1
|
O’Loughlin E, Zhang Y, Chiasson-MacKenzie C, Dave P, Rheinbay E, Stott S, McClatchey AI. Distinct phenotypic consequences of cholangiocarcinoma-associated FGFR2 alterations depend on biliary epithelial maturity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610360. [PMID: 39282270 PMCID: PMC11398422 DOI: 10.1101/2024.08.30.610360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Epithelial cancers disrupt tissue architecture and are often driven by mutations in genes that normally play important roles in epithelial morphogenesis. The intrahepatic biliary system is an epithelial tubular network that forms within the developing liver via the de novo initiation and expansion of apical lumens. Intrahepatic biliary tumors are often driven by different types of mutations in the FGFR2 receptor tyrosine kinase which plays important roles in epithelial morphogenesis in other developmental settings. Using a physiologic and quantitative 3D model we have found that FGFR signaling is important for biliary morphogenesis and that oncogenic FGFR2 mutants disrupt biliary architecture. Importantly, we found that both the trafficking and signaling of normal FGFR2 and the phenotypic consequences of FGFR2 mutants are influenced by the epithelial state of the cell. Unexpectedly, we found that different tumor-driving FGFR2 mutants disrupt biliary morphogenesis in completely different and clinically relevant ways, informing our understanding of morphogenesis and tumorigenesis and highlighting the importance of convergent studies of both.
Collapse
Affiliation(s)
| | | | | | - P Dave
- MGH Krantz Family Center for Cancer Research, Charlestown, MA 02129, Harvard Medical School, Boston MA 02112
| | - E Rheinbay
- MGH Krantz Family Center for Cancer Research, Charlestown, MA 02129, Harvard Medical School, Boston MA 02112
| | - S Stott
- MGH Krantz Family Center for Cancer Research, Charlestown, MA 02129, Harvard Medical School, Boston MA 02112
| | - AI McClatchey
- MGH Krantz Family Center for Cancer Research, Charlestown, MA 02129, Harvard Medical School, Boston MA 02112
| |
Collapse
|
2
|
Okumura A, Aoshima K, Tanimizu N. Generation of in vivo-like multicellular liver organoids by mimicking developmental processes: A review. Regen Ther 2024; 26:219-234. [PMID: 38903867 PMCID: PMC11186971 DOI: 10.1016/j.reth.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024] Open
Abstract
Liver is involved in metabolic reactions, ammonia detoxification, and immunity. Multicellular liver tissue cultures are more desirable for drug screening, disease modeling, and researching transplantation therapy, than hepatocytes monocultures. Hepatocytes monocultures are not stable for long. Further, hepatocyte-like cells induced from pluripotent stem cells and in vivo hepatocytes are functionally dissimilar. Organoid technology circumvents these issues by generating functional ex vivo liver tissue from intrinsic liver progenitor cells and extrinsic stem cells, including pluripotent stem cells. To function as in vivo liver tissue, the liver organoid cells must be arranged precisely in the 3-dimensional space, closely mimicking in vivo liver tissue. Moreover, for long term functioning, liver organoids must be appropriately vascularized and in contact with neighboring epithelial tissues (e.g., bile canaliculi and intrahepatic bile duct, or intrahepatic and extrahepatic bile ducts). Recent discoveries in liver developmental biology allows one to successfully induce liver component cells and generate organoids. Thus, here, in this review, we summarize the current state of knowledge on liver development with a focus on its application in generating different liver organoids. We also cover the future prospects in creating (functionally and structurally) in vivo-like liver organoids using the current knowledge on liver development.
Collapse
Affiliation(s)
- Ayumu Okumura
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Kenji Aoshima
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Naoki Tanimizu
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| |
Collapse
|
3
|
Waddell SH, Yao Y, Olaizola P, Walker A, Jarman EJ, Gournopanos K, Gradinaru A, Christodoulou E, Gautier P, Boerrigter MM, Cadamuro M, Fabris L, Drenth JPH, Kendall TJ, Banales JM, Khamseh A, Mill P, Boulter L. A TGFβ-ECM-integrin signaling axis drives structural reconfiguration of the bile duct to promote polycystic liver disease. Sci Transl Med 2023; 15:eabq5930. [PMID: 37703354 PMCID: PMC7615241 DOI: 10.1126/scitranslmed.abq5930] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/18/2023] [Indexed: 09/15/2023]
Abstract
The formation of multiple cysts in the liver occurs in a number of isolated monogenic diseases or multisystemic syndromes, during which bile ducts develop into fluid-filled biliary cysts. For patients with polycystic liver disease (PCLD), nonsurgical treatments are limited, and managing life-long abdominal swelling, pain, and increasing risk of cyst rupture and infection is common. We demonstrate here that loss of the primary cilium on postnatal biliary epithelial cells (via the deletion of the cilia gene Wdr35) drives ongoing pathological remodeling of the biliary tree, resulting in progressive cyst formation and growth. The development of cystic tissue requires the activation of transforming growth factor-β (TGFβ) signaling, which promotes the expression of a procystic, fibronectin-rich extracellular matrix and which itself is perceived by a changing profile of integrin receptors on the cystic epithelium. This signaling axis is conserved in liver cysts from patients with either autosomal dominant polycystic kidney disease or autosomal dominant polycystic liver disease, indicating that there are common cellular mechanisms for liver cyst growth regardless of the underlying genetic cause. Cyst number and size can be reduced by inhibiting TGFβ signaling or integrin signaling in vivo. We suggest that our findings represent a therapeutic route for patients with polycystic liver disease, most of whom would not be amenable to surgery.
Collapse
Affiliation(s)
- Scott H Waddell
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh- Edinburgh- UK, EH4 2XU
| | - Yuelin Yao
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh- Edinburgh- UK, EH4 2XU
- School of Informatics- University of Edinburgh- Edinburgh- UK, EH8 9AB
| | - Paula Olaizola
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh- Edinburgh- UK, EH4 2XU
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain, 20014
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK EH16 4TJ
| | - Alexander Walker
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh- Edinburgh- UK, EH4 2XU
| | - Edward J Jarman
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh- Edinburgh- UK, EH4 2XU
| | - Konstantinos Gournopanos
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh- Edinburgh- UK, EH4 2XU
| | - Andreea Gradinaru
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh- Edinburgh- UK, EH4 2XU
| | - Ersi Christodoulou
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh- Edinburgh- UK, EH4 2XU
| | - Philippe Gautier
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh- Edinburgh- UK, EH4 2XU
| | - Melissa M Boerrigter
- Department of Gastroenterology and Hepatology, Radboud University, Nijmegen Medical Center- 6525 GA Nijmegen- Netherlands
| | | | - Luca Fabris
- Department of Molecular Medicine, University of Padua, 35128 Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Joost PH Drenth
- Department of Gastroenterology and Hepatology, Radboud University, Nijmegen Medical Center- 6525 GA Nijmegen- Netherlands
| | - Timothy J Kendall
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK EH16 4TJ
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain, 20014
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, “Instituto de Salud Carlos III”, 28029 Madrid, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Ava Khamseh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh- Edinburgh- UK, EH4 2XU
- School of Informatics- University of Edinburgh- Edinburgh- UK, EH8 9AB
| | - Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh- Edinburgh- UK, EH4 2XU
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh- Edinburgh- UK, EH4 2XU
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, Edinburgh, UK, EH4 2XU
| |
Collapse
|
4
|
Li P, Miyamoto D, Huang Y, Adachi T, Hidaka M, Hara T, Soyama A, Matsushima H, Imamura H, Kanetaka K, Gu W, Eguchi S. Three-dimensional human bile duct formation from chemically induced human liver progenitor cells. Front Bioeng Biotechnol 2023; 11:1249769. [PMID: 37671190 PMCID: PMC10475568 DOI: 10.3389/fbioe.2023.1249769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
Background: The intrahepatic bile ducts (BDs) play an important role in the modification and transport of bile, and the integration between the BD and hepatocytes is the basis of the liver function. However, the lack of a source of cholangiocytes limits in vitro research. The aim of the present study was to establish three-dimensional BDs combined with human mature hepatocytes (hMHs) in vitro using chemically induced human liver progenitor cells (hCLiPs) derived from hMHs. Methods: In this study, we formed functional BDs from hCLiPs using hepatocyte growth factor and extracellular matrix. BDs expressed the typical biliary markers CK-7, GGT1, CFTR and EpCAM and were able to transport the bile-like substance rhodamine 123 into the lumen. The established three-dimensional BDs were cocultured with hMHs. These cells were able to bind to the BDs, and the bile acid analog CLF was transported from the culture medium through the hMHs and accumulated in the lumen of the BDs. The BDs generated from the hCLiPs showed a BD function and a physiological system (e.g., the transport of bile within the liver) when they were connected to the hMHs. Conclusion: We present a novel in vitro three-dimensional BD combined with hMHs for study, drug screening and the therapeutic modulation of the cholangiocyte function.
Collapse
Affiliation(s)
- Peilin Li
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Surgery, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Daisuke Miyamoto
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yu Huang
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Surgery, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Tomohiko Adachi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takanobu Hara
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akihiko Soyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hajime Matsushima
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hajime Imamura
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kengo Kanetaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Weili Gu
- Department of Surgery, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
5
|
Gambella A, Kalantari S, Cadamuro M, Quaglia M, Delvecchio M, Fabris L, Pinon M. The Landscape of HNF1B Deficiency: A Syndrome Not Yet Fully Explored. Cells 2023; 12:cells12020307. [PMID: 36672242 PMCID: PMC9856658 DOI: 10.3390/cells12020307] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The hepatocyte nuclear factor 1β (HNF1B) gene is involved in the development of specialized epithelia of several organs during the early and late phases of embryogenesis, performing its function mainly by regulating the cell cycle and apoptosis pathways. The first pathogenic variant of HNF1B (namely, R177X) was reported in 1997 and is associated with the maturity-onset diabetes of the young. Since then, more than 230 different HNF1B variants have been reported, revealing a multifaceted syndrome with complex and heterogenous genetic, pathologic, and clinical profiles, mainly affecting the pediatric population. The pancreas and kidneys are the most frequently affected organs, resulting in diabetes, renal cysts, and a decrease in renal function, leading, in 2001, to the definition of HNF1B deficiency syndrome, including renal cysts and diabetes. However, several other organs and systems have since emerged as being affected by HNF1B defect, while diabetes and renal cysts are not always present. Especially, liver involvement has generally been overlooked but recently emerged as particularly relevant (mostly showing chronically elevated liver enzymes) and with a putative relation with tumor development, thus requiring a more granular analysis. Nowadays, HNF1B-associated disease has been recognized as a clinical entity with a broader and more variable multisystem phenotype, but the reasons for the phenotypic heterogeneity are still poorly understood. In this review, we aimed to describe the multifaceted nature of HNF1B deficiency in the pediatric and adult populations: we analyzed the genetic, phenotypic, and clinical features of this complex and misdiagnosed syndrome, covering the most frequent, unusual, and recently identified traits.
Collapse
Affiliation(s)
- Alessandro Gambella
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- Division of Liver and Transplant Pathology, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Silvia Kalantari
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | | | - Marco Quaglia
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Maurizio Delvecchio
- Metabolic Disease and Genetics Unit, Giovanni XXIII Children’s Hospital, AOU Policlinico di Bari, 70124 Bari, Italy
- Correspondence:
| | - Luca Fabris
- Department of Molecular Medicine, University of Padova, 35121 Padua, Italy
- Liver Center, Digestive Disease Section, Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Michele Pinon
- Pediatric Gastroenterology Unit, Regina Margherita Children’s Hospital, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| |
Collapse
|
6
|
Rizwan M, Ling C, Guo C, Liu T, Jiang JX, Bear CE, Ogawa S, Shoichet MS. Viscoelastic Notch Signaling Hydrogel Induces Liver Bile Duct Organoid Growth and Morphogenesis. Adv Healthc Mater 2022; 11:e2200880. [PMID: 36180392 DOI: 10.1002/adhm.202200880] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/09/2022] [Indexed: 01/28/2023]
Abstract
Cholangiocyte organoids can be used to model liver biliary disease; however, both a defined matrix to emulate cholangiocyte self-assembly and the mechano-transduction pathways involved therein remain elusive. A series of defined viscoelastic hyaluronan hydrogels to culture primary cholangiocytes are designed and it is found that by mimicking the stress relaxation rate of liver tissue, cholangiocyte organoid growth can be induced and expression of Yes-associated protein (YAP) target genes could be significantly increased. Strikingly, inhibition of matrix metalloproteinases (MMPs) does not significantly affect organoid growth in 3D culture, suggesting that mechanical remodeling of the viscoelastic microenvironment-and not MMP-mediated degradation-is the key to cholangiocyte organoid growth. By immobilizing Jagged1 to the hyaluronan, stress relaxing hydrogel, self-assembled bile duct structures form in organoid culture, indicating the synergistic effects of Notch signaling and viscoelasticity. By uncovering critical roles of hydrogel viscoelasticity, YAP signaling, and Notch activation, cholangiocyte organogenesis is controlled, thereby paving the way for their use in disease modeling and/or transplantation.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada.,Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Christopher Ling
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.,Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Chengyu Guo
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Tracy Liu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Jia-Xin Jiang
- Molecular Medicine Programme, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Christine E Bear
- Molecular Medicine Programme, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, M5G 0A4, Canada
| | - Shinichiro Ogawa
- McEwen Stem Cell Institute, University Health Network, Toronto, Ontario, M5G 1L7, Canada.,Soham & Shalia Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, M5G 2C4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Molly S Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada.,Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada.,Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
7
|
Ma M, Hua S, Min X, Wang L, Li J, Wu P, Liang H, Zhang B, Chen X, Xiang S. p53 positively regulates the proliferation of hepatic progenitor cells promoted by laminin-521. Signal Transduct Target Ther 2022; 7:290. [PMID: 36042225 PMCID: PMC9427945 DOI: 10.1038/s41392-022-01107-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/16/2022] [Accepted: 07/04/2022] [Indexed: 01/20/2023] Open
Abstract
Hepatic progenitor cells (HPCs) hold tremendous potential for liver regeneration, but their well-known limitation of proliferation hampers their broader use. There is evidence that laminin is required for the proliferation of HPCs, but the laminin isoform that plays the dominant role and the key intracellular downstream targets that mediate the regulation of HPC proliferation have yet to be determined. Here we showed that p53 expression increased gradually and reached maximal levels around 8 days when laminin α4, α5, β2, β1, and γ1 subunit levels also reached a maximum during HPC activation and expansion. Laminin-521 (LN-521) promoted greater proliferation of HPCs than do laminin, matrigel or other laminin isoforms. Inactivation of p53 by PFT-α or Ad-p53V143A inhibited the promotion of proliferation by LN-521. Further complementary MRI and bioluminescence imaging analysis showed that p53 inactivation decreased the proliferation of transplanted HPCs in vivo. p53 was activated by LN-521 through the Integrin α6β1/FAK-Src-Paxillin/Akt axis. Activated p53 was involved in the nuclear translocation of CDK4 and inactivation of Rb by inducing p27Kip1. Taken together, this study identifies LN-521 as an ideal candidate substrate for HPC culture and uncovers an unexpected positive role for p53 in regulating proliferation of HPCs, which makes it a potential target for HPC-based regenerative medicine.
