1
|
Kawano Y, Kawano H, Ghoneim D, Fountaine TJ, Byun DK, LaMere MW, Mendler JH, Ho TC, Salama NA, Myers JR, Hussein SE, Frisch BJ, Ashton JM, Azadniv M, Liesveld JL, Kfoury Y, Scadden DT, Becker MW, Calvi LM. Myelodysplastic syndromes disable human CD271+VCAM1+CD146+ niches supporting normal hematopoietic stem/progenitor cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.09.536176. [PMID: 37066307 PMCID: PMC10104201 DOI: 10.1101/2023.04.09.536176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs) within the bone marrow microenvironment (BMME) support normal hematopoietic stem and progenitor cells (HSPCs). However, the heterogeneity of human MSCs has limited the understanding of their contribution to clonal dynamics and evolution to myelodysplastic syndromes (MDS). We combined three MSC cell surface markers, CD271, VCAM-1 (Vascular Cell Adhesion Molecule-1) and CD146, to isolate distinct subsets of human MSCs from bone marrow aspirates of healthy controls (Control BM). Based on transcriptional and functional analysis, CD271+CD106+CD146+ (NGFR+/VCAM1+/MCAM+/Lin-; NVML) cells display stem cell characteristics, are compatible with murine BM-derived Leptin receptor positive MSCs and provide superior support for normal HSPCs. MSC subsets from 17 patients with MDS demonstrated shared transcriptional changes in spite of mutational heterogeneity in the MDS clones, with loss of preferential support of normal HSPCs by MDS-derived NVML cells. Our data provide a new approach to dissect microenvironment-dependent mechanisms regulating clonal dynamics and progression of MDS.
Collapse
|
2
|
Trouvilliez S, Lagadec C, Toillon RA. TrkA Co-Receptors: The Janus Face of TrkA? Cancers (Basel) 2023; 15:cancers15071943. [PMID: 37046604 PMCID: PMC10093326 DOI: 10.3390/cancers15071943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Larotrectinib and Entrectinib are specific pan-Trk tyrosine kinase inhibitors (TKIs) approved by the Food and Drug Administration (FDA) in 2018 for cancers with an NTRK fusion. Despite initial enthusiasm for these compounds, the French agency (HAS) recently reported their lack of efficacy. In addition, primary and secondary resistance to these TKIs has been observed in the absence of other mutations in cancers with an NTRK fusion. Furthermore, when TrkA is overexpressed, it promotes ligand-independent activation, bypassing the TKI. All of these clinical and experimental observations show that genetics does not explain all therapeutic failures. It is therefore necessary to explore new hypotheses to explain these failures. This review summarizes the current status of therapeutic strategies with TrkA inhibitors, focusing on the mechanisms potentially involved in these failures and more specifically on the role of TrkA.
Collapse
Affiliation(s)
- Sarah Trouvilliez
- Univ. Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institute, Bvd. du Professeur Jules Leclercq, F-59000 Lille, France
| | - Chann Lagadec
- Univ. Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institute, Bvd. du Professeur Jules Leclercq, F-59000 Lille, France
| | - Robert-Alain Toillon
- Univ. Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institute, Bvd. du Professeur Jules Leclercq, F-59000 Lille, France
- GdR2082 APPICOM-«Approche Intégrative Pour Une Compréhension Multi-Échelles de la Fonction des Protéines Membranaires», 75016 Paris, France
| |
Collapse
|
3
|
Physiologic Cyclical Load on Inguinal Hernia Scaffold ProFlor Turns Biological Response into Tissue Regeneration. BIOLOGY 2023; 12:biology12030434. [PMID: 36979126 PMCID: PMC10045722 DOI: 10.3390/biology12030434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
Surgical repair of groin protrusions is one of the most frequently performed procedures. Currently, open or laparoscopic repair of inguinal hernias with flat meshes deployed over the hernial defect is considered the gold standard. However, fixation of the implant, poor quality biologic response to meshes and defective management of the defect represent sources of continuous debates. To overcome these issues, a different treatment concept has recently been proposed. It is based on a 3D scaffold named ProFlor, a flower shaped multilamellar device compressible on all planes. This 3D device is introduced into the hernial opening and, thanks to its inherent centrifugal expansion, permanently obliterates the defect in fixation-free fashion. While being made of the same polypropylene material as conventional hernia implants, the 3D design of ProFlor confers a proprietary dynamic responsivity, which unlike the foreign body reaction of flat/static meshes, promotes a true regenerative response. A long series of scientific evidence confirms that, moving in compliance with the physiologic cyclical load of the groin, ProFlor attracts tissue growth factors inducing the development of newly formed muscular, vascular and nervous structures, thus re-establishing the inguinal barrier formerly wasted by hernia disease. The development up to complete maturation of these highly specialized tissue elements was followed thanks to biopsies excised from ProFlor from the short-term up to years post implantation. Immunohistochemistry made it possible to document the concurrence of specific growth factors in the regenerative phenomena. The results achieved with ProFlor likely demonstrate that modifying the two-dimensional design of hernia meshes into a 3D outline and arranging the device to respond to kinetic stresses turns a conventional regressive foreign body response into advanced probiotic tissue regeneration.
Collapse
|
4
|
Kuntawala DH, Martins F, Vitorino R, Rebelo S. Automatic Text-Mining Approach to Identify Molecular Target Candidates Associated with Metabolic Processes for Myotonic Dystrophy Type 1. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2283. [PMID: 36767649 PMCID: PMC9915907 DOI: 10.3390/ijerph20032283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant hereditary disease caused by abnormal expansion of unstable CTG repeats in the 3' untranslated region of the myotonic dystrophy protein kinase (DMPK) gene. This disease mainly affects skeletal muscle, resulting in myotonia, progressive distal muscle weakness, and atrophy, but also affects other tissues and systems, such as the heart and central nervous system. Despite some studies reporting therapeutic strategies for DM1, many issues remain unsolved, such as the contribution of metabolic and mitochondrial dysfunctions to DM1 pathogenesis. Therefore, it is crucial to identify molecular target candidates associated with metabolic processes for DM1. In this study, resorting to a bibliometric analysis, articles combining DM1, and metabolic/metabolism terms were identified and further analyzed using an unbiased strategy of automatic text mining with VOSviewer software. A list of candidate molecular targets for DM1 associated with metabolic/metabolism was generated and compared with genes previously associated with DM1 in the DisGeNET database. Furthermore, g:Profiler was used to perform a functional enrichment analysis using the Gene Ontology (GO) and REAC databases. Enriched signaling pathways were identified using integrated bioinformatics enrichment analyses. The results revealed that only 15 of the genes identified in the bibliometric analysis were previously associated with DM1 in the DisGeNET database. Of note, we identified 71 genes not previously associated with DM1, which are of particular interest and should be further explored. The functional enrichment analysis of these genes revealed that regulation of cellular metabolic and metabolic processes were the most associated biological processes. Additionally, a number of signaling pathways were found to be enriched, e.g., signaling by receptor tyrosine kinases, signaling by NRTK1 (TRKA), TRKA activation by NGF, PI3K-AKT activation, prolonged ERK activation events, and axon guidance. Overall, several valuable target candidates related to metabolic processes for DM1 were identified, such as NGF, NTRK1, RhoA, ROCK1, ROCK2, DAG, ACTA, ID1, ID2 MYOD, and MYOG. Therefore, our study strengthens the hypothesis that metabolic dysfunctions contribute to DM1 pathogenesis, and the exploitation of metabolic dysfunction targets is crucial for the development of future therapeutic interventions for DM1.
Collapse
|
5
|
Amato G, Romano G, Rodolico V, Puleio R, Calò PG, Di Buono G, Cicero L, Romano G, Goetze TO, Agrusa A. Dynamic Responsive Inguinal Scaffold Activates Myogenic Growth Factors Finalizing the Regeneration of the Herniated Groin. J Funct Biomater 2022; 13:jfb13040253. [PMID: 36412894 PMCID: PMC9680268 DOI: 10.3390/jfb13040253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Postoperative chronic pain caused by fixation and/or fibrotic incorporation of hernia meshes are the main concerns in inguinal herniorrhaphy. As inguinal hernia is a degenerative disease, logically the treatment should aim at stopping degeneration and activating regeneration. Unfortunately, in conventional prosthetic herniorrhaphy no relationship exists between pathogenesis and treatment. To overcome these incongruences, a 3D dynamic responsive multilamellar scaffold has been developed for fixation-free inguinal hernia repair. Made of polypropylene like conventional flat meshes, the dynamic behavior of the scaffold allows for the regeneration of all typical inguinal components: connective tissue, vessels, nerves, and myocytes. This investigation aims to demonstrate that, moving in tune with the groin, the 3D scaffold attracts myogenic growth factors activating the development of mature myocytes and, thus, re-establishing the herniated inguinal barrier. METHODS Biopsy samples excised from the 3D scaffold at different postoperative stages were stained with H&E and Azan-Mallory; immunohistochemistry for NGF and NGFR p75 was performed to verify the degree of involvement of muscular growth factors in the neomyogenesis. RESULTS Histological evidence of progressive muscle development and immunohistochemical proof of NFG and NFGRp75 contribution in neomyogenesis within the 3D scaffold was documented and statistically validated. CONCLUSION The investigation appears to confirm that a 3D polypropylene scaffold designed to confer dynamic responsivity, unlike the fibrotic scar plate of static meshes, attracts myogenic growth factors turning the biological response into tissue regeneration. Newly developed muscles allow the scaffold to restore the integrity of the inguinal barrier.
