1
|
An in vitro vesicle formation assay reveals cargo clients and factors that mediate vesicular trafficking. Proc Natl Acad Sci U S A 2021; 118:2101287118. [PMID: 34433667 PMCID: PMC8536394 DOI: 10.1073/pnas.2101287118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein sorting in the secretory pathway is a fundamentally important cellular process, but the clients of a specific cargo sorting machinery remains largely underinvestigated. Here, utilizing a vesicle formation assay to profile proteins associated with vesicles, we identified cytosolic proteins that are associated with vesicle membranes in a GTP-dependent manner or that interact with GTP-bound Sar1A. We found that two of them, FAM84B and PRRC1, regulate anterograde trafficking. Moreover, we revealed specific clients of two export adaptors, SURF4 and ERGIC53. These analyses demonstrate that our approach is powerful to identify factors that regulate vesicular trafficking and to uncover clients of specific cargo receptors, providing a robust method to reveal insights into the secretory pathway. The fidelity of protein transport in the secretory pathway relies on the accurate sorting of proteins to their correct destinations. To deepen our understanding of the underlying molecular mechanisms, it is important to develop a robust approach to systematically reveal cargo proteins that depend on specific sorting machinery to be enriched into transport vesicles. Here, we used an in vitro assay that reconstitutes packaging of human cargo proteins into vesicles to quantify cargo capture. Quantitative mass spectrometry (MS) analyses of the isolated vesicles revealed cytosolic proteins that are associated with vesicle membranes in a GTP-dependent manner. We found that two of them, FAM84B (also known as LRAT domain containing 2 or LRATD2) and PRRC1, contain proline-rich domains and regulate anterograde trafficking. Further analyses revealed that PRRC1 is recruited to endoplasmic reticulum (ER) exit sites, interacts with the inner COPII coat, and its absence increases membrane association of COPII. In addition, we uncovered cargo proteins that depend on GTP hydrolysis to be captured into vesicles. Comparing control cells with cells depleted of the cargo receptors, SURF4 or ERGIC53, we revealed specific clients of each of these two export adaptors. Our results indicate that the vesicle formation assay in combination with quantitative MS analysis is a robust and powerful tool to uncover novel factors that mediate vesicular trafficking and to uncover cargo clients of specific cellular factors.
Collapse
|
2
|
Yang F, Li T, Peng Z, Liu Y, Guo Y. The amphipathic helices of Arfrp1 and Arl14 are sufficient to determine subcellular localizations. J Biol Chem 2020; 295:16643-16654. [PMID: 32972971 PMCID: PMC7864062 DOI: 10.1074/jbc.ra120.014999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/31/2020] [Indexed: 11/06/2022] Open
Abstract
The subcellular localization of Arf family proteins is generally thought to be determined by their corresponding guanine nucleotide exchange factors. By promoting GTP binding, guanine nucleotide exchange factors induce conformational changes of Arf proteins exposing their N-terminal amphipathic helices, which then insert into the membranes to stabilize the membrane association process. Here, we found that the N-terminal amphipathic motifs of the Golgi-localized Arf family protein, Arfrp1, and the endosome- and plasma membrane-localized Arf family protein, Arl14, play critical roles in spatial determination. Exchanging the amphipathic helix motifs between these two Arf proteins causes the switch of their localizations. Moreover, the amphipathic helices of Arfrp1 and Arl14 are sufficient for cytosolic proteins to be localized into a specific cellular compartment. The spatial determination mediated by the Arfrp1 helix requires its binding partner Sys1. In addition, the residues that are required for the acetylation of the Arfrp1 helix and the myristoylation of the Arl14 helix are important for the specific subcellular localization. Interestingly, Arfrp1 and Arl14 are recruited to their specific cellular compartments independent of GTP binding. Our results demonstrate that the amphipathic motifs of Arfrp1 and Arl14 are sufficient for determining specific subcellular localizations in a GTP-independent manner, suggesting that the membrane association and activation of some Arf proteins are uncoupled.
Collapse
Affiliation(s)
- Feng Yang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Tiantian Li
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ziqing Peng
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yang Liu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yusong Guo
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
3
|
Amano G, Matsuzaki S, Mori Y, Miyoshi K, Han S, Shikada S, Takamura H, Yoshimura T, Katayama T. SCYL1 arginine methylation by PRMT1 is essential for neurite outgrowth via Golgi morphogenesis. Mol Biol Cell 2020; 31:1963-1973. [PMID: 32583741 PMCID: PMC7543066 DOI: 10.1091/mbc.e20-02-0100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Arginine methylation is a common posttranslational modification that modulates protein function. SCY1-like pseudokinase 1 (SCYL1) is crucial for neuronal functions and interacts with γ2-COP to form coat protein complex I (COPI) vesicles that regulate Golgi morphology. However, the molecular mechanism by which SCYL1 is regulated remains unclear. Here, we report that the γ2-COP-binding site of SCYL1 is arginine-methylated by protein arginine methyltransferase 1 (PRMT1) and that SCYL1 arginine methylation is important for the interaction of SCYL1 with γ2-COP. PRMT1 was colocalized with SCYL1 in the Golgi fraction. Inhibition of PRMT1 suppressed axon outgrowth and dendrite complexity via abnormal Golgi morphology. Knockdown of SCYL1 by small interfering RNA (siRNA) inhibited axon outgrowth, and the inhibitory effect was rescued by siRNA-resistant SCYL1, but not SCYL1 mutant, in which the arginine methylation site was replaced. Thus, PRMT1 regulates Golgi morphogenesis via SCYL1 arginine methylation. We propose that SCYL1 arginine methylation by PRMT1 contributes to axon and dendrite morphogenesis in neurons.
Collapse
Affiliation(s)
- Genki Amano
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinsuke Matsuzaki
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | - Yasutake Mori
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Anatomy, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba, 286-8686, Japan
| | - Ko Miyoshi
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Sarina Han
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Sho Shikada
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hironori Takamura
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Yoshimura
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Taiichi Katayama
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Plant Lipid Bodies Traffic on Actin to Plasmodesmata Motorized by Myosin XIs. Int J Mol Sci 2020; 21:ijms21041422. [PMID: 32093159 PMCID: PMC7073070 DOI: 10.3390/ijms21041422] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Late 19th-century cytologists observed tiny oil drops in shoot parenchyma and seeds, but it was discovered only in 1972 that they were bound by a half unit-membrane. Later, it was found that lipid bodies (LBs) arise from the endoplasmic reticulum. Seeds are known to be packed with static LBs, coated with the LB-specific protein OLEOSIN. As shown here, apices of Populustremula x P. tremuloides also express OLEOSIN genes and produce potentially mobile LBs. In developing buds, PtOLEOSIN (PtOLE) genes were upregulated, especially PtOLE6, concomitant with LB accumulation. To investigate LB mobility and destinations, we transformed Arabidopsis with PtOLE6-eGFP. We found that PtOLE6-eGFP fusion protein co-localized with Nile Red-stained LBs in all cell types. Moreover, PtOLE6-eGFP-tagged LBs targeted plasmodesmata, identified by the callose marker aniline blue. Pharmacological experiments with brefeldin, cytochalasin D, and oryzalin showed that LB-trafficking requires F-actin, implying involvement of myosin motors. In a triple myosin-XI knockout (xi-k/1/2), transformed with PtOLE6-eGFP, trafficking of PtOLE6-eGFP-tagged LBs was severely impaired, confirming that they move on F-actin, motorized by myosin XIs. The data reveal that LBs and OLEOSINs both function in proliferating apices and buds, and that directional trafficking of LBs to plasmodesmata requires the actomyosin system.
Collapse
|
5
|
Sánchez-Simarro J, Bernat-Silvestre C, Gimeno-Ferrer F, Selvi-Martínez P, Montero-Pau J, Aniento F, Marcote MJ. Loss of Arabidopsis β-COP Function Affects Golgi Structure, Plant Growth and Tolerance to Salt Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:430. [PMID: 32351533 PMCID: PMC7175232 DOI: 10.3389/fpls.2020.00430] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/24/2020] [Indexed: 05/20/2023]
Abstract
The early secretory pathway involves bidirectional transport between the endoplasmic reticulum (ER) and the Golgi apparatus and is mediated by coat protein complex I (COPI)-coated and coat protein complex II (COPII)-coated vesicles. COPII vesicles are involved in ER to Golgi transport meanwhile COPI vesicles mediate intra-Golgi transport and retrograde transport from the Golgi apparatus to the ER. The key component of COPI vesicles is the coatomer complex, that is composed of seven subunits (α/β/β'/γ/δ/ε/ζ). In Arabidopsis two genes coding for the β-COP subunit have been identified, which are the result of recent tandem duplication. Here we have used a loss-of-function approach to study the function of β-COP. The results we have obtained suggest that β-COP is required for plant growth and salt tolerance. In addition, β-COP function seems to be required for maintaining the structure of the Golgi apparatus.
Collapse
|
6
|
Frisbie CP, Lushnikov AY, Krasnoslobodtsev AV, Riethoven JJM, Clarke JL, Stepchenkova EI, Petrosyan A. Post-ER Stress Biogenesis of Golgi Is Governed by Giantin. Cells 2019; 8:E1631. [PMID: 31847122 PMCID: PMC6953117 DOI: 10.3390/cells8121631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The Golgi apparatus undergoes disorganization in response to stress, but it is able to restore compact and perinuclear structure under recovery. This self-organization mechanism is significant for cellular homeostasis, but remains mostly elusive, as does the role of giantin, the largest Golgi matrix dimeric protein. METHODS In HeLa and different prostate cancer cells, we used the model of cellular stress induced by Brefeldin A (BFA). The conformational structure of giantin was assessed by proximity ligation assay and atomic force microscopy. The post-BFA distribution of Golgi resident enzymes was examined by 3D SIM high-resolution microscopy. RESULTS We detected that giantin is rather flexible than an extended coiled-coil dimer and BFA-induced Golgi disassembly was associated with giantin monomerization. A fusion of the nascent Golgi membranes after BFA washout is forced by giantin re-dimerization via disulfide bond in its luminal domain and assisted by Rab6a GTPase. GM130-GRASP65-dependent enzymes are able to reach the nascent Golgi membranes, while giantin-sensitive enzymes appeared at the Golgi after its complete recovery via direct interaction of their cytoplasmic tail with N-terminus of giantin. CONCLUSION Post-stress recovery of Golgi is conducted by giantin dimer and Golgi proteins refill membranes according to their docking affiliation rather than their intra-Golgi location.