Collapse
Affiliation(s)
- Mingyang Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuyao Hua
- Department of Clinical Nutrition, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiangde Min
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Li
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, China
| | - Ping Wu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Disease, Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Disease, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Disease, Wuhan, China. .,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China. .,Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China. .,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Shuai Xiang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Disease, Wuhan, China.
| |
Collapse
|
8
|
Wang Z, Faria J, van der Laan LJW, Penning LC, Masereeuw R, Spee B. Human Cholangiocytes Form a Polarized and Functional Bile Duct on Hollow Fiber Membranes. Front Bioeng Biotechnol 2022; 10:868857. [PMID: 35813994 PMCID: PMC9263983 DOI: 10.3389/fbioe.2022.868857] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
Liver diseases affect hundreds of millions of people worldwide; most often the hepatocytes or cholangiocytes are damaged. Diseases of the biliary tract cause severe patient burden, and cholangiocytes, the cells lining the biliary tract, are sensitive to numerous drugs. Therefore, investigations into proper cholangiocyte functions are of utmost importance, which is restricted, in vitro, by the lack of primary human cholangiocytes allowing such screening. To investigate biliary function, including transepithelial transport, cholangiocytes must be cultured as three-dimensional (3D) ductular structures. We previously established murine intrahepatic cholangiocyte organoid-derived cholangiocyte-like cells (CLCs) and cultured them onto polyethersulfone hollow fiber membranes (HFMs) to generate 3D duct structures that resemble native bile ducts at the structural and functional level. Here, we established an efficient, stepwise method for directed differentiation of human intrahepatic cholangiocyte organoids (ICOs) into CLCs. Human ICO-derived CLCs showed key characteristics of cholangiocytes, such as the expression of structural and functional markers, formation of primary cilia, and P-glycoprotein-mediated transport in a polarized fashion. The organoid cultures exhibit farnesoid X receptor (FXR)-dependent functions that are vital to liver bile acid homeostasis in vivo. Furthermore, human ICO-derived CLCs cultured on HFMs in a differentiation medium form tubular architecture with some tight, confluent, and polarized monolayers that better mimic native bile duct characteristics than differentiated cultures in standard 2D or Matrigel-based 3D culture plates. Together, our optimized differentiation protocol to obtain CLC organoids, when applied on HFMs to form bioengineered bile ducts, will facilitate studying cholangiopathies and allow developing therapeutic strategies.
Collapse
Affiliation(s)
- Zhenguo Wang
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - João Faria
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | | | - Louis C. Penning
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- *Correspondence: Rosalinde Masereeuw, ; Bart Spee,
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- *Correspondence: Rosalinde Masereeuw, ; Bart Spee,
| |
Collapse
|
9
|
Smith Q, Bays J, Li L, Shareef H, Chen CS, Bhatia SN. Directing Cholangiocyte Morphogenesis in Natural Biomaterial Scaffolds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102698. [PMID: 34786888 PMCID: PMC8787431 DOI: 10.1002/advs.202102698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Patients with Alagille syndrome carry monogenic mutations in the Notch signaling pathway and face complications such as jaundice and cholestasis. Given the presence of intrahepatic ductopenia in these patients, Notch2 receptor signaling is implicated in driving normal biliary development and downstream branching morphogenesis. As a result, in vitro model systems of liver epithelium are needed to further mechanistic insight of biliary tissue assembly. Here, primary human intrahepatic cholangiocytes as a candidate population for such a platform are systematically evaluated, and conditions that direct their branching morphogenesis are described. It is found that extracellular matrix presentation, coupled with mitogen stimulation, promotes biliary branching in a Notch-dependent manner. These results demonstrate the utility of using 3D scaffolds for mechanistic investigation of cholangiocyte branching and provide a gateway to integrate biliary architecture in additional in vitro models of liver tissue.
Collapse
Affiliation(s)
- Quinton Smith
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Jennifer Bays
- Department of Bioengineering, Boston University, Boston, MA, 02215, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Linqing Li
- Department of Bioengineering, Boston University, Boston, MA, 02215, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Haniyah Shareef
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Christopher S Chen
- Department of Bioengineering, Boston University, Boston, MA, 02215, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Sangeeta N Bhatia
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| |
Collapse
|
10
|
Sun Q, Shen Z, Liang X, He Y, Kong D, Midgley AC, Wang K. Progress and Current Limitations of Materials for Artificial Bile Duct Engineering. MATERIALS 2021; 14:ma14237468. [PMID: 34885623 PMCID: PMC8658964 DOI: 10.3390/ma14237468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 01/30/2023]
Abstract
Bile duct injury (BDI) and bile tract diseases are regarded as prominent challenges in hepatobiliary surgery due to the risk of severe complications. Hepatobiliary, pancreatic, and gastrointestinal surgery can inadvertently cause iatrogenic BDI. The commonly utilized clinical treatment of BDI is biliary-enteric anastomosis. However, removal of the Oddi sphincter, which serves as a valve control over the unidirectional flow of bile to the intestine, can result in complications such as reflux cholangitis, restenosis of the bile duct, and cholangiocarcinoma. Tissue engineering and biomaterials offer alternative approaches for BDI treatment. Reconstruction of mechanically functional and biomimetic structures to replace bile ducts aims to promote the ingrowth of bile duct cells and realize tissue regeneration of bile ducts. Current research on artificial bile ducts has remained within preclinical animal model experiments. As more research shows artificial bile duct replacements achieving effective mechanical and functional prevention of biliary peritonitis caused by bile leakage or obstructive jaundice after bile duct reconstruction, clinical translation of tissue-engineered bile ducts has become a theoretical possibility. This literature review provides a comprehensive collection of published works in relation to three tissue engineering approaches for biomimetic bile duct construction: mechanical support from scaffold materials, cell seeding methods, and the incorporation of biologically active factors to identify the advancements and current limitations of materials and methods for the development of effective artificial bile ducts that promote tissue regeneration.
Collapse
Affiliation(s)
- Qiqi Sun
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (Q.S.); (D.K.)
| | - Zefeng Shen
- Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (Z.S.); (X.L.)
| | - Xiao Liang
- Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (Z.S.); (X.L.)
| | - Yingxu He
- School of Computing, National University of Singapore, Singapore 119077, Singapore;
| | - Deling Kong
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (Q.S.); (D.K.)
| | - Adam C. Midgley
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (Q.S.); (D.K.)
- Correspondence: (A.C.M.); (K.W.)
| | - Kai Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (Q.S.); (D.K.)
- Correspondence: (A.C.M.); (K.W.)
| |
Collapse
|
11
|
Mazari-Arrighi E, Ayollo D, Farhat W, Marret A, Gontran E, Dupuis-Williams P, Larghero J, Chatelain F, Fuchs A. Construction of functional biliary epithelial branched networks with predefined geometry using digital light stereolithography. Biomaterials 2021; 279:121207. [PMID: 34741977 DOI: 10.1016/j.biomaterials.2021.121207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022]
Abstract
Cholangiocytes, biliary epithelial cells, are known to spontaneously self-organize into spherical cysts with a central lumen. In this work, we explore a promising biocompatible stereolithographic approach to encapsulate cholangiocytes into geometrically controlled 3D hydrogel structures to guide them towards the formation of branched tubular networks. We demonstrate that within the appropriate mix of hydrogels, normal rat cholangiocytes can proliferate, migrate, and organize into branched tubular structures with walls consisting of a cell monolayer, transport fluorescent dyes into the luminal space, and show markers of epithelial maturation such as primary cilia and continuous tight junctions. The resulting structures have dimensions typically found in the intralobular and intrahepatic biliary tree and are stable for weeks, without any requirement of bulk supporting material, thereby offering total access to the external side of these biliary epithelial constructs.
Collapse
Affiliation(s)
- Elsa Mazari-Arrighi
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; AP-HP, Hôpital Saint-Louis, 1 avenue Vellefaux, F-75010, Paris, France; CEA, IRIG, F-38000, Grenoble, France
| | - Dmitry Ayollo
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; AP-HP, Hôpital Saint-Louis, 1 avenue Vellefaux, F-75010, Paris, France; CEA, IRIG, F-38000, Grenoble, France
| | - Wissam Farhat
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; AP-HP, Hôpital Saint-Louis, 1 avenue Vellefaux, F-75010, Paris, France; CEA, IRIG, F-38000, Grenoble, France
| | - Auriane Marret
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; AP-HP, Hôpital Saint-Louis, 1 avenue Vellefaux, F-75010, Paris, France; CEA, IRIG, F-38000, Grenoble, France
| | - Emilie Gontran
- INSERM U-1279, Gustave Roussy, Villejuif, F-94805, France; Université Paris-Saclay, Inserm, Physiopathogenèse et traitement des maladies du foie, F-94800, Villejuif, France
| | - Pascale Dupuis-Williams
- Université Paris-Saclay, Inserm, Physiopathogenèse et traitement des maladies du foie, F-94800, Villejuif, France; ESPCI Paris, Université PSL, F-75005, Paris, France
| | - Jerome Larghero
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; AP-HP, Hôpital Saint-Louis, 1 avenue Vellefaux, F-75010, Paris, France
| | - Francois Chatelain
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; AP-HP, Hôpital Saint-Louis, 1 avenue Vellefaux, F-75010, Paris, France; CEA, IRIG, F-38000, Grenoble, France
| | - Alexandra Fuchs
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; AP-HP, Hôpital Saint-Louis, 1 avenue Vellefaux, F-75010, Paris, France; CEA, IRIG, F-38000, Grenoble, France.
| |
Collapse
|
12
|
Brovold M, Keller D, Devarasetty M, Dominijanni A, Shirwaiker R, Soker S. Biofabricated 3D in vitro model of fibrosis-induced abnormal hepatoblast/biliary progenitors' expansion of the developing liver. Bioeng Transl Med 2021; 6:e10207. [PMID: 34589593 PMCID: PMC8459590 DOI: 10.1002/btm2.10207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 11/19/2022] Open
Abstract
Congenital disorders of the biliary tract are the primary reason for pediatric liver failure and ultimately for pediatric liver transplant needs. Not all causes of these disorders are well understood, but it is known that liver fibrosis occurs in many of those afflicted. The goal of this study is to develop a simple yet robust model that recapitulates physico-mechanical and cellular aspects of fibrosis mediated via hepatic stellate cells (HSCs) and their effects on biliary progenitor cells. Liver organoids were fabricated by embedding various HSCs, with distinctive abilities to generate mild to severe fibrotic environments, together with undifferentiated liver progenitor cell line, HepaRG, within a collagen I hydrogel. The fibrotic state of each organoid was characterized by examination of extracellular matrix (ECM) remodeling through quantitative image analysis, rheometry, and qPCR. In tandem, the phenotype of the liver progenitor cell and cluster formation was assessed through histology. Activated HSCs (aHSCs) created a more severe fibrotic state, exemplified by a more highly contracted and rigid ECM, as well higher relative expression of TGF-β, TIMP-1, LOXL2, and COL1A2 as compared to immortalized HSCs (LX-2). Within the more severe fibrotic environment, generated by the aHSCs, higher Notch signaling was associated with an expansion of CK19+ cells as well as the formation of larger, more densely populated cell biliary like-clusters as compared to mild and non-fibrotic controls. The expansion of CK19+ cells, coupled with a severely fibrotic environment, are phenomena found within patients suffering from a variety of congenital liver disorders of the biliary tract. Thus, the model presented here can be utilized as a novel in vitro testing platform to test drugs and identify new targets that could benefit pediatric patients that suffer from the biliary dysgenesis associated with a multitude of congenital liver diseases.