Collapse
Affiliation(s)
- Giuseppe Amato
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
- Correspondence: (G.A.); (L.C.)
| | - Giorgio Romano
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Vito Rodolico
- Department PROMISE, Section Pathological Anatomy, University of Palermo, 90127 Palermo, Italy
| | - Roberto Puleio
- Department of Pathologic Anatomy and Histology, IZSS, 90129 Palermo, Italy
| | - Pietro Giorgio Calò
- Department of Surgical Sciences, University of Cagliari, 09042 Cagliari, Italy
| | - Giuseppe Di Buono
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Luca Cicero
- CEMERIT—IZSS, Via Gino Marinuzzi, 3, 90129 Palermo, Italy
- Correspondence: (G.A.); (L.C.)
| | - Giorgio Romano
- Postgraduate School of General Surgery, University of Palermo, 90127 Palermo, Italy
| | - Thorsten Oliver Goetze
- Institut für Klinisch-Onkologische Forschung Krankenhaus Nordwest, 60488 Frankfurt/Main, Germany
| | - Antonino Agrusa
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
6
|
Daneshvar N, Anderson JE. Preliminary Study of S100B and Sema3A Expression Patterns in Regenerating Muscle Implicates P75-Expressing Terminal Schwann Cells and Muscle Satellite Cells in Neuromuscular Junction Restoration. Front Cell Dev Biol 2022; 10:874756. [PMID: 35923848 PMCID: PMC9340223 DOI: 10.3389/fcell.2022.874756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
Terminal Schwann cells (TSCs) help regulate the formation, maintenance, function, and repair of neuromuscular junctions (NMJs) and axon guidance after muscle injury. Premature activation of muscle satellite cells (SCs), induced by isosorbide dinitrate (ISDN) before injury, accelerates myogenic regeneration, disrupts NMJ remodeling and maturation, decreases Sema3A protein-induced neuro-repulsion, and is accompanied by time-dependent changes in S100B protein levels. Here, to study the effects of premature SC activation on TSCs and SCs, both expressing P75 nerve growth-factor receptor, in situ hybridization was used to identify transcripts of S100B and Sema3A, and the number, intensity, and diameter of expression sites were analyzed. The number of sites/fields expressing S100B and Sema3A increased with regeneration time (both p < 0.001). Expression-site intensity (S100B) and diameter (S100B and Sema3A) decreased during regeneration (p = 0.005; p < 0.05, p = 0.006, respectively). P75 protein colocalized with a subset of S100B and Sema3A expression sites. Principal component analyses of gene expression, protein levels, and histological variables (fiber diameter, vascular density) in control and ISDN-pretreated groups explained 83% and 64% of the dataset variance, respectively. A very strong loading coefficient for colocalization of P75 protein with S100B and Sema3A mRNAs (0.91) in control regenerating muscle dropped markedly during regeneration disrupted by premature SC activation (-0.10 in Factor 1 to 0.55 in Factor 3). These findings strongly implicate the triple-expression profile by TSCs and/or SCs as a strong correlate of the important synchrony of muscle and nerve regeneration after muscle tissue injury. The results have the potential to focus future research on the complex interplay of TSCs and SCs in neuromuscular tissue repair and help promote effective function after traumatic muscle injury.
Collapse
Affiliation(s)
| | - Judy E. Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
7
|
Ferraguti G, Terracina S, Petrella C, Greco A, Minni A, Lucarelli M, Agostinelli E, Ralli M, de Vincentiis M, Raponi G, Polimeni A, Ceccanti M, Caronti B, Di Certo MG, Barbato C, Mattia A, Tarani L, Fiore M. Alcohol and Head and Neck Cancer: Updates on the Role of Oxidative Stress, Genetic, Epigenetics, Oral Microbiota, Antioxidants, and Alkylating Agents. Antioxidants (Basel) 2022; 11:145. [PMID: 35052649 PMCID: PMC8773066 DOI: 10.3390/antiox11010145] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Head and neck cancer (HNC) concerns more than 890,000 patients worldwide annually and is associated with the advanced stage at presentation and heavy outcomes. Alcohol drinking, together with tobacco smoking, and human papillomavirus infection are the main recognized risk factors. The tumorigenesis of HNC represents an intricate sequential process that implicates a gradual acquisition of genetic and epigenetics alterations targeting crucial pathways regulating cell growth, motility, and stromal interactions. Tumor microenvironment and growth factors also play a major role in HNC. Alcohol toxicity is caused both directly by ethanol and indirectly by its metabolic products, with the involvement of the oral microbiota and oxidative stress; alcohol might enhance the exposure of epithelial cells to carcinogens, causing epigenetic modifications, DNA damage, and inaccurate DNA repair with the formation of DNA adducts. Long-term markers of alcohol consumption, especially those detected in the hair, may provide crucial information on the real alcohol drinking of HNC patients. Strategies for prevention could include food supplements as polyphenols, and alkylating drugs as therapy that play a key role in HNC management. Indeed, polyphenols throughout their antioxidant and anti-inflammatory actions may counteract or limit the toxic effect of alcohol whereas alkylating agents inhibiting cancer cells' growth could reduce the carcinogenic damage induced by alcohol. Despite the established association between alcohol and HNC, a concerning pattern of alcohol consumption in survivors of HNC has been shown. It is of primary importance to increase the awareness of cancer risks associated with alcohol consumption, both in oncologic patients and the general population, to provide advice for reducing HNC prevalence and complications.
Collapse
Affiliation(s)
- Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (S.T.); (M.L.)
| | - Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (S.T.); (M.L.)
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Antonio Minni
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (S.T.); (M.L.)
| | - Enzo Agostinelli
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Marco de Vincentiis
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Giammarco Raponi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell’Alcolismo, 00184 Rome, Italy;
- SIFASD, Società Italiana Sindrome Feto-Alcolica, 00184 Rome, Italy
| | - Brunella Caronti
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Maria Grazia Di Certo
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| | - Alessandro Mattia
- Ministero dell’Interno, Dipartimento della Pubblica Sicurezza, Direzione Centrale di Sanità, Centro di Ricerche e Laboratorio di Tossicologia Forense, 00185 Rome, Italy;
| | - Luigi Tarani
- Department of Pediatrics, Sapienza University Hospital of Rome, 00185 Rome, Italy;
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| |
Collapse
|
8
|
Liu P, Li S, Tang L. Nerve Growth Factor: A Potential Therapeutic Target for Lung Diseases. Int J Mol Sci 2021; 22:ijms22179112. [PMID: 34502019 PMCID: PMC8430922 DOI: 10.3390/ijms22179112] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022] Open
Abstract
The lungs play a very important role in the human respiratory system. However, many factors can destroy the structure of the lung, causing several lung diseases and, often, serious damage to people's health. Nerve growth factor (NGF) is a polypeptide which is widely expressed in lung tissues. Under different microenvironments, NGF participates in the occurrence and development of lung diseases by changing protein expression levels and mediating cell function. In this review, we summarize the functions of NGF as well as some potential underlying mechanisms in pulmonary fibrosis (PF), coronavirus disease 2019 (COVID-19), pulmonary hypertension (PH), asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. Furthermore, we highlight that anti-NGF may be used in future therapeutic strategies.
Collapse
Affiliation(s)
- Piaoyang Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China;
| | - Shun Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610500, China
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu 610500, China
- Correspondence: (S.L.); (L.T.)
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China;
- Correspondence: (S.L.); (L.T.)
| |
Collapse
|
9
|
Larouche JA, Mohiuddin M, Choi JJ, Ulintz PJ, Fraczek P, Sabin K, Pitchiaya S, Kurpiers SJ, Castor-Macias J, Liu W, Hastings RL, Brown LA, Markworth JF, De Silva K, Levi B, Merajver SD, Valdez G, Chakkalakal JV, Jang YC, Brooks SV, Aguilar CA. Murine muscle stem cell response to perturbations of the neuromuscular junction are attenuated with aging. eLife 2021; 10:e66749. [PMID: 34323217 PMCID: PMC8360658 DOI: 10.7554/elife.66749] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/28/2021] [Indexed: 01/29/2023] Open
Abstract
During aging and neuromuscular diseases, there is a progressive loss of skeletal muscle volume and function impacting mobility and quality of life. Muscle loss is often associated with denervation and a loss of resident muscle stem cells (satellite cells or MuSCs); however, the relationship between MuSCs and innervation has not been established. Herein, we administered severe neuromuscular trauma to a transgenic murine model that permits MuSC lineage tracing. We show that a subset of MuSCs specifically engraft in a position proximal to the neuromuscular junction (NMJ), the synapse between myofibers and motor neurons, in healthy young adult muscles. In aging and in a mouse model of neuromuscular degeneration (Cu/Zn superoxide dismutase knockout - Sod1-/-), this localized engraftment behavior was reduced. Genetic rescue of motor neurons in Sod1-/- mice reestablished integrity of the NMJ in a manner akin to young muscle and partially restored MuSC ability to engraft into positions proximal to the NMJ. Using single cell RNA-sequencing of MuSCs isolated from aged muscle, we demonstrate that a subset of MuSCs are molecularly distinguishable from MuSCs responding to myofiber injury and share similarity to synaptic myonuclei. Collectively, these data reveal unique features of MuSCs that respond to synaptic perturbations caused by aging and other stressors.
