsushita
- National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Nobue Hoshi
- Iwate Agricultural Research Center, Kitakami, Iwate, Japan
| | | | - Kappei Kobayashi
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ken-Taro Sekine
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, Japan
- Department of Environmental Sciences and Conservation Biology, The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Kagoshima, Japan
| |
Collapse
|
8
|
Gulanicz T, Zienkiewicz A, Zienkiewicz K, Kasprowicz-Maluski A, Szweykowska-Kulinska Z, Jarmolowski A. Fluorescence in situ Localization of Pri-miRNAs in Isolated Arabidopsis thaliana Nuclei. Bio Protoc 2023; 13:e4824. [PMID: 37753471 PMCID: PMC10518776 DOI: 10.21769/bioprotoc.4824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/25/2023] [Accepted: 07/17/2023] [Indexed: 09/28/2023] Open
Abstract
Here, we present an approach combining fluorescence in situ hybridization (FISH) and immunolabeling for localization of pri-miRNAs in isolated nuclei of A. thaliana. The presented method utilizes specific DNA oligonucleotide probes, modified by addition of digoxigenin-labeled deoxynucleotides to its 3' hydroxyl terminus by terminal deoxynucleotidyl transferase (TdT). The probes are then detected by immunolabeling of digoxigenin (DIG) using specific fluorescent-labeled antibodies to visualize hybridized probes. Recently, we have applied this method to localize pri-miRNA156a, pri-miRNA163, pri-miRNA393a, and pri-miRNA414 in the nuclei isolated from leaves of 4-week-old A. thaliana. The present approach can be easily implemented to analyze nuclear distribution of diverse RNA classes, including mRNAs and pri-miRNAs in isolated fixed cells or nuclei from plant.
Collapse
Affiliation(s)
- Tomasz Gulanicz
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | - Agnieszka Zienkiewicz
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | - Krzysztof Zienkiewicz
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | - Anna Kasprowicz-Maluski
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
9
|
Montacié C, Riondet C, Wei L, Darrière T, Weiss A, Pontvianne F, Escande ML, de Bures A, Jobet E, Barbarossa A, Carpentier MC, Aarts MGM, Attina A, Hirtz C, David A, Marchand V, Motorin Y, Curie C, Mari S, Reichheld JP, Sáez-Vásquez J. NICOTIANAMINE SYNTHASE activity affects nucleolar iron accumulation and impacts rDNA silencing and RNA methylation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4384-4400. [PMID: 37179467 PMCID: PMC10433931 DOI: 10.1093/jxb/erad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
In plant cells, a large pool of iron (Fe) is contained in the nucleolus, as well as in chloroplasts and mitochondria. A central determinant for intracellular distribution of Fe is nicotianamine (NA) generated by NICOTIANAMINE SYNTHASE (NAS). Here, we used Arabidopsis thaliana plants with disrupted NAS genes to study the accumulation of nucleolar iron and understand its role in nucleolar functions and more specifically in rRNA gene expression. We found that nas124 triple mutant plants, which contained lower quantities of the iron ligand NA, also contained less iron in the nucleolus. This was concurrent with the expression of normally silenced rRNA genes from nucleolar organizer regions 2 (NOR2). Notably, in nas234 triple mutant plants, which also contained lower quantities of NA, nucleolar iron and rDNA expression were not affected. In contrast, in both nas124 and nas234, specific RNA modifications were differentially regulated in a genotype dependent manner. Taken together, our results highlight the impact of specific NAS activities in RNA gene expression. We discuss the interplay between NA and nucleolar iron with rDNA functional organization and RNA methylation.
Collapse
Affiliation(s)
- Charlotte Montacié
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Christophe Riondet
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Lili Wei
- Institut Agro, BPMP, CNRS, INRAE, Université Montpellier, 34060 Montpellier, France
| | - Tommy Darrière
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Alizée Weiss
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Frédéric Pontvianne
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Marie-Line Escande
- Observatoire Océanologique de Banyuls s/ mer, CNRS, 66650 Banyuls-sur-mer, France
- BioPIC Platform of the OOB, 66650 Banyuls-sur-mer, France
| | - Anne de Bures
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Edouard Jobet
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Adrien Barbarossa
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Marie-Christine Carpentier
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University & Research, 6700AA Wageningen, Netherlands
| | - Aurore Attina
- INSERM, CHU Montpellier, CNRS, IRMB, Université Montpellier, 34090Montpellier, France
| | - Christophe Hirtz
- INSERM, CHU Montpellier, CNRS, IRMB, Université Montpellier, 34090Montpellier, France
| | - Alexandre David
- IGF, CNRS, INSERM, Université Montpellier, 34090Montpellier, France
| | - Virginie Marchand
- Epitranscriptomics and RNA Sequencing (EpiRNA-Seq) Core Facility, CNRS, INSERM, IBSLor (UMS2008/US40), Université de Lorraine, F-54000 Nancy, France
| | - Yuri Motorin
- Epitranscriptomics and RNA Sequencing (EpiRNA-Seq) Core Facility, CNRS, INSERM, IBSLor (UMS2008/US40), Université de Lorraine, F-54000 Nancy, France
- CNRS, IMoPA (UMR 7365), Université de Lorraine, F-54000 Nancy, France
| | - Catherine Curie
- Institut Agro, BPMP, CNRS, INRAE, Université Montpellier, 34060 Montpellier, France
| | - Stéphane Mari
- Institut Agro, BPMP, CNRS, INRAE, Université Montpellier, 34060 Montpellier, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Julio Sáez-Vásquez
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| |
Collapse
|
10
|
Yao Z, Yuan L, Liu K, Wang T, Liu B, Zhao Y, Gan S, Chen L. Warming-induced changes of broccoli head to cauliflower-like curd in Brassica oleracea are regulated by DNA methylation as revealed by methylome and transcriptome co-profiling. MOLECULAR HORTICULTURE 2022; 2:26. [PMID: 37789398 PMCID: PMC10515005 DOI: 10.1186/s43897-022-00047-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 10/05/2023]
Abstract
Increasingly warming temperature impacts on all aspects of growth and development in plants. Flower development is a complex process that is very sensitive to ambient temperature, and warming temperatures often lead to abnormal flower development and remarkably reduce the quality and yield of inflorescent vegetables and many other crops, which can be exemplified by Brassica oleracea cv. Green Harmony F1, a broccoli cultivar, whose floral development is ceased at inflorescence meristem (at 28 °C) or floral primordium stage (at 22 °C), forming a cauliflower-like curd (28 °C) or intermediate curd (22 °C) instead of normal broccoli head at 16 °C. However, the underlying molecular regulatory mechanisms are not well understood. Here we report that warming temperature (28 °C or 22 °C) induced hypermethylation of the genome, especially the promoter regions of such sets of genes as ribosome biogenesis-related and others, leading to the suppression of the apex-highly-expressed distinctive genes, subsequently resulting in the abnormal floral development, as revealed by methylome and transcriptome co-profiling. The regulation of warming-induced abnormal floral development in broccoli was further verified by the fact that the DNA methylation inhibitor 5-azacytidine (5-azaC) released the expression of genes from the warming temperature-induced suppression, and restored the broccoli development to normalcy at warming temperature. The research provided new approaches to breeding broccoli and other crops for growing in wider or warmer temperature zones. Graphical Abstract.
Collapse
Affiliation(s)
- Zilei Yao
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lu Yuan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ke Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Tingjin Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Bin Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yan Zhao
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Present address: College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Susheng Gan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Liping Chen
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Muñoz-Díaz E, Sáez-Vásquez J. Nuclear dynamics: Formation of bodies and trafficking in plant nuclei. FRONTIERS IN PLANT SCIENCE 2022; 13:984163. [PMID: 36082296 PMCID: PMC9445803 DOI: 10.3389/fpls.2022.984163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/04/2022] [Indexed: 06/01/2023]
Abstract
The existence of the nucleus distinguishes prokaryotes and eukaryotes. Apart from containing most of the genetic material, the nucleus possesses several nuclear bodies composed of protein and RNA molecules. The nucleus is separated from the cytoplasm by a double membrane, regulating the trafficking of molecules in- and outwards. Here, we investigate the composition and function of the different plant nuclear bodies and molecular clues involved in nuclear trafficking. The behavior of the nucleolus, Cajal bodies, dicing bodies, nuclear speckles, cyclophilin-containing bodies, photobodies and DNA damage foci is analyzed in response to different abiotic stresses. Furthermore, we research the literature to collect the different protein localization signals that rule nucleocytoplasmic trafficking. These signals include the different types of nuclear localization signals (NLSs) for nuclear import, and the nuclear export signals (NESs) for nuclear export. In contrast to these unidirectional-movement signals, the existence of nucleocytoplasmic shuttling signals (NSSs) allows bidirectional movement through the nuclear envelope. Likewise, nucleolar signals are also described, which mainly include the nucleolar localization signals (NoLSs) controlling nucleolar import. In contrast, few examples of nucleolar export signals, called nucleoplasmic localization signals (NpLSs) or nucleolar export signals (NoESs), have been reported. The existence of consensus sequences for these localization signals led to the generation of prediction tools, allowing the detection of these signals from an amino acid sequence. Additionally, the effect of high temperatures as well as different post-translational modifications in nuclear and nucleolar import and export is discussed.
Collapse
Affiliation(s)
- Eduardo Muñoz-Díaz
- Centre National de la Recherche Scientifique (CNRS), Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France
- Univ. Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France
| | - Julio Sáez-Vásquez
- Centre National de la Recherche Scientifique (CNRS), Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France
- Univ. Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France
| |
Collapse
|
12
|
Darriere T, Jobet E, Zavala D, Escande ML, Durut N, de Bures A, Blanco-Herrera F, Vidal EA, Rompais M, Carapito C, Gourbiere S, Sáez-Vásquez J. Upon heat stress processing of ribosomal RNA precursors into mature rRNAs is compromised after cleavage at primary P site in Arabidopsis thaliana. RNA Biol 2022; 19:719-734. [PMID: 35522061 PMCID: PMC9090299 DOI: 10.1080/15476286.2022.2071517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transcription and processing of 45S rRNAs in the nucleolus are keystones of ribosome biogenesis. While these processes are severely impacted by stress conditions in multiple species, primarily upon heat exposure, we lack information about the molecular mechanisms allowing sessile organisms without a temperature-control system, like plants, to cope with such circumstances. We show that heat stress disturbs nucleolar structure, inhibits pre-rRNA processing and provokes imbalanced ribosome profiles in Arabidopsis thaliana plants. Notably, the accuracy of transcription initiation and cleavage at the primary P site in the 5’ETS (5’ External Transcribed Spacer) are not affected but the levels of primary 45S and 35S transcripts are, respectively, increased and reduced. In contrast, precursors of 18S, 5.8S and 25S RNAs are rapidly undetectable upon heat stress. Remarkably, nucleolar structure, pre-rRNAs from major ITS1 processing pathway and ribosome profiles are restored after returning to optimal conditions, shedding light on the extreme plasticity of nucleolar functions in plant cells. Further genetic and molecular analysis to identify molecular clues implicated in these nucleolar responses indicate that cleavage rate at P site and nucleolin protein expression can act as a checkpoint control towards a productive pre-rRNA processing pathway.