Collapse
Affiliation(s)
- Cole P. Frisbie
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA;
| | - Alexander Y. Lushnikov
- Nanoimaging Core Facility, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA; (A.Y.L.); (A.V.K.)
| | - Alexey V. Krasnoslobodtsev
- Nanoimaging Core Facility, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA; (A.Y.L.); (A.V.K.)
- Department of Physics, University of Nebraska-Omaha, Omaha, NE 68182-0266, USA
| | - Jean-Jack M. Riethoven
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588-0665, USA;
- The Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA;
| | - Jennifer L. Clarke
- The Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA;
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE 68583-0963, USA
| | - Elena I. Stepchenkova
- Vavilov Institute of General Genetics, Saint-Petersburg Branch, Russian Academy of Sciences, Saint-Petersburg 199034, Russia;
- Department of Genetics, Saint-Petersburg State University, Saint-Petersburg 199034, Russia
| | - Armen Petrosyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA;
- The Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA;
- The Fred and Pamela Buffett Cancer Center, Omaha, NE 68198-5870, USA
| |
Collapse
|
7
|
Huang Y, Ma T, Lau PK, Wang J, Zhao T, Du S, Loy MMT, Guo Y. Visualization of Protein Sorting at the Trans-Golgi Network and Endosomes Through Super-Resolution Imaging. Front Cell Dev Biol 2019; 7:181. [PMID: 31552246 PMCID: PMC6733968 DOI: 10.3389/fcell.2019.00181] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022] Open
Abstract
The trans-Golgi network (TGN) and endosomes are essential protein sorting stations in the secretory transport pathway. Protein sorting is fundamentally a process of spatial segregation, but the spatial relationships among the proteins that constitute the sorting machinery have not been systematically analyzed at high resolution in mammalian cells. Here, using two-color STORM imaging, we show that the TGN/endosome-localized cargo adaptors, AP-1, GGA2 and epsinR, form elongated structures of over 250 nm in length at the juxta-nuclear Golgi area. Many of these structures are associated with clathrin. We found that AP-1 is spatially segregated from AP-3 and GGA2, whereas a fraction of AP-1 and GGA2 punctae are associated with epsinR. Moreover, we observed that the planar cell polarity cargo proteins, Vangl2 and Frizzled6 associate with different cargo adaptors—AP-1 and GGA2 or epsinR, respectively—when exiting the TGN. Knockdown analysis confirms the functional significance of this segregation. Our data indicates that TGN/endosome-localized cargo adaptors have distinct spatial relationships. The spatially segregated cargo adaptors GGA2 and AP-1 regulate sorting of Frizzled6 and Vangl2, respectively and spatially associated cargo adaptors can cooperatively regulate a specific sorting process.
Collapse
Affiliation(s)
- Yan Huang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Tianji Ma
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Pik Ki Lau
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Jinhui Wang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Teng Zhao
- Light Innovation Technology Limited, Hong Kong, China
| | - Shengwang Du
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China.,Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Michael M T Loy
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yusong Guo
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China.,Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
8
|
Abstract
The coat protein complex I (COPI) allows the precise sorting of lipids and proteins between Golgi cisternae and retrieval from the Golgi to the ER. This essential role maintains the identity of the early secretory pathway and impinges on key cellular processes, such as protein quality control. In this Cell Science at a Glance and accompanying poster, we illustrate the different stages of COPI-coated vesicle formation and revisit decades of research in the context of recent advances in the elucidation of COPI coat structure. By calling attention to an array of questions that have remained unresolved, this review attempts to refocus the perspectives of the field.
Collapse
Affiliation(s)
- Eric C Arakel
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Blanche Schwappach
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany .,Max-Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
9
|
Overlapping Role of SCYL1 and SCYL3 in Maintaining Motor Neuron Viability. J Neurosci 2018; 38:2615-2630. [PMID: 29437892 DOI: 10.1523/jneurosci.2282-17.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/23/2017] [Accepted: 01/31/2018] [Indexed: 11/21/2022] Open
Abstract
Members of the SCY1-like (SCYL) family of protein kinases are evolutionarily conserved and ubiquitously expressed proteins characterized by an N-terminal pseudokinase domain, centrally located Huntingtin, elongation factor 3, protein phosphatase 2A, yeast kinase TOR1 repeats, and an overall disorganized C-terminal segment. In mammals, three family members encoded by genes Scyl1, Scyl2, and Scyl3 have been described. Studies have pointed to a role for SCYL1 and SCYL2 in regulating neuronal function and viability in mice and humans, but little is known about the biological function of SCYL3. Here, we show that the biochemical and cell biological properties of SCYL3 are similar to those of SCYL1 and both proteins work in conjunction to maintain motor neuron viability. Specifically, although lack of Scyl3 in mice has no apparent effect on embryogenesis and postnatal life, it accelerates the onset of the motor neuron disorder caused by Scyl1 deficiency. Growth abnormalities, motor dysfunction, hindlimb paralysis, muscle wasting, neurogenic atrophy, motor neuron degeneration, and loss of large-caliber axons in peripheral nerves occurred at an earlier age in Scyl1/Scyl3 double-deficient mice than in Scyl1-deficient mice. Disease onset also correlated with the mislocalization of TDP-43 in spinal motor neurons, suggesting that SCYL1 and SCYL3 regulate TDP-43 proteostasis. Together, our results demonstrate an overlapping role for SCYL1 and SCYL3 in vivo and highlight the importance the SCYL family of proteins in regulating neuronal function and survival. Only male mice were used in this study.SIGNIFICANCE STATEMENT SCYL1 and SCYL2, members of the SCY1-like family of pseudokinases, have well established roles in neuronal function. Herein, we uncover the role of SCYL3 in maintaining motor neuron viability. Although targeted disruption of Scyl3 in mice had little or no effect on embryonic development and postnatal life, it accelerated disease onset associated with the loss of Scyl1, a novel motor neuron disease gene in humans. Scyl1 and Scyl3 double-deficient mice had neuronal defects characteristic of amyotrophic lateral sclerosis, including TDP-43 pathology, at an earlier age than did Scyl1-deficient mice. Thus, we show that SCYL1 and SCYL3 play overlapping roles in maintaining motor neuronal viability in vivo and confirm that SCYL family members are critical regulators of neuronal function and survival.
Collapse
|
10
|
Abstract
During the process of neurogenesis, the stem cell committed to the neuronal cell fate starts a series of molecular and morphological changes. The understanding of the physio-pathology of mechanisms controlling the molecular and morphological changes occurring during neuronal differentiation is fundamental to the development of effective therapies for many neurologic diseases. Unfortunately, our knowledge of the biological events occurring in the cell during neuronal differentiation is still poor. In this study, we focus preliminarily on the relevance of the cytoskeletal rearrangements, which earlier drive the morphology of the neuronal precursors, and later the migrating/mature neurons. In fact, neuritogenesis, neurite branching, outgrowth and retraction are seminal to the development of a fully functional nervous system. With this in mind, we highlight the importance of iPSC technology to study the processes of cytoskeletal-driven morphological changes during neuronal differentiation.
Collapse
|
11
|
Duclos C, Lavoie C, Denault JB. Caspases rule the intracellular trafficking cartel. FEBS J 2017; 284:1394-1420. [PMID: 28371378 DOI: 10.1111/febs.14071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/17/2017] [Accepted: 03/27/2017] [Indexed: 12/15/2022]
Abstract
During apoptosis, caspases feast on several hundreds of cellular proteins to orchestrate rapid cellular demise. Indeed, caspases are known to get a taste of every cellular process in one way or another, activating some, but most often shutting them down. Thus, it is not surprising that caspases proteolyze proteins involved in intracellular trafficking with particularly devastating consequences for this important process. This review article focuses on how caspases target the machinery responsible for smuggling goods within and outside the cell.
Collapse
Affiliation(s)
- Catherine Duclos
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, QC, Canada
| | - Christine Lavoie
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, QC, Canada
| | - Jean-Bernard Denault
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, QC, Canada
| |
Collapse
|
12
|
Abstract
Protein secretion mediated by the secretory transport pathway is an important cellular process in eukaryotic cells. In the conventional secretory transport pathway, newly synthesized proteins pass through several endomembrane compartments en route to their specific destinations. Transport of secretory proteins between different compartments is shuttled by small, membrane-enclosed vesicles. To ensure the fidelity of transport, eukaryotic cells employ elaborate molecular machineries to accurately sort newly synthesized proteins into specific transport vesicles and precisely deliver these transport vesicles to distinct acceptor compartments. In this review, we summarize the molecular machineries that regulate each step of vesicular transport in the secretory transport pathway in yeast and animal cells.
Collapse
Affiliation(s)
- Yusong Guo
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Feng Yang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiao Tang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
13
|
Cheung PYP, Pfeffer SR. Transport Vesicle Tethering at the Trans Golgi Network: Coiled Coil Proteins in Action. Front Cell Dev Biol 2016; 4:18. [PMID: 27014693 PMCID: PMC4791371 DOI: 10.3389/fcell.2016.00018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 02/29/2016] [Indexed: 12/14/2022] Open
Abstract
The Golgi complex is decorated with so-called Golgin proteins that share a common feature: a large proportion of their amino acid sequences are predicted to form coiled-coil structures. The possible presence of extensive coiled coils implies that these proteins are highly elongated molecules that can extend a significant distance from the Golgi surface. This property would help them to capture or trap inbound transport vesicles and to tether Golgi mini-stacks together. This review will summarize our current understanding of coiled coil tethers that are needed for the receipt of transport vesicles at the trans Golgi network (TGN). How do long tethering proteins actually catch vesicles? Golgi-associated, coiled coil tethers contain numerous binding sites for small GTPases, SNARE proteins, and vesicle coat proteins. How are these interactions coordinated and are any or all of them important for the tethering process? Progress toward understanding these questions and remaining, unresolved mysteries will be discussed.