Collapse
Affiliation(s)
- Jacqueline A Larouche
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Mahir Mohiuddin
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUnited States
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Wallace Coulter Departmentof Biomedical Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Jeongmoon J Choi
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUnited States
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Wallace Coulter Departmentof Biomedical Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Peter J Ulintz
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
- Internal Medicine-Hematology/Oncology, University of MichiganAnn ArborUnited States
| | - Paula Fraczek
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Kaitlyn Sabin
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | | | - Sarah J Kurpiers
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Jesus Castor-Macias
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Wenxuan Liu
- Department of Pharmacology and Physiology, University of Rochester Medical CenterRochesterUnited States
- Department of Biomedical Engineering, University of Rochester Medical CenterRochesterUnited States
- Wilmot Cancer Institute, Stem Cell and Regenerative Medicine Institute, and The Rochester Aging Research Center, University of Rochester Medical CenterRochesterUnited States
| | - Robert Louis Hastings
- Departmentof Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidenceUnited States
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown UniversityProvidenceUnited States
| | - Lemuel A Brown
- Department of Molecular & Integrative Physiology, University of MichiganAnn ArborUnited States
| | - James F Markworth
- Department of Molecular & Integrative Physiology, University of MichiganAnn ArborUnited States
| | - Kanishka De Silva
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Benjamin Levi
- Department of Surgery, University of Texas SouthwesternDallasUnited States
- Childrens Research Institute and Center for Mineral MetabolismDallasUnited States
- Program in Cellular and Molecular Biology, University of MichiganAnn ArborUnited States
| | - Sofia D Merajver
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Internal Medicine-Hematology/Oncology, University of MichiganAnn ArborUnited States
| | - Gregorio Valdez
- Departmentof Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidenceUnited States
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown UniversityProvidenceUnited States
| | - Joe V Chakkalakal
- Department of Pharmacology and Physiology, University of Rochester Medical CenterRochesterUnited States
- Department of Biomedical Engineering, University of Rochester Medical CenterRochesterUnited States
- Wilmot Cancer Institute, Stem Cell and Regenerative Medicine Institute, and The Rochester Aging Research Center, University of Rochester Medical CenterRochesterUnited States
| | - Young C Jang
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUnited States
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Wallace Coulter Departmentof Biomedical Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Susan V Brooks
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Department of Molecular & Integrative Physiology, University of MichiganAnn ArborUnited States
| | - Carlos A Aguilar
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
- Childrens Research Institute and Center for Mineral MetabolismDallasUnited States
- Program in Cellular and Molecular Biology, University of MichiganAnn ArborUnited States
| |
Collapse
|
10
|
Ceci FM, Ferraguti G, Petrella C, Greco A, Tirassa P, Iannitelli A, Ralli M, Vitali M, Ceccanti M, Chaldakov GN, Versacci P, Fiore M. Nerve Growth Factor, Stress and Diseases. Curr Med Chem 2021; 28:2943-2959. [PMID: 32811396 DOI: 10.2174/0929867327999200818111654] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 11/22/2022]
Abstract
Stress is a constant threat for homeostasis and is represented by different extrinsic and intrinsic stimuli (stressors, Hans Selye's "noxious agents"), such as aggressive behavior, fear, diseases, physical activity, drugs, surgical injury, and environmental and physiological changes. Our organisms respond to stress by activating the adaptive stress system to activate compensatory responses for restoring homeostasis. Nerve Growth Factor (NGF) was discovered as a signaling molecule involved in survival, protection, differentiation, and proliferation of sympathetic and peripheral sensory neurons. NGF mediates stress with an important role in translating environmental stimuli into physiological and pathological feedbacks since NGF levels undergo important variations after exposure to stressful events. Psychological stress, lifestyle stress, and oxidative stress are well known to increase the risk of mental disorders such as schizophrenia, major depressive disorders, bipolar disorder, alcohol use disorders and metabolic disorders such as metabolic syndrome. This review reports recent works describing the activity of NGF in mental and metabolic disorders related to stress.
Collapse
Affiliation(s)
- Flavio Maria Ceci
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Angela Iannitelli
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | | | - Mauro Ceccanti
- Centro Riferimento Alcologico Regione Lazio, ASL Roma 1, Rome, Italy
| | - George N Chaldakov
- Department of Anatomy and Cell Biology, Medical University, and Institute for Advanced Study, Varna, Bulgaria
| | - Paolo Versacci
- Department of Pediatrics, Sapienza University Hospital of Rome, Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| |
Collapse
|
11
|
Astragalus membranaceus Injection Protects Retinal Ganglion Cells by Regulating the Nerve Growth Factor Signaling Pathway in Experimental Rat Traumatic Optic Neuropathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2020:2429843. [PMID: 33381196 PMCID: PMC7762646 DOI: 10.1155/2020/2429843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Activation of the nerve growth factor (NGF) signaling pathway is a potential method of treatment for retinal ganglion cell (RGC) loss due to traumatic optic neuropathy (TON). The present study aimed to explore the biological effects of injecting Astragalus membranaceus (A. mem) on RGCs in an experimental TON model. Adult male Wistar rats were randomly divided into three groups: sham-operated (SL), model (ML), and A. mem injection (AL). The left eyes of the rats were considered the experimental eyes, and the right eyes served as the controls. AL rats received daily intraperitoneal injections of A. mem (3 mL/kg), whereas ML and SL rats were administered the same volume of normal saline. The TON rat model was induced by optic nerve (ON) transverse quantitative traction. After two-week administration, the number of RGCs was determined using retrograde labeling with Fluoro-Gold. The protein levels of NGF, tyrosine kinase receptor A (TrkA), c-Jun N-terminal protein kinase (JNK), JNK phosphorylation (p-JNK), and nuclear factor kappa-B (NF-κB) were assessed using western blotting. The levels of p75 neurotrophin receptor (p75NTR) and NF-κB DNA binding were examined using real-time PCR and an electrophoretic mobility shift assay. In addition, the concentrations of JNK and p-JNK were assessed using an enzyme-linked immunosorbent assay. Results. The number of RGCs in ML was found to be significantly decreased (P < 0.01) relative to both AL and SL, together with the downregulation of NGF (P < 0.01), TrkA (P < 0.05), and NF-κB (P < 0.01); upregulation of p75NTR mRNA (P < 0.01); and increased protein levels of JNK (P < 0.05) and p-JNK (P < 0.05). Treatment using A. mem injection significantly preserved the density of RGCs in rats with experimental TON and markedly upregulated the proteins of NGF (P < 0.01), TrkA (P < 0.05), and NF-κB (P < 0.01) and downregulated the mRNA level of p75NTR(P < 0.01), as well as the proteins of JNK (P < 0.05) and p-JNK (P < 0.01). Thus, A. mem injection could reduce RGC death in TON induced by ON transverse quantitative traction by stimulating the NGF signaling pathway.
Collapse
|
12
|
ProNGF/p75NTR Axis Drives Fiber Type Specification by Inducing the Fast-Glycolytic Phenotype in Mouse Skeletal Muscle Cells. Cells 2020; 9:cells9102232. [PMID: 33023189 PMCID: PMC7599914 DOI: 10.3390/cells9102232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Despite its undisputable role in the homeostatic regulation of the nervous system, the nerve growth factor (NGF) also governs the relevant cellular processes in other tissues and organs. In this study, we aimed at assessing the expression and the putative involvement of NGF signaling in skeletal muscle physiology. To reach this objective, we employed satellite cell-derived myoblasts as an in vitro culture model. In vivo experiments were performed on Tibialis anterior from wild-type mice and an mdx mouse model of Duchenne muscular dystrophy. Targets of interest were mainly assessed by means of morphological, Western blot and qRT-PCR analysis. The results show that proNGF is involved in myogenic differentiation. Importantly, the proNGF/p75NTR pathway orchestrates a slow-to-fast fiber type transition by counteracting the expression of slow myosin heavy chain and that of oxidative markers. Concurrently, proNGF/p75NTR activation facilitates the induction of fast myosin heavy chain and of fast/glycolytic markers. Furthermore, we also provided evidence that the oxidative metabolism is impaired in mdx mice, and that these alterations are paralleled by a prominent buildup of proNGF and p75NTR. These findings underline that the proNGF/p75NTR pathway may play a crucial role in fiber type determination and suggest its prospective modulation as an innovative therapeutic approach to counteract muscle disorders.