Collapse
Affiliation(s)
- Matthew Brovold
- Wake Forest Institute for Regenerative MedicineWake Forest Baptist Medical Center, Medical Center BoulevardWinston‐SalemNorth CarolinaUSA
| | - Dale Keller
- Wake Forest Institute for Regenerative MedicineWake Forest Baptist Medical Center, Medical Center BoulevardWinston‐SalemNorth CarolinaUSA
| | - Mahesh Devarasetty
- Wake Forest Institute for Regenerative MedicineWake Forest Baptist Medical Center, Medical Center BoulevardWinston‐SalemNorth CarolinaUSA
| | - Anthony Dominijanni
- Wake Forest Institute for Regenerative MedicineWake Forest Baptist Medical Center, Medical Center BoulevardWinston‐SalemNorth CarolinaUSA
| | - Rohan Shirwaiker
- Department of Industrial and Systems EngineeringNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Shay Soker
- Wake Forest Institute for Regenerative MedicineWake Forest Baptist Medical Center, Medical Center BoulevardWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
13
|
Belicova L, Repnik U, Delpierre J, Gralinska E, Seifert S, Valenzuela JI, Morales-Navarrete HA, Franke C, Räägel H, Shcherbinina E, Prikazchikova T, Koteliansky V, Vingron M, Kalaidzidis YL, Zatsepin T, Zerial M. Anisotropic expansion of hepatocyte lumina enforced by apical bulkheads. J Cell Biol 2021; 220:212522. [PMID: 34328499 PMCID: PMC8329733 DOI: 10.1083/jcb.202103003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/11/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022] Open
Abstract
Lumen morphogenesis results from the interplay between molecular pathways and mechanical forces. In several organs, epithelial cells share their apical surfaces to form a tubular lumen. In the liver, however, hepatocytes share the apical surface only between adjacent cells and form narrow lumina that grow anisotropically, generating a 3D network of bile canaliculi (BC). Here, by studying lumenogenesis in differentiating mouse hepatoblasts in vitro, we discovered that adjacent hepatocytes assemble a pattern of specific extensions of the apical membrane traversing the lumen and ensuring its anisotropic expansion. These previously unrecognized structures form a pattern, reminiscent of the bulkheads of boats, also present in the developing and adult liver. Silencing of Rab35 resulted in loss of apical bulkheads and lumen anisotropy, leading to cyst formation. Strikingly, we could reengineer hepatocyte polarity in embryonic liver tissue, converting BC into epithelial tubes. Our results suggest that apical bulkheads are cell-intrinsic anisotropic mechanical elements that determine the elongation of BC during liver tissue morphogenesis.
Collapse
Affiliation(s)
- Lenka Belicova
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Urska Repnik
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Julien Delpierre
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elzbieta Gralinska
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sarah Seifert
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | - Christian Franke
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Helin Räägel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Nelson Laboratories LLC, Salt Lake City, UT
| | | | | | | | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Timofei Zatsepin
- Skolkovo Institute of Science and Technology, Skolkovo, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
14
|
Pierreux CE. Shaping the thyroid: From peninsula to de novo lumen formation. Mol Cell Endocrinol 2021; 531:111313. [PMID: 33961919 DOI: 10.1016/j.mce.2021.111313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/06/2023]
Abstract
A challenging and stimulating question in biology deals with the formation of organs from groups of undifferentiated progenitor cells. Most epithelial organs indeed derive from the endodermal monolayer and evolve into various shape and tridimensional organization adapted to their specialized adult function. Thyroid organogenesis is no exception. In most mammals, it follows a complex and sequential process initiated from the endoderm and leading to the development of a multitude of independent closed spheres equipped and optimized for the synthesis, storage and production of thyroid hormones. The first sign of thyroid organogenesis is visible as a thickening of the anterior foregut endoderm. This group of thyroid progenitors then buds and detaches from the foregut to migrate caudally and then laterally. Upon reaching their final destination in the upper neck region on both sides of the trachea, thyroid progenitors mix with C cell progenitors and finally organize into hormone-producing thyroid follicles. Intrinsic and extrinsic factors controlling thyroid organogenesis have been identified in several species, but the fundamental cellular processes are not sufficiently considered. This review focuses on the cellular aspects of the key morphogenetic steps during thyroid organogenesis and highlights similarities and common mechanisms with developmental steps elucidated in other endoderm-derived organs, despite different final architecture and functions.
Collapse
|
15
|
Tanimizu N, Ichinohe N, Sasaki Y, Itoh T, Sudo R, Yamaguchi T, Katsuda T, Ninomiya T, Tokino T, Ochiya T, Miyajima A, Mitaka T. Generation of functional liver organoids on combining hepatocytes and cholangiocytes with hepatobiliary connections ex vivo. Nat Commun 2021; 12:3390. [PMID: 34099675 PMCID: PMC8185093 DOI: 10.1038/s41467-021-23575-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
In the liver, the bile canaliculi of hepatocytes are connected to intrahepatic bile ducts lined with cholangiocytes, which remove cytotoxic bile from the liver tissue. Although liver organoids have been reported, it is not clear whether the functional connection between hepatocytes and cholangiocytes is recapitulated in those organoids. Here, we report the generation of a hepatobiliary tubular organoid (HBTO) using mouse hepatocyte progenitors and cholangiocytes. Hepatocytes form the bile canalicular network and secrete metabolites into the canaliculi, which are then transported into the biliary tubular structure. Hepatocytes in HBTO acquire and maintain metabolic functions including albumin secretion and cytochrome P450 activities, over the long term. In this study, we establish functional liver tissue incorporating a bile drainage system ex vivo. HBTO enable us to reproduce the transport of hepatocyte metabolites in liver tissue, and to investigate the way in which the two types of epithelial cells establish functional connections. Combining mouse hepatocyte progenitors and cholangiocytes ex vivo, the authors form an organoid that can drain bile ex vivo and transport metabolites, as in the liver.
Collapse
Affiliation(s)
- Naoki Tanimizu
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Norihisa Ichinohe
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasushi Sasaki
- Biology Division, Department of Liberal Arts and Sciences, Center for Medical Education, Sapporo Medical University, Sapporo, Japan.,Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tohru Itoh
- Laboratory of Stem Cell Therapy, The Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Ryo Sudo
- Department of System Design Engineering, Keio University, Yokohama, Japan
| | - Tomoko Yamaguchi
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takeshi Katsuda
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Takafumi Ninomiya
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takashi Tokino
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Atsushi Miyajima
- Laboratory of Stem Cell Therapy, The Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Toshihiro Mitaka
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
16
|
Rizki-Safitri A, Tokito F, Nishikawa M, Tanaka M, Maeda K, Kusuhara H, Sakai Y. Prospect of in vitro Bile Fluids Collection in Improving Cell-Based Assay of Liver Function. FRONTIERS IN TOXICOLOGY 2021; 3:657432. [PMID: 35295147 PMCID: PMC8915818 DOI: 10.3389/ftox.2021.657432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
The liver plays a pivotal role in the clearance of drugs. Reliable assays for liver function are crucial for various metabolism investigation, including toxicity, disease, and pre-clinical testing for drug development. Bile is an aqueous secretion of a functioning liver. Analyses of bile are used to explain drug clearance and related effects and are thus important for toxicology and pharmacokinetic research. Bile fluids collection is extensively performed in vivo, whereas this process is rarely reproduced as in the in vitro studies. The key to success is the technology involved, which needs to satisfy multiple criteria. To ensure the accuracy of subsequent chemical analyses, certain amounts of bile are needed. Additionally, non-invasive and continuous collections are preferable in view of cell culture. In this review, we summarize recent progress and limitations in the field. We highlight attempts to develop advanced liver cultures for bile fluids collection, including methods to stimulate the secretion of bile in vitro. With these strategies, researchers have used a variety of cell sources, extracellular matrix proteins, and growth factors to investigate different cell-culture environments, including three-dimensional spheroids, cocultures, and microfluidic devices. Effective combinations of expertise and technology have the potential to overcome these obstacles to achieve reliable in vitro bile assay systems.
Collapse
Affiliation(s)
- Astia Rizki-Safitri
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Fumiya Tokito
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Masaki Nishikawa
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Minoru Tanaka
- Laboratory of Stem Cell Regulation, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, Japan
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Guillot A, Guerri L, Feng D, Kim SJ, Ahmed YA, Paloczi J, He Y, Schuebel K, Dai S, Liu F, Pacher P, Kisseleva T, Qin X, Goldman D, Tacke F, Gao B. Bile acid-activated macrophages promote biliary epithelial cell proliferation through integrin αvβ6 upregulation following liver injury. J Clin Invest 2021; 131:132305. [PMID: 33724957 DOI: 10.1172/jci132305] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 03/11/2021] [Indexed: 01/18/2023] Open
Abstract
Cholangiopathies caused by biliary epithelial cell (BEC) injury represent a leading cause of liver failure. No effective pharmacologic therapies exist, and the underlying mechanisms remain obscure. We aimed to explore the mechanisms of bile duct repair after targeted BEC injury. Injection of intermedilysin into BEC-specific human CD59 (hCD59) transgenic mice induced acute and specific BEC death, representing a model to study the early signals that drive bile duct repair. Acute BEC injury induced cholestasis followed by CCR2+ monocyte recruitment and BEC proliferation. Using microdissection and next-generation RNA-Seq, we identified 5 genes, including Mapk8ip2, Cdkn1a, Itgb6, Rgs4, and Ccl2, that were most upregulated in proliferating BECs after acute injury. Immunohistochemical analyses confirmed robust upregulation of integrin αvβ6 (ITGβ6) expression in this BEC injury model, after bile duct ligation, and in patients with chronic cholangiopathies. Deletion of the Itgb6 gene attenuated BEC proliferation after acute bile duct injury. Macrophage depletion or Ccr2 deficiency impaired ITGβ6 expression and BEC proliferation. In vitro experiments revealed that bile acid-activated monocytes promoted BEC proliferation through ITGβ6. Our data suggest that BEC injury induces cholestasis, monocyte recruitment, and induction of ITGβ6, which work together to promote BEC proliferation and therefore represent potential therapeutic targets for cholangiopathies.
Collapse
Affiliation(s)
- Adrien Guillot
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Bethesda, Maryland, USA.,Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | | | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Bethesda, Maryland, USA
| | - Seung-Jin Kim
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Bethesda, Maryland, USA
| | - Yeni Ait Ahmed
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Bethesda, Maryland, USA
| | - Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury, NIAAA, NIH, Bethesda, Maryland, USA
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Bethesda, Maryland, USA
| | | | - Shen Dai
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Fengming Liu
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, NIAAA, NIH, Bethesda, Maryland, USA
| | | | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | | | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Ouyang M, Yu JY, Chen Y, Deng L, Guo CL. Cell-extracellular matrix interactions in the fluidic phase direct the topology and polarity of self-organized epithelial structures. Cell Prolif 2021; 54:e13014. [PMID: 33615615 PMCID: PMC8016639 DOI: 10.1111/cpr.13014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Introduction In vivo, cells are surrounded by extracellular matrix (ECM). To build organs from single cells, it is generally believed that ECM serves as scaffolds to coordinate cell positioning and differentiation. Nevertheless, how cells utilize cell‐ECM interactions for the spatiotemporal coordination to different ECM at the tissue scale is not fully understood. Methods Here, using in vitro assay with engineered MDCK cells expressing H2B‐mCherry (nucleus) and gp135/Podocalyxin‐GFP (apical marker), we show in multi‐dimensions that such coordination for epithelial morphogenesis can be determined by cell‐soluble ECM interaction in the fluidic phase. Results The coordination depends on the native topology of ECM components such as sheet‐like basement membrane (BM) and type I collagen (COL) fibres: scaffold formed by BM (COL) facilitates a close‐ended (open‐ended) coordination that leads to the formation of lobular (tubular) epithelium. Further, cells form apicobasal polarity throughout the entire lobule/tubule without a complete coverage of ECM at the basal side, and time‐lapse two‐photon scanning imaging reveals the polarization occurring early and maintained through the lobular expansion. During polarization, gp135‐GFP was converged to the apical surface collectively in the lobular/tubular structures, suggesting possible intercellular communications. Under suspension culture, the polarization was impaired with multi‐lumen formation in the tubules, implying the importance of ECM biomechanical microenvironment. Conclusion Our results suggest a biophysical mechanism for cells to form polarity and coordinate positioning at tissue scale, and in engineering epithelium through cell‐soluble ECM interaction and self‐assembly.