Collapse
Affiliation(s)
- Pak-Yan P Cheung
- Department of Biochemistry, Stanford University School of Medicine Stanford, CA, USA
| | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine Stanford, CA, USA
| |
Collapse
|
14
|
Haase G, Rabouille C. Golgi Fragmentation in ALS Motor Neurons. New Mechanisms Targeting Microtubules, Tethers, and Transport Vesicles. Front Neurosci 2015; 9:448. [PMID: 26696811 PMCID: PMC4672084 DOI: 10.3389/fnins.2015.00448] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/13/2015] [Indexed: 12/12/2022] Open
Abstract
Pathological alterations of the Golgi apparatus, such as its fragmentation represent an early pre-clinical feature of many neurodegenerative diseases and have been widely studied in the motor neuron disease amyotrophic lateral sclerosis (ALS). Yet, the underlying molecular mechanisms have remained cryptic. In principle, Golgi fragmentation may result from defects in three major classes of proteins: structural Golgi proteins, cytoskeletal proteins and molecular motors, as well as proteins mediating transport to and through the Golgi. Here, we present the different mechanisms that may underlie Golgi fragmentation in animal and cellular models of ALS linked to mutations in SOD1, TARDBP (TDP-43), VAPB, and C9Orf72 and we propose a novel one based on findings in progressive motor neuronopathy (pmn) mice. These mice are mutated in the TBCE gene encoding the cis-Golgi localized tubulin-binding cofactor E, one of five chaperones that assist in tubulin folding and microtubule polymerization. Loss of TBCE leads to alterations in Golgi microtubules, which in turn impedes on the maintenance of the Golgi architecture. This is due to down-regulation of COPI coat components, dispersion of Golgi tethers and strong accumulation of ER-Golgi SNAREs. These effects are partially rescued by the GTPase ARF1 through recruitment of TBCE to the Golgi. We hypothesize that defects in COPI vesicles, microtubules and their interaction may also underlie Golgi fragmentation in human ALS linked to other mutations, spinal muscular atrophy (SMA), and related motor neuron diseases. We also discuss the functional relevance of pathological Golgi alterations, in particular their potential causative, contributory, or compensatory role in the degeneration of motor neuron cell bodies, axons and synapses.
Collapse
Affiliation(s)
- Georg Haase
- Centre National de la Recherche Scientifique and Aix-Marseille Université UMR 7289, Institut de Neurosciences de la Timone Marseille, France
| | - Catherine Rabouille
- The Department of Cell Biology, Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
15
|
Identification of mammalian proteins that collaborate with type III secretion system function: involvement of a chemokine receptor in supporting translocon activity. mBio 2015; 6:e02023-14. [PMID: 25691588 PMCID: PMC4337563 DOI: 10.1128/mbio.02023-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The type III secretion system (T3SS) is a highly conserved protein delivery system found in multiple Gram-negative pathogens, including Yersinia pseudotuberculosis. Most studies of Yersinia species type III intoxication of host cells have focused on the bacterial determinants that promote assembly and function of the secretion system. In this study, we performed a pooled RNA interference (RNAi) screen to identify mammalian host proteins required for the cytotoxic effects associated with the Yersinia translocated substrate YopE, a GTPase-activating protein (GAP) that inactivates the small Rho GTPases. Cell populations were positively selected for short hairpin RNAs (shRNAs) that interfere with YopE activity using a combination of fluorescence resonance energy transfer (FRET) and flow cytometry, and the degree of enrichment was determined by deep sequencing. Analysis of the candidates identified by the enrichment process revealed that many were important for the initial step of Y. pseudotuberculosis T3SS function, YopB/D pore formation. These candidates included shRNA that depleted downstream effectors of RhoA signaling, coated pit formation, and receptors involved in cell signaling, including the chemokine receptor CCR5 (chemokine [C-C motif] receptor 5). Depletion of CCR5 in 293T cells yielded a defect in YopB/D pore formation and effector translocation, while both phenotypes could be complemented by overexpression of CCR5 protein. Yop effector translocation was also decreased in isolated primary phagocytic cells from a Ccr5−/− knockout mouse. We postulate that CCR5 acts to promote translocation by modulating cytoskeletal activities necessary for proper assembly of the YopB/D translocation pore. Overall, this study presents a new approach to investigating the contribution of the host cell to T3SS in Y. pseudotuberculosis. Many Gram-negative bacteria require type III secretion systems (T3SS) for host survival, making these highly specialized secretion systems good targets for antimicrobial agents. After the bacterium binds to host cells, T3SS deposit proteins into the cytosol of host cells through a needle-like appendage and a protein translocon channel. Translocation of proteins via this system is highly regulated, and the contribution of the host cell in promoting assembly and insertion of the channel into the plasma membrane, folding of the bacterial proteins, and trafficking of these substrates are all poorly characterized events. In this study, we identified host cell proteins important for activity of YopE, a Yersinia pseudotuberculosis T3SS-delivered protein. The results demonstrate that insertion and assembly of the translocon are complex processes, requiring a variety of membrane trafficking and cytoskeletal processes, as well as a surprising role for cell surface signaling molecules in supporting proper function.
Collapse
|
16
|
Liu S, Storrie B. How Rab proteins determine Golgi structure. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:1-22. [PMID: 25708460 DOI: 10.1016/bs.ircmb.2014.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rab proteins, small GTPases, are key regulators of mammalian Golgi apparatus organization. Based on the effect of Rab activation state, Rab proteins fall into two functional classes. In Class1, inactivation induces Golgi ribbon fragmentation and/or redistribution of Golgi enzymes to the Endoplasmic Reticulum, while overexpression of wild type or activation has little, if any, effect on Golgi ribbon organization. In Class 2, the reverse is true. We give emphasis to Rab6, the most abundant Golgi-associated Rab protein. Rab6 depletion in HeLa cells causes an increase in Golgi cisternal number, longer, more continuous cisternae, and a pronounced accumulation of vesicles; the effect of Rab6 on Golgi ribbon organization is probably through regulation of vesicle transport. In effector studies, motor proteins and their regulators are found to be key Rab6 effectors. A related Rab, Rab41, affects Golgi ribbon organization in a contrasting manner. The balance between minus- and plus-end directed motor recruitment may well be the major Rab-dependent factor in Golgi ribbon organization.
Collapse
Affiliation(s)
- Shijie Liu
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Brian Storrie
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
17
|
Ito Y, Uemura T, Nakano A. Formation and maintenance of the Golgi apparatus in plant cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 310:221-87. [PMID: 24725428 DOI: 10.1016/b978-0-12-800180-6.00006-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Golgi apparatus plays essential roles in intracellular trafficking, protein and lipid modification, and polysaccharide synthesis in eukaryotic cells. It is well known for its unique stacked structure, which is conserved among most eukaryotes. However, the mechanisms of biogenesis and maintenance of the structure, which are deeply related to ER-Golgi and intra-Golgi transport systems, have long been mysterious. Now having extremely powerful microscopic technologies developed for live-cell imaging, the plant Golgi apparatus provides an ideal system to resolve the question. The plant Golgi apparatus has unique features that are not conserved in other kingdoms, which will also give new insights into the Golgi functions in plant life. In this review, we will summarize the features of the plant Golgi apparatus and transport mechanisms around it, with a focus on recent advances in Golgi biogenesis by live imaging of plants cells.
Collapse
Affiliation(s)
- Yoko Ito
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan; Live Cell Molecular Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan.
| |
Collapse
|
18
|
Ganesan V, Schmidt B, Avula R, Cooke D, Maggiacomo T, Tellin L, Ascherman DP, Bruchez MP, Minden J. Immuno-proteomics: Development of a novel reagent for separating antibodies from their target proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:592-600. [PMID: 25466873 DOI: 10.1016/j.bbapap.2014.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 11/18/2022]
Abstract
Immunoprecipitation (IP) is a widely used technique for identifying the binding partners of the target proteins of specific antibodies. Putative binding targets and their partners are usually in much lower amounts than the antibodies used to capture these target proteins. Thus antigen identification using proteomics following IP is often confounded by the presence of an overwhelming amount of interfering antibody protein. Even covalently linking antibodies to beads is susceptible to antibody leaching during IP. To circumvent this interference, we describe here a reagent, called Biotin-CDM that reversibly tags all potential target proteins in a cell lysate with biotin. The presence of biotin coupled to the target proteins allows for a secondary separation step in which antibodies are washed away from the reversibly biotinylated target proteins by binding them to an Avidin-coupled matrix. The captured target proteins are released from the Avidin matrix by reversing the Biotin-CDM link, thus releasing a pool of target proteins ready for further proteomic analysis compatible with 2D-electrophoresis. Here, we describe the synthesis and characterization of Biotin-CDM. We also demonstrate Biotin-CDM's use for immunoprecipitation of a known antigen, as well as its use for capturing an array of proteins targeted by the autoantibodies found in the serum a patient suffering from rheumatoid arthritis. The use of this reagent allows one to combine immunoprecipitation and 2D-Difference gel electrophoresis, overcoming the current limitations of Serological Proteome Analysis (SERPA) in discovering autoantigens. This article is part of a Special Issue entitled: Medical Proteomics.
Collapse
Affiliation(s)
- Vinitha Ganesan
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Brigitte Schmidt
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Raghunandan Avula
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Dagney Cooke
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Taylor Maggiacomo
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Lawton Tellin
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Dana P Ascherman
- Division of Rheumatology, Department of Medicine, University of Miami Miller School of Medicine, 1600 Northwest 10th Avenue, Miami, FL 33136, USA
| | - Marcel P Bruchez
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Jonathan Minden
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
19
|
Tewari R, Jarvela T, Linstedt AD. Manganese induces oligomerization to promote down-regulation of the intracellular trafficking receptor used by Shiga toxin. Mol Biol Cell 2014; 25:3049-58. [PMID: 25079690 PMCID: PMC4230593 DOI: 10.1091/mbc.e14-05-1003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Manganese down-regulates the Shiga toxin receptor GPP130, which protects against lethal toxin doses. This study reveals a major aspect of the mechanism. Manganese binds GPP130, inducing GPP130 oligomerization, which is required and sufficient to redirect GPP130 out of the Golgi toward lysosomes. Manganese (Mn) protects cells against lethal doses of purified Shiga toxin by causing the degradation of the cycling transmembrane protein GPP130, which the toxin uses as a trafficking receptor. Mn-induced GPP130 down-regulation, in addition to being a potential therapeutic approach against Shiga toxicosis, is a model for the study of metal-regulated protein sorting. Significantly, however, the mechanism by which Mn regulates GPP130 trafficking is unknown. Here we show that a transferable trafficking determinant within GPP130 bound Mn and that Mn binding induced GPP130 oligomerization in the Golgi. Alanine substitutions blocking Mn binding abrogated both oligomerization of GPP130 and GPP130 sorting from the Golgi to lysosomes. Further, oligomerization was sufficient because forced aggregation, using a drug-controlled polymerization domain, redirected GPP130 to lysosomes in the absence of Mn. These experiments reveal metal-induced oligomerization as a Golgi sorting mechanism for a medically relevant receptor for Shiga toxin.