Collapse
Affiliation(s)
- T Darriere
- CNRS, Laboratoire Génome et D#x0E9;veloppement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France.,Univ. Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, France
| | - E Jobet
- CNRS, Laboratoire Génome et D#x0E9;veloppement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France.,Univ. Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, France
| | - D Zavala
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - M L Escande
- CNRS, Observatoire Océanologique de Banyuls s/ mer, Banyuls-sur-mer, France.,BioPIC Platform of the OOB, Banyuls-sur-mer, France
| | - N Durut
- CNRS, Laboratoire Génome et D#x0E9;veloppement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France.,Univ. Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, France
| | - A de Bures
- CNRS, Laboratoire Génome et D#x0E9;veloppement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France.,Univ. Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, France
| | - F Blanco-Herrera
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Institute for Integrative Biology (IBio), Santiago, Chile
| | - E A Vidal
- Millennium Institute for Integrative Biology (IBio), Santiago, Chile.,Bioinformática, Facultad de Ciencias, Universidad MayorCentro de Genómica y , Santiago, Chile
| | - M Rompais
- Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, UMR7178 CNRS/Université de Strasbourg, Strasbourg, France
| | - C Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, UMR7178 CNRS/Université de Strasbourg, Strasbourg, France
| | - S Gourbiere
- CNRS, Laboratoire Génome et D#x0E9;veloppement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France.,Univ. Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, France
| | - J Sáez-Vásquez
- CNRS, Laboratoire Génome et D#x0E9;veloppement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France.,Univ. Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, France
| |
Collapse
|
13
|
Machida Y, Suzuki T, Sasabe M, Iwakawa H, Kojima S, Machida C. Arabidopsis ASYMMETRIC LEAVES2 (AS2): roles in plant morphogenesis, cell division, and pathogenesis. JOURNAL OF PLANT RESEARCH 2022; 135:3-14. [PMID: 34668105 PMCID: PMC8755679 DOI: 10.1007/s10265-021-01349-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/21/2021] [Indexed: 05/26/2023]
Abstract
The ASYMMETRIC LEAVES2 (AS2) gene in Arabidopsis thaliana is responsible for the development of flat, symmetric, and extended leaf laminae and their vein systems. AS2 protein is a member of the plant-specific AS2/LOB protein family, which includes 42 members comprising the conserved amino-terminal domain referred to as the AS2/LOB domain, and the variable carboxyl-terminal region. Among the members, AS2 has been most intensively investigated on both genetic and molecular levels. AS2 forms a complex with the myb protein AS1, and is involved in epigenetic repression of the abaxial genes ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3), ARF4, and class 1 KNOX homeobox genes. The repressed expression of these genes by AS2 is markedly enhanced by the cooperative action of various modifier genes, some of which encode nucleolar proteins. Further downstream, progression of the cell division cycle in the developing organs is stimulated; meristematic states are suppressed in determinate leaf primordia; and the extension of leaf primordia is induced. AS2 binds the specific sequence in exon 1 of ETT/ARF3 and maintains methylated CpGs in several exons of ETT/ARF3. AS2 forms bodies (designated as AS2 bodies) at nucleolar peripheries. AS2 bodies partially overlap chromocenters, including inactive 45S ribosomal DNA repeats, suggesting the presence of molecular and functional links among AS2, the 45S rDNAs, and the nucleolus to exert the repressive regulation of ETT/ARF3. The AS2/LOB domain is characterized by three subdomains, the zinc finger (ZF) motif, the internally conserved-glycine containing (ICG) region, and the leucine-zipper-like (LZL) region. Each of these subdomains is essential for the formation of AS2 bodies. ICG to LZL are required for nuclear localization, but ZF is not. LZL intrinsically has the potential to be exported to the cytoplasm. In addition to its nuclear function, it has been reported that AS2 plays a positive role in geminivirus infection: its protein BV1 stimulates the expression of AS2 and recruits AS2 to the cytoplasm, which enhances virus infectivity by suppression of cytoplasmic post transcriptional gene silencing.
Collapse
Affiliation(s)
- Yasunori Machida
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan.
| | - Takanori Suzuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
- Central Research Institute, Ishihara Sangyo Kaisha, Ltd., 2-3-1 Nishi-Shibukawa, Kusatsu, Shiga, 525-0025, Japan
| | - Michiko Sasabe
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, 036-8561, Japan
| | - Hidekazu Iwakawa
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, 487-8501, Japan
| | - Shoko Kojima
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, 487-8501, Japan
| | - Chiyoko Machida
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, 487-8501, Japan
| |
Collapse
|
14
|
Appels R, Wang P, Islam S. Integrating Wheat Nucleolus Structure and Function: Variation in the Wheat Ribosomal RNA and Protein Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:686586. [PMID: 35003148 PMCID: PMC8739226 DOI: 10.3389/fpls.2021.686586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
We review the coordinated production and integration of the RNA (ribosomal RNA, rRNA) and protein (ribosomal protein, RP) components of wheat cytoplasmic ribosomes in response to changes in genetic constitution, biotic and abiotic stresses. The components examined are highly conserved and identified with reference to model systems such as human, Arabidopsis, and rice, but have sufficient levels of differences in their DNA and amino acid sequences to form fingerprints or gene haplotypes that provide new markers to associate with phenotype variation. Specifically, it is argued that populations of ribosomes within a cell can comprise distinct complements of rRNA and RPs to form units with unique functionalities. The unique functionalities of ribosome populations within a cell can become central in situations of stress where they may preferentially translate mRNAs coding for proteins better suited to contributing to survival of the cell. In model systems where this concept has been developed, the engagement of initiation factors and elongation factors to account for variation in the translation machinery of the cell in response to stresses provided the precedents. The polyploid nature of wheat adds extra variation at each step of the synthesis and assembly of the rRNAs and RPs which can, as a result, potentially enhance its response to changing environments and disease threats.
Collapse
Affiliation(s)
- Rudi Appels
- AgriBio, Centre for AgriBioscience, La Trobe University, Bundoora, VIC, Australia
- Faculty of Veterinary and Agricultural Science, Melbourne, VIC, Australia
| | - Penghao Wang
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Shahidul Islam
- Centre for Crop Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
15
|
Sheikh TI, Harripaul R, Vasli N, Ghadami M, Santangelo SL, Ayub M, Sasanfar R, Vincent JB. Heterozygous De Novo Truncating Mutation of Nucleolin in an ASD Individual Disrupts Its Nucleolar Localization. Genes (Basel) 2021; 13:51. [PMID: 35052391 PMCID: PMC8774667 DOI: 10.3390/genes13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Nucleolin (NCL/C23; OMIM: 164035) is a major nucleolar protein that plays a critical role in multiple processes, including ribosome assembly and maturation, chromatin decondensation, and pre-rRNA transcription. Due to its diverse functions, nucleolin has frequently been implicated in pathological processes, including cancer and viral infection. We recently identified a de novo frameshifting indel mutation of NCL, p.Gly664Glufs*70, through whole-exome sequencing of autism spectrum disorder trios. Through the transfection of constructs encoding either a wild-type human nucleolin or a mutant nucleolin with the same C-terminal sequence predicted for the autism proband, and by using co-localization with the nucleophosmin (NPM; B23) protein, we have shown that the nucleolin mutation leads to mislocalization of the NCL protein from the nucleolus to the nucleoplasm. Moreover, a construct with a nonsense mutation at the same residue, p.Gly664*, shows a very similar effect on the location of the NCL protein, thus confirming the presence of a predicted nucleolar location signal in this region of the NCL protein. Real-time fluorescence recovery experiments show significant changes in the kinetics and mobility of mutant NCL protein in the nucleoplasm of HEK293Tcells. Several other studies also report de novoNCL mutations in ASD or neurodevelopmental disorders. The altered mislocalization and dynamics of mutant NCL (p.G664Glufs*70/p.G664*) may have relevance to the etiopathlogy of NCL-related ASD and other neurodevelopmental phenotypes.
Collapse
Affiliation(s)
- Taimoor I. Sheikh
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (T.I.S.); (R.H.)
| | - Ricardo Harripaul
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (T.I.S.); (R.H.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nasim Vasli
- Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
| | - Majid Ghadami
- Department of Educational Sciences, Farhangian University, Tehran 19989-63341, Iran;
| | - Susan L. Santangelo
- Center for Psychiatric Research, Maine Medical Center Research Institute, Portland, ME 04101, USA;
- Department of Psychiatry, Tufts University School of Medicine, Boston, MA 02110, USA
- Department of Psychiatry, Maine Medical Center, Portland, ME 04102, USA
| | - Muhammad Ayub
- Department of Psychiatry, Queen’s University, Kingston, ON K7L 7X3, Canada;
- Department of Academic Psychiatry, University College London, London WC1E 6BT, UK
| | - Roksana Sasanfar
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA;
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - John B. Vincent
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (T.I.S.); (R.H.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
16
|
Searching for G-Quadruplex-Binding Proteins in Plants: New Insight into Possible G-Quadruplex Regulation. BIOTECH 2021; 10:biotech10040020. [PMID: 35822794 PMCID: PMC9245464 DOI: 10.3390/biotech10040020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/17/2022] Open
Abstract
G-quadruplexes are four-stranded nucleic acid structures occurring in the genomes of all living organisms and viruses. It is increasingly evident that these structures play important molecular roles; generally, by modulating gene expression and overall genome integrity. For a long period, G-quadruplexes have been studied specifically in the context of human promoters, telomeres, and associated diseases (cancers, neurological disorders). Several of the proteins for binding G-quadruplexes are known, providing promising targets for influencing G-quadruplex-related processes in organisms. Nonetheless, in plants, only a small number of G-quadruplex binding proteins have been described to date. Thus, we aimed to bioinformatically inspect the available protein sequences to find the best protein candidates with the potential to bind G-quadruplexes. Two similar glycine and arginine-rich G-quadruplex-binding motifs were described in humans. The first is the so-called “RGG motif”-RRGDGRRRGGGGRGQGGRGRGGGFKG, and the second (which has been recently described) is known as the “NIQI motif”-RGRGRGRGGGSGGSGGRGRG. Using this general knowledge, we searched for plant proteins containing the above mentioned motifs, using two independent approaches (BLASTp and FIMO scanning), and revealed many proteins containing the G4-binding motif(s). Our research also revealed the core proteins involved in G4 folding and resolving in green plants, algae, and the key plant model organism, Arabidopsis thaliana. The discovered protein candidates were annotated using STRINGdb and sorted by their molecular and physiological roles in simple schemes. Our results point to the significant role of G4-binding proteins in the regulation of gene expression in plants.
Collapse
|
17
|
Manzano A, Pereda-Loth V, de Bures A, Sáez-Vásquez J, Herranz R, Medina FJ. Light signals counteract alterations caused by simulated microgravity in proliferating plant cells. AMERICAN JOURNAL OF BOTANY 2021; 108:1775-1792. [PMID: 34524692 DOI: 10.1002/ajb2.1728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Light and gravity are fundamental cues for plant development. Our understanding of the effects of light stimuli on plants in space, without gravity, is key to providing conditions for plants to acclimate to the environment. Here we tested the hypothesis that the alterations caused by the absence of gravity in root meristematic cells can be counteracted by light. METHODS Seedlings of wild-type Arabidopsis thaliana and two mutants of the essential nucleolar protein nucleolin (nuc1, nuc2) were grown in simulated microgravity, either under a white light photoperiod or under continuous darkness. Key variables of cell proliferation (cell cycle regulation), cell growth (ribosome biogenesis), and auxin transport were measured in the root meristem using in situ cellular markers and transcriptomic methods and compared with those of a 1 g control. RESULTS The incorporation of a photoperiod regime was sufficient to attenuate or suppress the effects caused by gravitational stress at the cellular level in the root meristem. In all cases, values for variables recorded from samples receiving light stimuli in simulated microgravity were closer to values from the controls than values from samples grown in darkness. Differential sensitivities were obtained for the two nucleolin mutants. CONCLUSIONS Light signals may totally or partially replace gravity signals, significantly improving plant growth and development in microgravity. Despite that, molecular alterations are still compatible with the expected acclimation mechanisms, which need to be better understood. The differential sensitivity of nuc1 and nuc2 mutants to gravitational stress points to new strategies to produce more resilient plants to travel with humans in new extraterrestrial endeavors.
Collapse
Affiliation(s)
- Aránzazu Manzano
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | | | - Anne de Bures
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, Perpignan, 66860, France
- Université de Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, 66860, France
| | - Julio Sáez-Vásquez
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, Perpignan, 66860, France
- Université de Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, 66860, France
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - F Javier Medina
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| |
Collapse
|
18
|
Hsu PJ, Tan MC, Shen HL, Chen YH, Wang YY, Hwang SG, Chiang MH, Le QV, Kuo WS, Chou YC, Lin SY, Jauh GY, Cheng WH. The nucleolar protein SAHY1 is involved in pre-rRNA processing and normal plant growth. PLANT PHYSIOLOGY 2021; 185:1039-1058. [PMID: 33793900 PMCID: PMC8133687 DOI: 10.1093/plphys/kiaa085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/01/2020] [Indexed: 05/29/2023]
Abstract
Although the nucleolus is involved in ribosome biogenesis, the functions of numerous nucleolus-localized proteins remain unclear. In this study, we genetically isolated Arabidopsis thaliana salt hypersensitive mutant 1 (sahy1), which exhibits slow growth, short roots, pointed leaves, and sterility. SAHY1 encodes an uncharacterized protein that is predominantly expressed in root tips, early developing seeds, and mature pollen grains and is mainly restricted to the nucleolus. Dysfunction of SAHY1 primarily causes the accumulation of 32S, 18S-A3, and 27SB pre-rRNA intermediates. Coimmunoprecipitation experiments further revealed the interaction of SAHY1 with ribosome proteins and ribosome biogenesis factors. Moreover, sahy1 mutants are less sensitive to protein translation inhibitors and show altered expression of structural constituents of ribosomal genes and ribosome subunit profiles, reflecting the involvement of SAHY1 in ribosome composition and ribosome biogenesis. Analyses of ploidy, S-phase cell cycle progression, and auxin transport and signaling indicated the impairment of mitotic activity, translation of auxin transport carrier proteins, and expression of the auxin-responsive marker DR5::GFP in the root tips or embryos of sahy1 plants. Collectively, these data demonstrate that SAHY1, a nucleolar protein involved in ribosome biogenesis, plays critical roles in normal plant growth in association with auxin transport and signaling.