Collapse
Affiliation(s)
- Mingxing Ouyang
- Institute of Biomedical Engineering and Health Sciences, School of Pharmacy & School of Medicine, Changzhou University, Changzhou, China.,Department of Bioengineering, California Institute of Technology, Pasadena, USA
| | - Jiun-Yann Yu
- Department of Bioengineering, California Institute of Technology, Pasadena, USA
| | - Yenyu Chen
- Department of Bioengineering, California Institute of Technology, Pasadena, USA
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, School of Pharmacy & School of Medicine, Changzhou University, Changzhou, China
| | - Chin-Lin Guo
- Department of Bioengineering, California Institute of Technology, Pasadena, USA
| |
Collapse
|
19
|
Wang Z, Faria J, Penning LC, Masereeuw R, Spee B. Tissue-Engineered Bile Ducts for Disease Modeling and Therapy. Tissue Eng Part C Methods 2021; 27:59-76. [PMID: 33267737 DOI: 10.1089/ten.tec.2020.0283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent biotechnical advances in the in vitro culture of cholangiocytes and generation of bioengineered biliary tissue have a high potential for creating biliary tissue to be used for disease modeling, drug screening, and transplantation. For the past few decades, scientists have searched for a source of cholangiocytes, focused on primary cholangiocytes or cholangiocytes derived from hepatocytes or stem cells. At the same time, the development of scaffolds for biliary tissue engineering for transplantation and modeling of cholangiopathies has been explored. In this review, we provide an overview on the current understanding of cholangiocytes sources, the effect of signaling molecules, and transcription factors on cell differentiation, along with the effects of extracellular matrix molecules and scaffolds on bioengineered biliary tissues, and their application in disease modeling and drug screening. Impact statement Over the past few decades, biliary tissue engineering has acquired significant attention, but currently a number of factors hinder this field to eventually generate bioengineered bile ducts that mimic in vivo physiology and are suitable for transplantation. In this review, we present the latest advances with respect to cell source selection, influence of growth factors and scaffolds, and functional characterization, as well as applications in cholangiopathy modeling and drug screening. This review is suited for a broad spectrum of readers, including fundamental liver researchers and clinicians with interest in the current state and application of bile duct engineering and disease modeling.
Collapse
Affiliation(s)
- Zhenguo Wang
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - João Faria
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Louis C Penning
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
20
|
Tomita H, Tanaka K, Hirata A, Okada H, Imai H, Shirakami Y, Ohnishi K, Sugie S, Aoki H, Hatano Y, Noguchi K, Kanayama T, Niwa A, Suzui N, Miyazaki T, Tanaka T, Akiyama H, Shimizu M, Yoshida K, Hara A. Inhibition of FGF10-ERK signal activation suppresses intraductal papillary neoplasm of the bile duct and its associated carcinomas. Cell Rep 2021; 34:108772. [PMID: 33626352 DOI: 10.1016/j.celrep.2021.108772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/31/2020] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
Evidence regarding intraductal papillary neoplasm of the bile duct (IPNB) as a type of precancerous lesion of cholangiocarcinoma is limited. Moreover, a reproducible in vivo model is lacking, and IPNB pathogenesis remains unclear. Here, we use a doxycycline-inducible tetracycline (Tet)-on mice model to control fibroblast growth factor 10 (FGF10) expression, which regulates branching and tubule formation. FGF10-induced IPNB mimics the multifocal and divergent human IPNB phenotypes via the FGF10-FGF receptor 2 (FGFR2)-RAS-extracellular-signal-regulated kinase (ERK) signaling pathway. A paracrine/autocrine growth factor is sufficient to initiate and maintain IPNB originating from the peribiliary glands, including biliary stem/progenitor cells. With KrasG12D, p53, or p16 mutations or both, Fgf10-induced IPNB shows stepwise carcinogenesis, causing associated invasive carcinoma. Fgf10-induced papillary changes and progression are suppressed by the inhibition of the FGF10-FGFR2-RAS-ERK signaling pathway, demonstrating that the signal is a therapeutic target for IPNB and associated carcinoma.
Collapse
Affiliation(s)
- Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
| | - Kaori Tanaka
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Surgical Oncology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Akihiro Hirata
- Division of Animal Experiment, Life Science Research Center, Gifu University, Gifu 501-1194, Japan
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Hisashi Imai
- Department of Surgical Oncology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Yohei Shirakami
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Kotaro Ohnishi
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Shigeyuki Sugie
- Department of Pathology, Asahi University Hospital, Gifu 500-8523, Japan
| | - Hitomi Aoki
- Department of Tissue and Organ Development, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Yuichiro Hatano
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Kei Noguchi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Tomohiro Kanayama
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Ayumi Niwa
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Natsuko Suzui
- Department of Pathology, Gifu University Hospital, Gifu 501-1194, Japan
| | | | - Takuji Tanaka
- Department of Diagnostic Pathology (DDP) and Research Center of Diagnostic Pathology (RC-DiP), Gifu Municipal Hospital, Gifu 500-8513, Japan
| | - Haruhiko Akiyama
- Department of Orthopedic Surgery, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Masahito Shimizu
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| |
Collapse
|
21
|
Self-organization of organoids from endoderm-derived cells. J Mol Med (Berl) 2020; 99:449-462. [PMID: 33221939 PMCID: PMC8026476 DOI: 10.1007/s00109-020-02010-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 12/28/2022]
Abstract
Organoids constitute biological systems which are used to model organ development, homeostasis, regeneration, and disease in vitro and hold promise for use in therapy. Reflecting in vivo development, organoids form from tissue cells or pluripotent stem cells. Cues provided from the media and individual cells promote self-organization of these uniform starting cells into a structure, with emergent differentiated cells, morphology, and often functionality that resemble the tissue of origin. Therefore, organoids provide a complement to two-dimensional in vitro culture and in vivo animal models of development, providing the experimental control and flexibility of in vitro methods with the three-dimensional context of in vivo models, with fewer ethical restraints than human or animal work. However, using organoids, we are only just beginning to understand on the cellular level how the external conditions and signaling between individual cells promote the emergence of cells and structures. In this review, we focus specifically on organoids derived from endodermal tissues: the starting conditions of the cells, signaling mechanisms, and external media that allow the emergence of higher order self-organization.
Collapse
|
22
|
Abstract
Bacterial infections are increasingly being recognized as risk factors for the development of adenocarcinomas. The strong epidemiological evidence linking Helicobacter pylori infection to stomach cancer has paved the way to the demonstration that bacterial infections cause DNA damage in the host cells, initiating transformation. In this regard, the role of bacterial genotoxins has become more relevant. Salmonella enterica serovars Typhi and Paratyphi A have been clinically associated with gallbladder cancer. By harnessing the stem cell potential of cells from healthy human gallbladder explant, we regenerated and propagated the epithelium of this organ in vitro and used these cultures to model S. Paratyphi A infection. This study demonstrates the importance of the typhoid toxin, encoded only by these specific serovars, in causing genomic instability in healthy gallbladder cells, posing intoxicated cells at risk of malignant transformation. Carcinoma of the gallbladder (GBC) is the most frequent tumor of the biliary tract. Despite epidemiological studies showing a correlation between chronic infection with Salmonella enterica Typhi/Paratyphi A and GBC, the underlying molecular mechanisms of this fatal connection are still uncertain. The murine serovar Salmonella Typhimurium has been shown to promote transformation of genetically predisposed cells by driving mitogenic signaling. However, insights from this strain remain limited as it lacks the typhoid toxin produced by the human serovars Typhi and Paratyphi A. In particular, the CdtB subunit of the typhoid toxin directly induces DNA breaks in host cells, likely promoting transformation. To assess the underlying principles of transformation, we used gallbladder organoids as an infection model for Salmonella Paratyphi A. In this model, bacteria can invade epithelial cells, and we observed host cell DNA damage. The induction of DNA double-strand breaks after infection depended on the typhoid toxin CdtB subunit and extended to neighboring, non-infected cells. By cultivating the organoid derived cells into polarized monolayers in air-liquid interphase, we could extend the duration of the infection, and we observed an initial arrest of the cell cycle that does not depend on the typhoid toxin. Non-infected intoxicated cells instead continued to proliferate despite the DNA damage. Our study highlights the importance of the typhoid toxin in causing genomic instability and corroborates the epidemiological link between Salmonella infection and GBC.
Collapse
|
23
|
Xiang Y, Wang W, Gao Y, Zhang J, Zhang J, Bai Z, Zhang S, Yang Y. Production and Characterization of an Integrated Multi-Layer 3D Printed PLGA/GelMA Scaffold Aimed for Bile Duct Restoration and Detection. Front Bioeng Biotechnol 2020; 8:971. [PMID: 32984274 PMCID: PMC7479063 DOI: 10.3389/fbioe.2020.00971] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 07/27/2020] [Indexed: 11/28/2022] Open
Abstract
We successfully fabricated artificial bile duct via 3D printing technique which was composed of poly (lactic-co-glycolic acid) (PLGA) and gelatin methacrylate (GelMA). The PLGA-inner layer provided sufficient strength to support the bile duct contraction, the GelMA-outer layer possessed good biocompatibility to provide a good living environment for the cells. Moreover, IKVAV laminin peptide (Ile-Lys-Val-Ala-Val) and ultrasmall superparamagnetic iron oxide (USPIO) were used to regulate scaffold cell adhesion and magnetic resonance imaging (MRI) detection, respectively. After BMSCs co-culture with IKVAV at a certain concentration, the survival rate and adhesion of BMSCs was increased obviously. Meanwhile, the fabricated scaffold exhibited the tensile modulus in the range of 17.19 - 29.05 MPa and the compressive modulus in the range of 0.042 - 0.066 MPa, which could meet the needs of human implantation. In an animal experiment in vivo pig bile duct regeneration, PLGA/GelMA/IKVAV/USPIO duct conduits could promote bile duct regeneration and enhance cytokeratin 19 (CK19) expression. In summary, the composite bile duct scaffold with excellent MRI imaging function and biocompatibility could be used to develop bioactive artificial bile ducts.
Collapse
Affiliation(s)
- Yang Xiang
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
- Department of Urology Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Weijia Wang
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Yuanhui Gao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Jianquan Zhang
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Jing Zhang
- Department of Obstetrics and Gynecology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Zhiming Bai
- Department of Urology Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Shufang Zhang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Yijun Yang
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| |
Collapse
|
24
|
Yasen A, Li W, Maimaitinijiati Y, Aini A, Ran B, Wang H, Tuxun T, Shao Y, Aji T, Wen H. Direct effects of transforming growth factor-β1 signaling on the differentiation fate of fetal hepatic progenitor cells. Regen Med 2020; 15:1719-1733. [PMID: 32772793 DOI: 10.2217/rme-2020-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate direct roles of TGF-β1 signaling in the differentiation process of fetal hepatic progenitor cells (HPCs). Materials & methods: Exogenous TGF-β1 and SB431542 were added into fetal HPCs. Then, SB431542 was intraperitoneally injected into pregnant mice for 8 days. Results: Fetal HPCs treated with TGF-β1 differentiated into cholangiocytes. However, hepatocyte marker was highly expressed after inhibiting TGF-β1 signaling. In vivo, hematopoietic cells were gradually replaced with liver cells and TGF-β1 expression was evidently decreased as fetal liver developed. Inhibition of TGF-β1 signaling caused increase of ALB+ cells, but CK19 expression was more obvious in control mice livers. Conclusion: TGF-β1 signaling may play decisive roles in fetal HPCs differentiation into functional hepatocytes or cholangiocytes.
Collapse
Affiliation(s)
- Aimaiti Yasen
- Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830011, PR China.,Department of Hepatobiliary & Hydatid Disease, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China
| | - Wending Li
- Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830011, PR China
| | | | - Abudusalamu Aini
- Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830011, PR China
| | - Bo Ran
- Department of Hepatobiliary & Hydatid Disease, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China
| | - Hui Wang
- Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China
| | - Tuerhongjiang Tuxun
- Department of Liver & Laparoscopic Surgery, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China
| | - Yingmei Shao
- Department of Hepatobiliary & Hydatid Disease, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China
| | - Tuerganaili Aji
- Department of Hepatobiliary & Hydatid Disease, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China
| | - Hao Wen
- Department of Hepatobiliary & Hydatid Disease, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China.,State Key Laboratory of Pathogenesis, Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, 393 Xin Yi Road, Urumqi 830011, PR China
| |
Collapse
|
25
|
Fabris L, Cadamuro M, Cagnin S, Strazzabosco M, Gores GJ. Liver Matrix in Benign and Malignant Biliary Tract Disease. Semin Liver Dis 2020; 40:282-297. [PMID: 32162285 DOI: 10.1055/s-0040-1705109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The extracellular matrix is a highly reactive scaffold formed by a wide array of multifunctional molecules, encompassing collagens and noncollagenous glycoproteins, proteoglycans, glycosaminoglycans, and polysaccharides. Besides outlining the tissue borders, the extracellular matrix profoundly regulates the behavior of resident cells by transducing mechanical signals, and by integrating multiple cues derived from the microenvironment. Evidence is mounting that changes in the biostructure of the extracellular matrix are instrumental for biliary repair. Following biliary damage and eventually, malignant transformation, the extracellular matrix undergoes several quantitative and qualitative modifications, which direct interactions among hepatic progenitor cells, reactive ductular cells, activated myofibroblasts and macrophages, to generate the ductular reaction. Herein, we will give an overview of the main molecular factors contributing to extracellular matrix remodeling in cholangiopathies. Then, we will discuss the structural alterations in terms of biochemical composition and physical stiffness featuring the "desmoplastic matrix" of cholangiocarcinoma along with their pro-oncogenic effects.