Collapse
|
13
|
Carrero-Rojas G, Benítez-Temiño B, Pastor AM, Davis López de Carrizosa MA. Muscle Progenitors Derived from Extraocular Muscles Express Higher Levels of Neurotrophins and their Receptors than other Cranial and Limb Muscles. Cells 2020; 9:cells9030747. [PMID: 32197508 PMCID: PMC7140653 DOI: 10.3390/cells9030747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/02/2020] [Accepted: 03/17/2020] [Indexed: 01/19/2023] Open
Abstract
Extraocular muscles (EOMs) show resistance to muscle dystrophies and sarcopenia. It has been recently demonstrated that they are endowed with different types of myogenic cells, all of which present an outstanding regenerative potential. Neurotrophins are important modulators of myogenic regeneration and act promoting myoblast proliferation, enhancing myogenic fusion rates and protecting myotubes from inflammatory stimuli. Here, we adapted the pre-plate cell isolation technique to obtain myogenic progenitors from the rat EOMs, and quantified their in vitro expression of neurotrophins and their receptors by RT–qPCR and immunohistochemistry, respectively. The results were compared with the expression on progenitors isolated from buccinator, tongue and limb muscles. Our quantitative analysis of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and neurotrophin-3 (NT-3) transcripts showed, for the first time, that EOMs-derived cells express more of these factors and that they expressed TrkA, but not TrkB and TrkC receptors. On the contrary, the immunofluorescence analysis demonstrated high expression of p75NTR on all myogenic progenitors, with the EOMs-derived cells showing higher expression. Taken together, these results suggest that the intrinsic trophic differences between EOMs-derived myogenic progenitors and their counterparts from other muscles could explain why those cells show higher proliferative and fusion rates, as well as better regenerative properties.
Collapse
|
14
|
Chen L, Zhang H, Zhang L, Li W, Fan F, Wu X, Wu X, Lin J. Cas9 Protein Triggers Differential Expression of Inherent Genes Especially NGFR Expression in 293T Cells. Cell Mol Bioeng 2020; 13:61-72. [PMID: 32030108 DOI: 10.1007/s12195-019-00606-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/24/2019] [Indexed: 12/26/2022] Open
Abstract
Introduction CRISPR/CAS9 systems, which can be utilized in vitro biological experiments, have recently captured much attention for their important roles and benefits. However, full realization of the potential of CRISPR/CAS9 approaches requires addressing many challenges and side effects. The expression of genes and potential side effects of CRISPR/CAS9 in human cells remains to be elucidated. The aim of our study was to explore the effect of CRISPR/CAS9 on gene expression in 293T cells. Methods A Cas9-expressing PX458 plasmid and Cas9-deactivated PX458-T2A plasmid were used to study the role of CRISPR/CAS9 on regulating gene expression in 293T cells. Gene expression in 293T cells after transfection of the PX458 plasmid or PX458-T2A plasmid was detected by RNA sequencing and correlative statistical analysis. Differential gene expression in both PX458 transfected 293T cells and PX458-T2A transfected 293T cells compared with normal 293T cells was detected using quantitative reverse transcription polymerase chain reaction (RT qPCR). The mRNA and protein levels were measured using reverse transcription PCR and Western blot. Co-IP assay combined with shotgun LC-MS/MS were used to investigate the differences of NGFR-interaction proteins between PX458 transfected 293T cells and PX458-T2A transfected 293T cells. Results In this study, we observed that PX458 plasmid transfection and Cas9 expression can affect the expression of different genes, including FOSB (FBJ murine osteosarcoma viral oncogene homolog B), IL-11 (Interleukin-11), MMP1 (matrix metalloproteinase), CYP2D6 (CytochromeP4502D6), and NGFR (matrix metalloproteinase 1). Downregulation of NGFR after PX458 transfection was confirmed by RT qPCR and western blot analysis. NGFR expression was significantly lower in PX458 transfected 293T cells than in normal 293T cells and PX458-T2A transfected 293T cells. The co-IP dilutions analyzed by shotgun LC-MS/MS showed a total of 183 proteins interact with NGFR in PX458 transfected 293T cells while 221 proteins interact with NGFR were identified in PX458-T2A transfected 293T cells using the MASCOT engine. Conclusions Cas9 expression by transfection of the PX458 plasmid was negatively correlated with the NGFR mRNA level and NGFR protein expression in 293T cells, while PX458-T2A, in which Cas9 is deactivated, did not affect NGFR expression. The decrease in NGFR expression also affects the amount of proteins that interact with NGFR. These results suggest that the effect of Cas9 on NGFR expression and the expression of other genes should be noticed when developing cell-based studies and therapies utilizing CRISPR/CAS9 systems.
Collapse
Affiliation(s)
- Liqun Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China.,Institute of Apply Genomics, Fuzhou University, Fuzhou, 350108 China.,Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, 350108 China
| | - Huilian Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China.,Institute of Apply Genomics, Fuzhou University, Fuzhou, 350108 China
| | - Linteng Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China.,Institute of Apply Genomics, Fuzhou University, Fuzhou, 350108 China
| | - Wenbo Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China.,Institute of Apply Genomics, Fuzhou University, Fuzhou, 350108 China
| | - Fengtian Fan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China.,Institute of Apply Genomics, Fuzhou University, Fuzhou, 350108 China
| | - Xiaoyun Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China.,Institute of Apply Genomics, Fuzhou University, Fuzhou, 350108 China
| | - Xueling Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China.,Institute of Apply Genomics, Fuzhou University, Fuzhou, 350108 China
| | - Jun Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China.,Institute of Apply Genomics, Fuzhou University, Fuzhou, 350108 China.,Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, 350108 China
| |
Collapse
|
15
|
|
16
|
Pham DD, Bruelle C, Thi Do H, Pajanoja C, Jin C, Srinivasan V, Olkkonen VM, Eriksson O, Jauhiainen M, Lalowski M, Lindholm D. Caspase-2 and p75 neurotrophin receptor (p75NTR) are involved in the regulation of SREBP and lipid genes in hepatocyte cells. Cell Death Dis 2019; 10:537. [PMID: 31296846 PMCID: PMC6624261 DOI: 10.1038/s41419-019-1758-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 06/11/2019] [Indexed: 12/16/2022]
Abstract
Lipid-induced toxicity is part of several human diseases, but the mechanisms involved are not fully understood. Fatty liver is characterized by the expression of different growth and tissue factors. The neurotrophin, nerve growth factor (NGF) and its pro-form, pro-NGF, are present in fatty liver together with p75 neurotrophin receptor (p75NTR). Stimulation of human Huh7 hepatocyte cells with NGF and pro-NGF induced Sterol-regulator-element-binding protein-2 (SREBP2) activation and increased Low-Density Lipoprotein Receptor (LDLR) expression. We observed that phosphorylation of caspase-2 by p38 MAPK was essential for this regulation involving a caspase-3-mediated cleavage of SREBP2. RNA sequencing showed that several genes involved in lipid metabolism were altered in p75NTR-deficient mouse liver. The same lipogenic genes were downregulated in p75NTR gene-engineered human Huh7 cells and reciprocally upregulated by stimulation of p75NTRs. In the knock-out mice the serum cholesterol and triglyceride levels were reduced, suggesting a physiological role of p75NTRs in whole-body lipid metabolism. Taken together, this study shows that p75NTR signaling influences a network of genes involved in lipid metabolism in liver and hepatocyte cells. Modulation of p75NTR signaling may be a target to consider in various metabolic disorders accompanied by increased lipid accumulation.
Collapse
Affiliation(s)
- Dan Duc Pham
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, POB 63, FI-00014, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum 2, Tukholmankatu 8, FI-00290, Helsinki, Finland
| | - Céline Bruelle
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, POB 63, FI-00014, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum 2, Tukholmankatu 8, FI-00290, Helsinki, Finland
| | - Hai Thi Do
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, POB 63, FI-00014, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum 2, Tukholmankatu 8, FI-00290, Helsinki, Finland
| | - Ceren Pajanoja
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, POB 63, FI-00014, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum 2, Tukholmankatu 8, FI-00290, Helsinki, Finland
| | - Congyu Jin
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, POB 63, FI-00014, Helsinki, Finland
| | - Vignesh Srinivasan
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, POB 63, FI-00014, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum 2, Tukholmankatu 8, FI-00290, Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2, Tukholmankatu 8, FI-00290, Helsinki, Finland
| | - Ove Eriksson
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, POB 63, FI-00014, Helsinki, Finland
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Biomedicum 2, Tukholmankatu 8, FI-00290, Helsinki, Finland
| | - Maciej Lalowski
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, POB 63, FI-00014, Helsinki, Finland
- HiLiFE, Meilahti Clinical Proteomics Core Facility, Helsinki, Finland
| | - Dan Lindholm
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, POB 63, FI-00014, Helsinki, Finland.
- Minerva Foundation Institute for Medical Research, Biomedicum 2, Tukholmankatu 8, FI-00290, Helsinki, Finland.
| |
Collapse
|
17
|
Sousa-Victor P, Jasper H, Neves J. Trophic Factors in Inflammation and Regeneration: The Role of MANF and CDNF. Front Physiol 2018; 9:1629. [PMID: 30515104 PMCID: PMC6255971 DOI: 10.3389/fphys.2018.01629] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/29/2018] [Indexed: 12/26/2022] Open
Abstract
Regeneration is an important process in multicellular organisms, responsible for homeostatic renewal and repair of different organs after injury. Immune cell activation is observed at early stages of the regenerative response and its regulation is essential for regenerative success. Thus, immune regulators play central roles in optimizing regenerative responses. Neurotrophic factors (NTFs) are secreted molecules, defined by their ability to support neuronal cell types. However, emerging evidence suggests that they can also play important functions in the regulation of immune cell activation and tissue repair. Here we discuss the literature supporting a role of NTFs in the regulation of inflammation and regeneration. We will focus, in particular, in the emerging roles of mesencephalic astrocyte-derived neurotrophic factor (MANF) and cerebral dopamine neurotrophic factor (CDNF) in the regulation of immune cell function and in the central role that immune modulation plays in their biological activity in vivo. Finally, we will discuss the potential use of these factors to optimize regenerative success in vivo, both within and beyond the nervous system.