Collapse
Affiliation(s)
- Pei-jung Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Mei-Chen Tan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Hwei-Ling Shen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ya-Huei Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ya-Ying Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - San-Gwang Hwang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Hau Chiang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Quang-Vuong Le
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wen-Shuo Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ying-Chan Chou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu, Pingtung County,Taiwan
| | - Shih-Yun Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Guang-Yuh Jauh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wan-Hsing Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
19
|
Azevedo-Favory J, Gaspin C, Ayadi L, Montacié C, Marchand V, Jobet E, Rompais M, Carapito C, Motorin Y, Sáez-Vásquez J. Mapping rRNA 2'-O-methylations and identification of C/D snoRNAs in Arabidopsis thaliana plants. RNA Biol 2021; 18:1760-1777. [PMID: 33596769 PMCID: PMC8583080 DOI: 10.1080/15476286.2020.1869892] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In all eukaryotic cells, the most abundant modification of ribosomal RNA (rRNA) is methylation at the ribose moiety (2ʹ-O-methylation). Ribose methylation at specific rRNA sites is guided by small nucleolar RNAs (snoRNAs) of C/D-box type (C/D snoRNA) and achieved by the methyltransferase Fibrillarin (FIB). Here we used the Illumina-based RiboMethSeq approach for mapping rRNA 2ʹ-O-methylation sites in A. thaliana Col-0 (WT) plants. This analysis detected novel C/D snoRNA-guided rRNA 2ʹ-O-methylation positions and also some orphan sites without a matching C/D snoRNA. Furthermore, immunoprecipitation of Arabidopsis FIB2 identified and demonstrated expression of C/D snoRNAs corresponding to majority of mapped rRNA sites. On the other hand, we show that disruption of Arabidopsis Nucleolin 1 gene (NUC1), encoding a major nucleolar protein, decreases 2ʹ-O-methylation at specific rRNA sites suggesting functional/structural interconnections of 2ʹ-O-methylation with nucleolus organization and plant development. Finally, based on our findings and existent database sets, we introduce a new nomenclature system for C/D snoRNA in Arabidopsis plants.
Collapse
Affiliation(s)
- J Azevedo-Favory
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France.,Univ. Perpignan Via Domitia, LGDP, UMR5096, 66860 Perpignan, France
| | - C Gaspin
- Université Fédérale de Toulouse, INRAE, MIAT, 31326, Castanet-Tolosan, France.,Université Fédérale de Toulouse, INRAE, BioinfOmics, Genotoul Bioinformatics facility, 31326
| | - L Ayadi
- Université de Lorraine, CNRS, INSERM, IBSLor, (UMS2008/US40), Epitranscriptomics and RNA Sequencing (EpiRNA-Seq) Core Facility, F-54000 Nancy, France.,Université de Lorraine, CNRS, IMoPA (UMR7365), F-54000 Nancy, France
| | - C Montacié
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France.,Univ. Perpignan Via Domitia, LGDP, UMR5096, 66860 Perpignan, France
| | - V Marchand
- Université de Lorraine, CNRS, INSERM, IBSLor, (UMS2008/US40), Epitranscriptomics and RNA Sequencing (EpiRNA-Seq) Core Facility, F-54000 Nancy, France
| | - E Jobet
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France.,Univ. Perpignan Via Domitia, LGDP, UMR5096, 66860 Perpignan, France
| | - M Rompais
- Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, UMR7178 CNRS/Université de Strasbourg, Strasbourg, France
| | - C Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, UMR7178 CNRS/Université de Strasbourg, Strasbourg, France
| | - Y Motorin
- Université de Lorraine, CNRS, INSERM, IBSLor, (UMS2008/US40), Epitranscriptomics and RNA Sequencing (EpiRNA-Seq) Core Facility, F-54000 Nancy, France.,Université de Lorraine, CNRS, IMoPA (UMR7365), F-54000 Nancy, France
| | - J Sáez-Vásquez
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France.,Univ. Perpignan Via Domitia, LGDP, UMR5096, 66860 Perpignan, France
| |
Collapse
|
20
|
Hang R, Wang Z, Yang C, Luo L, Mo B, Chen X, Sun J, Liu C, Cao X. Protein arginine methyltransferase 3 fine-tunes the assembly/disassembly of pre-ribosomes to repress nucleolar stress by interacting with RPS2B in arabidopsis. MOLECULAR PLANT 2021; 14:223-236. [PMID: 33069875 DOI: 10.1016/j.molp.2020.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/17/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Ribosome biogenesis, which takes place mainly in the nucleolus, involves coordinated expression of pre-ribosomal RNAs (pre-rRNAs) and ribosomal proteins, pre-rRNA processing, and subunit assembly with the aid of numerous assembly factors. Our previous study showed that the Arabidopsis thaliana protein arginine methyltransferase AtPRMT3 regulates pre-rRNA processing; however, the underlying molecular mechanism remains unknown. Here, we report that AtPRMT3 interacts with Ribosomal Protein S2 (RPS2), facilitating processing of the 90S/Small Subunit (SSU) processome and repressing nucleolar stress. We isolated an intragenic suppressor of atprmt3-2, which rescues the developmental defects of atprmt3-2 while produces a putative truncated AtPRMT3 protein bearing the entire N-terminus but lacking an intact enzymatic activity domain We further identified RPS2 as an interacting partner of AtPRMT3, and found that loss-of-function rps2a2b mutants were phenotypically reminiscent of atprmt3, showing pleiotropic developmental defects and aberrant pre-rRNA processing. RPS2B binds directly to pre-rRNAs in the nucleus, and such binding is enhanced in atprmt3-2. Consistently, multiple components of the 90S/SSU processome were more enriched by RPS2B in atprmt3-2, which accounts for early pre-rRNA processing defects and results in nucleolar stress. Collectively, our study uncovered a novel mechanism by which AtPRMT3 cooperates with RPS2B to facilitate the dynamic assembly/disassembly of the 90S/SSU processome during ribosome biogenesis and repress nucleolar stress.
Collapse
Affiliation(s)
- Runlai Hang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Zhen Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chao Yang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lilan Luo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jing Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Chunyan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China; CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
21
|
Sequencing of the Arabidopsis NOR2 reveals its distinct organization and tissue-specific rRNA ribosomal variants. Nat Commun 2021; 12:387. [PMID: 33452254 PMCID: PMC7810690 DOI: 10.1038/s41467-020-20728-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/15/2020] [Indexed: 11/20/2022] Open
Abstract
Despite vast differences between organisms, some characteristics of their genomes are conserved, such as the nucleolus organizing region (NOR). The NOR is constituted of multiple, highly repetitive rDNA genes, encoding the catalytic ribosomal core RNAs which are transcribed from 45S rDNA units. Their precise sequence information and organization remain uncharacterized. Here, using a combination of long- and short-read sequencing technologies we assemble contigs of the Arabidopsis NOR2 rDNA domain. We identify several expressed rRNA gene variants which are integrated into translating ribosomes in a tissue-specific manner. These findings support the concept of tissue specific ribosome subpopulations that differ in their rRNA composition and provide insights into the higher order organization of NOR2. The nucleolus organizing region (NOR) consists of multiple, highly repetitive rDNA genes. Here Sims et al. use both long- and short-read sequencing to determine the organization and sequence of Arabidopsis NOR2 rDNA and show that different rRNA gene variants are integrated into translating ribosomes in a tissue-specific manner.
Collapse
|
22
|
Micol-Ponce R, Sarmiento-Mañús R, Fontcuberta-Cervera S, Cabezas-Fuster A, de Bures A, Sáez-Vásquez J, Ponce MR. SMALL ORGAN4 Is a Ribosome Biogenesis Factor Involved in 5.8S Ribosomal RNA Maturation. PLANT PHYSIOLOGY 2020; 184:2022-2039. [PMID: 32913045 PMCID: PMC7723108 DOI: 10.1104/pp.19.01540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 08/27/2020] [Indexed: 05/09/2023]
Abstract
Ribosome biogenesis is crucial for cellular metabolism and has important implications for disease and aging. Human (Homo sapiens) glioma tumor-suppressor candidate region gene2 (GLTSCR2) and yeast (Saccharomyces cerevisiae) Nucleolar protein53 (Nop53) are orthologous proteins with demonstrated roles as ribosome biogenesis factors; knockdown of GLTSCR2 impairs maturation of 18S and 5.8S ribosomal RNAs (rRNAs), and Nop53 is required for maturation of 5.8S and 25S rRNAs. Here, we characterized SMALL ORGAN4 (SMO4), the most likely ortholog of human GLTSCR2 and yeast Nop53 in Arabidopsis (Arabidopsis thaliana). Loss of function of SMO4 results in a mild morphological phenotype; however, we found that smo4 mutants exhibit strong cytological and molecular phenotypes: nucleolar hypertrophy and disorganization, overaccumulation of 5.8S and 18S rRNA precursors, and an imbalanced 40S:60S ribosome subunit ratio. Like yeast Nop53 and human GLTSCR2, Arabidopsis SMO4 participates in 5.8S rRNA maturation. In yeast, Nop53 cooperates with mRNA transport4 (Mtr4) for 5.8S rRNA maturation. In Arabidopsis, we found that SMO4 plays similar roles in the 5.8S rRNA maturation pathway than those described for MTR4. However, SMO4 seems not to participate in the degradation of by-products derived from the 5'-external transcribed spacer (ETS) of 45S pre-rRNA, as MTR4 does.
Collapse
Affiliation(s)
- Rosa Micol-Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Raquel Sarmiento-Mañús
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Sara Fontcuberta-Cervera
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Adrián Cabezas-Fuster
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Anne de Bures
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, 66860 Perpignan, France
- Universite Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, 66860 Perpignan, France
| | - Julio Sáez-Vásquez
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, 66860 Perpignan, France
- Universite Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, 66860 Perpignan, France
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| |
Collapse
|
23
|
Manzano A, Villacampa A, Sáez-Vásquez J, Kiss JZ, Medina FJ, Herranz R. The Importance of Earth Reference Controls in Spaceflight -Omics Research: Characterization of Nucleolin Mutants from the Seedling Growth Experiments. iScience 2020; 23:101686. [PMID: 33163940 PMCID: PMC7607443 DOI: 10.1016/j.isci.2020.101686] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/04/2020] [Accepted: 10/10/2020] [Indexed: 01/23/2023] Open
Abstract
Understanding plant adaptive responses to the space environment is a requisite for enabling space farming. Spaceflight produces deleterious effects on plant cells, particularly affecting ribosome biogenesis, a complex stress-sensitive process coordinated with cell division and differentiation, known to be activated by red light. Here, in a series of ground studies, we have used mutants from the two Arabidopsis nucleolin genes (NUC1 and NUC2, nucleolar regulators of ribosome biogenesis) to better understand their role in adaptive response mechanisms to stress on Earth. Thus, we show that nucleolin stress-related gene NUC2 can compensate for the environmental stress provided by darkness in nuc1 plants, whereas nuc2 plants are not able to provide a complete response to red light. These ground control findings, as part of the ESA/NASA Seedling Growth spaceflight experiments, will determine the basis for the identification of genetic backgrounds enabling an adaptive advantage for plants in future space experiments.