Collapse
Affiliation(s)
- Ritika Tewari
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Timothy Jarvela
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Adam D Linstedt
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
20
|
Bellouze S, Schäfer MK, Buttigieg D, Baillat G, Rabouille C, Haase G. Golgi fragmentation in pmn mice is due to a defective ARF1/TBCE cross-talk that coordinates COPI vesicle formation and tubulin polymerization. Hum Mol Genet 2014; 23:5961-75. [DOI: 10.1093/hmg/ddu320] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
21
|
Guo Y, Linstedt AD. Binding of the vesicle docking protein p115 to the GTPase Rab1b regulates membrane recruitment of the COPI vesicle coat. CELLULAR LOGISTICS 2014; 3:e27687. [PMID: 25332841 PMCID: PMC4187009 DOI: 10.4161/cl.27687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/16/2013] [Accepted: 12/30/2013] [Indexed: 12/21/2022]
Abstract
Membrane recruitment of the COPI vesicle coat is fundamental to its function and contributes to compartment identity in the early secretory pathway. COPI recruitment is triggered by guanine nucleotide exchange activating the Arf1 GTPase, but the key exchange factor, GBF1, is a peripheral membrane component whose membrane association is dependent on another GTPase, Rab1. Inactive Rab GTPases are in a soluble complex with guanine nucleotide dissociation inhibitor (GDI) and activation of Rab GTPases by exchange factors can be enhanced by GDI dissociation factors (GDFs). In the present study, we investigated the vesicle docking protein p115 and it's binding to the Rab1 isoform Rab1b. Inhibition of p115 expression induced dissociation of Rab1b from Golgi membranes. Rab1b bound the cc2 domain of p115 and p115 lacking this domain failed to recruit Rab1b. Further, p115 inhibition blocked association of the COPI coat with Golgi membranes and this was suppressed by constitutive activation of Rab1b. These findings show p115 enhancement of Rab1b activation leading to COPI recruitment suggesting a connection between the vesicle docking machinery and the vesicle coat complex during the establishment of post-ER compartment identity.
Collapse
Affiliation(s)
- Yusong Guo
- Department of Biological Sciences; Carnegie Mellon University; Pittsburgh, PA USA
| | - Adam D Linstedt
- Department of Biological Sciences; Carnegie Mellon University; Pittsburgh, PA USA
| |
Collapse
|
22
|
Krantz KC, Puchalla J, Thapa R, Kobayashi C, Bisher M, Viehweg J, Carr CM, Rye HS. Clathrin coat disassembly by the yeast Hsc70/Ssa1p and auxilin/Swa2p proteins observed by single-particle burst analysis spectroscopy. J Biol Chem 2013; 288:26721-30. [PMID: 23913685 DOI: 10.1074/jbc.m113.491753] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of clathrin-coated vesicles in receptor-mediated endocytosis is conserved among eukaryotes, and many of the proteins required for clathrin coat assembly and disassembly have orthologs in yeast and mammals. In yeast, dozens of proteins have been identified as regulators of the multistep reaction required for endocytosis, including those that regulate disassembly of the clathrin coat. In mammalian systems, clathrin coat disassembly has been reconstituted using neuronal clathrin baskets mixed with the purified chaperone ATPase 70-kDa heat shock cognate (Hsc70), plus a clathrin-specific co-chaperone, such as the synaptic protein auxilin. Yet, despite previous characterization of the yeast Hsc70 ortholog, Ssa1p, and the auxilin-like ortholog, Swa2p, testing mechanistic models for disassembly of nonneuronal clathrin coats has been limited by the absence of a functional reconstitution assay. Here we use single-particle burst analysis spectroscopy, in combination with fluorescence correlation spectroscopy, to follow the population dynamics of fluorescently tagged yeast clathrin baskets in the presence of purified Ssa1p and Swa2p. An advantage of this combined approach for mechanistic studies is the ability to measure, as a function of time, changes in the number and size of objects from a starting population to the reaction products. Our results indicate that Ssa1p and Swa2p cooperatively disassemble yeast clathrin baskets into fragments larger than the individual triskelia, suggesting that disassembly of clathrin-coated vesicles may proceed through a partially uncoated intermediate.
Collapse
Affiliation(s)
- Kelly C Krantz
- From the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ispolatov I, Müsch A. A model for the self-organization of vesicular flux and protein distributions in the Golgi apparatus. PLoS Comput Biol 2013; 9:e1003125. [PMID: 23874173 PMCID: PMC3715413 DOI: 10.1371/journal.pcbi.1003125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 05/20/2013] [Indexed: 01/19/2023] Open
Abstract
The generation of two non-identical membrane compartments via exchange of vesicles is considered to require two types of vesicles specified by distinct cytosolic coats that selectively recruit cargo, and two membrane-bound SNARE pairs that specify fusion and differ in their affinities for each type of vesicles. The mammalian Golgi complex is composed of 6-8 non-identical cisternae that undergo gradual maturation and replacement yet features only two SNARE pairs. We present a model that explains how distinct composition of Golgi cisternae can be generated with two and even a single SNARE pair and one vesicle coat. A decay of active SNARE concentration in aging cisternae provides the seed for a cis[Formula: see text]trans SNARE gradient that generates the predominantly retrograde vesicle flux which further enhances the gradient. This flux in turn yields the observed inhomogeneous steady-state distribution of Golgi enzymes, which compete with each other and with the SNAREs for incorporation into transport vesicles. We show analytically that the steady state SNARE concentration decays exponentially with the cisterna number. Numerical solutions of rate equations reproduce the experimentally observed SNARE gradients, overlapping enzyme peaks in cis, medial and trans and the reported change in vesicle nature across the Golgi: Vesicles originating from younger cisternae mostly contain Golgi enzymes and SNAREs enriched in these cisternae and extensively recycle through the Endoplasmic Reticulum (ER), while the other subpopulation of vesicles contains Golgi proteins prevalent in older cisternae and hardly reaches the ER.
Collapse
Affiliation(s)
- Iaroslav Ispolatov
- Departamento de Física, Universidad de Santiago de Chile, Santiago, Chile.
| | | |
Collapse
|
24
|
Nakai W, Kondo Y, Saitoh A, Naito T, Nakayama K, Shin HW. ARF1 and ARF4 regulate recycling endosomal morphology and retrograde transport from endosomes to the Golgi apparatus. Mol Biol Cell 2013; 24:2570-81. [PMID: 23783033 PMCID: PMC3744953 DOI: 10.1091/mbc.e13-04-0197] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The ARF1+ARF4 and ARF1+ARF3 pairs are both required for integrity of recycling endosomes but are involved in distinct transport pathways: the former pair regulates retrograde transport from endosomes to the TGN, whereas the latter is required for the transferrin recycling pathway from endosomes to the plasma membrane. Small GTPases of the ADP-ribosylation factor (ARF) family, except for ARF6, mainly localize to the Golgi apparatus, where they trigger formation of coated carrier vesicles. We recently showed that class I ARFs (ARF1 and ARF3) localize to recycling endosomes, as well as to the Golgi, and are redundantly required for recycling of endocytosed transferrin. On the other hand, the roles of class II ARFs (ARF4 and ARF5) are not yet fully understood, and the complementary or overlapping functions of class I and class II ARFs have been poorly characterized. In this study, we find that simultaneous depletion of ARF1 and ARF4 induces extensive tubulation of recycling endosomes. Moreover, the depletion of ARF1 and ARF4 inhibits retrograde transport of TGN38 and mannose-6-phosphate receptor from early/recycling endosomes to the trans-Golgi network (TGN) but does not affect the endocytic/recycling pathway of transferrin receptor or inhibit retrograde transport of CD4-furin from late endosomes to the TGN. These observations indicate that the ARF1+ARF4 and ARF1+ARF3 pairs are both required for integrity of recycling endosomes but are involved in distinct transport pathways: the former pair regulates retrograde transport from endosomes to the TGN, whereas the latter is required for the transferrin recycling pathway from endosomes to the plasma membrane.
Collapse
Affiliation(s)
- Waka Nakai
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Fusella A, Micaroni M, Di Giandomenico D, Mironov AA, Beznoussenko GV. Segregation of the Qb-SNAREs GS27 and GS28 into Golgi vesicles regulates intra-Golgi transport. Traffic 2013; 14:568-84. [PMID: 23387339 DOI: 10.1111/tra.12055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 01/31/2013] [Accepted: 02/06/2013] [Indexed: 12/18/2022]
Abstract
The Golgi apparatus is the main glycosylation and sorting station along the secretory pathway. Its structure includes the Golgi vesicles, which are depleted of anterograde cargo, and also of at least some Golgi-resident proteins. The role of Golgi vesicles remains unclear. Here, we show that Golgi vesicles are enriched in the Qb-SNAREs GS27 (membrin) and GS28 (GOS-28), and depleted of nucleotide sugar transporters. A block of intra-Golgi transport leads to accumulation of Golgi vesicles and partitioning of GS27 and GS28 into these vesicles. Conversely, active intra-Golgi transport induces fusion of these vesicles with the Golgi cisternae, delivering GS27 and GS28 to these cisternae. In an in vitro assay based on a donor compartment that lacks UDP-galactose translocase (a sugar transporter), the segregation of Golgi vesicles from isolated Golgi membranes inhibits intra-Golgi transport; re-addition of isolated Golgi vesicles devoid of UDP-galactose translocase obtained from normal cells restores intra-Golgi transport. We conclude that this activity is due to the presence of GS27 and GS28 in the Golgi vesicles, rather than the sugar transporter. Furthermore, there is an inverse correlation between the number of Golgi vesicles and the number of inter-cisternal connections under different experimental conditions. Finally, a rapid block of the formation of vesicles via COPI through degradation of ϵCOP accelerates the cis-to-trans delivery of VSVG. These data suggest that Golgi vesicles, presumably with COPI, serve to inhibit intra-Golgi transport by the extraction of GS27 and GS28 from the Golgi cisternae, which blocks the formation of inter-cisternal connections.