Collapse
Affiliation(s)
- Pedro Sousa-Victor
- Paul F. Glenn Center for Biology of Aging Research, Buck Institute for Research on Aging, Novato, CA, United States
| | - Heinrich Jasper
- Paul F. Glenn Center for Biology of Aging Research, Buck Institute for Research on Aging, Novato, CA, United States.,Immunology Discovery, Genentech, Inc., South San Francisco, CA, United States
| | - Joana Neves
- Paul F. Glenn Center for Biology of Aging Research, Buck Institute for Research on Aging, Novato, CA, United States
| |
Collapse
|
18
|
Hicks MR, Hiserodt J, Paras K, Fujiwara W, Eskin A, Jan M, Xi H, Young CS, Evseenko D, Nelson SF, Spencer MJ, Handel BV, Pyle AD. ERBB3 and NGFR mark a distinct skeletal muscle progenitor cell in human development and hPSCs. Nat Cell Biol 2018; 20:46-57. [PMID: 29255171 PMCID: PMC5962356 DOI: 10.1038/s41556-017-0010-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/16/2017] [Indexed: 12/24/2022]
Abstract
Human pluripotent stem cells (hPSCs) can be directed to differentiate into skeletal muscle progenitor cells (SMPCs). However, the myogenicity of hPSC-SMPCs relative to human fetal or adult satellite cells remains unclear. We observed that hPSC-SMPCs derived by directed differentiation are less functional in vitro and in vivo compared to human satellite cells. Using RNA sequencing, we found that the cell surface receptors ERBB3 and NGFR demarcate myogenic populations, including PAX7 progenitors in human fetal development and hPSC-SMPCs. We demonstrated that hPSC skeletal muscle is immature, but inhibition of transforming growth factor-β signalling during differentiation improved fusion efficiency, ultrastructural organization and the expression of adult myosins. This enrichment and maturation strategy restored dystrophin in hundreds of dystrophin-deficient myofibres after engraftment of CRISPR-Cas9-corrected Duchenne muscular dystrophy human induced pluripotent stem cell-SMPCs. The work provides an in-depth characterization of human myogenesis, and identifies candidates that improve the in vivo myogenic potential of hPSC-SMPCs to levels that are equal to directly isolated human fetal muscle cells.
Collapse
MESH Headings
- Adult
- Aged
- CRISPR-Cas Systems
- Cell Differentiation
- Dystrophin/genetics
- Dystrophin/metabolism
- Female
- Gene Editing
- Gene Expression Regulation, Developmental
- Humans
- Induced Pluripotent Stem Cells/cytology
- Induced Pluripotent Stem Cells/metabolism
- Male
- Middle Aged
- Muscle Development/genetics
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Myoblasts/cytology
- Myoblasts/metabolism
- Myosins/genetics
- Myosins/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- PAX7 Transcription Factor/genetics
- PAX7 Transcription Factor/metabolism
- Receptor, ErbB-3/genetics
- Receptor, ErbB-3/metabolism
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Signal Transduction
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Michael R Hicks
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Julia Hiserodt
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Katrina Paras
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Wakana Fujiwara
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Ascia Eskin
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, CA, USA
| | - Majib Jan
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Haibin Xi
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Courtney S Young
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA, USA
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stanley F Nelson
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Melissa J Spencer
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA, USA
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - Ben Van Handel
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - April D Pyle
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA.
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA, USA.
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA.
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, CA, USA.
| |
Collapse
|
19
|
de Perini A, Dimauro I, Duranti G, Fantini C, Mercatelli N, Ceci R, Di Luigi L, Sabatini S, Caporossi D. The p75 NTR-mediated effect of nerve growth factor in L6C5 myogenic cells. BMC Res Notes 2017; 10:686. [PMID: 29202822 PMCID: PMC5716223 DOI: 10.1186/s13104-017-2994-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/25/2017] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE During muscle development or regeneration, myocytes produce nerve growth factor (NGF) as well as its tyrosine-kinase and p75-neurotrophin (p75NTR) receptors. It has been published that the p75NTR receptor could represent a key regulator of NGF-mediated myoprotective effect on satellite cells, but the precise function of NGF/p75 signaling pathway on myogenic cell proliferation, survival and differentiation remains fragmented and controversial. Here, we verified the role of NGF in the growth, survival and differentiation of p75NTR-expressing L6C5 myogenic cells, specifically inquiring for the putative involvement of the nuclear factor κB (NFκB) and the small heat shock proteins (sHSPs) αB-crystallin and Hsp27 in these processes. RESULTS Although NGF was not effective in modulating myogenic cell growth or survival in both standard or stress conditions, we demonstrated for the first time that, under serum deprivation, NGF sustained the activity of some key enzymes involved in energy metabolism. Moreover, we confirmed that NGF promotes myogenic fusion and expression of the structural protein myosin heavy chain while modulating NFκB activation and the content of sHSPs correlated with the differentiation process. We conclude that p75NTR is sufficient to mediate the modulation of L6C5 myogenic differentiation by NGF in term of structural, metabolic and functional changes.
Collapse
Affiliation(s)
- Alessandra de Perini
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| | - Ivan Dimauro
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| | - Guglielmo Duranti
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| | - Cristina Fantini
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| | - Neri Mercatelli
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
- Laboratory of Cellular and Molecular Neurobiology, CERC, Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Roberta Ceci
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| | - Luigi Di Luigi
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| | - Stefania Sabatini
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| |
Collapse
|
20
|
Treatment with platelet-derived growth factor (PDGF) and rock inhibitors is related to declined nerve growth factor (NGF) signaling in an experimental model of rat pulmonary hypertension. Pharmacol Rep 2017; 69:532-535. [DOI: 10.1016/j.pharep.2017.01.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/18/2017] [Accepted: 01/30/2017] [Indexed: 11/21/2022]
|
21
|
Ruven C, Li W, Li H, Wong WM, Wu W. Transplantation of Embryonic Spinal Cord Derived Cells Helps to Prevent Muscle Atrophy after Peripheral Nerve Injury. Int J Mol Sci 2017; 18:ijms18030511. [PMID: 28264437 PMCID: PMC5372527 DOI: 10.3390/ijms18030511] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/10/2017] [Accepted: 02/22/2017] [Indexed: 02/07/2023] Open
Abstract
Injuries to peripheral nerves are frequent in serious traumas and spinal cord injuries. In addition to surgical approaches, other interventions, such as cell transplantation, should be considered to keep the muscles in good condition until the axons regenerate. In this study, E14.5 rat embryonic spinal cord fetal cells and cultured neural progenitor cells from different spinal cord segments were injected into transected musculocutaneous nerve of 200–300 g female Sprague Dawley (SD) rats, and atrophy in biceps brachii was assessed. Both kinds of cells were able to survive, extend their axons towards the muscle and form neuromuscular junctions that were functional in electromyographic studies. As a result, muscle endplates were preserved and atrophy was reduced. Furthermore, we observed that the fetal cells had a better effect in reducing the muscle atrophy compared to the pure neural progenitor cells, whereas lumbar cells were more beneficial compared to thoracic and cervical cells. In addition, fetal lumbar cells were used to supplement six weeks delayed surgical repair after the nerve transection. Cell transplantation helped to preserve the muscle endplates, which in turn lead to earlier functional recovery seen in behavioral test and electromyography. In conclusion, we were able to show that embryonic spinal cord derived cells, especially the lumbar fetal cells, are beneficial in the treatment of peripheral nerve injuries due to their ability to prevent the muscle atrophy.
Collapse
Affiliation(s)
- Carolin Ruven
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China.
| | - Wen Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China.
| | - Heng Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China.
| | - Wai-Man Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China.
| | - Wutian Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China.
- State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Joint Laboratory for CNS Regeneration, Jinan University and The University of Hong Kong, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510000, China.
- Guangdong Engineering Research Center of Stem Cell Storage and Clinical Application, Saliai Stem Cell Science and Technology, Guangzhou 510000, China.
| |
Collapse
|
22
|
Pingitore A, Caroleo MC, Cione E, Castañera Gonzalez R, Huang GC, Persaud SJ. Fine tuning of insulin secretion by release of nerve growth factor from mouse and human islet β-cells. Mol Cell Endocrinol 2016; 436:23-32. [PMID: 27424144 DOI: 10.1016/j.mce.2016.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/13/2016] [Accepted: 07/11/2016] [Indexed: 11/21/2022]
Abstract
Nerve growth factor (NGF) is a protein required for neuronal development that also has regulatory functions in non-neuronal cells. Both NGF and its membrane receptors trkA and p75(NTR) are expressed by islet β-cells. In this study we dynamically profiled NGF secretion from islets and used selective trkA and p75(NTR) inhibitors to identify the role of endogenous NGF in β-cell stimulus-secretion coupling. NGF secretion from mouse islets was transient and did not accompany the sustained second phase of glucose-induced insulin secretion. Despite being present in human islets, NGF was not released at sufficient levels to be quantified. Inhibition of NGF signaling through trkA and p75(NTR) increased basal insulin secretion from both human and mouse islets, but impaired glucose-stimulated insulin secretion. These data support a role for islet NGF in fine-tuning insulin secretion, to both maintain a low basal level of insulin output and contribute to the biphasic secretory response to glucose.