Collapse
Affiliation(s)
- Aránzazu Manzano
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Alicia Villacampa
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Julio Sáez-Vásquez
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
- Univ. Perpignan Via Domitia, LGDP, UMR 5096, 66860 Perpignan, France
| | - John Z. Kiss
- Department of Biology, University of North Carolina-Greensboro, Greensboro, NC 27402, USA
| | - F. Javier Medina
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| |
Collapse
|
24
|
Iwakawa H, Takahashi H, Machida Y, Machida C. Roles of ASYMMETRIC LEAVES2 (AS2) and Nucleolar Proteins in the Adaxial-Abaxial Polarity Specification at the Perinucleolar Region in Arabidopsis. Int J Mol Sci 2020; 21:E7314. [PMID: 33022996 PMCID: PMC7582388 DOI: 10.3390/ijms21197314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
Leaves of Arabidopsis develop from a shoot apical meristem grow along three (proximal-distal, adaxial-abaxial, and medial-lateral) axes and form a flat symmetric architecture. ASYMMETRIC LEAVES2 (AS2), a key regulator for leaf adaxial-abaxial partitioning, encodes a plant-specific nuclear protein and directly represses the abaxial-determining gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3). How AS2 could act as a critical regulator, however, has yet to be demonstrated, although it might play an epigenetic role. Here, we summarize the current understandings of the genetic, molecular, and cellular functions of AS2. A characteristic genetic feature of AS2 is the presence of a number of (about 60) modifier genes, mutations of which enhance the leaf abnormalities of as2. Although genes for proteins that are involved in diverse cellular processes are known as modifiers, it has recently become clear that many modifier proteins, such as NUCLEOLIN1 (NUC1) and RNA HELICASE10 (RH10), are localized in the nucleolus. Some modifiers including ribosomal proteins are also members of the small subunit processome (SSUP). In addition, AS2 forms perinucleolar bodies partially colocalizing with chromocenters that include the condensed inactive 45S ribosomal RNA genes. AS2 participates in maintaining CpG methylation in specific exons of ETT/ARF3. NUC1 and RH10 genes are also involved in maintaining the CpG methylation levels and repressing ETT/ARF3 transcript levels. AS2 and nucleolus-localizing modifiers might cooperatively repress ETT/ARF3 to develop symmetric flat leaves. These results raise the possibility of a nucleolus-related epigenetic repression system operating for developmental genes unique to plants and predict that AS2 could be a molecule with novel functions that cannot be explained by the conventional concept of transcription factors.
Collapse
Affiliation(s)
- Hidekazu Iwakawa
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200, Matsumoto-cho, Kasugai, Aichi 487-8501, Japan;
| | - Hiro Takahashi
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan;
| | - Yasunori Machida
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Chiyoko Machida
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200, Matsumoto-cho, Kasugai, Aichi 487-8501, Japan;
| |
Collapse
|
25
|
Aceituno-Valenzuela U, Micol-Ponce R, Ponce MR. Genome-wide analysis of CCHC-type zinc finger (ZCCHC) proteins in yeast, Arabidopsis, and humans. Cell Mol Life Sci 2020; 77:3991-4014. [PMID: 32303790 PMCID: PMC11105112 DOI: 10.1007/s00018-020-03518-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/06/2020] [Accepted: 03/30/2020] [Indexed: 12/22/2022]
Abstract
The diverse eukaryotic proteins that contain zinc fingers participate in many aspects of nucleic acid metabolism, from DNA transcription to RNA degradation, post-transcriptional gene silencing, and small RNA biogenesis. These proteins can be classified into at least 30 types based on structure. In this review, we focus on the CCHC-type zinc fingers (ZCCHC), which contain an 18-residue domain with the CX2CX4HX4C sequence, where C is cysteine, H is histidine, and X is any amino acid. This motif, also named the "zinc knuckle", is characteristic of the retroviral Group Antigen protein and occurs alone or with other motifs. Many proteins containing zinc knuckles have been identified in eukaryotes, but only a few have been studied. Here, we review the available information on ZCCHC-containing factors from three evolutionarily distant eukaryotes-Saccharomyces cerevisiae, Arabidopsis thaliana, and Homo sapiens-representing fungi, plants, and metazoans, respectively. We performed systematic searches for proteins containing the CX2CX4HX4C sequence in organism-specific and generalist databases. Next, we analyzed the structural and functional information for all such proteins stored in UniProtKB. Excluding retrotransposon-encoded proteins and proteins harboring uncertain ZCCHC motifs, we found seven ZCCHC-containing proteins in yeast, 69 in Arabidopsis, and 34 in humans. ZCCHC-containing proteins mainly localize to the nucleus, but some are nuclear and cytoplasmic, or exclusively cytoplasmic, and one localizes to the chloroplast. Most of these factors participate in RNA metabolism, including transcriptional elongation, polyadenylation, translation, pre-messenger RNA splicing, RNA export, RNA degradation, microRNA and ribosomal RNA biogenesis, and post-transcriptional gene silencing. Several human ZCCHC-containing factors are derived from neofunctionalized retrotransposons and act as proto-oncogenes in diverse neoplastic processes. The conservation of ZCCHCs in orthologs of these three phylogenetically distant eukaryotes suggests that these domains have biologically relevant functions that are not well known at present.
Collapse
Affiliation(s)
- Uri Aceituno-Valenzuela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | - Rosa Micol-Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain.
| |
Collapse
|
26
|
Santos AP, Gaudin V, Mozgová I, Pontvianne F, Schubert D, Tek AL, Dvořáčková M, Liu C, Fransz P, Rosa S, Farrona S. Tidying-up the plant nuclear space: domains, functions, and dynamics. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5160-5178. [PMID: 32556244 PMCID: PMC8604271 DOI: 10.1093/jxb/eraa282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/12/2020] [Indexed: 05/07/2023]
Abstract
Understanding how the packaging of chromatin in the nucleus is regulated and organized to guide complex cellular and developmental programmes, as well as responses to environmental cues is a major question in biology. Technological advances have allowed remarkable progress within this field over the last years. However, we still know very little about how the 3D genome organization within the cell nucleus contributes to the regulation of gene expression. The nuclear space is compartmentalized in several domains such as the nucleolus, chromocentres, telomeres, protein bodies, and the nuclear periphery without the presence of a membrane around these domains. The role of these domains and their possible impact on nuclear activities is currently under intense investigation. In this review, we discuss new data from research in plants that clarify functional links between the organization of different nuclear domains and plant genome function with an emphasis on the potential of this organization for gene regulation.
Collapse
Affiliation(s)
- Ana Paula Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova
de Lisboa, Oeiras, Portugal
| | - Valérie Gaudin
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université
Paris-Saclay, Versailles, France
| | - Iva Mozgová
- Biology Centre of the Czech Academy of Sciences, České
Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České
Budějovice, Czech Republic
| | - Frédéric Pontvianne
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), Université de
Perpignan Via Domitia, Perpignan, France
| | - Daniel Schubert
- Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Ahmet L Tek
- Agricultural Genetic Engineering Department, Niğde Ömer Halisdemir
University, Niğde, Turkey
| | | | - Chang Liu
- Center for Plant Molecular Biology (ZMBP), University of
Tübingen, Tübingen, Germany
- Institute of Biology, University of Hohenheim, Stuttgart,
Germany
| | - Paul Fransz
- University of Amsterdam, Amsterdam, The
Netherlands
| | - Stefanie Rosa
- Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sara Farrona
- Plant and AgriBiosciences Centre, Ryan Institute, NUI Galway,
Galway, Ireland
| |
Collapse
|
27
|
Picart-Picolo A, Picart C, Picault N, Pontvianne F. Nucleolus-associated chromatin domains are maintained under heat stress, despite nucleolar reorganization in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2020; 133:463-470. [PMID: 32372397 DOI: 10.1007/s10265-020-01201-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/17/2020] [Indexed: 05/23/2023]
Abstract
Several layers of mechanisms participate in plant adaptation to heat-stress. For example, the plant metabolism switches from cell growth mode to stress adaptation mode. Ribosome biogenesis is one of the most energy costly pathways. That biogenesis process occurs in the nucleolus, the largest nuclear compartment, whose structure is highly dependent on this pathway. We used a nucleolar marker to track the structure of the nucleolus, and revealed a change in its sub-nucleolar distribution under heat stress. In addition, the nucleolus is implicated in other cellular processes, such as genome organization within the nucleus. However, our analyses of nucleolus-associated chromatin domains under heat stress did not reveal significant differences compared to the control plants, suggesting a lack of connection between two of the main functions of the nucleolus: ribosome biogenesis and nuclear organization.
Collapse
Affiliation(s)
- Ariadna Picart-Picolo
- CNRS, LGDP UMR5096, Université de Perpignan, Perpignan, France
- UPVD, LGDP UMR5096, Université de Perpignan, Perpignan, France
| | - Claire Picart
- CNRS, LGDP UMR5096, Université de Perpignan, Perpignan, France
- UPVD, LGDP UMR5096, Université de Perpignan, Perpignan, France
| | - Nathalie Picault
- CNRS, LGDP UMR5096, Université de Perpignan, Perpignan, France
- UPVD, LGDP UMR5096, Université de Perpignan, Perpignan, France
| | - Frederic Pontvianne
- CNRS, LGDP UMR5096, Université de Perpignan, Perpignan, France.
- UPVD, LGDP UMR5096, Université de Perpignan, Perpignan, France.
| |
Collapse
|
28
|
Pontvianne F, Liu C. Chromatin domains in space and their functional implications. CURRENT OPINION IN PLANT BIOLOGY 2020; 54:1-10. [PMID: 31881292 DOI: 10.1016/j.pbi.2019.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/12/2019] [Accepted: 11/26/2019] [Indexed: 05/19/2023]
Abstract
Genome organization displays functional compartmentalization. Many factors, including epigenetic modifications, transcription factors, chromatin remodelers, and RNAs, shape chromatin domains and the three-dimensional genome organization. Various types of chromatin domains with distinct epigenetic and spatial features exhibit different transcriptional activities. As part of the efforts to better understand plant functional genomics, over the past a few years, spatial distribution patterns of plant chromatin domains have been brought to light. In this review, we discuss chromatin domains associated with the nuclear periphery and the nucleolus, as well as chromatin domains staying in proximity and showing physical interactions. The functional implication of these domains is discussed, with a particular focus on the transcriptional regulation and replication timing. Finally, from a biophysical point of view, we discuss potential roles of liquid-liquid phase separation in plant nuclei in the genesis and maintenance of spatial chromatin domains.
Collapse
Affiliation(s)
- Frédéric Pontvianne
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), Université de Perpignan Via Domitia, LGDP, UMR 5096, Perpignan 66860, France; UPVD, Laboratoire Génome et Développement des Plantes (LGDP), Université de Perpignan Via Domitia, LGDP, UMR 5096, Perpignan 66860, France.
| | - Chang Liu
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen 72076, Germany.
| |
Collapse
|
29
|
Luo L, Ando S, Sakamoto Y, Suzuki T, Takahashi H, Ishibashi N, Kojima S, Kurihara D, Higashiyama T, Yamamoto KT, Matsunaga S, Machida C, Sasabe M, Machida Y. The formation of perinucleolar bodies is important for normal leaf development and requires the zinc-finger DNA-binding motif in Arabidopsis ASYMMETRIC LEAVES2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1118-1134. [PMID: 31639235 PMCID: PMC7155070 DOI: 10.1111/tpj.14579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 05/27/2023]
Abstract
In Arabidopsis, the ASYMMETRIC LEAVES2 (AS2) protein plays a key role in the formation of flat symmetric leaves via direct repression of the abaxial gene ETT/ARF3. AS2 encodes a plant-specific nuclear protein that contains the AS2/LOB domain, which includes a zinc-finger (ZF) motif that is conserved in the AS2/LOB family. We have shown that AS2 binds to the coding DNA of ETT/ARF3, which requires the ZF motif. AS2 is co-localized with AS1 in perinucleolar bodies (AS2 bodies). To identify the amino acid signals in AS2 required for formation of AS2 bodies and function(s) in leaf formation, we constructed recombinant DNAs that encoded mutant AS2 proteins fused to yellow fluorescent protein. We examined the subcellular localization of these proteins in cells of cotyledons and leaf primordia of transgenic plants and cultured cells. The amino acid signals essential for formation of AS2 bodies were located within and adjacent to the ZF motif. Mutant AS2 that failed to form AS2 bodies also failed to rescue the as2-1 mutation. Our results suggest the importance of the formation of AS2 bodies and the nature of interactions of AS2 with its target DNA and nucleolar factors including NUCLEOLIN1. The partial overlap of AS2 bodies with perinucleolar chromocenters with condensed ribosomal RNA genes implies a correlation between AS2 bodies and the chromatin state. Patterns of AS2 bodies in cells during interphase and mitosis in leaf primordia were distinct from those in cultured cells, suggesting that the formation and distribution of AS2 bodies are developmentally modulated in plants.