Collapse
Affiliation(s)
- Aurora Fusella
- Consorzio Mario Negri Sud, Via Nazionale 8, 66030, Santa Maria Imbaro (Chieti), Italy
| | | | | | | | | |
Collapse
|
26
|
Abstract
HeLa cells engineered with the fluorescent ubiquitinylation-based cell cycle indicator are used to study the connection between nucleolar stress and cell cycle progression. The results demonstrate a feedforward mechanism that leads to G2 arrest and identify ATR and Chk1 as molecular agents of the requisite checkpoint. We report experiments on the connection between nucleolar stress and cell cycle progression, using HeLa cells engineered with the fluorescent ubiquitinylation-based cell cycle indicator. Nucleolar stress elicited by brief exposure of cells to a low concentration of actinomycin D that selectively inhibits rRNA synthesis had no effect on traverse of G1 or S, but stalled cells in very late interphase. Additional experiments revealed that a switch occurs during a specific temporal window during nucleolar stress and that the subsequent cell cycle arrest is not triggered simply by the stress-induced decline in the synthesis of rRNA or by a ribosome starvation phenomenon. Further experiments revealed that this nucleolus stress-induced cell cycle arrest involves the action of a G2 checkpoint mediated by the ataxia telangiectasia and Rad3-related protein (ATR)–checkpoint kinase 1 (Chk1) pathway. Based on analysis of the cell cycle stages at which this nucleolar stress effect is put into action, to become manifest later, our results demonstrate a feedforward mechanism that leads to G2 arrest and identify ATR and Chk1 as molecular agents of the requisite checkpoint.
Collapse
Affiliation(s)
- Hanhui Ma
- Department of Biochemistry and Molecular Pharmacology and Program in Cell and Developmental Dynamics, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | |
Collapse
|
27
|
Petrosyan A, Cheng PW. A non-enzymatic function of Golgi glycosyltransferases: mediation of Golgi fragmentation by interaction with non-muscle myosin IIA. Glycobiology 2013; 23:690-708. [PMID: 23396488 DOI: 10.1093/glycob/cwt009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The Golgi apparatus undergoes morphological changes under stress or malignant transformation, but the precise mechanisms are not known. We recently showed that non-muscle myosin IIA (NMIIA) binds to the cytoplasmic tail of Core 2 N-acetylglucosaminyltransferase mucus-type (C2GnT-M) and transports it to the endoplasmic reticulum for recycling. Here, we report that Golgi fragmentation induced by brefeldin A (BFA) or coatomer protein (β-COP) knockdown (KD) in Panc1-bC2GnT-M (c-Myc) cells is accompanied by the increased association of NMIIA with C2GnT-M and its degradation by proteasomes. Golgi fragmentation is prevented by inhibition or KD of NMIIA. Using multiple approaches, we have shown that the speed of BFA-induced Golgi fragmentation is positively correlated with the levels of this enzyme in the Golgi. The observation is reproduced in LNCaP cells which express high levels of two endogenous glycosyltransferases--C2GnT-L and β-galactoside α2,3 sialyltransferase 1. NMIIA is found to form complexes with these two enzymes but not Golgi matrix proteins. The KD of both enzymes or the prevention of Golgi glycosyltransferases from exiting endoplasmic reticulum reduced Golgi-associated NMIIA and decreased the BFA-induced fragmentation. Interestingly, the fragmented Golgi detected in colon cancer HT-29 cells can be restored to a compact morphology after inhibition or KD of NMIIA. The Golgi disorganization induced by the microtubule or actin destructive agent is NMIIA-independent and does not affect the levels of glycosyltransferases. We conclude that NMIIA interacts with Golgi residential but not matrix proteins, and this interaction is responsible for Golgi fragmentation induced by β-COP KD or BFA treatment. This is a novel non-enzymatic function of Golgi glycosyltransferases.
Collapse
Affiliation(s)
- Armen Petrosyan
- Department of Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105 USA
| | | |
Collapse
|
28
|
Lord C, Ferro-Novick S, Miller EA. The highly conserved COPII coat complex sorts cargo from the endoplasmic reticulum and targets it to the golgi. Cold Spring Harb Perspect Biol 2013; 5:5/2/a013367. [PMID: 23378591 DOI: 10.1101/cshperspect.a013367] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Protein egress from the endoplasmic reticulum (ER) is driven by a conserved cytoplasmic coat complex called the COPII coat. The COPII coat complex contains an inner shell (Sec23/Sec24) that sorts cargo into ER-derived vesicles and an outer cage (Sec13/Sec31) that leads to coat polymerization. Once released from the ER, vesicles must tether to and fuse with the target membrane to deliver their protein and lipid contents. This delivery step also depends on the COPII coat, with coat proteins binding directly to tethering and regulatory factors. Recent findings have yielded new insight into how COPII-mediated vesicle traffic is regulated. Here we discuss the molecular basis of COPII-mediated ER-Golgi traffic, focusing on the surprising complexity of how ER-derived vesicles form, package diverse cargoes, and correctly target these cargoes to their destination.
Collapse
Affiliation(s)
- Christopher Lord
- Department of Cellular and Molecular Medicine, Howard Hughes Medical Institute, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
29
|
Guo Y, Zanetti G, Schekman R. A novel GTP-binding protein-adaptor protein complex responsible for export of Vangl2 from the trans Golgi network. eLife 2013; 2:e00160. [PMID: 23326640 PMCID: PMC3539332 DOI: 10.7554/elife.00160] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 10/18/2012] [Indexed: 01/03/2023] Open
Abstract
Planar cell polarity (PCP) requires the asymmetric sorting of distinct signaling
receptors to distal and proximal surfaces of polarized epithelial cells. We have
examined the transport of one PCP signaling protein, Vangl2, from the
trans Golgi network (TGN) in mammalian cells. Using siRNA
knockdown experiments, we find that the GTP-binding protein, Arfrp1, and the clathrin
adaptor complex 1 (AP-1) are required for Vangl2 transport from the TGN. In contrast,
TGN export of Frizzled 6, which localizes to the opposing epithelial surface from
Vangl2, does not depend on Arfrp1 or AP-1. Mutagenesis studies identified a YYXXF
sorting signal in the C-terminal cytosolic domain of Vangl2 that is required for
Vangl2 traffic and interaction with the μ subunit of AP-1. We propose that
Arfrp1 exposes a binding site on AP-1 that recognizes the Vangl2 sorting motif for
capture into a transport vesicle destined for the proximal surface of a polarized
epithelial cell. DOI:http://dx.doi.org/10.7554/eLife.00160.001 Most cells in multicellular organisms possess a property known as polarity that is
reflected, in part, in the organization of the cell surface into distinct domains.
One well-known axis in epithelial cells, such as those in the skin, divides the cell
into an apical domain, which faces out, and a basal domain, which faces the
underlying tissue. These cells rely on the distribution of structural components
inside the cell, or within the cell membrane, to tell the difference between these
two directions. Epithelial cells also possess a second type of polarity, planar cell
polarity, that ensures that cells adjacent to each other in the plane parallel to the
skin tissue are oriented correctly with respect to each other during development.
This ensures, in turn, that hairs, scales, feathers and so on are all aligned. All eukaryotic cells sort and process proteins within an organelle called the Golgi
apparatus, and proteins that are required at a specific destination within the cell,
such as the cell surface membrane, carry specific molecular sorting signals that act
as address labels to convey the protein into and within the secretory pathway. As one
of these proteins moves through the Golgi apparatus, its sorting signals are
recognized by coat proteins, such as clathrin, that subsequently form a vesicle
around it. The assembly of this vesicle is initiated by an enzyme from the Arf
family, but the enzyme must first undergo a conformational change (by exchanging a
molecule of GDP for one of GTP) before formation can begin. The resulting vesicle can
then be sent on its way to the address indicated by its Golgi-to-cell-surface sorting
signal. These sorting signals also help to establish planar cell polarity in cells by
ensuring that proteins called signaling receptors are distributed asymmetrically
within the cell membrane. Guo et al. have now examined the mechanism behind the asymmetric sorting of two
proteins that are involved in planar cell polarity: Vangl2 and Frizzled 6. In an
effort to understand why these proteins are localized to opposite surfaces of
epithelial cells, Guo et al. used genetic techniques to reduce the expression of
Golgi-localized Arf proteins in epithelial cell cultures. They found that knockdown
of a protein called Arfrp1 caused Vangl2 to accumulate in the last station of the
Golgi complex instead of being transported to the cell surface membrane. Then, using
a technique called affinity chromatography, they demonstrated that a coat protein
called the clathrin adaptor complex (AP-1) had to be present for the formation of
vesicles around Vangl2. Moreover, disrupting AP-1 and Arfrp1 did not prevent Frizzled
6 being transported to the cell surface membrane. This suggests that cells use
several distinct adaptor proteins and coat complexes to ensure that proteins from the
Golgi apparatus go to specific locations on the cell surface and, thus, help to
establish planar cell polarity. DOI:http://dx.doi.org/10.7554/eLife.00160.002
Collapse
Affiliation(s)
- Yusong Guo
- Department of Molecular and Cell Biology , Howard Hughes Medical Institute, University of California-Berkeley , Berkeley , United States
| | | | | |
Collapse
|
30
|
Marie M, Dale HA, Kouprina N, Saraste J. Division of the intermediate compartment at the onset of mitosis provides a mechanism for Golgi inheritance. J Cell Sci 2012; 125:5403-16. [PMID: 22946056 DOI: 10.1242/jcs.108100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
As mammalian cells prepare for mitosis, the Golgi ribbon is first unlinked into its constituent stacks and then transformed into spindle-associated, pleiomorphic membrane clusters in a process that remains enigmatic. Also, it remains unclear whether Golgi inheritance involves the incorporation of Golgi enzymes into a pool of coat protein I (COPI) vesicles, or their COPI-independent transfer to the endoplasmic reticulum (ER). Based on the observation that the intermediate compartment (IC) at the ER-Golgi boundary is connected to the centrosome, we examined its mitotic fate and possible role in Golgi breakdown. The use of multiple imaging techniques and markers revealed that the IC elements persist during the M phase, maintain their compositional and structural properties and remain associated with the mitotic spindle, forming circular arrays at the spindle poles. At G2/M transition, the movement of the pericentrosomal domain of the IC (pcIC) to the cell centre and its expansion coincide with the unlinking of the Golgi ribbon. At prophase, coupled to centrosome separation, the pcIC divides together with recycling endosomes, providing novel landmarks for mitotic entry. We provide evidence that the permanent IC elements function as way stations during the COPI-dependent dispersal of Golgi components at prometa- and metaphase, indicating that they correspond to the previously described Golgi clusters. In addition, they continue to communicate with the vesicular 'Golgi haze' and thus are likely to provide templates for Golgi reassembly. These results implicate the IC in mitotic Golgi inheritance, resulting in a model that integrates key features of the two previously proposed pathways.