Collapse
Affiliation(s)
- Luca Fabris
- Department of Molecular Medicine, University of Padua, Padua, Italy.,Liver Center, Department of Medicine, Yale University, New Haven, Connecticut
| | | | - Silvia Cagnin
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Mario Strazzabosco
- Liver Center, Department of Medicine, Yale University, New Haven, Connecticut
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Michigan
| |
Collapse
|
26
|
Murata D, Arai K, Nakayama K. Scaffold-Free Bio-3D Printing Using Spheroids as "Bio-Inks" for Tissue (Re-)Construction and Drug Response Tests. Adv Healthc Mater 2020; 9:e1901831. [PMID: 32378363 DOI: 10.1002/adhm.201901831] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/21/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023]
Abstract
In recent years, scaffold-free bio-3D printing using cell aggregates (spheroids) as "bio-inks" has attracted increasing attention as a method for 3D cell construction. Bio-3D printing uses a technique called the Kenzan method, wherein spheroids are placed one-by-one in a microneedle array (the "Kenzan") using a bio-3D printer. The bio-3D printer is a machine that was developed to perform bio-3D printing automatically. Recently, it has been reported that cell constructs can be produced by a bio-3D printer using spheroids composed of many types of cells and that this can contribute to tissue (re-)construction. This progress report summarizes the production and effectiveness of various cell constructs prepared using bio-3D printers. It also considers the future issues and prospects of various cell constructs obtained by using this method for further development of scaffold-free 3D cell constructions.
Collapse
Affiliation(s)
- Daiki Murata
- Center for Regenerative Medicine ResearchFaculty of MedicineSaga University Honjo‐machi Saga 840‐8502 Japan
| | - Kenichi Arai
- Center for Regenerative Medicine ResearchFaculty of MedicineSaga University Honjo‐machi Saga 840‐8502 Japan
| | - Koichi Nakayama
- Center for Regenerative Medicine ResearchFaculty of MedicineSaga University Honjo‐machi Saga 840‐8502 Japan
| |
Collapse
|
27
|
Rizki-Safitri A, Shinohara M, Tanaka M, Sakai Y. Tubular bile duct structure mimicking bile duct morphogenesis for prospective in vitro liver metabolite recovery. J Biol Eng 2020; 14:11. [PMID: 32206088 PMCID: PMC7081557 DOI: 10.1186/s13036-020-0230-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Background Liver metabolites are used to diagnose disease and examine drugs in clinical pharmacokinetics. Therefore, development of an in vitro assay system that reproduces liver metabolite recovery would provide important benefits to pharmaceutical research. However, liver models have proven challenging to develop because of the lack of an appropriate bile duct structure for the accumulation and transport of metabolites from the liver parenchyma. Currently available bile duct models, such as the bile duct cyst-embedded extracellular matrix (ECM), lack any morphological resemblance to the tubular morphology of the living bile duct. Moreover, these systems cannot overcome metabolite recovery issues because they are established in isolated culture systems. Here, we successfully established a non-continuous tubular bile duct structure model in an open-culture system, which closely resembled an in vivo structure. This system was utilized to effectively collect liver metabolites separately from liver parenchymal cells. Results Triple-cell co-culture of primary rat hepatoblasts, rat biliary epithelial cells, and mouse embryonic fibroblasts was grown to mimic the morphogenesis of the bile duct during liver development. Overlaying the cells with ECM containing a Matrigel and collagen type I gel mixture promoted the development of a tubular bile duct structure. In this culture system, the expression of specific markers and signaling molecules related to biliary epithelial cell differentiation was highly upregulated during the ductal formation process. This bile duct structure also enabled the separate accumulation of metabolite analogs from liver parenchymal cells. Conclusions A morphogenesis-based culture system effectively establishes an advanced bile duct structure and improves the plasticity of liver models feasible for autologous in vitro metabolite-bile collection, which may enhance the performance of high-throughput liver models in cell-based assays.
Collapse
Affiliation(s)
- Astia Rizki-Safitri
- 1Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,2Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science (IIS), The University of Tokyo, Tokyo, Japan
| | - Marie Shinohara
- 2Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science (IIS), The University of Tokyo, Tokyo, Japan.,3Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Minoru Tanaka
- 4Laboratory of Stem Cell Regulation, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, Japan.,5Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Yasuyuki Sakai
- 1Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,2Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science (IIS), The University of Tokyo, Tokyo, Japan.,3Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,6Max Planck-The University of Tokyo, Center for Integrative Inflammology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Cai X, Li H, Kaplan DE. Murine hepatoblast-derived liver tumors resembling human combined hepatocellular-cholangiocarcinoma with stem cell features. Cell Biosci 2020; 10:38. [PMID: 32190288 PMCID: PMC7071781 DOI: 10.1186/s13578-020-00395-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Combined hepatocellular-cholangiocarcinoma (CHC) is a primary hepatic malignancy with heterogeneously combined histological features of putative hepatic progenitor cells (HPC) origin. We describe a mouse model that exhibits the heterogenous histological and phenotypic finding similar to human CHC. METHODS We injected hepatoblasts isolated from p53-/- C57BL/6 mice into syngeneic wild-type pre-conditioned C57BL/6 mice. We confirmed that p53-/- murine hepatoblasts act as tumor-initiating cells (TICs) that generate CHC both in situ and within metastases. For comparative pathological study, 8 human cases of CHC with stem cell features were recruited by immunohistochemistry and multicolor fluorescence immunostaining. RESULTS We identified corresponding areas in murine tumors matching each WHO criteria-described subtype of human CHC. In both murine and human tumors, HPC-like cells in tumor nests and associated stem cell features/traits are suggested histologically to be the progenitor origin of the cancer. CONCLUSIONS The pathological characteristics of murine tumors recapitulate human CHC with stem cell features. These data provide additional comparative pathological evidence that CHC with stem cell features originate from HPCs and validate a model to study this cancer type in vivo.
Collapse
Affiliation(s)
- Xiong Cai
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania, 3400 Civic Center Drive, PCAM GI 7S, Philadelphia, PA 19104-6145 USA
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, 430022 China
| | - Heli Li
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - David E. Kaplan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania, 3400 Civic Center Drive, PCAM GI 7S, Philadelphia, PA 19104-6145 USA
| |
Collapse
|
29
|
Sato A, Kakinuma S, Miyoshi M, Kamiya A, Tsunoda T, Kaneko S, Tsuchiya J, Shimizu T, Takeichi E, Nitta S, Kawai-Kitahata F, Murakawa M, Itsui Y, Nakagawa M, Azuma S, Koshikawa N, Seiki M, Nakauchi H, Asahina Y, Watanabe M. Vasoactive Intestinal Peptide Derived From Liver Mesenchymal Cells Mediates Tight Junction Assembly in Mouse Intrahepatic Bile Ducts. Hepatol Commun 2019; 4:235-254. [PMID: 32025608 PMCID: PMC6996346 DOI: 10.1002/hep4.1459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/23/2019] [Indexed: 01/20/2023] Open
Abstract
Formation of intrahepatic bile ducts (IHBDs) proceeds in accordance with their microenvironment. Particularly, mesenchymal cells around portal veins regulate the differentiation and ductular morphogenesis of cholangiocytes in the developing liver; however, further studies are needed to fully understand the arrangement of IHBDs into a continuous hierarchical network. This study aims to clarify the interaction between biliary and liver mesenchymal cells during IHBD formation. To identify candidate factors contributing to this cell–cell interaction, mesenchymal cells were isolated from embryonic day 16.5 matrix metalloproteinase 14 (MMP14)‐deficient (knockout [KO]) mice livers, in which IHBD formation is retarded, and compared with those of the wild type (WT). WT mesenchymal cells significantly facilitated the formation of luminal structures comprised of hepatoblast‐derived cholangiocytes (cholangiocytic cysts), whereas MMP14‐KO mesenchymal cells failed to promote cyst formation. Comprehensive analysis revealed that expression of vasoactive intestinal peptide (VIP) was significantly suppressed in MMP14‐KO mesenchymal cells. VIP and VIP receptor 1 (VIPR1) were mainly expressed in periportal mesenchymal cells and cholangiocytic progenitors during IHBD development, respectively, in vivo. VIP/VIPR1 signaling significantly encouraged cholangiocytic cyst formation and up‐regulated tight junction protein 1, cystic fibrosis transmembrane conductance regulator, and aquaporin 1, in vitro. VIP antagonist significantly suppressed the tight junction assembly and the up‐regulation of ion/water transporters during IHBD development in vivo. In a cholestatic injury model of adult mice, exogenous VIP administration promoted the restoration of damaged tight junctions in bile ducts and improved hyperbilirubinemia. Conclusion: VIP is produced by periportal mesenchymal cells during the perinatal stage. It supports bile duct development by establishing tight junctions and up‐regulating ion/water transporters in cholangiocytes. VIP contributes to prompt recovery from cholestatic damage through the establishment of tight junctions in the bile ducts.
Collapse
Affiliation(s)
- Ayako Sato
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Sei Kakinuma
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan.,Department of Liver Disease Control Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Masato Miyoshi
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Akihide Kamiya
- Department of Molecular Life Sciences School of Medicine Tokai University Isehara Japan
| | - Tomoyuki Tsunoda
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Shun Kaneko
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Jun Tsuchiya
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Taro Shimizu
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Eiko Takeichi
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Sayuri Nitta
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Fukiko Kawai-Kitahata
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Miyako Murakawa
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Yasuhiro Itsui
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Mina Nakagawa
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Seishin Azuma
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Naohiko Koshikawa
- Division of Cancer Cell Research Institute of Medical Science University of Tokyo Tokyo Japan
| | - Motoharu Seiki
- Division of Cancer Cell Research Institute of Medical Science University of Tokyo Tokyo Japan
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine Stanford University School of Medicine Stanford CA.,Division of Stem Cell Therapy Institute of Medical Science University of Tokyo Tokyo Japan
| | - Yasuhiro Asahina
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan.,Department of Liver Disease Control Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan.,Advanced Research Institute Tokyo Medical and Dental University (TMDU) Tokyo Japan
| |
Collapse
|
30
|
Funfak A, Bouzhir L, Gontran E, Minier N, Dupuis-Williams P, Gobaa S. Biophysical Control of Bile Duct Epithelial Morphogenesis in Natural and Synthetic Scaffolds. Front Bioeng Biotechnol 2019; 7:417. [PMID: 31921820 PMCID: PMC6923240 DOI: 10.3389/fbioe.2019.00417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/29/2019] [Indexed: 12/11/2022] Open
Abstract
The integration of bile duct epithelial cells (cholangiocytes) in artificial liver culture systems is important in order to generate more physiologically relevant liver models. Understanding the role of the cellular microenvironment on differentiation, physiology, and organogenesis of cholangiocytes into functional biliary tubes is essential for the development of new liver therapies, notably in the field of cholangiophaties. In this study, we investigated the role of natural or synthetic scaffolds on cholangiocytes cyst growth, lumen formation and polarization. We demonstrated that cholangiocyte cyst formation efficiency can be similar between natural and synthetic matrices provided that the mechanical properties of the hydrogels are matched. When using synthetic matrices, we also tried to understand the impact of elasticity, matrix metalloprotease-mediated degradation and integrin ligand density on cyst morphogenesis. We demonstrated that hydrogel stiffness regulates cyst formation. We found that controlling integrin ligand density was key in the establishment of large polarized cysts of cholangiocytes. The mechanism of lumen formation was found to rely on cell self-organization and proliferation. The formed cholangiocyte organoids showed a good MDR1 (multi drug resistance protein) transport activity. Our study highlights the advantages of fully synthetic scaffold as a tool to develop bile duct models.