Collapse
Affiliation(s)
- Lilan Luo
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaAichi464‐8602Japan
- Present address:
Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Sayuri Ando
- Graduate School of Bioscience and BiotechnologyChubu UniversityKasugaiAichi487‐8501Japan
| | - Yuki Sakamoto
- Department of Applied Biological ScienceFaculty of Science and TechnologyTokyo University of ScienceNodaChiba278‐8510Japan
- Department of Biological SciencesGraduate School of ScienceOsaka University1‐1 Machikaneyama‐choToyonakaOsaka560‐0043Japan
| | - Takanori Suzuki
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaAichi464‐8602Japan
- Central Research InstituteIshihara Sangyo Kaisha, Ltd.2‐3‐1 Nishi‐ShibukawaKusatsuShiga525‐0025Japan
| | - Hiro Takahashi
- Graduate School of Medical SciencesKanazawa UniversityKakuma‐machiKanazawaIshikawa920‐1192Japan
| | - Nanako Ishibashi
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaAichi464‐8602Japan
| | - Shoko Kojima
- Graduate School of Bioscience and BiotechnologyChubu UniversityKasugaiAichi487‐8501Japan
| | - Daisuke Kurihara
- JST, PRESTOFuro‐cho, Chikusa‐kuNagoyaAichi464‐8601Japan
- Institute of Transformative Bio‐Molecules (ITbM)Nagoya UniversityFuro‐cho, Chiku00sa‐kuNagoyaAichi464‐8601Japan
| | - Tetsuya Higashiyama
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaAichi464‐8602Japan
- Institute of Transformative Bio‐Molecules (ITbM)Nagoya UniversityFuro‐cho, Chiku00sa‐kuNagoyaAichi464‐8601Japan
- Department of Biological SciencesGraduate School of ScienceUniversity of Tokyo7‐3‐1 Hongo, Bukyo‐kuTokyo113‐0033Japan
| | - Kotaro T. Yamamoto
- Division of Biological SciencesFaculty of ScienceHokkaido UniversitySapporo060‐0810Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological ScienceFaculty of Science and TechnologyTokyo University of ScienceNodaChiba278‐8510Japan
| | - Chiyoko Machida
- Graduate School of Bioscience and BiotechnologyChubu UniversityKasugaiAichi487‐8501Japan
| | - Michiko Sasabe
- Department of BiologyFaculty of Agriculture and Life ScienceHirosaki University3 Bunkyo‐choHirosaki036‐8561Japan
| | - Yasunori Machida
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaAichi464‐8602Japan
| |
Collapse
|
30
|
Tcherkez G, Carroll A, Abadie C, Mainguet S, Davanture M, Zivy M. Protein synthesis increases with photosynthesis via the stimulation of translation initiation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110352. [PMID: 31928674 DOI: 10.1016/j.plantsci.2019.110352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 05/09/2023]
Abstract
Leaf protein synthesis is an essential process at the heart of plant nitrogen (N) homeostasis and turnover that preferentially takes place in the light, that is, when N and CO2 fixation occur. The carbon allocation to protein synthesis in illuminated leaves generally accounts for ca. 1 % of net photosynthesis. It is likely that protein synthesis activity varies with photosynthetic conditions (CO2/O2 atmosphere composition) since changes in photorespiration and carbon provision should in principle impact on amino acid supply as well as metabolic regulation via leaf sugar content. However, possible changes in protein synthesis and translation activity when gaseous conditions vary are virtually unknown. Here, we address this question using metabolomics, isotopic techniques, phosphoproteomics and polysome quantitation, under different photosynthetic conditions that were varied with atmospheric CO2 and O2 mole fraction, using illuminated Arabidopsis rosettes under controlled gas exchange conditions. We show that carbon allocation to proteins is within 1-2.5 % of net photosynthesis, increases with photosynthesis rate and is unrelated to total amino acid content. In addition, photosynthesis correlates to polysome abundance and phosphorylation of ribosomal proteins and translation initiation factors. Our results demonstrate that translation activity follows photosynthetic activity, showing the considerable impact of metabolism (carboxylation-oxygenation balance) on protein synthesis.
Collapse
Affiliation(s)
- Guillaume Tcherkez
- Research School of Biology, ANU Joint College of Sciences, Australian National University, 2601, Canberra, ACT, Australia(1); Institut de Recherche en Horticulture et Semences, INRA, Université d'Angers, 42 rue Georges Morel, 49070, Beaucouzé, France(2).
| | - Adam Carroll
- Joint Mass Spectrometry Facility, Research School of Chemistry, Australian National University, 2601, Canberra, ACT, Australia
| | - Cyril Abadie
- Institut de Recherche en Horticulture et Semences, INRA, Université d'Angers, 42 rue Georges Morel, 49070, Beaucouzé, France(2)
| | - Samuel Mainguet
- Institute of Plant Sciences of Saclay, INRA, University Paris-Sud, CNRS, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Marlène Davanture
- Plateforme d'Analyse de Protéomique Paris Sud-Ouest (PAPPSO), GQE Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Ferme du Moulon, 91190, Gif-sur-Yvette, France
| | - Michel Zivy
- Plateforme d'Analyse de Protéomique Paris Sud-Ouest (PAPPSO), GQE Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Ferme du Moulon, 91190, Gif-sur-Yvette, France
| |
Collapse
|
31
|
Sáez-Vásquez J, Delseny M. Ribosome Biogenesis in Plants: From Functional 45S Ribosomal DNA Organization to Ribosome Assembly Factors. THE PLANT CELL 2019; 31:1945-1967. [PMID: 31239391 PMCID: PMC6751116 DOI: 10.1105/tpc.18.00874] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 05/11/2023]
Abstract
The transcription of 18S, 5.8S, and 18S rRNA genes (45S rDNA), cotranscriptional processing of pre-rRNA, and assembly of mature rRNA with ribosomal proteins are the linchpins of ribosome biogenesis. In yeast (Saccharomyces cerevisiae) and animal cells, hundreds of pre-rRNA processing factors have been identified and their involvement in ribosome assembly determined. These studies, together with structural analyses, have yielded comprehensive models of the pre-40S and pre-60S ribosome subunits as well as the largest cotranscriptionally assembled preribosome particle: the 90S/small subunit processome. Here, we present the current knowledge of the functional organization of 45S rDNA, pre-rRNA transcription, rRNA processing activities, and ribosome assembly factors in plants, focusing on data from Arabidopsis (Arabidopsis thaliana). Based on yeast and mammalian cell studies, we describe the ribonucleoprotein complexes and RNA-associated activities and discuss how they might specifically affect the production of 40S and 60S subunits. Finally, we review recent findings concerning pre-rRNA processing pathways and a novel mechanism involved in a ribosome stress response in plants.
Collapse
Affiliation(s)
- Julio Sáez-Vásquez
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France, and Universite Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| | - Michel Delseny
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France, and Universite Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| |
Collapse
|
32
|
Sims J, Copenhaver GP, Schlögelhofer P. Meiotic DNA Repair in the Nucleolus Employs a Nonhomologous End-Joining Mechanism. THE PLANT CELL 2019; 31:2259-2275. [PMID: 31266898 PMCID: PMC6751124 DOI: 10.1105/tpc.19.00367] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/12/2019] [Accepted: 06/28/2019] [Indexed: 05/03/2023]
Abstract
Ribosomal RNA genes are arranged in large arrays with hundreds of rDNA units in tandem. These highly repetitive DNA elements pose a risk to genome stability since they can undergo nonallelic exchanges. During meiosis, DNA double-strand breaks (DSBs) are induced as part of the regular program to generate gametes. Meiotic DSBs initiate homologous recombination (HR), which subsequently ensures genetic exchange and chromosome disjunction. In Arabidopsis (Arabidopsis thaliana), we demonstrate that all 45S rDNA arrays become transcriptionally active and are recruited into the nucleolus early in meiosis. This shields the rDNA from acquiring canonical meiotic chromatin modifications and meiotic cohesin and allows only very limited meiosis-specific DSB formation. DNA lesions within the rDNA arrays are repaired in an RAD51-independent but LIG4-dependent manner, establishing that nonhomologous end-joining maintains rDNA integrity during meiosis. Utilizing ectopically integrated rDNA repeats, we validate our findings and demonstrate that the rDNA constitutes an HR-refractory genome environment.
Collapse
Affiliation(s)
- Jason Sims
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Gregory P Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Peter Schlögelhofer
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| |
Collapse
|
33
|
Carvalho A, Reis S, Pavia I, Lima-Brito JE. Influence of seed priming with iron and/or zinc in the nucleolar activity and protein content of bread wheat. PROTOPLASMA 2019; 256:763-775. [PMID: 30554374 DOI: 10.1007/s00709-018-01335-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/03/2018] [Indexed: 05/17/2023]
Abstract
Seed priming with iron (Fe) and/or zinc (Zn) can overcome the reduced availability of these micronutrients in soils and crops, but suitable dosages should be predetermined. Nucleolus responds to stress, such as cytotoxicity, with alterations perceivable by cytogenetic analyses. This work intends to study how seed priming with Fe and/or Zn affects the nucleolar activity in roots and the total soluble protein content in the flour of bread wheat cv. 'Jordão'. Seven priming treatments with 0 mg L-1 to 8 mg L-1 of Fe and/or Zn were performed. In all treatments, each metaphase cell presented a maximum of six nucleolar organizer regions positively stained with silver nitrate (Ag-NORs). Also, a maximum number of six nucleoli per nucleus were observed in all treatments, except in the hydroprimed seeds (used as control) that showed a maximum of five nucleoli, probably due to nucleolar fusion. Irregular interphases were frequent in treatments with the highest dosage of micronutrients (8 mg L-1 Fe and/or 8 mg L-1 Zn). The nucleolar area reduced (p < 0.001) as the number of nucleoli increased, and it was lower in treatments with a combination of Fe and Zn. However, the combinations of Fe and Zn showed the highest concentrations of total soluble protein (p ≤ 0.001). Although a reduced nucleolar area represents low ribosomal RNA gene transcription and ribosomal production, the significant increase of the number of nucleoli in the seeds primed with Fe and Zn enhanced the total soluble protein content as compared to the hydroprimed seeds (control) probably due to an increase of nucleolar surface-to-volume ratio that improved the protein synthesis. Overall, this work revealed that priming of bread wheat seeds with suited dosages of Fe and Zn can improve the nutritional value of flour, and the nucleolar number, morphology, and area can be useful biomarkers in cytotoxicity studies.
Collapse
Affiliation(s)
- Ana Carvalho
- Biosystems and Integrative Sciences Institute (BioISI), University of Tras-os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of de Tras-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Sara Reis
- Biosystems and Integrative Sciences Institute (BioISI), University of Tras-os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
| | - Ivo Pavia
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of de Tras-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - José Eduardo Lima-Brito
- Biosystems and Integrative Sciences Institute (BioISI), University of Tras-os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal.
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of de Tras-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal.
- Department of Genetics and Biotechnology, Ed. Blocos Laboratoriais, A0.04, University of Trasos-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal.
| |
Collapse
|
34
|
Kamal KY, Herranz R, van Loon JJWA, Medina FJ. Cell cycle acceleration and changes in essential nuclear functions induced by simulated microgravity in a synchronized Arabidopsis cell culture. PLANT, CELL & ENVIRONMENT 2019; 42:480-494. [PMID: 30105864 DOI: 10.1111/pce.13422] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 07/22/2018] [Accepted: 08/04/2018] [Indexed: 06/08/2023]
Abstract
Zero gravity is an environmental challenge unknown to organisms throughout evolution on Earth. Nevertheless, plants are sensitive to altered gravity, as exemplified by changes in meristematic cell proliferation and growth. We found that synchronized Arabidopsis-cultured cells exposed to simulated microgravity showed a shortened cell cycle, caused by a shorter G2/M phase and a slightly longer G1 phase. The analysis of selected marker genes and proteins by quantitative polymerase chain reaction and flow cytometry in synchronic G1 and G2 subpopulations indicated changes in gene expression of core cell cycle regulators and chromatin-modifying factors, confirming that microgravity induced misregulation of G2/M and G1/S checkpoints and chromatin remodelling. Changes in chromatin-based regulation included higher DNA methylation and lower histone acetylation, increased chromatin condensation, and overall depletion of nuclear transcription. Estimation of ribosome biogenesis rate using nucleolar parameters and selected nucleolar genes and proteins indicated reduced nucleolar activity under simulated microgravity, especially at G2/M. These results expand our knowledge of how meristematic cells are affected by real and simulated microgravity. Counteracting this cellular stress is necessary for plant culture in space exploration.