Collapse
Affiliation(s)
- Michaël Marie
- Department of Biomedicine and Molecular Imaging Center, University of Bergen, Jonas Lies Vei 91, N-5009 Bergen, Norway
| | | | | | | |
Collapse
|
31
|
Grabski R, Hay J, Sztul E. Tethering factor P115: a new model for tether-SNARE interactions. BIOARCHITECTURE 2012; 2:175-80. [PMID: 22992751 PMCID: PMC3696062 DOI: 10.4161/bioa.21702] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The membrane tethering factor p115 has been shown to have important functions in ER to Golgi traffic and Golgi biogenesis. The multidomain structure of p115 allows for interactions with a diverse array of proteins that govern cargo movement at the ER-Golgi interface. Within its C-terminal region p115 contains four coiled-coil domains (CC1-CC4). Of the four coiled-coils, only CC1 has been shown to be required for p115 function, presumably by its ability to bind numerous SNARE proteins as well as the small GTPase Rab1. Recently, we showed that CC4 also interacts with SNARE proteins and that CC4 is required for p115 function in Golgi homeostasis and the trafficking of transmembrane but not soluble cargo. Here, we propose a novel model wherein p115 facilitates membrane tethering and fusion by simultaneously engaging its CC1 and CC4 domains with distinct SNARE proteins to promote formation of SNARE complexes.
Collapse
Affiliation(s)
- Robert Grabski
- Department of Cell Biology, Developmental and Integrative; University of Alabama at Birmingham; Birmingham, AL USA
| | - Jesse Hay
- Division of Biological Sciences and Center for Structural and Functional Neuroscience; University of Montana; Missoula, MT USA
| | - Elizabeth Sztul
- Department of Cell Biology, Developmental and Integrative; University of Alabama at Birmingham; Birmingham, AL USA
| |
Collapse
|
32
|
Petrosyan A, Ali MF, Verma SK, Cheng H, Cheng PW. Non-muscle myosin IIA transports a Golgi glycosyltransferase to the endoplasmic reticulum by binding to its cytoplasmic tail. Int J Biochem Cell Biol 2012; 44:1153-65. [PMID: 22525330 PMCID: PMC4011501 DOI: 10.1016/j.biocel.2012.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/14/2012] [Accepted: 04/04/2012] [Indexed: 12/18/2022]
Abstract
The mechanism of the Golgi-to-ER transport of Golgi glycosyltransferases is not clear. We utilize a cell line expressing the core 2 N-acetylglucosaminyltransferase-M (C2GnT-M) tagged with c-Myc to explore this mechanism. By immunoprecipitation using anti-c-Myc antibodies coupled with proteomics analysis, we have identified several proteins including non-muscle myosin IIA (NMIIA), heat shock protein (HSP)-70 and ubiquitin activating enzyme E1 in the immunoprecipitate. Employing yeast-two-hybrid analysis and pulldown experiments, we show that the C-terminal region of the NMIIA heavy chain binds to the 1-6 amino acids in the cytoplasmic tail of C2GnT-M. We have found that NMIIA co-localizes with C2GnT-M at the periphery of the Golgi. In addition, inhibition or knockdown of NMIIA prevents the brefeldin A-induced collapse of the Golgi as shown by the inhibition of the migration of both Giantin, a Golgi matrix protein, and C2GnT-M, a Golgi non-matrix protein, to the ER. In contrast, knockdown of HSP70 retains Giantin in the Golgi but moves C2GnT-M to the ER, a process also blocked by inhibition or knockdown of NMIIA. Also, the intracellular distribution of C2GnT-M is not affected by knockdown of β-coatomer protein with or without inhibition of HSPs, suggesting that the Golgi-to-ER trafficking of C2GnT-M does not depend on coat protein complex-I. Further, inhibition of proteasome results in accumulation of ubiquitinated C2GnT-M, suggesting its degradation by proteasome. Therefore, NMIIA and not coat protein complex-I is responsible for transporting the Golgi glycosyltransferase to the ER for proteasomal degradation. The data suggest that NMIIA is involved in the Golgi remodeling.
Collapse
Affiliation(s)
- Armen Petrosyan
- Omaha Western Iowa Health System, VA Service, Department of Veterans Affairs Medical Center, Omaha, NE, USA
| | | | | | | | | |
Collapse
|
33
|
Bucci C, Bakke O, Progida C. Charcot-Marie-Tooth disease and intracellular traffic. Prog Neurobiol 2012; 99:191-225. [PMID: 22465036 PMCID: PMC3514635 DOI: 10.1016/j.pneurobio.2012.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 12/23/2011] [Accepted: 03/13/2012] [Indexed: 12/23/2022]
Abstract
Mutations of genes whose primary function is the regulation of membrane traffic are increasingly being identified as the underlying causes of various important human disorders. Intriguingly, mutations in ubiquitously expressed membrane traffic genes often lead to cell type- or organ-specific disorders. This is particularly true for neuronal diseases, identifying the nervous system as the most sensitive tissue to alterations of membrane traffic. Charcot-Marie-Tooth (CMT) disease is one of the most common inherited peripheral neuropathies. It is also known as hereditary motor and sensory neuropathy (HMSN), which comprises a group of disorders specifically affecting peripheral nerves. This peripheral neuropathy, highly heterogeneous both clinically and genetically, is characterized by a slowly progressive degeneration of the muscle of the foot, lower leg, hand and forearm, accompanied by sensory loss in the toes, fingers and limbs. More than 30 genes have been identified as targets of mutations that cause CMT neuropathy. A number of these genes encode proteins directly or indirectly involved in the regulation of intracellular traffic. Indeed, the list of genes linked to CMT disease includes genes important for vesicle formation, phosphoinositide metabolism, lysosomal degradation, mitochondrial fission and fusion, and also genes encoding endosomal and cytoskeletal proteins. This review focuses on the link between intracellular transport and CMT disease, highlighting the molecular mechanisms that underlie the different forms of this peripheral neuropathy and discussing the pathophysiological impact of membrane transport genetic defects as well as possible future ways to counteract these defects.
Collapse
Affiliation(s)
- Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni, 73100 Lecce, Italy.
| | | | | |
Collapse
|
34
|
Abstract
Protein traffic is necessary to maintain homeostasis in all eukaryotic organisms. All newly synthesized secretory proteins destined to the secretory and endolysosmal systems are transported from the endoplasmic reticulum to the Golgi before delivery to their final destinations. Here, we describe the COPII and COPI coating machineries that generate carrier vesicles and the tethers and SNAREs that mediate COPII and COPI vesicle fusion at the ER-Golgi interface.
Collapse
Affiliation(s)
- Tomasz Szul
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
35
|
Grabski R, Balklava Z, Wyrozumska P, Szul T, Brandon E, Alvarez C, Holloway ZG, Sztul E. Identification of a functional domain within the p115 tethering factor that is required for Golgi ribbon assembly and membrane trafficking. J Cell Sci 2012; 125:1896-909. [PMID: 22328511 DOI: 10.1242/jcs.090571] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The tethering factor p115 (known as Uso1p in yeast) has been shown to facilitate Golgi biogenesis and membrane traffic in cells in culture. However, the role of p115 within an intact animal is largely unknown. Here, we document that depletion of p115 by using RNA interference (RNAi) in C. elegans causes accumulation of the 170 kD soluble yolk protein (YP170) in the body cavity and retention of the yolk receptor RME-2 in the ER and the Golgi within oocytes. Structure-function analyses of p115 have identified two homology regions (H1 and H2) within the N-terminal globular head and the coiled-coil 1 (CC1) domain as essential for p115 function. We identify a new C-terminal domain of p115 as necessary for Golgi ribbon formation and cargo trafficking. We show that p115 mutants that lack the fourth CC domain (CC4) act in a dominant-negative manner to disrupt Golgi and prevent cargo trafficking in cells containing endogenous p115. Furthermore, using RNAi of p115 and the subsequent transfection with p115 deletion mutants, we show that CC4 is necessary for Golgi ribbon formation and membrane trafficking in cells depleted of endogenous p115. p115 has been shown to bind a subset of ER-Golgi SNAREs through CC1 and CC4 domains (Shorter et al., 2002). Our findings show that CC4 is required for p115 function, and suggest that both the CC1 and the CC4 SNARE-binding motifs participate in p115-mediated membrane tethering.
Collapse
Affiliation(s)
- Robert Grabski
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35924, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kümmel D, Reinisch KM. Structure of Golgi transport proteins. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a007609. [PMID: 21813399 DOI: 10.1101/cshperspect.a007609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The function of the Golgi has long been recognized to critically depend on vesicular transport from, to, and within its cisternae, involving constant membrane fission and fusion. These processes are mediated by Arf GTPases and coat proteins, and Rabs, tethers and SNARE proteins, respectively. In this article, we describe structural studies of Golgi coats and tethers and their interactions with SNAREs and GTPases as well as insights regarding membrane traffic processes that these have provided.