Collapse
Affiliation(s)
- Anette Funfak
- Institut Pasteur, Biomaterials and Microfluidics Core Facility, Paris, France
| | - Latifa Bouzhir
- Université Paris-Saclay, UMR-S1174 INSERM, Orsay, France
| | - Emilie Gontran
- Université Paris-Saclay, UMR-S1174 INSERM, Orsay, France
| | - Nicolas Minier
- Institut Pasteur, Biomaterials and Microfluidics Core Facility, Paris, France.,Université de Technologie de Compiègne, Alliance Sorbonne Université, Compiègne, France
| | - Pascale Dupuis-Williams
- Université Paris-Saclay, UMR-S1174 INSERM, Orsay, France.,ESPCI, PSL University, Paris, France
| | - Samy Gobaa
- Institut Pasteur, Biomaterials and Microfluidics Core Facility, Paris, France
| |
Collapse
|
31
|
Wang S, Wang X, Tan Z, Su Y, Liu J, Chang M, Yan F, Chen J, Chen T, Li C, Hu J, Wang Y. Human ESC-derived expandable hepatic organoids enable therapeutic liver repopulation and pathophysiological modeling of alcoholic liver injury. Cell Res 2019; 29:1009-1026. [PMID: 31628434 DOI: 10.1038/s41422-019-0242-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 09/19/2019] [Indexed: 02/07/2023] Open
Abstract
We report the generation of human ESC-derived, expandable hepatic organoids (hEHOs) using our newly established method with wholly defined (serum-free, feeder free) media. The hEHOs stably maintain phenotypic features of bipotential liver stem/progenitor cells that can differentiate into functional hepatocytes or cholangiocytes. The hEHOs can expand for 20 passages enabling large scale expansion to cell numbers requisite for industry or clinical programs. The cells from hEHOs display remarkable repopulation capacity in injured livers of FRG mice following transplantation, and they differentiate in vivo into mature hepatocytes. If implanted into the epididymal fat pads of immune-deficient mice, they do not generate non-hepatic lineages and have no tendency to form teratomas. We further develop a derivative model by incorporating human fetal liver mesenchymal cells (hFLMCs) into the hEHOs, referred to as hFLMC/hEHO, which can model alcoholic liver disease-associated pathophysiologic changes, including oxidative stress generation, steatosis, inflammatory mediators release and fibrosis, under ethanol treatment. Our work demonstrates that the hEHOs have considerable potential to be a novel, ex vivo pathophysiological model for studying alcoholic liver disease as well as a promising cellular source for treating human liver diseases.
Collapse
Affiliation(s)
- Shuyong Wang
- Tissue Engineering and Regenerative Medicine Lab, Beijing Institute of Health Service and Transfusion Medicine, 100850, Beijing, China.,Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, The 8th Medical Center of Chinese PLA General Hospital, 100091, Beijing, China
| | - Xuan Wang
- Tissue Engineering and Regenerative Medicine Lab, Beijing Institute of Health Service and Transfusion Medicine, 100850, Beijing, China.,Department of Nursing, Hebei Medical University, 050017, Shijiazhuang, China
| | - Zuolong Tan
- Tissue Engineering and Regenerative Medicine Lab, Beijing Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Yuxin Su
- Tissue Engineering and Regenerative Medicine Lab, Beijing Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Juan Liu
- Tissue Engineering and Regenerative Medicine Lab, Beijing Institute of Health Service and Transfusion Medicine, 100850, Beijing, China.,Hepatal-Biliary-Pancreatic Center, Translational Research Center, Beijing Tsinghua Chang Gung Hospital, 102218, Beijing, China
| | - Mingyang Chang
- Tissue Engineering and Regenerative Medicine Lab, Beijing Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Fang Yan
- Tissue Engineering and Regenerative Medicine Lab, Beijing Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Jie Chen
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510289, Guangzhou, China
| | - Tao Chen
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510289, Guangzhou, China
| | - Chuanjiang Li
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Jie Hu
- Department of Nursing, Hebei Medical University, 050017, Shijiazhuang, China
| | - Yunfang Wang
- Tissue Engineering and Regenerative Medicine Lab, Beijing Institute of Health Service and Transfusion Medicine, 100850, Beijing, China. .,Hepatal-Biliary-Pancreatic Center, Translational Research Center, Beijing Tsinghua Chang Gung Hospital, 102218, Beijing, China.
| |
Collapse
|
32
|
Kitade M, Kaji K, Nishimura N, Seki K, Nakanishi K, Tsuji Y, Sato S, Saikawa S, Takaya H, Kawaratani H, Namisaki T, Moriya K, Mitoro A, Yoshiji H. Blocking development of liver fibrosis augments hepatic progenitor cell-derived liver regeneration in a mouse chronic liver injury model. Hepatol Res 2019; 49:1034-1045. [PMID: 30989766 DOI: 10.1111/hepr.13351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 02/08/2023]
Abstract
AIM The roles of hepatic progenitor cells (HPCs) in regeneration of a diseased liver are unclear. Hepatic stellate cells (HSCs) contribute to liver fibrosis but are also a component of the HPC niche. Hepatic progenitor cells expand along with HSC activation and liver fibrosis. However, little is known about the interplay of liver fibrosis and HPC-mediated liver regeneration. This study aimed to investigate HSCs and HPCs in liver regeneration. METHODS Liver injury in mice was induced with 3,5-diethoxycarbonyl-1,4-dihydrocollidine, and HPC expansion and fibrosis were assessed. An angiotensin II type 1 receptor blocker (ARB) was administered to assess its effect on fibrosis and regeneration. RESULTS Treatment with ARB attenuated fibrosis and expansion of α-smooth muscle actin-positive activated HSCs as indicated by increased liver weight and Ki-67-positive hepatocytes. Immunohistochemical staining suggested that HPC differentiation was shifted toward hepatocytes (HCs) when ARB treatment decreased HPC encapsulation by HSCs and extracellular matrix. Conditioned medium produced by culturing the human HSC LX-2 line strongly augmented differentiation to biliary epithelial cells (BECs) but inhibited that to HCs. Activated HSCs expressed Jagged1, a NOTCH ligand, which plays a central role in differentiation of HPCs toward BECs. CONCLUSIONS Hepatic stellate cells, the HPC niche cells, control differentiation of HPCs, directing them toward BECs rather than HCs in a diseased liver model. Antifibrosis treatment with an ARB preferentially redirects HPC differentiation toward HCs by blocking the NOTCH pathway in the HPC niche, resulting in more efficient HPC-mediated liver regeneration.
Collapse
Affiliation(s)
- Mitsuteru Kitade
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Kosuke Kaji
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Norihisa Nishimura
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Kenichiro Seki
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Keisuke Nakanishi
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Yuki Tsuji
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Shinya Sato
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Soichiro Saikawa
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Hiroaki Takaya
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Hideto Kawaratani
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Tadashi Namisaki
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Kei Moriya
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Akira Mitoro
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Hitoshi Yoshiji
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| |
Collapse
|
33
|
Agarwal T, Subramanian B, Maiti TK. Liver Tissue Engineering: Challenges and Opportunities. ACS Biomater Sci Eng 2019; 5:4167-4182. [PMID: 33417776 DOI: 10.1021/acsbiomaterials.9b00745] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liver tissue engineering aims at the possibility of reproducing a fully functional organ for the treatment of acute and chronic liver disorders. Approaches in this field endeavor to replace organ transplantation (gold standard treatment for liver diseases in a clinical setting) with in vitro developed liver tissue constructs. However, the complexity of the liver microarchitecture and functionality along with the limited supply of cellular components of the liver pose numerous challenges. This review provides a comprehensive outlook onto how the physicochemical, mechanobiological, and spatiotemporal aspects of the substrates could be tuned to address current challenges in the field. We also highlight the strategic advancements made in the field so far for the development of artificial liver tissue. We further showcase the currently available prototypes in research and clinical trials, which shows the hope for the future of liver tissue engineering.
Collapse
|
34
|
Buisson EM, Jeong J, Kim HJ, Choi D. Regenerative Medicine of the Bile Duct: Beyond the Myth. Int J Stem Cells 2019; 12:183-194. [PMID: 31022996 PMCID: PMC6657949 DOI: 10.15283/ijsc18055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022] Open
Abstract
Cholangiopathies are rare diseases of the bile duct with high mortality rates. The current treatment for cholangiopathies is liver transplantation, but there are significant obstacles including a shortage of donors and a high risk of complications. Currently, there is only one available medicine on the market targeting cholangiopathies, and the results have been inadequate in clinical therapy. To overcome these obstacles, many researchers have used human induced pluripotent stem cells (hPSC) as a source for cholangiocyte-like cell generation and have incorporated advances in bioprinting to create artificial bile ducts for implantation and transplantation. This has allowed the field to move dramatically forward in studies of biliary regenerative medicine. In this review, the authors provide an overview of cholangiocytes, the organogenesis of the bile duct, cholangiopathies, and the current treatment and advances that have been made that are opening new doors to the study of cholangiopathies.
Collapse
Affiliation(s)
- Elina Maria Buisson
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea.,Department of Surgery, Hanyang University College of Medicine, Hanyang University, Seoul, Korea.,HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Hanyang University, Seoul, Korea
| | - Jaemin Jeong
- Department of Surgery, Hanyang University College of Medicine, Hanyang University, Seoul, Korea.,HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Hanyang University, Seoul, Korea
| | - Han Joon Kim
- Department of Surgery, Hanyang University College of Medicine, Hanyang University, Seoul, Korea
| | - Dongho Choi
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea.,Department of Surgery, Hanyang University College of Medicine, Hanyang University, Seoul, Korea.,HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Hanyang University, Seoul, Korea
| |
Collapse
|
35
|
Lemaigre FP. Development of the Intrahepatic and Extrahepatic Biliary Tract: A Framework for Understanding Congenital Diseases. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 15:1-22. [PMID: 31299162 DOI: 10.1146/annurev-pathmechdis-012418-013013] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The involvement of the biliary tract in the pathophysiology of liver diseases and the increased attention paid to bile ducts in the bioconstruction of liver tissue for regenerative therapy have fueled intense research into the fundamental mechanisms of biliary development. Here, I review the molecular, cellular and tissular mechanisms driving differentiation and morphogenesis of the intrahepatic and extrahepatic bile ducts. This review focuses on the dynamics of the transcriptional and signaling modules that promote biliary development in human and mouse liver and discusses studies in which the use of zebrafish uncovered unexplored processes in mammalian biliary development. The review concludes by providing a framework for interpreting the mechanisms that may help us understand the origin of congenital biliary diseases.
Collapse
Affiliation(s)
- Frédéric P Lemaigre
- de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium;
| |
Collapse
|
36
|
Günther C, Brevini T, Sampaziotis F, Neurath MF. What gastroenterologists and hepatologists should know about organoids in 2019. Dig Liver Dis 2019; 51:753-760. [PMID: 30948332 DOI: 10.1016/j.dld.2019.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 12/11/2022]
Abstract
Most of the research behind new medical advances is carried out using either animal models or cancer cells, which both have their disadvantage in particular with regard to medical applications such as personalized medicine and novel therapeutic approaches. However, recent advances in stem cell biology have enabled long-term culturing of organotypic intestinal or hepatic tissues derived from tissue resident or pluripotent stem cells. These 3D structures, denoted as organoids, represent a substantial advance in structural and functional complexity over traditional in vitro cell culture models that are often non-physiological and transformed. They can recapitulate the in vivo architecture, functionality and genetic signature of the corresponding tissue. The opportunity to model epithelial cell biology, epithelial turnover, barrier dynamics, immune-epithelial communication and host-microbe interaction more efficiently than previous culture systems, greatly enhance the translational potential of organotypic hepato-gastrointestinal culture systems. Thus there is increasing interest in using such cultured cells as a source for tissue engineering, regenerative medicine and personalized medicine. This review will highlight some of the established and also some exciting novel perspectives on organoids in the fields of gastroenterology and hepatology.
Collapse
Affiliation(s)
- Claudia Günther
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany
| | - Teresa Brevini
- Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge Stem Cell Institute, Anne McLaren Laboratory, Department of Surgery, University of Cambridge, Cambridge, UK
| | - Fotios Sampaziotis
- Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge Stem Cell Institute, Anne McLaren Laboratory, Department of Surgery, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK; Department of Hepatology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Markus F Neurath
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany.
| |
Collapse
|
37
|
Won J, Cho Y, Lee D, Jeon BY, Ju JW, Chung S, Pak JH. Clonorchis sinensis excretory-secretory products increase malignant characteristics of cholangiocarcinoma cells in three-dimensional co-culture with biliary ductal plates. PLoS Pathog 2019; 15:e1007818. [PMID: 31121000 PMCID: PMC6550432 DOI: 10.1371/journal.ppat.1007818] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/05/2019] [Accepted: 05/07/2019] [Indexed: 12/16/2022] Open
Abstract
Clonorchis sinensis is a carcinogenic human liver fluke, prolonged infection which provokes chronic inflammation, epithelial hyperplasia, periductal fibrosis, and even cholangiocarcinoma (CCA). These effects are driven by direct physical damage caused by the worms, as well as chemical irritation from their excretory-secretory products (ESPs) in the bile duct and surrounding liver tissues. We investigated the C. sinensis ESP-mediated malignant features of CCA cells (HuCCT1) in a three-dimensional microfluidic culture model that mimics an in vitro tumor microenvironment. This system consisted of a type I collagen extracellular matrix, applied ESPs, GFP-labeled HuCCT1 cells and quiescent biliary ductal plates formed by normal cholangiocytes (H69 cells). HuCCT1 cells were attracted by a gradient of ESPs in a concentration-dependent manner and migrated in the direction of the ESPs. Meanwhile, single cell invasion by HuCCT1 cells increased independently of the direction of the ESP gradient. ESP treatment resulted in elevated secretion of interleukin-6 (IL-6) and transforming growth factor-beta1 (TGF-β1) by H69 cells and a cadherin switch (decrease in E-cadherin/increase in N-cadherin expression) in HuCCT1 cells, indicating an increase in epithelial-mesenchymal transition-like changes by HuCCT1 cells. Our findings suggest that C. sinensis ESPs promote the progression of CCA in a tumor microenvironment via the interaction between normal cholangiocytes and CCA cells. These observations broaden our understanding of the progression of CCA caused by liver fluke infection and suggest a new approach for the development of chemotherapeutic for this infectious cancer. The oriental liver fluke, Clonorchis sinensis, is a biological carcinogen of humans and is the cause of death of infectious cancer patients in China and Korea. Its chronic infection promotes cholangiocarcinogenesis due to direct contact of host tissues with the worms and their excretory-secretory products (ESPs); however, the specific mechanisms underlying this pathology remain unclear. To assess its contribution to the progression of cholangiocarcinoma (CCA), we developed a 3-dimensional (3D) in vitro culture model that consists of CCA cells (HuCCT1) in direct contact with normal cholangiocytes (H69), which are subsequently exposed to C. sinensis ESPs; therefore, this model represents a C. sinensis-associated CCA microenvironment. Co-cultured HuCCT1 cells exhibited increased motility in response to C. sinensis ESPs, suggesting that this model may recapitulate some aspects of tumor microenvironment complexity. Proinflammatory cytokines such as IL-6 and TGF-β1 secreted by H69 cells exhibited a crosstalk effect regarding the epithelial-mesenchymal transition of HuCCT1 cells, thus, promoting an increase in the metastatic characteristics of CCA cells. Our findings enable an understanding of the mechanisms underlying the etiology of C. sinensis-associated CCA, and, therefore, this approach will contribute to the development of new strategies for the reduction of its high mortality rate.