Collapse
Affiliation(s)
- Attilio Pingitore
- Diabetes Research Group, Diabetes & Nutritional Sciences Division, King's College London, Guy's Campus, SE1 1UL, London, United Kingdom
| | - Maria Cristina Caroleo
- Department of Pharmacy, Nutritional and Health Sciences, University of Calabria, Via Savinio, 87036, Rende, Italy
| | - Erika Cione
- Department of Pharmacy, Nutritional and Health Sciences, University of Calabria, Via Savinio, 87036, Rende, Italy
| | - Ramon Castañera Gonzalez
- Department of General Surgery, Rio Carrión Hospital, University Hospital Complex of Palencia, 34005, Palencia, Spain
| | - Guo Cai Huang
- Diabetes Research Group, Diabetes & Nutritional Sciences Division, King's College London, Guy's Campus, SE1 1UL, London, United Kingdom
| | - Shanta J Persaud
- Diabetes Research Group, Diabetes & Nutritional Sciences Division, King's College London, Guy's Campus, SE1 1UL, London, United Kingdom.
| |
Collapse
|
23
|
Passipieri JA, Christ GJ. The Potential of Combination Therapeutics for More Complete Repair of Volumetric Muscle Loss Injuries: The Role of Exogenous Growth Factors and/or Progenitor Cells in Implantable Skeletal Muscle Tissue Engineering Technologies. Cells Tissues Organs 2016; 202:202-213. [PMID: 27825153 DOI: 10.1159/000447323] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2016] [Indexed: 11/19/2022] Open
Abstract
Despite the robust regenerative capacity of skeletal muscle, there are a variety of congenital and acquired conditions in which the volume of skeletal muscle loss results in major permanent functional and cosmetic deficits. These latter injuries are referred to as volumetric muscle loss (VML) injuries or VML-like conditions, and they are characterized by the simultaneous absence of multiple tissue components (i.e., nerves, vessels, muscles, satellite cells, and matrix). There are currently no effective treatment options. Regenerative medicine/tissue engineering technologies hold great potential for repair of these otherwise irrecoverable VML injuries. In this regard, three-dimensional scaffolds have been used to deliver sustained amounts of growth factors into a variety of injury models, to modulate host cell recruitment and extracellular matrix remodeling. However, this is a nascent field of research, and more complete functional improvements require more precise control of the spatiotemporal distribution of critical growth factors over a physiologically relevant range. This is especially true for VML injuries where incorporation of a cellular component into the scaffolds might provide not only a source of new tissue formation but also additional signals for host cell migration, recruitment, and survival. To this end, we review the major features of muscle repair and regeneration for largely recoverable injuries, and then discuss recent cell- and/or growth factor-based approaches to repair the more profound and irreversible VML and VML-like injuries. The underlying supposition is that more rationale incorporation of exogenous growth factors and/or cellular components will be required to optimize the regenerative capacity of implantable therapeutics for VML repair.
Collapse
|
24
|
Pham DD, Do HT, Bruelle C, Kukkonen JP, Eriksson O, Mogollón I, Korhonen LT, Arumäe U, Lindholm D. p75 Neurotrophin Receptor Signaling Activates Sterol Regulatory Element-binding Protein-2 in Hepatocyte Cells via p38 Mitogen-activated Protein Kinase and Caspase-3. J Biol Chem 2016; 291:10747-58. [PMID: 26984409 PMCID: PMC4865921 DOI: 10.1074/jbc.m116.722272] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/15/2016] [Indexed: 11/06/2022] Open
Abstract
Nerve growth factor (NGF) influences the survival and differentiation of a specific population of neurons during development, but its role in non-neuronal cells has been less studied. We observed here that NGF and its pro-form, pro-NGF, are elevated in fatty livers from leptin-deficient mice compared with controls, concomitant with an increase in low density lipoprotein receptors (LDLRs). Stimulation of mouse primary hepatocytes with NGF or pro-NGF increased LDLR expression through the p75 neurotrophin receptor (p75NTR). Studies using Huh7 human hepatocyte cells showed that the neurotrophins activate the sterol regulatory element-binding protein-2 (SREBP2) that regulates genes involved in lipid metabolism. The mechanisms for this were related to stimulation of p38 mitogen-activated protein kinase (p38 MAPK) and activation of caspase-3 and SREBP2 cleavage following NGF and pro-NGF stimulations. Cell fractionation experiments showed that caspase-3 activity was increased particularly in the membrane fraction that harbors SREBP2 and caspase-2. Experiments showed further that caspase-2 interacts with pro-caspase-3 and that p38 MAPK reduced this interaction and caused caspase-3 activation. Because of the increased caspase-3 activity, the cells did not undergo cell death following p75NTR stimulation, possibly due to concomitant activation of nuclear factor-κB (NF-κB) pathway by the neurotrophins. These results identify a novel signaling pathway triggered by ligand-activated p75NTR that via p38 MAPK and caspase-3 mediate the activation of SREBP2. This pathway may regulate LDLRs and lipid uptake particularly after injury or during tissue inflammation accompanied by an increased production of growth factors, including NGF and pro-NGF.
Collapse
Affiliation(s)
- Dan Duc Pham
- From the Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, P. O. Box 63, Helsinki FIN-00014, Finland, the Minerva Foundation Institute for Medical Research, Biomedicum-2, Tukholmankatu 8, FIN-00290 Helsinki, Finland
| | - Hai Thi Do
- From the Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, P. O. Box 63, Helsinki FIN-00014, Finland, the Minerva Foundation Institute for Medical Research, Biomedicum-2, Tukholmankatu 8, FIN-00290 Helsinki, Finland
| | - Céline Bruelle
- From the Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, P. O. Box 63, Helsinki FIN-00014, Finland, the Minerva Foundation Institute for Medical Research, Biomedicum-2, Tukholmankatu 8, FIN-00290 Helsinki, Finland
| | - Jyrki P Kukkonen
- Biochemistry and Cell Biology, Department of Veterinary Biosciences, P. O. Box 66, University of Helsinki, Helsinki FIN-00014, Finland
| | - Ove Eriksson
- From the Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, P. O. Box 63, Helsinki FIN-00014, Finland
| | - Isabel Mogollón
- From the Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, P. O. Box 63, Helsinki FIN-00014, Finland, the Minerva Foundation Institute for Medical Research, Biomedicum-2, Tukholmankatu 8, FIN-00290 Helsinki, Finland
| | - Laura T Korhonen
- From the Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, P. O. Box 63, Helsinki FIN-00014, Finland, the Minerva Foundation Institute for Medical Research, Biomedicum-2, Tukholmankatu 8, FIN-00290 Helsinki, Finland
| | - Urmas Arumäe
- the Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, P. O. Box 65, Helsinki FIN-00014, Finland, and the Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Dan Lindholm
- From the Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, P. O. Box 63, Helsinki FIN-00014, Finland, the Minerva Foundation Institute for Medical Research, Biomedicum-2, Tukholmankatu 8, FIN-00290 Helsinki, Finland,
| |
Collapse
|
25
|
Baeza-Raja B, Sachs BD, Li P, Christian F, Vagena E, Davalos D, Le Moan N, Ryu JK, Sikorski SL, Chan JP, Scadeng M, Taylor SS, Houslay MD, Baillie GS, Saltiel AR, Olefsky JM, Akassoglou K. p75 Neurotrophin Receptor Regulates Energy Balance in Obesity. Cell Rep 2015; 14:255-68. [PMID: 26748707 DOI: 10.1016/j.celrep.2015.12.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 08/05/2015] [Accepted: 12/02/2015] [Indexed: 02/06/2023] Open
Abstract
Obesity and metabolic syndrome reflect the dysregulation of molecular pathways that control energy homeostasis. Here, we show that the p75 neurotrophin receptor (p75(NTR)) controls energy expenditure in obese mice on a high-fat diet (HFD). Despite no changes in food intake, p75(NTR)-null mice were protected from HFD-induced obesity and remained lean as a result of increased energy expenditure without developing insulin resistance or liver steatosis. p75(NTR) directly interacts with the catalytic subunit of protein kinase A (PKA) and regulates cAMP signaling in adipocytes, leading to decreased lipolysis and thermogenesis. Adipocyte-specific depletion of p75(NTR) or transplantation of p75(NTR)-null white adipose tissue (WAT) into wild-type mice fed a HFD protected against weight gain and insulin resistance. Our results reveal that signaling from p75(NTR) to cAMP/PKA regulates energy balance and suggest that non-CNS neurotrophin receptor signaling could be a target for treating obesity and the metabolic syndrome.