Collapse
Affiliation(s)
- Daniel Kümmel
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
37
|
Abstract
During the G2-M transition, the highly organized Golgi apparatus undergoes reversible fragmentation through unstacking of the cisternal ribbon and disassembly into radially dispersed vesicles and tubules. These Golgi-derived fragments redistribute randomly within the cytoplasm, partition stochastically, and in telophase coalesce to generate a functionally and structurally intact Golgi complex. Here we identified a novel step in postmitotic Golgi reassembly that requires the clathrin heavy chain (CHC). We used siRNA-mediated CHC knockdown, biochemistry, and morphological analysis and showed that the spindle- and spindle pole-associated clathrin pools are membrane-bound and required for postmitotic Golgi reassembly. The results presented here show that clathrin remains associated with the spindle poles throughout mitosis and that this clathrin pool is distinct from the previously characterized spindle-associated population. We suggest that clathrin may provide a template for postmitotic Golgi reassembly and cisternal remodeling. In absence of the CHC, the Golgi apparatus remained disconnected and disordered and failed to regain its characteristic perinuclear, lace-like morphology. Our findings build on previous independent reports that clathrin is required for Golgi reassembly following disruption with pharmacological agents and for mitotic chromosome congression.
Collapse
Affiliation(s)
- Andreea E Radulescu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | |
Collapse
|
38
|
Clarke C, Doolan P, Barron N, Meleady P, O'Sullivan F, Gammell P, Melville M, Leonard M, Clynes M. Large scale microarray profiling and coexpression network analysis of CHO cells identifies transcriptional modules associated with growth and productivity. J Biotechnol 2011; 155:350-9. [DOI: 10.1016/j.jbiotec.2011.07.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 07/07/2011] [Accepted: 07/08/2011] [Indexed: 12/31/2022]
|
39
|
Zhang JD, Koerner C, Bechtel S, Bender C, Keklikoglou I, Schmidt C, Irsigler A, Ernst U, Sahin Ö, Wiemann S, Tschulena U. Time-resolved human kinome RNAi screen identifies a network regulating mitotic-events as early regulators of cell proliferation. PLoS One 2011; 6:e22176. [PMID: 21765947 PMCID: PMC3135613 DOI: 10.1371/journal.pone.0022176] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 06/18/2011] [Indexed: 01/01/2023] Open
Abstract
Analysis of biological processes is frequently performed with the help of phenotypic assays where data is mostly acquired in single end-point analysis. Alternative phenotypic profiling techniques are desired where time-series information is essential to the biological question, for instance to differentiate early and late regulators of cell proliferation in loss-of-function studies. So far there is no study addressing this question despite of high unmet interests, mostly due to the limitation of conventional end-point assaying technologies. We present the first human kinome screen with a real-time cell analysis system (RTCA) to capture dynamic RNAi phenotypes, employing time-resolved monitoring of cell proliferation via electrical impedance. RTCA allowed us to investigate the dynamics of phenotypes of cell proliferation instead of using conventional end-point analysis. By introducing data transformation with first-order derivative, i.e. the cell-index growth rate, we demonstrate this system suitable for high-throughput screenings (HTS). The screen validated previously identified inhibitor genes and, additionally, identified activators of cell proliferation. With the information of time kinetics available, we could establish a network of mitotic-event related genes to be among the first displaying inhibiting effects after RNAi knockdown. The time-resolved screen captured kinetics of cell proliferation caused by RNAi targeting human kinome, serving as a resource for researchers. Our work establishes RTCA technology as a novel robust tool with biological and pharmacological relevance amenable for high-throughput screening.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center, Heidelberg, Germany
- * E-mail: (SW); (UT)
| | - Ulrich Tschulena
- Division of Molecular Genome Analysis, German Cancer Research Center, Heidelberg, Germany
- * E-mail: (SW); (UT)
| |
Collapse
|
40
|
Radulescu AE, Mukherjee S, Shields D. The Golgi protein p115 associates with gamma-tubulin and plays a role in Golgi structure and mitosis progression. J Biol Chem 2011; 286:21915-26. [PMID: 21536679 DOI: 10.1074/jbc.m110.209460] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Golgi apparatus is a network of polarized cisternae localized to the perinuclear region in mammalian cells. It undergoes extensive vesiculation at the onset of mitosis and its reassembly requires factors that are in part segregated via the mitotic spindle. Here we show that unlike typical Golgi markers, the Golgi-protein p115 partitioned with the spindle poles throughout mitosis. An armadillo-fold in its N terminus mediated a novel interaction between p115 and γ-tubulin and functioned in its centrosomal targeting. Both the N- and C-terminal regions of p115 were required to maintain Golgi structure. Strikingly, p115 was essential for mitotic spindle function and the resolution of the cytokinetic bridge because its depletion resulted in spindle collapse, chromosome missegregation, and failed cytokinesis. We demonstrate that p115 plays a critical role in mitosis progression, implicating it as the only known golgin to regulate both mitosis and apoptosis.
Collapse
Affiliation(s)
- Andreea E Radulescu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA.
| | | | | |
Collapse
|
41
|
Kondylis V, Tang Y, Fuchs F, Boutros M, Rabouille C. Identification of ER proteins involved in the functional organisation of the early secretory pathway in Drosophila cells by a targeted RNAi screen. PLoS One 2011; 6:e17173. [PMID: 21383842 PMCID: PMC3044168 DOI: 10.1371/journal.pone.0017173] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 01/23/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In Drosophila, the early secretory apparatus comprises discrete paired Golgi stacks in close proximity to exit sites from the endoplasmic reticulum (tER sites), thus forming tER-Golgi units. Although many components involved in secretion have been identified, the structural components sustaining its organisation are less known. Here we set out to identify novel ER resident proteins involved in the of tER-Golgi unit organisation. RESULTS To do so, we designed a novel screening strategy combining a bioinformatics pre-selection with an RNAi screen. We first selected 156 proteins exhibiting known or related ER retention/retrieval signals from a list of proteins predicted to have a signal sequence. We then performed a microscopy-based primary and confirmation RNAi screen in Drosophila S2 cells directly scoring the organisation of the tER-Golgi units. We identified 49 hits, most of which leading to an increased number of smaller tER-Golgi units (MG for "more and smaller Golgi") upon depletion. 16 of them were validated and characterised, showing that this phenotype was not due to an inhibition in secretion, a block in G2, or ER stress. Interestingly, the MG phenotype was often accompanied by an increase in the cell volume. Out of 6 proteins, 4 were localised to the ER. CONCLUSIONS This work has identified novel proteins involved in the organisation of the Drosophila early secretory pathway. It contributes to the effort of assigning protein functions to gene annotation in the secretory pathway, and analysis of the MG hits revealed an enrichment of ER proteins. These results suggest a link between ER localisation, aspects of cell metabolism and tER-Golgi structural organisation.
Collapse
Affiliation(s)
- Vangelis Kondylis
- Cell microscopy Centre, Department of Cell Biology, UMC Utrecht, The Netherlands
| | - Yang Tang
- Cell microscopy Centre, Department of Cell Biology, UMC Utrecht, The Netherlands
| | - Florian Fuchs
- German Cancer Research Center (DKFZ) and University of Heidelberg, Division Signaling and Functional Genomics, Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ) and University of Heidelberg, Division Signaling and Functional Genomics, Heidelberg, Germany
| | - Catherine Rabouille
- Cell microscopy Centre, Department of Cell Biology, UMC Utrecht, The Netherlands
| |
Collapse
|
42
|
How PC, Shields D. Tethering function of the caspase cleavage fragment of Golgi protein p115 promotes apoptosis via a p53-dependent pathway. J Biol Chem 2010; 286:8565-8576. [PMID: 21147777 DOI: 10.1074/jbc.m110.175174] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Golgi apparatus undergoes extensive fragmentation during apoptosis due in part to caspase-mediated cleavage of its structural proteins. Significantly, the Golgi-vesicle-tethering protein p115 is cleaved at Asp(757) early during apoptosis and the nuclear translocation of its 205 amino acid C-terminal fragment (CTF) precedes observable Golgi fragmentation. Nuclear localization of the p115 CTF induces apoptosis. The regulation of CTF nuclear translocation and the mechanism of its apoptotic activity however, remain unknown. Here, we demonstrate that nuclear translocation of the CTF is regulated by SUMOylation. CTF-induced apoptosis is transcription dependent and mediated by the tumor suppressor, p53. Expression of the CTF led to the phosphorylation and stabilization of p53 and results in the expression of PUMA, a pro-apoptotic target of p53. CTF-induced stabilization of p53 is sensitive to the MEK/ERK inhibitor U0126. Co-immunoprecipitation studies indicate that the p115 CTF can bind to both p53 and ERK1. The CTF is also able to form dimers and its dimerization is dependent on residues 859-884, previously determined to be required for apoptosis. Indeed, CTF expression promotes p53-ERK interaction, which is diminished upon deletion of residues 859-884. Together, our results indicate a conserved tethering function of the Golgi protein p115 CTF which promotes p53-ERK interaction for the amplification of the apoptotic signal.
Collapse
Affiliation(s)
- Poh Choo How
- From the Departments of Developmental and Molecular Biology and.
| | - Dennis Shields
- From the Departments of Developmental and Molecular Biology and; Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
43
|
Yu IM, Hughson FM. Tethering Factors as Organizers of Intracellular Vesicular Traffic. Annu Rev Cell Dev Biol 2010; 26:137-56. [DOI: 10.1146/annurev.cellbio.042308.113327] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- I-Mei Yu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544;
| | - Frederick M. Hughson
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544;
| |
Collapse
|
44
|
Angers CG, Merz AJ. New links between vesicle coats and Rab-mediated vesicle targeting. Semin Cell Dev Biol 2010; 22:18-26. [PMID: 20643221 DOI: 10.1016/j.semcdb.2010.07.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 07/07/2010] [Accepted: 07/09/2010] [Indexed: 12/24/2022]
Abstract
Vesicle trafficking is a highly regulated process that transports proteins and other cargoes through eukaryotic cells while maintaining cellular organization and compartmental identity. In order for cargo to reach the correct destination, each step of trafficking must impart specificity. During vesicle formation, this is achieved by coat proteins, which selectively incorporate cargo into the nascent vesicle. Classically, vesicle coats are thought to dissociate shortly after budding. However, recent studies suggest that coat proteins can remain on the vesicle en route to their destination, imparting targeting specificity by physically and functionally interacting with Rab-regulated tethering systems. This review focuses on how interactions among Rab GTPases, tethering factors, SNARE proteins, and vesicle coats contribute to vesicle targeting, fusion, and coat dynamics.