Collapse
Affiliation(s)
- Khaled Y Kamal
- Plant Cell Nucleolus, Proliferation & Microgravity Laboratory, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- Agronomy Department, Zagazig University, Zagazig, Egypt
| | - Raúl Herranz
- Plant Cell Nucleolus, Proliferation & Microgravity Laboratory, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Jack J W A van Loon
- DESC (Dutch Experiment Support Center), Department of Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center and Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
- ESA-ESTEC, TEC-MMG, Noordwijk, The Netherlands
| | - F Javier Medina
- Plant Cell Nucleolus, Proliferation & Microgravity Laboratory, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| |
Collapse
|
35
|
Carvalho A, Leal F, Matos M, Lima-Brito J. Effects of heat stress in the leaf mitotic cell cycle and chromosomes of four wine-producing grapevine varieties. PROTOPLASMA 2018; 255:1725-1740. [PMID: 29789939 DOI: 10.1007/s00709-018-1267-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/15/2018] [Indexed: 05/09/2023]
Abstract
Grapevine varieties respond differentially to heat stress (HS). HS ultimately reduces the photosynthesis and respiratory performance. However, the HS effects in the leaf nuclei and mitotic cells of grapevine are barely known. This work intends to evaluate the HS effects in the leaf mitotic cell cycle and chromosomes of four wine-producing varieties: Touriga Franca (TF), Touriga Nacional (TN), Rabigato, and Viosinho. In vitro plants with 11 months were used in a stepwise acclimation and recovery (SAR) experimental setup comprising different phases: heat acclimation period (3 h-32 °C), extreme HS (1 h-42 °C), and two recovery periods (3 h-32 °C and 24 h-25 °C), and compared to control plants (maintained in vitro at 25 °C). At the end of each SAR phase, leaves were collected, fixed, and used for cell suspensions and chromosome preparations. Normal and abnormal interphase and mitotic cells were observed, scored, and statistically analyzed in all varieties and treatments (control and SAR phases). Different types of chromosomal anomalies in all mitotic phases, treatments, and varieties were found. In all varieties, the percentage of dividing cells with anomalies (%DCA) after extreme HS increased relative to control. TF and Viosinho were considered the most tolerant to HS. TF showed a gradual MI reduction from heat acclimation to HS and the lowest %DCA after HS and 24 h of recovery. Only Viosinho reached the control values after the long recovery period. Extrapolating these data to the field, we hypothesize that during consecutive hot summer days, the grapevine plants will not have time or capacity to recover from the mitotic anomalies caused by high temperatures.
Collapse
Affiliation(s)
- Ana Carvalho
- Biosystems & Integrative Sciences Institute, University of Tras-os-Montes and Alto Douro (BioISI-UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Tras-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Fernanda Leal
- Biosystems & Integrative Sciences Institute, University of Tras-os-Montes and Alto Douro (BioISI-UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Tras-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Manuela Matos
- Biosystems & Integrative Sciences Institute, University of Tras-os-Montes and Alto Douro (BioISI-UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Tras-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - José Lima-Brito
- Biosystems & Integrative Sciences Institute, University of Tras-os-Montes and Alto Douro (BioISI-UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Tras-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal.
- Department of Genetics and Biotechnology, University of Tras-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal.
| |
Collapse
|
36
|
Micol-Ponce R, Sarmiento-Mañús R, Ruiz-Bayón A, Montacié C, Sáez-Vasquez J, Ponce MR. Arabidopsis RIBOSOMAL RNA PROCESSING7 Is Required for 18S rRNA Maturation. THE PLANT CELL 2018; 30:2855-2872. [PMID: 30361235 PMCID: PMC6305980 DOI: 10.1105/tpc.18.00245] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/04/2018] [Accepted: 10/24/2018] [Indexed: 05/24/2023]
Abstract
Ribosome biogenesis is fundamental to growth and development in eukaryotes and is linked to human diseases and cancer. Arabidopsis thaliana MORPHOLOGY OF ARGONAUTE1-52 SUPPRESSED 2 (MAS2) participates in splicing and 45S ribosomal DNA (rDNA) expression. In a screen for MAS2 interactors, we identified RIBOSOMAL RNA PROCESSING 7 (RRP7), an ortholog of yeast rRNA processing protein 7 (Rrp7), which is required for 18S ribosomal RNA (rRNA) maturation. Arabidopsis rrp7 mutants exhibit a pleiotropic phenotype including slow growth, altered shoot phyllotaxy, aberrant venation in lateral organs, partial infertility, and abscisic acid hypersensitivity in seedlings. In Arabidopsis, RRP7 localizes mainly to the nucleolus, the site of the 45S rDNA transcription that produces a 45S pre-rRNA primary transcript, precursor of the 25S, 18S and 5.8S rRNAs. Lack of RRP7 function perturbs 18S rRNA maturation, causes nucleolar hypertrophy, and results in an increased 25S/18S rRNA ratio. Arabidopsis contains hundreds of 45S rDNA genes whose expression is epigenetically regulated, and deregulated, in rrp7 mutants. Double mutant analysis revealed synergistic interactions between RRP7 alleles and alleles of MAS2, NUCLEOLIN1 (NUC1), and HISTONE DEACETYLASE 6 (HDA6), which encode epigenetic regulators of 45S rDNA transcription. Our results reveal the evolutionarily conserved but divergent roles of RRP7 as a ribosome biogenesis factor.
Collapse
Affiliation(s)
- Rosa Micol-Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Raquel Sarmiento-Mañús
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Alejandro Ruiz-Bayón
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Charlotte Montacié
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860, Perpignan, France
- Univ. Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860, Perpignan, France
| | - Julio Sáez-Vasquez
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860, Perpignan, France
- Univ. Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860, Perpignan, France
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain.
| |
Collapse
|
37
|
Vial-Pradel S, Keta S, Nomoto M, Luo L, Takahashi H, Suzuki M, Yokoyama Y, Sasabe M, Kojima S, Tada Y, Machida Y, Machida C. Arabidopsis Zinc-Finger-Like Protein ASYMMETRIC LEAVES2 (AS2) and Two Nucleolar Proteins Maintain Gene Body DNA Methylation in the Leaf Polarity Gene ETTIN (ARF3). PLANT & CELL PHYSIOLOGY 2018; 59:1385-1397. [PMID: 29415182 DOI: 10.1093/pcp/pcy031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/02/2018] [Indexed: 05/25/2023]
Abstract
Arabidopsis ASYMMETRIC LEAVES2 (AS2) plays a critical role in leaf adaxial-abaxial partitioning by repressing expression of the abaxial-determining gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3). We previously reported that six CpG dinucleotides in its exon 6 are thoroughly methylated by METHYLTRASFERASE1, that CpG methylation levels are inversely correlated with ETT/ARF3 transcript levels and that methylation levels at three out of the six CpG dinucleotides are decreased in as2-1. All these imply that AS2 is involved in epigenetic repression of ETT/ARF3 by gene body DNA methylation. The mechanism of the epigenetic repression by AS2, however, is unknown. Here, we tested mutations of NUCLEOLIN1 (NUC1) and RNA HELICASE10 (RH10) encoding nucleolus-localized proteins for the methylation in exon 6 as these mutations enhance the level of ETT/ARF3 transcripts in as2-1. Methylation levels at three specific CpGs were decreased in rh10-1, and two of those three overlapped with those in as2-1. Methylation levels at two specific CpGs were decreased in nuc1-1, and one of those three overlapped with that in as2-1. No site was affected by both rh10-1 and nuc1-1. One specific CpG was unaffected by these mutations. These results imply that the way in which RH10, NUC1 and AS2 are involved in maintaining methylation at five CpGs in exon 6 might be through at least several independent pathways, which might interact with each other. Furthermore, we found that AS2 binds specifically the sequence containing CpGs in exon 1 of ETT/ARF3, and that the binding requires the zinc-finger-like motif in AS2 that is structurally similar to the zinc finger-CxxC domain in vertebrate DNA methyltransferase1.
Collapse
Affiliation(s)
- Simon Vial-Pradel
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Sumie Keta
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Mika Nomoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Lilan Luo
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Hiro Takahashi
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan
| | - Masataka Suzuki
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Yuri Yokoyama
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Michiko Sasabe
- Faculty of Agriculture and Life Science, Department of Biology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Japan
| | - Shoko Kojima
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Yasuomi Tada
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Yasunori Machida
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Chiyoko Machida
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| |
Collapse
|
38
|
Novel, Moon and Mars, partial gravity simulation paradigms and their effects on the balance between cell growth and cell proliferation during early plant development. NPJ Microgravity 2018; 4:9. [PMID: 29644337 PMCID: PMC5884789 DOI: 10.1038/s41526-018-0041-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/28/2018] [Accepted: 03/06/2018] [Indexed: 01/29/2023] Open
Abstract
Clinostats and Random Positioning Machine (RPM) are used to simulate microgravity, but, for space exploration, we need to know the response of living systems to fractional levels of gravity (partial gravity) as they exist on Moon and Mars. We have developed and compared two different paradigms to simulate partial gravity using the RPM, one by implementing a centrifuge on the RPM (RPMHW), the other by applying specific software protocols to driving the RPM motors (RPMSW). The effects of the simulated partial gravity were tested in plant root meristematic cells, a system with known response to real and simulated microgravity. Seeds of Arabidopsis thaliana were germinated under simulated Moon (0.17 g) and Mars (0.38 g) gravity. In parallel, seeds germinated under simulated microgravity (RPM), or at 1 g control conditions. Fixed root meristematic cells from 4-day grown seedlings were analyzed for cell proliferation rate and rate of ribosome biogenesis using morphometrical methods and molecular markers of the regulation of cell cycle and nucleolar activity. Cell proliferation appeared increased and cell growth was depleted under Moon gravity, compared with the 1 g control. The effects were even higher at the Moon level than at simulated microgravity, indicating that meristematic competence (balance between cell growth and proliferation) is also affected at this gravity level. However, the results at the simulated Mars level were close to the 1 g static control. This suggests that the threshold for sensing and responding to gravity alteration in the root would be at a level intermediate between Moon and Mars gravity. Both partial g simulation strategies seem valid and show similar results at Moon g-levels, but further research is needed, in spaceflight and simulation facilities, especially around and beyond Mars g levels to better understand more precisely the differences and constrains in the use of these facilities for the space biology community. Novel simulators of partial gravity show that the threshold for plants to sense and respond to gravity in their roots lies somewhere between gravity levels of the Moon and Mars. An international team led by Jack van Loon from the VU University Medical Center in Amsterdam, the Netherlands, reconfigured the hardware (include centrifugation) and software (new algorithm) on a microgravity-simulating instrument known as a Random Positioning Machine to produce fractional levels of gravity similar to those found on Mars (0.38 g) and the Moon (0.17 g). They germinated seeds of thale cress (Arabidopsis thaliana) in these devices, and showed in 4-day old seedlings that the balance between cell proliferation and cell growth in the roots was out of whack in both simulated microgravity and Moon gravity levels, but not in a simulated Mars scenario.
Collapse
|
39
|
Huang KC, Lin WC, Cheng WH. Salt hypersensitive mutant 9, a nucleolar APUM23 protein, is essential for salt sensitivity in association with the ABA signaling pathway in Arabidopsis. BMC PLANT BIOLOGY 2018; 18:40. [PMID: 29490615 PMCID: PMC5831739 DOI: 10.1186/s12870-018-1255-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/21/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Although the nucleolus involves two major functions: pre-rRNA processing and ribosome biogenesis/assembly, increasing evidence indicates that it also plays important roles in response to abiotic stress. However, the possible regulatory mechanisms underlying the nucleolar proteins responsive to abiotic stress are largely unknown. High salinity is one of the major abiotic stresses, which hinders plant growth and productivity. Here, genetic screening approach was used to identify a salt hypersensitive mutant 9 (sahy9) mutant, also known as apum23, in Arabidopsis thaliana. Functional characterization of SAHY9/APUM23 through analyses of gene/protein expression profiles and metabolites was performed to decipher the possible regulatory mechanisms of the nucleolar protein SAHY9/APUM23 in response to salt stress. RESULTS Seedlings of the sahy9/apum23 mutant displayed postgermination developmental arrest and then became bleached after prolonged culture under various salt stresses. Transcriptomic and proteomic analyses of salt-treated sahy9/apum23 and wild-type seedlings revealed differential expression of genes/proteins that have similar functional categories of biological processes, primarily those involved in cellular and metabolic processes as well as abiotic and biotic stress responses. However, the consistency of differential gene expression at both the transcript and protein levels was low (~ 12%), which suggests the involvement of posttranscriptional processing during the salt response. Furthermore, the altered expression of genes and proteins mediated by SAHY9/APUM23 regarding salt sensitivity involves abscisic acid (ABA) biosynthesis and signaling, abiotic stress responses, and ribosome biogenesis-related genes. Importantly, NCED3, ABI2, PP2CA, and major ABA-responsive marker genes, such as RD20 and RD29B, were down-regulated at both the transcript and protein levels in conjunction with lower contents of ABA and changes in the expression of a subset of LEA proteins in sahy9/apum23 mutants under salt stress. Moreover, the salt hypersensitivity of the sahy9/apum23 mutant was largely rescued by the exogenous application of ABA during salt stress. CONCLUSION Our results revealed that SAHY9/APUM23 regulated the expression of ribosome biogenesis-related genes and proteins, which further affected the ribosome composition and abundance, and potential posttranscriptional regulation. The salt hypersensitivity of sahy9/apum23 is associated with the ABA-mediated signaling pathway and the downstream stress-responsive network of this pathway.