Collapse
Affiliation(s)
- Jihee Won
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Youngkyu Cho
- Department of IT Convergence, Korea University, Seoul, Republic of Korea
| | - Dahyun Lee
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Bo Young Jeon
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Jung-Won Ju
- Division of Vectors & Parasitic Diseases, Korean Centers for Disease Control and Prevention, Osong, Republic of Korea
| | - Seok Chung
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
- Department of IT Convergence, Korea University, Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
- * E-mail: (SC); (JHP)
| | - Jhang Ho Pak
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- * E-mail: (SC); (JHP)
| |
Collapse
|
38
|
Torizal FG, Kimura K, Horiguchi I, Sakai Y. Size-dependent hepatic differentiation of human induced pluripotent stem cells spheroid in suspension culture. Regen Ther 2019; 12:66-73. [PMID: 31890768 PMCID: PMC6933468 DOI: 10.1016/j.reth.2019.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/05/2019] [Accepted: 04/18/2019] [Indexed: 01/07/2023] Open
Abstract
Suspension culture of three-dimensional (3D) spheroid of human induced pluripotent stem cells (hiPSCs) has been known as a potential method to enhance the scalability of hepatic differentiation of hiPSCs. However, the impact of size-related factor of initial formed spheroid were not largely considered. To address this problem, we evaluate the impact of different specific spheroid size of hiPSCs by forming the individual spheroid from different number of hiPSCs and differentiated into hiPSCs-derived hepatocytes (iHeps). The results showed that larger spheroid exhibit enhanced capability to differentiated into hepatic lineage by increasing the expression marker albumin, CYP3A4 and lower expression of fetal hepatic marker AFP. Several factor such as the tendency of cystic like structure forming, the necrotic area of the large dense spheroid, and interference of WNT/β-catenin signaling was significantly affecting the resulted iHeps. In this study, we suggest that the optimal spheroid size for hepatic differentiation can be attained from 500 to 600 μm diameter spheroid formed from 12,500–25,000 hiPSCs. This size can be potentially applied for various practical use of hepatic differentiation in scalable suspension culture.
Collapse
Affiliation(s)
- Fuad Gandhi Torizal
- Department of Bioengineering, School of Engineering, The University of Tokyo, Japan
| | - Keiichi Kimura
- Department of Bioengineering, School of Engineering, The University of Tokyo, Japan
| | - Ikki Horiguchi
- Department of Biotechnology, School of Engineering, Osaka University, Japan
| | - Yasuyuki Sakai
- Department of Chemical Systems Engineering, School of Engineering, The University of Tokyo, Japan.,International Research Center on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science, The University of Tokyo, Japan
| |
Collapse
|
39
|
Natale A, Vanmol K, Arslan A, Van Vlierberghe S, Dubruel P, Van Erps J, Thienpont H, Buzgo M, Boeckmans J, De Kock J, Vanhaecke T, Rogiers V, Rodrigues RM. Technological advancements for the development of stem cell-based models for hepatotoxicity testing. Arch Toxicol 2019; 93:1789-1805. [PMID: 31037322 DOI: 10.1007/s00204-019-02465-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
Abstract
Stem cells are characterized by their self-renewal capacity and their ability to differentiate into multiple cell types of the human body. Using directed differentiation strategies, stem cells can now be converted into hepatocyte-like cells (HLCs) and therefore, represent a unique cell source for toxicological applications in vitro. However, the acquired hepatic functionality of stem cell-derived HLCs is still significantly inferior to primary human hepatocytes. One of the main reasons for this is that most in vitro models use traditional two-dimensional (2D) setups where the flat substrata cannot properly mimic the physiology of the human liver. Therefore, 2D-setups are progressively being replaced by more advanced culture systems, which attempt to replicate the natural liver microenvironment, in which stem cells can better differentiate towards HLCs. This review highlights the most recent cell culture systems, including scaffold-free and scaffold-based three-dimensional (3D) technologies and microfluidics that can be employed for culture and hepatic differentiation of stem cells intended for hepatotoxicity testing. These methodologies have shown to improve in vitro liver cell functionality according to the in vivo liver physiology and allow to establish stem cell-based hepatic in vitro platforms for the accurate evaluation of xenobiotics.
Collapse
Affiliation(s)
- Alessandra Natale
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium
| | - Koen Vanmol
- Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium
| | - Aysu Arslan
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Sandra Van Vlierberghe
- Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Jürgen Van Erps
- Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium
| | - Hugo Thienpont
- Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium
| | | | - Joost Boeckmans
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium
| | - Vera Rogiers
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium
| | - Robim M Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
40
|
Liu W, Wang Y, Sun Y, Wu Y, Ma Q, Shi Y, He R, Zhang T, Ma Y, Zuo W, Wu Z. Clonal expansion of hepatic progenitor cells and differentiation into hepatocyte-like cells. Dev Growth Differ 2019; 61:203-211. [PMID: 30786319 DOI: 10.1111/dgd.12596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 12/14/2018] [Accepted: 12/28/2018] [Indexed: 12/13/2022]
Abstract
Hepatic progenitor cells (HPCs) in adult liver are promising for treatment of liver diseases. A biliary-derived HPC population in adult mice has been characterized by co-expression of stem cell marker Sry (sex determining region Y)-box 9 (SOX9) and biliary marker cytokeratin 7 (CK7). However, isolation of these HPCs in adult healthy liver without any selection procedures remains a big challenge in this field. Here, by establishing a simple and efficient method to isolate and expand the CK7+ SOX9+ HPCs in vitro as clones, we acquired a stable and largely scalable cell source. The CK7+ SOX9+ progenitor cells were then further induced to differentiate into hepatocyte-like cells with expression of mature hepatocyte markers albumin (Alb) and hepatocyte nuclear factor 4 alpha (HNF4α), both in vitro and in vivo in the presence of hepatocyte growth factor (HGF) and fibroblast growth factor 9 (FGF9). Furthermore, we found that the HPCs are highly responsive to transforming growth factor-beta (TGF-β) signals. Collectively, we identified and harvested a CK7+ SOX9+ progenitor cell population from adult mouse liver by a simple and efficient approach. The exploration of this HPC population offers an alternative strategy of generating hepatocyte-like cells for cell-based therapies of acute and chronic liver disorders.
Collapse
Affiliation(s)
- Wenbin Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Kiangnan Stem Cell Institute, Hangzhou, China
| | - Yujia Wang
- Kiangnan Stem Cell Institute, Hangzhou, China.,Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yufen Sun
- Kiangnan Stem Cell Institute, Hangzhou, China.,Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yingchuan Wu
- Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiwang Ma
- Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yun Shi
- Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ruoxu He
- Kiangnan Stem Cell Institute, Hangzhou, China
| | - Ting Zhang
- Kiangnan Stem Cell Institute, Hangzhou, China
| | - Yu Ma
- Kiangnan Stem Cell Institute, Hangzhou, China.,Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Zuo
- Kiangnan Stem Cell Institute, Hangzhou, China.,Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
41
|
Directing the growth and alignment of biliary epithelium within extracellular matrix hydrogels. Acta Biomater 2019; 85:84-93. [PMID: 30590182 DOI: 10.1016/j.actbio.2018.12.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/04/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022]
Abstract
Three-dimensional (3D) printing of decellularized extracellular matrix (dECM) hydrogels is a promising technique for regenerative engineering. 3D-printing enables the reproducible and precise patterning of multiple cells and biomaterials in 3D, while dECM has high organ-specific bioactivity. However, dECM hydrogels often display poor printability on their own and necessitate additives or support materials to enable true 3D structures. In this study, we used a sacrificial material, 3D-printed Pluronic F-127, to serve as a platform into which dECM hydrogel can be incorporated to create specifically designed structures made entirely up of dECM. The effects of 3D dECM are studied in the context of engineering the intrahepatic biliary tree, an often-understudied topic in liver tissue engineering. Encapsulating biliary epithelial cells (cholangiocytes) within liver dECM has been shown to lead to the formation of complex biliary trees in vitro. By varying several aspects of the dECM structures' geometry, such as width and angle, we show that we can guide the directional formation of biliary trees. This is confirmed by computational 3D image analysis of duct alignment. This system also enables fabrication of a true multi-layer dECM structure and the formation of 3D biliary trees into which other cell types can be seeded. For example, we show that hepatocyte spheroids can be easily incorporated within this system, and that the seeding sequence influences the resulting structures after seven days in culture. STATEMENT OF SIGNIFICANCE: The field of liver tissue engineering has progressed significantly within the past several years, however engineering the intrahepatic biliary tree has remained a significant challenge. In this study, we utilize the inherent bioactivity of decellularized extracellular matrix (dECM) hydrogels and 3D-printing of a sacrificial biomaterial to create spatially defined, 3D biliary trees. The creation of patterned, 3D dECM hydrogels in the past has only been possible with additives to the gel that may stifle its bioactivity, or with rigid and permanent support structures that may present issues upon implantation. Additionally, the biological effect of 3D spatially patterned liver dECM has not been demonstrated independent of the effects of dECM bioactivity alone. This study demonstrates that sacrificial materials can be used to create pure, multi-layer dECM structures, and that strut width and angle can be changed to influence the formation and alignment of biliary trees encapsulated within. Furthermore, this strategy allows co-culture of other cells such as hepatocytes. We demonstrate that not only does this system show promise for tissue engineering the intrahepatic biliary tree, but it also aids in the study of duct formation and cell-cell interactions.
Collapse
|
42
|
Pei D, Shu X, Gassama-Diagne A, Thiery JP. Mesenchymal–epithelial transition in development and reprogramming. Nat Cell Biol 2019; 21:44-53. [DOI: 10.1038/s41556-018-0195-z] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023]
|
43
|
Abstract
Cholangiocytes play a crucial role in the pathophysiology of cholestasis. However, research on human cholangiocytes has been restricted by challenges in long-term propagation and large-scale expansion of primary biliary epithelium. The advent of organoid technology has overcome this limitation allowing long-term culture of a variety of epithelia from multiple organs. Here, we describe two methods for growing human cholangiocytes in organoid format. The first applies to the generation of intrahepatic bile ducts using human induced pluripotent stem cells using a protocol of differentiation that recapitulates physiological bile duct development. The second method allows the propagation of primary biliary epithelium from the extrahepatic ducts or gallbladder. Both protocols result in large numbers of cholangiocyte organoids expressing biliary markers and maintaining key cholangiocyte functions.
Collapse
Affiliation(s)
- Fotios Sampaziotis
- Wellcome Trust and MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Olivia Tysoe
- Wellcome Trust and MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Teresa Brevini
- Wellcome Trust and MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Ludovic Vallier
- Wellcome Trust and MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Cambridge, UK.
- Department of Surgery, University of Cambridge, Cambridge, UK.
| |
Collapse
|
44
|
Abstract
The essential liver exocrine and endocrine functions require a precise spatial arrangement of the hepatic lobule consisting of the central vein, portal vein, hepatic artery, intrahepatic bile duct system, and hepatocyte zonation. This allows blood to be carried through the liver parenchyma sampled by all hepatocytes and bile produced by the hepatocytes to be carried out of the liver through the intrahepatic bile duct system composed of cholangiocytes. The molecular orchestration of multiple signaling pathways and epigenetic factors is required to set up lineage restriction of the bipotential hepatoblast progenitor into the hepatocyte and cholangiocyte cell lineages, and to further refine cell fate heterogeneity within each cell lineage reflected in the functional heterogeneity of hepatocytes and cholangiocytes. In addition to the complex molecular regulation, there is a complicated morphogenetic choreography observed in building the refined hepatic epithelial architecture. Given the multifaceted molecular and cellular regulation, it is not surprising that impairment of any of these processes can result in acute and chronic hepatobiliary diseases. To enlighten the development of potential molecular and cellular targets for therapeutic options, an understanding of how the intricate hepatic molecular and cellular interactions are regulated is imperative. Here, we review the signaling pathways and epigenetic factors regulating hepatic cell lineages, fates, and epithelial architecture.