Collapse
Affiliation(s)
- Cortney G Angers
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195-3750, USA
| | | |
Collapse
|
45
|
Trahey M, Hay JC. Transport vesicle uncoating: it's later than you think. F1000 BIOLOGY REPORTS 2010; 2:47. [PMID: 20706600 PMCID: PMC2919759 DOI: 10.3410/b2-47] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transport vesicle coat proteins play active roles in vesicle cargo sorting as well as membrane deformation and fission during vesicle biogenesis. For years, it was assumed that this was the extent of the coats’ function and that the coats depolymerized immediately after vesicle budding, leaving the exposed fusion machinery free to find, dock, and fuse with the proper target membrane. Recently, however, it has become increasingly clear that the coat remains on transport vesicles during their post-budding life and in fact helps properly pair up the vesicle with its intended target membrane. These data have brought up urgent questions about exactly when vesicles do uncoat and how uncoating is regulated. Here, we summarize the latest round of evidence for post-budding roles for coats, including a few hints about how the uncoating process may be coupled to docking and fusion. We also speculate about the possibility of post-fusion functions for residual coats.
Collapse
Affiliation(s)
- Meg Trahey
- Division of Biological Sciences and Center for Structural and Functional Neuroscience, The University of Montana, 32 Campus Drive, HS104, Missoula, MT 59812-4824, USA
| | | |
Collapse
|
46
|
Koegler E, Bonnon C, Waldmeier L, Mitrovic S, Halbeisen R, Hauri HP. p28, a novel ERGIC/cis Golgi protein, required for Golgi ribbon formation. Traffic 2010; 11:70-89. [PMID: 19948005 DOI: 10.1111/j.1600-0854.2009.01009.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The mammalian Golgi apparatus consists of individual cisternae that are stacked in a polarized manner to form the compact zones of the Golgi. Several stacks are linked to form a ribbon via dynamic lateral bridges. The determinants required for maintaining the characteristic Golgi structure are incompletely understood. Here, we have characterized p28, a new gamma-subfamily member of p24 membrane proteins. p28 localized to endoplasmic reticulum-Golgi intermediate compartment (ERGIC) and cis Golgi and accumulated in the ERGIC upon Brefeldin A treatment, typical for a protein cycling in the early secretory pathway. p28 interacted with a subset of p24 proteins. Its depletion by small interfering RNA (siRNA) led to fragmentation of the Golgi without affecting the overall organization of microtubules but considerably reducing the amount of acetylated tubulin. The distribution of COPI and tethers, including GM130, was not affected. At the ultrastructural level, the Golgi fragments appeared as mini-stacks with apparently unchanged cis-trans topology. Golgi fragmentation did not impair anterograde or retrograde traffic. Fluorescence recovery after photobleaching (FRAP) experiments revealed that silencing p28 prevents protein exchange between Golgi stacks during reassembly after Brefeldin A-induced Golgi breakdown. These results show that the formation of a Golgi ribbon requires the structural membrane protein p28 in addition to previously identified SNAREs, coat proteins and tethers.
Collapse
Affiliation(s)
- Eva Koegler
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
47
|
Mavillard F, Hidalgo J, Megias D, Levitsky KL, Velasco A. PKA-mediated Golgi remodeling during cAMP signal transmission. Traffic 2010; 11:90-109. [PMID: 20002352 DOI: 10.1111/j.1600-0854.2009.01007.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cyclic AMP (cAMP)-dependent protein kinase A (PKA) is part of the set of signaling proteins that are stably associated to the cytosolic surface of Golgi membranes in mammalian cells. In principle, Golgi-associated PKA could participate in either signal transduction events and/or the coordination of Golgi transport activities. Here, we show data indicating that although Golgi-associated PKA is activated fast and efficiently during cell stimulation by an extracellular ligand it does not contribute significantly to cAMP signal transmission to the nucleus. Instead, most of the PKA catalytic subunits Calphaderived from the Golgi complex remain localized in the perinuclear cytoplasm where they induce changes in Golgi structural organization. Thus, in stimulated cells the Golgi complex appears collapsed, showing increased colocalization of previously segregated markers and exhibiting merging of different proximal cisternae within a single stack. In contrast, the trans-Golgi network remains as a separate compartment. Consequently, the rate of protein transport is increased whereas glycan processing is not severely affected. This remodeling process requires the presence of PKA activity associated to the Golgi membranes. Together these data indicate that Golgi-associated PKA activity is involved in the adaptation of Golgi dynamic organization to extracellular signaling events.
Collapse
Affiliation(s)
- Fabiola Mavillard
- Department of Cell Biology, Faculty of Biology, University of Seville, Seville, Spain
| | | | | | | | | |
Collapse
|
48
|
Abstract
Yip1A depletion leads to reorganization of the ER into stacked and concentrically whorled membranes as well as a slowing of cargo export. The network dispersal function of Yip1A depends on a conserved residue. Thus, a conserved Yip1A-mediated ER network dispersal mechanism may regulate the protein export function of the organelle. The structure of the endoplasmic reticulum (ER) undergoes highly regulated changes in specialized cell types. One frequently observed type of change is its reorganization into stacked and concentrically whorled membranes, but the underlying mechanisms and functional relevance for cargo export are unknown. Here, we identify Yip1A, a conserved membrane protein that cycles between the ER and early Golgi, as a key mediator of ER organization. Yip1A depletion led to restructuring of the network into multiple, micrometer-sized concentric whorls. Membrane stacking and whorl formation coincided with a marked slowing of coat protein (COP)II-mediated protein export. Furthermore, whorl formation driven by exogenous expression of an ER protein with no role in COPII function also delayed cargo export. Thus, the slowing of protein export induced by Yip1A depletion may be attributed to a proximal role for Yip1A in regulating ER network dispersal. The ER network dispersal function of Yip1A was blocked by alteration of a single conserved amino acid (E95K) in its N-terminal cytoplasmic domain. These results reveal a conserved Yip1A-mediated mechanism for ER membrane organization that may serve to regulate cargo exit from the organelle.
Collapse
Affiliation(s)
- Kaitlyn M Dykstra
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
49
|
Bachert C, Linstedt AD. Dual anchoring of the GRASP membrane tether promotes trans pairing. J Biol Chem 2010; 285:16294-301. [PMID: 20228057 DOI: 10.1074/jbc.m110.116129] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GRASP proteins share an N-terminal GRASP domain and mediate homotypic tethering of Golgi cisternae to form extended Golgi ribbons. The golgin GM130 is thought to bind the C-terminal side of the GRASP domain to recruit GRASP65 onto the Golgi whereas stable membrane association appears to also depend on anchoring of the N terminus by myristoylation. Here, we examine the nature of the GM130/GRASP65 interaction and test whether the dual membrane contacts of the GRASP domain have a role in tethering beyond membrane recruitment. GM130 was found to contain a C-terminal PDZ ligand that binds the putative groove of the second PDZ-like domain in GRASP65. To test tethering activity independent of targeting, we took advantage of a tethering assay carried out on the mitochondrial membrane in which the GRASP membrane attachment points were individually or simultaneously substituted with mitochondrially targeted transmembrane sequences. N-terminally anchored constructs tethered only if the C terminus was also anchored; and likewise, C-terminally anchored constructs tethered only if the N terminus was anchored. One explanation for the role of this dual anchoring is that it orients the GRASP domain to prevent cis interactions within the same membrane thereby favoring trans interactions between adjacent membranes. Indeed, singly anchored GRASP constructs, although nonfunctional in tethering, interacted with one another and also bound and inhibited dually anchored constructs. This work thus elucidates the GM130/GRASP65 interaction and supports a novel orientation-based model of membrane tether regulation in which dual membrane contact orients the tethering interaction interface to favor trans over cis interactions.
Collapse
Affiliation(s)
- Collin Bachert
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
50
|
Abstract
Background Membrane trafficking is a defining feature of eukaryotic cells, and is essential for the maintenance of organelle homeostasis and identity. We previously identified Scy1-like 1 (Scyl1), a member of the Scy1-like family of catalytically inactive protein kinases, as a high-affinity binding partner of COPI coats. COPI-coated vesicles control Golgi to endoplasmic reticulum trafficking and we observed that disruption of Scyl1 function leads to a decrease in trafficking of the KDEL receptor via the COPI pathway. We reasoned that if Scyl1 plays a major role in COPI trafficking its disruption could influence Golgi homeostasis. Methodology/Principal Findings We performed Scyl1 knock down in cultured cells using previously established methods and observed an alteration in Golgi morphology. Both the surface area and volume of the Golgi is increased in Scyl1-depleted cells, but the continuity and polarity of the organelle is unperturbed. At the ultrastructural level we observe a decrease in the orderly structure of the Golgi with an increase in cisternal luminal width, while the number of Golgi cisternae remains unchanged. The golgin family of proteins forms a detergent resistant network that controls Golgi homeostasis. Disruption of this protein network by knock down of the golgin p115 disrupts the Golgi localization of Scyl1. Moreover, we find that Scyl1 interacts with 58K/formiminotransferase cyclodeaminase (FTCD), a protein that is tightly associated with the cis face of the Golgi. Conclusions/Significance Our results place Scyl1 at an interface between the golgin network and COPI trafficking and demonstrate that Scyl1 is required for the maintenance of Golgi morphology. Coupled with the observation from others that Scyl1 is the gene product responsible for the neurodegenerative mouse model mdf, our results additionally implicate the regulation of COPI trafficking and Golgi homeostasis in neurodegeneration.
Collapse
Affiliation(s)
- Jonathon L. Burman
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jason N. R. Hamlin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Peter S. McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|