Collapse
Affiliation(s)
- Bernat Baeza-Raja
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Benjamin D Sachs
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Pingping Li
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Frank Christian
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Eirini Vagena
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dimitrios Davalos
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Natacha Le Moan
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jae Kyu Ryu
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Shoana L Sikorski
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Justin P Chan
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Miriam Scadeng
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan S Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Miles D Houslay
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, UK
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Alan R Saltiel
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jerrold M Olefsky
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Katerina Akassoglou
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
26
|
Freund-Michel V, Cardoso Dos Santos M, Guignabert C, Montani D, Phan C, Coste F, Tu L, Dubois M, Girerd B, Courtois A, Humbert M, Savineau JP, Marthan R, Muller B. Role of Nerve Growth Factor in Development and Persistence of Experimental Pulmonary Hypertension. Am J Respir Crit Care Med 2015; 192:342-55. [PMID: 26039706 DOI: 10.1164/rccm.201410-1851oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
RATIONALE Pulmonary hypertension (PH) is characterized by a progressive elevation in mean pulmonary arterial pressure, often leading to right ventricular failure and death. Growth factors play significant roles in the pathogenesis of PH, and their targeting may therefore offer novel therapeutic strategies in this disease. OBJECTIVES To evaluate the nerve growth factor (NGF) as a potential new target in PH. METHODS Expression and/or activation of NGF and its receptors were evaluated in rat experimental PH induced by chronic hypoxia or monocrotaline and in human PH (idiopathic or associated with chronic obstructive pulmonary disease). Effects of exogenous NGF were evaluated ex vivo on pulmonary arterial inflammation and contraction, and in vitro on pulmonary vascular cell proliferation, migration, and cytokine secretion. Effects of NGF inhibition were evaluated in vivo with anti-NGF blocking antibodies administered both in rat chronic hypoxia- and monocrotaline-induced PH. MEASUREMENTS AND MAIN RESULTS Our results show increased expression of NGF and/or increased expression/activation of its receptors in experimental and human PH. Ex vivo/in vitro, we found out that NGF promotes pulmonary vascular cell proliferation and migration, pulmonary arterial hyperreactivity, and secretion of proinflammatory cytokines. In vivo, we demonstrated that anti-NGF blocking antibodies prevent and reverse PH in rats through significant reduction of pulmonary arterial inflammation, hyperreactivity, and remodeling. CONCLUSIONS This study highlights the critical role of NGF in PH. Because of the recent development of anti-NGF blocking antibodies as a possible new pain treatment, such a therapeutic strategy of NGF inhibition may be of interest in PH.
Collapse
Affiliation(s)
- Véronique Freund-Michel
- 1 University Bordeaux and.,2 INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | | | - Christophe Guignabert
- 3 Faculté de Médecine, Université Paris-Sud, Le Kremlin-Bicêtre, France.,4 INSERM UMR-S 999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
| | - David Montani
- 3 Faculté de Médecine, Université Paris-Sud, Le Kremlin-Bicêtre, France.,4 INSERM UMR-S 999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France.,5 Centre de Référence de l'Hypertension Pulmonaire Sévère, Service de Pneumologie et Réanimation Respiratoire, DHU Thorax Innovation, Assistance Publique Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France; and
| | - Carole Phan
- 3 Faculté de Médecine, Université Paris-Sud, Le Kremlin-Bicêtre, France.,4 INSERM UMR-S 999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
| | - Florence Coste
- 1 University Bordeaux and.,2 INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France.,6 CHU de Bordeaux, Bordeaux, France
| | - Ly Tu
- 3 Faculté de Médecine, Université Paris-Sud, Le Kremlin-Bicêtre, France.,4 INSERM UMR-S 999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
| | - Mathilde Dubois
- 1 University Bordeaux and.,2 INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Barbara Girerd
- 3 Faculté de Médecine, Université Paris-Sud, Le Kremlin-Bicêtre, France.,4 INSERM UMR-S 999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France.,5 Centre de Référence de l'Hypertension Pulmonaire Sévère, Service de Pneumologie et Réanimation Respiratoire, DHU Thorax Innovation, Assistance Publique Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France; and
| | - Arnaud Courtois
- 1 University Bordeaux and.,2 INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Marc Humbert
- 3 Faculté de Médecine, Université Paris-Sud, Le Kremlin-Bicêtre, France.,4 INSERM UMR-S 999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France.,5 Centre de Référence de l'Hypertension Pulmonaire Sévère, Service de Pneumologie et Réanimation Respiratoire, DHU Thorax Innovation, Assistance Publique Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France; and
| | - Jean-Pierre Savineau
- 1 University Bordeaux and.,2 INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Roger Marthan
- 1 University Bordeaux and.,2 INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France.,6 CHU de Bordeaux, Bordeaux, France
| | - Bernard Muller
- 1 University Bordeaux and.,2 INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| |
Collapse
|
27
|
Differential levels of p75NTR ectodomain in CSF and blood in patients with Alzheimer's disease: a novel diagnostic marker. Transl Psychiatry 2015; 5:e650. [PMID: 26440538 PMCID: PMC4930124 DOI: 10.1038/tp.2015.146] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/20/2015] [Accepted: 07/29/2015] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's disease (AD) is the primary cause of dementia in the elderly. The ectodomain of p75 neurotrophin receptor (p75NTR-ECD) has been suggested to play important roles in regulating beta-amyloid (Aβ) deposition and in protecting neurons from the toxicity of soluble Aβ. However, whether and how the serum and cerebrospinal fluid (CSF) levels of p75NTR-ECD change in patients with AD are not well documented. In the present study, we determined the concentrations of serum p75NTR-ECD in an AD group, a Parkinson disease group and a stroke group, as well as in a group of elderly controls without neurological disorders (EC). We also determined the levels of CSF p75NTR-ECD in a subset of the AD and EC groups. Our data showed that a distinct p75NTR-ECD profile characterized by a decreased CSF level and an increased serum level was present concomitantly with AD patients but not with other diseases. p75NTR-ECD levels in both the serum and CSF were strongly correlated with Mini-Mental State Examination (MMSE) scores and showed sound differential diagnostic value for AD. Moreover, when combining CSF Aβ42, CSF Aβ42/40, CSF ptau181 or CSF ptau181/Aβ42 with CSF p75NTR-ECD, the area under the receiver operating characteristic curve (AUC) and diagnostic accuracies improved. These findings indicate that p75NTR-ECD can serve as a specific biomarker for AD and the determination of serum and CSF p75NTR-ECD levels is likely to be helpful in monitoring AD progression.
Collapse
|
28
|
Kalinkovich A, Livshits G. Sarcopenia--The search for emerging biomarkers. Ageing Res Rev 2015; 22:58-71. [PMID: 25962896 DOI: 10.1016/j.arr.2015.05.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 12/12/2022]
Abstract
Sarcopenia, an age-related decline in skeletal muscle mass and function, dramatically affects the life quality of elder people. In view of increasing life expectancy, sarcopenia renders a heavy burden on the health care system. However, although there is a consensus that sarcopenia is a multifactorial syndrome, its etiology, underlying mechanisms, and even definition remain poorly delineated, thus, preventing development of a precise treatment strategy. The main aim of our review is to critically analyze potential sarcopenia biomarkers in light of the molecular mechanisms of their involvement in sarcopenia pathogenesis. Normal muscle mass and function maintenance are proposed to be dependent on the dynamic balance between the positive regulators of muscle growth such as bone morphogenetic proteins (BMPs), brain-derived neurotrophic factor (BDNF), follistatin (FST) and irisin, and negative regulators including TGFβ, myostatin, activins A and B, and growth and differentiation factor-15 (GDF-15). We hypothesize that the shift in this balance to muscle growth inhibitors, along with increased expression of the C- terminal agrin fragment (CAF) associated with age-dependent neuromuscular junction (NMJ) dysfunction, as well as skeletal muscle-specific troponin T (sTnT), a key component of contractile machinery, is a main mechanism underlying sarcopenia pathogenesis. Thus, this review proposes and emphasizes that these molecules are the emerging sarcopenia biomarkers.
Collapse
|
29
|
NOD-Like Receptor Signaling in Cholesteatoma. BIOMED RESEARCH INTERNATIONAL 2015; 2015:408169. [PMID: 25922834 PMCID: PMC4398947 DOI: 10.1155/2015/408169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/14/2015] [Indexed: 11/18/2022]
Abstract
Background. Cholesteatoma is a destructive process of the middle ear resulting in erosion of the surrounding bony structures with consequent hearing loss, vestibular dysfunction, facial paralysis, or intracranial complications. The etiopathogenesis of cholesteatoma is controversial but is associated with recurrent ear infections. The role of intracellular innate immune receptors, the NOD-like receptors, and their associated signaling networks was investigated in cholesteatoma, since mutations in NOD-like receptor-related genes have been implicated in other chronic inflammatory disorders. Results. The expression of NOD2 mRNA and protein was significantly induced in cholesteatoma compared to the external auditory canal skin, mainly located in the epithelial layer of cholesteatoma. Microarray analysis showed significant upregulation for NOD2, not for NOD1, TLR2, or TLR4 in cholesteatoma. Moreover, regulation of genes in an interaction network of the NOD-adaptor molecule RIPK2 was detected. In addition to NOD2, NLRC4, and PYCARD, the downstream molecules IRAK1 and antiapoptotic regulator CFLAR showed significant upregulation, whereas SMAD3, a proapoptotic inducer, was significantly downregulated. Finally, altered regulation of inflammatory target genes of NOD signaling was detected. Conclusions. These results indicate that the interaction of innate immune signaling mediated by NLRs and their downstream target molecules is involved in the etiopathogenesis and growth of cholesteatoma.