Collapse
Affiliation(s)
- Kai-Chau Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Wei-Chih Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Wan-Hsing Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
40
|
Dvořáčková M, Raposo B, Matula P, Fuchs J, Schubert V, Peška V, Desvoyes B, Gutierrez C, Fajkus J. Replication of ribosomal DNA in Arabidopsis occurs both inside and outside the nucleolus during S phase progression. J Cell Sci 2018; 131:jcs.202416. [PMID: 28483825 DOI: 10.1242/jcs.202416] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/06/2017] [Indexed: 12/14/2022] Open
Abstract
Ribosomal RNA genes (rDNA) have been used as valuable experimental systems in numerous studies. Here, we focus on elucidating the spatiotemporal organisation of rDNA replication in Arabidopsis thaliana To determine the subnuclear distribution of rDNA and the progression of its replication during the S phase, we apply 5-ethynyl-2'-deoxyuridine (EdU) labelling, fluorescence-activated cell sorting, fluorescence in situ hybridization and structured illumination microscopy. We show that rDNA is replicated inside and outside the nucleolus, where active transcription occurs at the same time. Nascent rDNA shows a maximum of nucleolar associations during early S phase. In addition to EdU patterns typical for early or late S phase, we describe two intermediate EdU profiles characteristic for mid S phase. Moreover, the use of lines containing mutations in the chromatin assembly factor-1 gene fas1 and wild-type progeny of fas1xfas2 crosses depleted of inactive copies allows for selective observation of the replication pattern of active rDNA. High-resolution data are presented, revealing the culmination of replication in the mid S phase in the nucleolus and its vicinity. Taken together, our results provide a detailed snapshot of replication of active and inactive rDNA during S phase progression.
Collapse
Affiliation(s)
- Martina Dvořáčková
- Laboratory of Molecular Complexes of Chromatin, Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Berta Raposo
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Madrid 28049, Spain
| | - Petr Matula
- Department of Computer Graphics and Design, Faculty of Informatics, Masaryk University, Botanická 554/68a, Brno 60200, Czech Republic
| | - Joerg Fuchs
- Breeding Research Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, Stadt Seeland D-06466, Germany
| | - Veit Schubert
- Breeding Research Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, Stadt Seeland D-06466, Germany
| | - Vratislav Peška
- Laboratory of Molecular Complexes of Chromatin, Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, Brno 62500, Czech Republic.,Department of Cell Biology and Radiology, Institute of Biophysics ASCR, v.v.i., Královopolská 135, Brno 61265, Czech Republic
| | - Bénédicte Desvoyes
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Madrid 28049, Spain
| | - Crisanto Gutierrez
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Madrid 28049, Spain
| | - Jiří Fajkus
- Laboratory of Molecular Complexes of Chromatin, Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, Brno 62500, Czech Republic .,Department of Cell Biology and Radiology, Institute of Biophysics ASCR, v.v.i., Královopolská 135, Brno 61265, Czech Republic.,Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137, Czech Republic
| |
Collapse
|
41
|
Ohbayashi I, Sugiyama M. Plant Nucleolar Stress Response, a New Face in the NAC-Dependent Cellular Stress Responses. FRONTIERS IN PLANT SCIENCE 2018; 8:2247. [PMID: 29375613 PMCID: PMC5767325 DOI: 10.3389/fpls.2017.02247] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/21/2017] [Indexed: 05/24/2023]
Abstract
The nucleolus is the most prominent nuclear domain, where the core processes of ribosome biogenesis occur vigorously. All these processes are finely orchestrated by many nucleolar factors to build precisely ribosome particles. In animal cells, perturbations of ribosome biogenesis, mostly accompanied by structural disorders of the nucleolus, cause a kind of cellular stress to induce cell cycle arrest, senescence, or apoptosis, which is called nucleolar stress response. The best-characterized pathway of this stress response involves p53 and MDM2 as key players. p53 is a crucial transcription factor that functions in response to not only nucleolar stress but also other cellular stresses such as DNA damage stress. These cellular stresses release p53 from the inhibition by MDM2, an E3 ubiquitin ligase targeting p53, in various ways, which leads to p53-dependent activation of a set of genes. In plants, genetic impairments of ribosome biogenesis factors or ribosome components have been shown to cause characteristic phenotypes, including a narrow and pointed leaf shape, implying a common signaling pathway connecting ribosomal perturbations and certain aspects of growth and development. Unlike animals, however, plants have neither p53 nor MDM2 family proteins. Then the question arises whether plant cells have a nucleolar stress response pathway. In recent years, it has been reported that several members of the plant-specific transcription factor family NAC play critical roles in the pathways responsive to various cellular stresses. In this mini review, we outline the plant cellular stress response pathways involving NAC transcription factors with reference to the p53-MDM2-dependent pathways of animal cells, and discuss the possible involvement of a plant-unique, NAC-mediated pathway in the nucleolar stress response in plants.
Collapse
Affiliation(s)
- Iwai Ohbayashi
- FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Munetaka Sugiyama
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
42
|
Dvořáčková M, Fajkus J. Visualization of the Nucleolus Using Ethynyl Uridine. FRONTIERS IN PLANT SCIENCE 2018; 9:177. [PMID: 29503656 PMCID: PMC5820300 DOI: 10.3389/fpls.2018.00177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/30/2018] [Indexed: 05/04/2023]
Abstract
Thanks to recent innovative methodologies, key cellular processes such as replication or transcription can be visualized directly in situ in intact tissues. Many studies use so-called click iT chemistry where nascent DNA can be tracked by 5-ethynyl-2'-deoxyuridine (EdU), and nascent RNA by 5-ethynyl uridine (EU). While the labeling of replicating DNA by EdU has already been well established and further exploited in plants, the use of EU to reveal nascent RNA has not been developed to such an extent. In this article, we present a protocol for labeling of nucleolar RNA transcripts using EU and show that EU effectively highlights the nucleolus. The method is advantageous, because the need to prepare transgenic plants expressing fluorescently tagged nucleolar components when the nucleolus has to be visualized can be avoided.
Collapse
Affiliation(s)
- Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
- *Correspondence: Martina Dvořáčková, Jiří Fajkus, ;
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
- *Correspondence: Martina Dvořáčková, Jiří Fajkus, ;
| |
Collapse
|
43
|
Chen X, Lu L, Qian S, Scalf M, Smith LM, Zhong X. Canonical and Noncanonical Actions of Arabidopsis Histone Deacetylases in Ribosomal RNA Processing. THE PLANT CELL 2018; 30:134-152. [PMID: 29343504 PMCID: PMC5810568 DOI: 10.1105/tpc.17.00626] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/11/2017] [Accepted: 01/12/2018] [Indexed: 05/13/2023]
Abstract
Ribosome biogenesis is a fundamental process required for all cellular activities. Histone deacetylases play critical roles in many biological processes including transcriptional repression and rDNA silencing. However, their function in pre-rRNA processing remains poorly understood. Here, we discovered a previously uncharacterized role of Arabidopsis thaliana histone deacetylase HD2C in pre-rRNA processing via both canonical and noncanonical manners. HD2C interacts with another histone deacetylase HD2B and forms homo- and/or hetero-oligomers in the nucleolus. Depletion of HD2C and HD2B induces a ribosome-biogenesis deficient phenotype and aberrant accumulation of 18S pre-rRNA intermediates. Our genome-wide analysis revealed that HD2C binds and represses the expression of key genes involved in ribosome biogenesis. Using RNA immunoprecipitation and sequencing, we further uncovered a noncanonical mechanism of HD2C directly associating with pre-rRNA and small nucleolar RNAs to regulate rRNA methylation. Together, this study reveals a multifaceted role of HD2C in ribosome biogenesis and provides mechanistic insights into how histone deacetylases modulate rRNA maturation at the transcriptional and posttranscriptional levels.
Collapse
Affiliation(s)
- Xiangsong Chen
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Li Lu
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Shuiming Qian
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Xuehua Zhong
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
44
|
Kalinina NO, Makarova S, Makhotenko A, Love AJ, Taliansky M. The Multiple Functions of the Nucleolus in Plant Development, Disease and Stress Responses. FRONTIERS IN PLANT SCIENCE 2018; 9:132. [PMID: 29479362 PMCID: PMC5811523 DOI: 10.3389/fpls.2018.00132] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/23/2018] [Indexed: 05/18/2023]
Abstract
The nucleolus is the most conspicuous domain in the eukaryotic cell nucleus, whose main function is ribosomal RNA (rRNA) synthesis and ribosome biogenesis. However, there is growing evidence that the nucleolus is also implicated in many other aspects of cell biology, such as regulation of cell cycle, growth and development, senescence, telomerase activity, gene silencing, responses to biotic and abiotic stresses. In the first part of the review, we briefly assess the traditional roles of the plant nucleolus in rRNA synthesis and ribosome biogenesis as well as possible functions in other RNA regulatory pathways such as splicing, nonsense-mediated mRNA decay and RNA silencing. In the second part of the review we summarize recent progress and discuss already known and new hypothetical roles of the nucleolus in plant growth and development. In addition, this part will highlight studies showing new nucleolar functions involved in responses to pathogen attack and abiotic stress. Cross-talk between the nucleolus and Cajal bodies is also discussed in the context of their association with poly(ADP ribose)polymerase (PARP), which is known to play a crucial role in various physiological processes including growth, development and responses to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Natalia O. Kalinina
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Natalia O. Kalinina
| | - Svetlana Makarova
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Antonida Makhotenko
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | | | - Michael Taliansky
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- The James Hutton Institute, Dundee, United Kingdom
- *Correspondence: Michael Taliansky
| |
Collapse
|
45
|
Montacié C, Durut N, Opsomer A, Palm D, Comella P, Picart C, Carpentier MC, Pontvianne F, Carapito C, Schleiff E, Sáez-Vásquez J. Nucleolar Proteome Analysis and Proteasomal Activity Assays Reveal a Link between Nucleolus and 26S Proteasome in A. thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:1815. [PMID: 29104584 PMCID: PMC5655116 DOI: 10.3389/fpls.2017.01815] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/06/2017] [Indexed: 05/23/2023]
Abstract
In all eukaryotic cells, the nucleolus is functionally and structurally linked to rRNA synthesis and ribosome biogenesis. This compartment contains as well factors involved in other cellular activities, but the functional interconnection between non-ribosomal activities and the nucleolus (structure and function) still remains an open question. Here, we report a novel mass spectrometry analysis of isolated nucleoli from Arabidopsis thaliana plants using the FANoS (Fluorescence Assisted Nucleolus Sorting) strategy. We identified many ribosome biogenesis factors (RBF) and proteins non-related with ribosome biogenesis, in agreement with the recognized multi-functionality of the nucleolus. Interestingly, we found that 26S proteasome subunits localize in the nucleolus and demonstrated that proteasome activity and nucleolus organization are intimately linked to each other. Proteasome subunits form discrete foci in the disorganized nucleolus of nuc1.2 plants. Nuc1.2 protein extracts display reduced proteasome activity in vitro compared to WT protein extracts. Remarkably, proteasome activity in nuc1.2 is similar to proteasome activity in WT plants treated with proteasome inhibitors (MG132 or ALLN). Finally, we show that MG132 treatment induces disruption of nucleolar structures in WT but not in nuc1.2 plants. Altogether, our data suggest a functional interconnection between nucleolus structure and proteasome activity.