Collapse
Affiliation(s)
- Stacey S Huppert
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| | - Makiko Iwafuchi-Doi
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
45
|
M1-Polarized Macrophages Promote Self-Renewing Phenotype of Hepatic Progenitor Cells with Jagged1-Notch Signalling Involved: Relevance in Primary Sclerosing Cholangitis. J Immunol Res 2018; 2018:4807145. [PMID: 30671485 PMCID: PMC6323443 DOI: 10.1155/2018/4807145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/28/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023] Open
Abstract
The immunologic interaction between parenchyma cells and encircling inflammatory cells is thought to be the most important mechanism of biliary damage and repair in primary sclerosing cholangitis (PSC). Monocytes/macrophages as master regulators of hepatic inflammation have been demonstrated to contribute to PSC pathogenesis. Macrophages coordinate with liver regeneration, and multiple phenotypes have been identified with diverse expressions of surface proteins and cytokine productions. We analyzed the expression of Notch ligand Jagged1 in polarized macrophages and investigated the relevance of Notch signalling activation in liver regeneration. M1 or M2 macrophages were generated from mouse bone marrow-derived macrophages (BMDMs) by classical or alternative activation, respectively. Then, the expression levels of Jagged1 (Jag1) of each phenotype were measured. The effects of polarized BMDMs on the expression of hepatic progenitor cell- (HPC-) specific markers and hairy and enhancer of split-1 (HES1) in HPCs in coculture were also analyzed. Monocyte-macrophage and Notch signalling-associated gene signatures were evaluated in the GEO database (access ID: GSE61260) by gene set enrichment analysis (GSEA). M1 macrophages were found associated with elevated Jag1 expression, which increased the fraction of HPC with self-renewing phenotypes (CD326+CD44+ or CD324+CD44+) and HES1 expression level in cocultured HPC. Blocking Jagged1 by siRNA or antibody in the coculture system attenuates HPC self-renewing phenotypes as well as HES1 expression in HPC. GSEA data show that macrophage activation and Notch signalling-associated gene signatures are enriched in PSC patients. These findings suggest that M1 macrophages promote an HPC self-renewing phenotype which is associated with Notch signalling activation within HPC. In the liver of PSC patients, the prevalence of activated macrophages, with M1 polarized accounting for the main part, is associated with increment of Notch signalling and enhancement of HPC self-renewal.
Collapse
|
46
|
Yang L, Li LC, Wang X, Wang WH, Wang YC, Xu CR. The contributions of mesoderm-derived cells in liver development. Semin Cell Dev Biol 2018; 92:63-76. [PMID: 30193996 DOI: 10.1016/j.semcdb.2018.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/31/2018] [Accepted: 09/02/2018] [Indexed: 02/07/2023]
Abstract
The liver is an indispensable organ for metabolism and drug detoxification. The liver consists of endoderm-derived hepatobiliary lineages and various mesoderm-derived cells, and interacts with the surrounding tissues and organs through the ventral mesentery. Liver development, from hepatic specification to liver maturation, requires close interactions with mesoderm-derived cells, such as mesothelial cells, hepatic stellate cells, mesenchymal cells, liver sinusoidal endothelial cells and hematopoietic cells. These cells affect liver development through precise signaling events and even direct physical contact. Through the use of new techniques, emerging studies have recently led to a deeper understanding of liver development and its related mechanisms, especially the roles of mesodermal cells in liver development. Based on these developments, the current protocols for in vitro hepatocyte-like cell induction and liver-like tissue construction have been optimized and are of great importance for the treatment of liver diseases. Here, we review the roles of mesoderm-derived cells in the processes of liver development, hepatocyte-like cell induction and liver-like tissue construction.
Collapse
Affiliation(s)
- Li Yang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Lin-Chen Li
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xin Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China
| | - Wei-Hua Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yan-Chun Wang
- Haidian Maternal & Child Health Hospital, Beijing, 100080, China
| | - Cheng-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China.
| |
Collapse
|
47
|
Sivakumar A, Kurpios NA. Transcriptional regulation of cell shape during organ morphogenesis. J Cell Biol 2018; 217:2987-3005. [PMID: 30061107 PMCID: PMC6122985 DOI: 10.1083/jcb.201612115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/11/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023] Open
Abstract
The emerging field of transcriptional regulation of cell shape changes aims to address the critical question of how gene expression programs produce a change in cell shape. Together with cell growth, division, and death, changes in cell shape are essential for organ morphogenesis. Whereas most studies of cell shape focus on posttranslational events involved in protein organization and distribution, cell shape changes can be genetically programmed. This review highlights the essential role of transcriptional regulation of cell shape during morphogenesis of the heart, lungs, gastrointestinal tract, and kidneys. We emphasize the evolutionary conservation of these processes across different model organisms and discuss perspectives on open questions and research avenues that may provide mechanistic insights toward understanding birth defects.
Collapse
Affiliation(s)
- Aravind Sivakumar
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Natasza A Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
48
|
Sun S, Li Y, Liu B, Zhang B, Han S, Li X. The susceptibility of human hepatoma-derived oval-like cells to hepatitis B virus infection. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:4414-4422. [PMID: 31949838 PMCID: PMC6962950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/14/2018] [Indexed: 06/10/2023]
Abstract
Human hepatocytes are a primary site of infection and replication of the hepatitis B virus (HBV). It is tempting to conclude that tissue specificity is controlled via virus-hepatocyte specific interactions at various steps during the viral lifecycle. However, the molecular mechanisms underlying hepatotropism of HBV are not fully clear. To address this issue, this study aims to identify hepatic factors that contribute to the regulation of the lifecycles of hepatitis viruses- especially HBV- and to clarify their regulatory mechanisms. We established oval-like cell lines (Hdo cells) by introducing a set of reprogramming factors (OCT3/4, SOX2, KLF4, LIN28, and NANOG) into human hepatoma HuH7 cells that are susceptible to HBV. Hdo cells exhibit a bi-directional differentiation potential. We found that Hdo cells maintained support for the replication of HBV but not of HCV. The level of particle-associated HBV DNA secreted into the culture medium was higher in the Hdo cells. Still, the HBs antigen level was lower than in parental HuH7 cells, suggesting that the regulation of HBV gene expression was affected by the reprogramming of HuH7 cells. A microarray analysis determined that the expression of host factors was largely comparable among of HuH7 and Hdo cells. In contrast, Hdo cells lost their susceptibility to HCV infection and to replication of the viral subgenome replicon RNA. Our results suggest that epigenetic reprogramming of human hepatoma cells potentially changes their permissivity to HBV. Furthermore, Hdo cells can be used as powerful tools to identify cellular determinants that change their expression during reprogramming or hepatic differentiation.
Collapse
Affiliation(s)
- Suofeng Sun
- Department of Gastroenterology, Henan Provincial People’s HospitalZhengzhou, China
| | - Yuan Li
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital Affiliated of Henan University of Traditional Chinese MedicineZhengzhou, China
| | - Bowei Liu
- Department of Gastroenterology, Henan Provincial People’s HospitalZhengzhou, China
| | - Bingyong Zhang
- Department of Gastroenterology, Henan Provincial People’s HospitalZhengzhou, China
| | - Shuangyin Han
- Department of Gastroenterology, Henan Provincial People’s HospitalZhengzhou, China
| | - Xiuling Li
- Department of Gastroenterology, Henan Provincial People’s HospitalZhengzhou, China
| |
Collapse
|
49
|
Kamiya A, Chikada H, Ida K, Ando E, Tsuruya K, Kagawa T, Inagaki Y. An in vitro model of polycystic liver disease using genome-edited human inducible pluripotent stem cells. Stem Cell Res 2018; 32:17-24. [PMID: 30172093 DOI: 10.1016/j.scr.2018.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 08/14/2018] [Accepted: 08/22/2018] [Indexed: 01/23/2023] Open
Abstract
In the developing liver, bile duct structure is formed through differentiation of hepatic progenitor cells (HPC) into cholangiocytes. A subtype of polycystic liver diseases characterized by uncontrolled expansion of bile ductal cells is caused by genetic abnormalities such as in that of protein kinase C substrate 80 K-H (PRKCSH). In this study, we aimed to mimic the disease process in vitro by genome editing of the PRKCSH locus in human inducible pluripotent stem (iPS) cells. A proportion of cultured human iPS cell-derived CD13+CD133+ HPC differentiated into CD13- cells. During the subsequent gel embedding culture, CD13- cells formed bile ductal marker-positive cystic structures with the polarity of epithelial cells. A deletion of PRKCSH gene increased expression of cholangiocytic transcription factors in CD13- cells and the number of cholangiocytic cyst structure. These results suggest that PRKCSH deficiency promotes the differentiation of HPC-derived cholangiocytes, providing a good in vitro model to analyze the molecular mechanisms underlying polycystic diseases.
Collapse
Affiliation(s)
- Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan; Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Hiromi Chikada
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan; Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Kinuyo Ida
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Emi Ando
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Kota Tsuruya
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan; Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Tatehiro Kagawa
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; Department of Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
50
|
Lewis PL, Su J, Yan M, Meng F, Glaser SS, Alpini GD, Green RM, Sosa-Pineda B, Shah RN. Complex bile duct network formation within liver decellularized extracellular matrix hydrogels. Sci Rep 2018; 8:12220. [PMID: 30111800 PMCID: PMC6093899 DOI: 10.1038/s41598-018-30433-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
The biliary tree is an essential component of transplantable human liver tissue. Despite recent advances in liver tissue engineering, attempts at re-creating the intrahepatic biliary tree have not progressed significantly. The finer branches of the biliary tree are structurally and functionally complex and heterogeneous and require harnessing innate developmental processes for their regrowth. Here we demonstrate the ability of decellularized liver extracellular matrix (dECM) hydrogels to induce the in vitro formation of complex biliary networks using encapsulated immortalized mouse small biliary epithelial cells (cholangiocytes). This phenomenon is not observed using immortalized mouse large cholangiocytes, or with purified collagen 1 gels or Matrigel. We also show phenotypic stability via immunostaining for specific cholangiocyte markers. Moreover, tight junction formation and maturation was observed to occur between cholangiocytes, exhibiting polarization and transporter activity. To better define the mechanism of duct formation, we utilized three fluorescently labeled, but otherwise identical populations of cholangiocytes. The cells, in a proximity dependent manner, either branch out clonally, radiating from a single nucleation point, or assemble into multi-colored structures arising from separate populations. These findings present liver dECM as a promising biomaterial for intrahepatic bile duct tissue engineering and as a tool to study duct remodeling in vitro.
Collapse
Affiliation(s)
- Phillip L. Lewis
- 0000 0001 2299 3507grid.16753.36Biomedical Engineering, Northwestern University, Evanston, IL, USA ,0000 0001 2299 3507grid.16753.36Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Jimmy Su
- 0000 0001 2299 3507grid.16753.36Biomedical Engineering, Northwestern University, Evanston, IL, USA ,0000 0001 2299 3507grid.16753.36Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Ming Yan
- 0000 0001 2299 3507grid.16753.36Biomedical Engineering, Northwestern University, Evanston, IL, USA ,0000 0001 2299 3507grid.16753.36Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Fanyin Meng
- 0000 0004 0420 5847grid.413775.3Research Central Texas Veterans Health Care System, Temple, TX, USA ,grid.486749.0Baylor Scott & White Health Digestive Disease Research Center, Temple, TX, USA
| | - Shannon S. Glaser
- 0000 0004 0420 5847grid.413775.3Research Central Texas Veterans Health Care System, Temple, TX, USA ,grid.486749.0Baylor Scott & White Health Digestive Disease Research Center, Temple, TX, USA ,0000 0004 4687 2082grid.264756.4Medical Physiology, Texas A&M University College of Medicine, Temple, TX, USA
| | - Gianfranco D. Alpini
- 0000 0004 0420 5847grid.413775.3Research Central Texas Veterans Health Care System, Temple, TX, USA ,grid.486749.0Baylor Scott & White Health Digestive Disease Research Center, Temple, TX, USA ,0000 0004 4687 2082grid.264756.4Medical Physiology, Texas A&M University College of Medicine, Temple, TX, USA
| | - Richard M. Green
- 0000 0001 2299 3507grid.16753.36Division of Gastroenterology and Hepatology, Northwestern University, Chicago, IL, USA
| | - Beatriz Sosa-Pineda
- 0000 0001 2299 3507grid.16753.36Nephrology, Northwestern University, Chicago, IL, USA
| | - Ramille N. Shah
- 0000 0001 2299 3507grid.16753.36Simpson Querrey Institute, Northwestern University, Chicago, IL, USA ,0000 0001 2299 3507grid.16753.36Materials Science and Engineering, Northwestern University, Evanston, IL, USA ,0000 0001 2299 3507grid.16753.36Surgery (Transplant Division), Northwestern University, Chicago, IL, USA
| |
Collapse
|