Collapse
Affiliation(s)
- Charlotte Montacié
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, UMR 5096, Perpignan, France
- Laboratoire Génome et Développement des Plantes, University of Perpignan Via Domitia, UMR 5096, Perpignan, France
| | - Nathalie Durut
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, UMR 5096, Perpignan, France
- Laboratoire Génome et Développement des Plantes, University of Perpignan Via Domitia, UMR 5096, Perpignan, France
| | - Alison Opsomer
- Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, UMR7178 Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Denise Palm
- Institute for Molecular Biosciences, Cluster of Excellence Macromolecular Complexes, Buchman Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Pascale Comella
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, UMR 5096, Perpignan, France
- Laboratoire Génome et Développement des Plantes, University of Perpignan Via Domitia, UMR 5096, Perpignan, France
| | - Claire Picart
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, UMR 5096, Perpignan, France
- Laboratoire Génome et Développement des Plantes, University of Perpignan Via Domitia, UMR 5096, Perpignan, France
| | - Marie-Christine Carpentier
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, UMR 5096, Perpignan, France
- Laboratoire Génome et Développement des Plantes, University of Perpignan Via Domitia, UMR 5096, Perpignan, France
| | - Frederic Pontvianne
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, UMR 5096, Perpignan, France
- Laboratoire Génome et Développement des Plantes, University of Perpignan Via Domitia, UMR 5096, Perpignan, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, UMR7178 Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Cluster of Excellence Macromolecular Complexes, Buchman Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Julio Sáez-Vásquez
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, UMR 5096, Perpignan, France
- Laboratoire Génome et Développement des Plantes, University of Perpignan Via Domitia, UMR 5096, Perpignan, France
| |
Collapse
|
46
|
Udomchalothorn T, Plaimas K, Sripinyowanich S, Boonchai C, Kojonna T, Chutimanukul P, Comai L, Buaboocha T, Chadchawan S. OsNucleolin1-L Expression in Arabidopsis Enhances Photosynthesis via Transcriptome Modification under Salt Stress Conditions. PLANT & CELL PHYSIOLOGY 2017; 58:717-734. [PMID: 28204743 DOI: 10.1093/pcp/pcx024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 02/02/2017] [Indexed: 05/06/2023]
Abstract
OsNUC1 encodes rice nucleolin, which has been shown to be involved in salt stress responses. Expression of the full-length OsNUC1 gene in Arabidopsis resulted in hypersensitivity to ABA during germination. Transcriptome analysis of the transgenic lines, in comparison with the wild type, revealed that the RNA abundance of >1,900 genes was significantly changed under normal growth conditions, while under salt stress conditions the RNAs of 999 genes were found to be significantly regulated. Gene enrichment analysis showed that under normal conditions OsNUC1 resulted in repression of genes involved in photosynthesis, while in salt stress conditions OsNUC1 increased expression of the genes involved in the light-harvesting complex. Correspondingly, the net rate of photosynthesis of the transgenic lines was increased under salt stress. Transgenic rice lines with overexpression of the OsNUC1-L gene were generated and tested for photosynthetic performance under salt stress conditions. The transgenic rice lines treated with salt stress at the booting stage had a higher photosynthetic rate and stomatal conductance in flag leaves and second leaves than the wild type. Moreover, higher contents of Chl a and carotenoids were found in flag leaves of the transgenic rice. These results suggest a role for OsNUC1 in the modification of the transcriptome, especially the gene transcripts responsible for photosynthesis, leading to stabilization of photosynthesis under salt stress conditions.
Collapse
Affiliation(s)
- Thanikarn Udomchalothorn
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kitiporn Plaimas
- AVIC research center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Siriporn Sripinyowanich
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Agricultural Technology Division, Faculty of Arts and Science, Sisaket Rajabhat University, Sisaket, Thailand
| | - Chutamas Boonchai
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Thammaporn Kojonna
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Panita Chutimanukul
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA
| | - Teerapong Buaboocha
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
47
|
Picart C, Pontvianne F. Plant nucleolar DNA: Green light shed on the role of Nucleolin in genome organization. Nucleus 2017; 8:11-16. [PMID: 27644794 PMCID: PMC5287095 DOI: 10.1080/19491034.2016.1236167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 10/21/2022] Open
Abstract
The nucleolus forms as a consequence of ribosome biogenesis, but it is also implicated in other cell functions. The identification of nucleolus-associated chromatin domains (NADs) in animal and plant cells revealed the presence of DNA sequences other than rRNA genes in and around the nucleolus. NADs display repressive chromatin signatures and harbour repetitive DNA, but also tRNA genes and RNA polymerase II-transcribed genes. Furthermore, the identification of NADs revealed a specific function of the nucleolus and the protein Nucleolin 1 (NUC1) in telomere biology. Here, we discuss the significance of these data with regard to nucleolar structure and to the role of the nucleolus and NUC1 in global genome organization and stability.
Collapse
Affiliation(s)
- Claire Picart
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, F-66860, Perpignan, France
- Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, F-66860, Perpignan, France
| | - Frédéric Pontvianne
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, F-66860, Perpignan, France
- Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, F-66860, Perpignan, France
| |
Collapse
|
48
|
Boucheron-Dubuisson E, Manzano AI, Le Disquet I, Matía I, Sáez-Vasquez J, van Loon JJWA, Herranz R, Carnero-Diaz E, Medina FJ. Functional alterations of root meristematic cells of Arabidopsis thaliana induced by a simulated microgravity environment. JOURNAL OF PLANT PHYSIOLOGY 2016; 207:30-41. [PMID: 27792899 DOI: 10.1016/j.jplph.2016.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 05/20/2023]
Abstract
Environmental gravity modulates plant growth and development, and these processes are influenced by the balance between cell proliferation and differentiation in meristems. Meristematic cells are characterized by the coordination between cell proliferation and cell growth, that is, by the accurate regulation of cell cycle progression and the optimal production of biomass for the viability of daughter cells after division. Thus, cell growth is correlated with the rate of ribosome biogenesis and protein synthesis. We investigated the effects of simulated microgravity on cellular functions of the root meristem in a sequential study. Seedlings were grown in a clinostat, a device producing simulated microgravity, for periods between 3 and 10days. In a complementary study, seedlings were grown in a Random Positioning Machine (RPM) and sampled sequentially after similar periods of growth. Under these conditions, the cell proliferation rate and the regulation of cell cycle progression showed significant alterations, accompanied by a reduction of cell growth. However, the overall size of the root meristem did not change. Analysis of cell cycle phases by flow cytometry showed changes in their proportion and duration, and the expression of the cyclin B1 gene, a marker of entry in mitosis, was decreased, indicating altered cell cycle regulation. With respect to cell growth, the rate of ribosome biogenesis was reduced under simulated microgravity, as shown by morphological and morphometric nucleolar changes and variations in the levels of the nucleolar protein nucleolin. Furthermore, in a nucleolin mutant characterized by disorganized nucleolar structure, the microgravity treatment intensified disorganization. These results show that, regardless of the simulated microgravity device used, a great disruption of meristematic competence was the first response to the environmental alteration detected at early developmental stages. However, longer periods of exposure to simulated microgravity do not produce an intensification of the cellular damages or a detectable developmental alteration in seedlings analyzed at further stages of their growth. This suggests that the secondary response to the gravity alteration is a process of adaptation, whose mechanism is still unknown, which eventually results in viable adult plants.
Collapse
Affiliation(s)
- Elodie Boucheron-Dubuisson
- Université Pierre et Marie Curie - Paris 6, Sorbonne Universités, Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, 57 rue Cuvier, CP50, 75005 Paris, France.
| | - Ana I Manzano
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| | - Isabel Le Disquet
- Université Pierre et Marie Curie - Paris 6, Sorbonne Universités, Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, 57 rue Cuvier, CP50, 75005 Paris, France.
| | - Isabel Matía
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| | - Julio Sáez-Vasquez
- Laboratoire Génome et Développement des Plantes, CNRS, UMR 5096, Université de Perpignan via Domitia, 66860 Perpignan, France.
| | - Jack J W A van Loon
- DESC (Dutch Experiment Support Center), Dept. Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center & Academic Centre for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; ESA-ESTEC, TEC-MMG, Keplerlaan 1, NL-2200 AG, Noordwijk, The Netherlands.
| | - Raúl Herranz
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| | - Eugénie Carnero-Diaz
- Université Pierre et Marie Curie - Paris 6, Sorbonne Universités, Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, 57 rue Cuvier, CP50, 75005 Paris, France.
| | - F Javier Medina
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| |
Collapse
|
49
|
Chen YJC, Wang HJ, Jauh GY. Dual Role of a SAS10/C1D Family Protein in Ribosomal RNA Gene Expression and Processing Is Essential for Reproduction in Arabidopsis thaliana. PLoS Genet 2016; 12:e1006408. [PMID: 27792779 PMCID: PMC5085252 DOI: 10.1371/journal.pgen.1006408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 10/06/2016] [Indexed: 12/20/2022] Open
Abstract
In eukaryotic cells, ribosomal RNAs (rRNAs) are transcribed, processed, and assembled with ribosomal proteins in the nucleolus. Regulatory mechanisms of rRNA gene (rDNA) transcription and processing remain elusive in plants, especially their connection to nucleolar organization. We performed an in silico screen for essential genes of unknown function in Arabidopsis thaliana and identified Thallo (THAL) encoding a SAS10/C1D family protein. THAL disruption caused enlarged nucleoli in arrested embryos, aberrant processing of precursor rRNAs at the 5' External Transcribed Spacer, and repression of the major rDNA variant (VAR1). THAL overexpression lines showed de-repression of VAR1 and overall reversed effects on rRNA processing sites. Strikingly, THAL overexpression also induced formation of multiple nucleoli per nucleus phenotypic of mutants of heterochromatin factors. THAL physically associated with histone chaperone Nucleolin 1 (NUC1), histone-binding NUC2, and histone demethylase Jumonji 14 (JMJ14) in bimolecular fluorescence complementation assay, suggesting that it participates in chromatin regulation. Furthermore, investigation of truncated THAL proteins revealed that the SAS10 C-terminal domain is likely important for its function in chromatin configuration. THAL also interacted with putative Small Subunit processome components, including previously unreported Arabidopsis homologue of yeast M Phase Phosphoprotein 10 (MPP10). Our results uncovering the dual role of THAL in transcription and processing events critical for proper rRNA biogenesis and nucleolar organization during reproduction are the first to define the function of SAS10/C1D family members in plants.
Collapse
Affiliation(s)
- Ying-Jiun C. Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Huei-Jing Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Guang-Yuh Jauh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taichung, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
50
|
Pontvianne F, Carpentier MC, Durut N, Pavlištová V, Jaške K, Schořová Š, Parrinello H, Rohmer M, Pikaard CS, Fojtová M, Fajkus J, Sáez-Vásquez J. Identification of Nucleolus-Associated Chromatin Domains Reveals a Role for the Nucleolus in 3D Organization of the A. thaliana Genome. Cell Rep 2016; 16:1574-1587. [PMID: 27477271 PMCID: PMC5279810 DOI: 10.1016/j.celrep.2016.07.016] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/24/2016] [Accepted: 07/03/2016] [Indexed: 11/27/2022] Open
Abstract
The nucleolus is the site of rRNA gene transcription, rRNA processing, and ribosome biogenesis. However, the nucleolus also plays additional roles in the cell. We isolated nucleoli using fluorescence-activated cell sorting (FACS) and identified nucleolus-associated chromatin domains (NADs) by deep sequencing, comparing wild-type plants and null mutants for the nucleolar protein NUCLEOLIN 1 (NUC1). NADs are primarily genomic regions with heterochromatic signatures and include transposable elements (TEs), sub-telomeric regions, and mostly inactive protein-coding genes. However, NADs also include active rRNA genes and the entire short arm of chromosome 4 adjacent to them. In nuc1 null mutants, which alter rRNA gene expression and overall nucleolar structure, NADs are altered, telomere association with the nucleolus is decreased, and telomeres become shorter. Collectively, our studies reveal roles for NUC1 and the nucleolus in the spatial organization of chromosomes as well as telomere maintenance.
Collapse
Affiliation(s)
- Frédéric Pontvianne
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France; Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France; Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| | - Marie-Christine Carpentier
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France; Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
| | - Nathalie Durut
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France; Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
| | - Veronika Pavlištová
- Central European Institute of Technology and Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Karin Jaške
- Central European Institute of Technology and Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Šárka Schořová
- Central European Institute of Technology and Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | | | | | - Craig S Pikaard
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA; Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA
| | - Miloslava Fojtová
- Central European Institute of Technology and Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Jiří Fajkus
- Central European Institute of Technology and Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Julio Sáez-Vásquez
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France; Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
| |
Collapse
|