Collapse
|
30
|
Chen Q, Wang H, Liao S, Gao Y, Liao R, Little PJ, Xu J, Feng ZP, Zheng Y, Zheng W. Nerve growth factor protects retinal ganglion cells against injury induced by retinal ischemia-reperfusion in rats. Growth Factors 2015; 33:149-59. [PMID: 25707536 DOI: 10.3109/08977194.2015.1010642] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this study, we investigated the protective effect of mouse nerve growth factor (NGF) on retinal ganglion cell (RGC) injury induced by retinal ischemia-reperfusion (RIR) in rats and explored its possible mechanisms of action. RIR caused a significant injury to RGCs and an obvious impairment of the inner retina functions, which could be seen from flash electroretinogram and flash visual evoked potential recordings. RIR also increased the expression of the apoptotic protein Bax while decreasing the expression of Bcl-2 and the phosphorylation of protein kinase B (Akt) in RGCs. Preinjection (i.m.) of NGF for 22 d reversed the injury induced by RIR and ameliorated the inner retina functions. NGF also reduced the expression of Bax and reversed the reduction of Bcl-2 and the phosphorylated Akt induced by RIR. These results indicate that NGF produces a neuroprotective effect on RGCs against RIR injury and the protective effect of NGF is mainly mediated by the PI-3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University , Guangzhou , China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kudo D, Miyakoshi N, Hongo M, Matsumoto-Miyai K, Kasukawa Y, Misawa A, Ishikawa Y, Shimada Y. Nerve Growth Factor and Estrogen Receptor mRNA Expression in Paravertebral Muscles of Patients With Adolescent Idiopathic Scoliosis: A Preliminary Study. Spine Deform 2015; 3:122-127. [PMID: 27927302 DOI: 10.1016/j.jspd.2014.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 05/26/2014] [Accepted: 07/18/2014] [Indexed: 01/02/2023]
Abstract
STUDY DESIGN Comparison of nerve growth factor (NGF) and estrogen receptor (ER)α messenger ribonucleic acid (mRNA) expression in bilateral paravertebral muscles in adolescent idiopathic scoliosis (AIS). This expression in AIS was compared with that of normal control subjects. OBJECTIVES To investigate NGF and ERα mRNA expression in bilateral paravertebral muscles in AIS and control subjects to clarify its association with the development and progression of spinal curvature. SUMMARY OF BACKGROUND DATA Paravertebral muscle abnormalities in AIS patients have been investigated through various methods. Despite the roles of NGF and ER in human skeletal muscles, the association with idiopathic scoliosis is still unclear. METHODS A total of 14 AIS patients (average age, 15.9 ± 2.2 years; average Cobb angle, 48.2° ± 8.9°) and 8 controls (average age, 27.3 ± 9.3 years) were included. Muscle samples were harvested from bilateral paravertebral muscles at the apical vertebral level. Nerve growth factor and ERα mRNA expression was evaluated by the real-time polymerase chain reaction. The researchers compared expression levels in bilateral paravertebral muscles in each group. The expression ratio, the expression at the convex side relative to the concave side, was compared between groups and the correlation between Cobb angle and expression ratio was analyzed. RESULTS Nerve growth factor and ERα mRNA expression on the convex side was higher than on the concave side in the AIS group (p = .024 and .007, respectively) and the expression ratio of NGF and ERα in the AIS group was higher than that of control subjects (p = .004 and .017, respectively). The expression ratio of NGF and the Cobb angle were significantly correlated (r = -0.5728; p = .0323). CONCLUSIONS In the AIS group, both NGF and ERα mRNA expression was asymmetric. The AIS group had higher expression ratios than control group and the NGF expression ratio was positively correlated to the Cobb angle.
Collapse
Affiliation(s)
- Daisuke Kudo
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
| | - Naohisa Miyakoshi
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Michio Hongo
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Kazumasa Matsumoto-Miyai
- Department of Neurophysiology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Yuji Kasukawa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Akiko Misawa
- Department of Orthopedic Surgery, Akita Prefectural Center on Development and Disability, 1-128 Aza-suwanosawa Kamikitate-momozaki, Akita 010-1407, Japan
| | - Yoshinori Ishikawa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Yoichi Shimada
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| |
Collapse
|
32
|
The nerve growth factor signaling and its potential as therapeutic target for glaucoma. BIOMED RESEARCH INTERNATIONAL 2014; 2014:759473. [PMID: 25250333 PMCID: PMC4164261 DOI: 10.1155/2014/759473] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 08/12/2014] [Indexed: 12/25/2022]
Abstract
Neuroprotective therapies which focus on factors leading to retinal ganglion cells (RGCs) degeneration have been drawing more and more attention. The beneficial effects of nerve growth factor (NGF) on the glaucoma have been recently suggested, but its effects on eye tissue are complex and controversial in various studies. Recent clinical trials of systemically and topically administrated NGF demonstrate that NGF is effective in treating several ocular diseases, including glaucoma. NGF has two receptors named high affinity NGF tyrosine kinase receptor TrkA and low affinity receptor p75NTR. Both receptors exist in cells in retina like RGC (expressing TrkA) and glia cells (expressing p75NTR). NGF functions by binding to TrkA or p75NTR alone or both together. The binding of NGF to TrkA alone in RGC promotes RGC's survival and proliferation through activation of TrkA and several prosurvival pathways. In contrast, the binding of NGF to p75NTR leads to apoptosis although it also promotes survival in some cases. Binding of NGF to both TrkA and p75NTR at the same time leads to survival in which p75NTR functions as a TrkA helping receptor. This review discusses the current understanding of the NGF signaling in retina and the therapeutic implications in the treatment of glaucoma.
Collapse
|
33
|
Colombo E, Bedogni F, Lorenzetti I, Landsberger N, Previtali SC, Farina C. Autocrine and immune cell-derived BDNF in human skeletal muscle: implications for myogenesis and tissue regeneration. J Pathol 2013; 231:190-8. [PMID: 23775641 DOI: 10.1002/path.4228] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/05/2013] [Accepted: 06/11/2013] [Indexed: 01/03/2023]
Abstract
The neurotrophin system has a role in skeletal muscle biology. Conditional depletion of BDNF in mouse muscle precursor cells alters myogenesis and regeneration in vivo. However, the expression, localization and function of BDNF in human skeletal muscle tissue is not known, so the relevance of the rodent findings for human muscle are unknown. Here we address this by combining ex vivo histological investigations on human biopsies with in vitro analyses of human primary myocytes. We found that BDNF was expressed by precursor and differentiated cells both in vitro and in vivo. Differential analysis of BDNF receptors showed expression of p75NTR and not of TrkB in myocytes, suggesting that the BDNF-p75NTR axis is predominant in human skeletal muscle cells. Several in vitro functional experiments demonstrated that BDNF gene silencing or protein blockade in myoblast cultures hampered myogenesis. Finally, histological investigations of inflammatory myopathy biopsies revealed that infiltrating immune cells localized preferentially near p75NTR-positive regenerating fibres and that they produced BDNF. In conclusion, BDNF is an autocrine factor for skeletal muscle cells and may regulate human myogenesis. Furthermore, the preferential localization of BDNF-producing immune cells near p75NTR-positive regenerating myofibres suggests that immune cell-derived BDNF may sustain tissue repair in inflamed muscle.
Collapse
Affiliation(s)
- Emanuela Colombo
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Baeza-Raja B, Eckel-Mahan K, Zhang L, Vagena E, Tsigelny IF, Sassone-Corsi P, Ptáček LJ, Akassoglou K. p75 neurotrophin receptor is a clock gene that regulates oscillatory components of circadian and metabolic networks. J Neurosci 2013; 33:10221-34. [PMID: 23785138 PMCID: PMC3685830 DOI: 10.1523/jneurosci.2757-12.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 04/01/2013] [Accepted: 05/01/2013] [Indexed: 01/09/2023] Open
Abstract
The p75 neurotrophin receptor (p75(NTR)) is a member of the tumor necrosis factor receptor superfamily with a widespread pattern of expression in tissues such as the brain, liver, lung, and muscle. The mechanisms that regulate p75(NTR) transcription in the nervous system and its expression in other tissues remain largely unknown. Here we show that p75(NTR) is an oscillating gene regulated by the helix-loop-helix transcription factors CLOCK and BMAL1. The p75(NTR) promoter contains evolutionarily conserved noncanonical E-box enhancers. Deletion mutagenesis of the p75(NTR)-luciferase reporter identified the -1039 conserved E-box necessary for the regulation of p75(NTR) by CLOCK and BMAL1. Accordingly, gel-shift assays confirmed the binding of CLOCK and BMAL1 to the p75(NTR-)1039 E-box. Studies in mice revealed that p75(NTR) transcription oscillates during dark and light cycles not only in the suprachiasmatic nucleus (SCN), but also in peripheral tissues including the liver. Oscillation of p75(NTR) is disrupted in Clock-deficient and mutant mice, is E-box dependent, and is in phase with clock genes, such as Per1 and Per2. Intriguingly, p75(NTR) is required for circadian clock oscillation, since loss of p75(NTR) alters the circadian oscillation of clock genes in the SCN, liver, and fibroblasts. Consistent with this, Per2::Luc/p75(NTR-/-) liver explants showed reduced circadian oscillation amplitude compared with those of Per2::Luc/p75(NTR+/+). Moreover, deletion of p75(NTR) also alters the circadian oscillation of glucose and lipid homeostasis genes. Overall, our findings reveal that the transcriptional activation of p75(NTR) is under circadian regulation in the nervous system and peripheral tissues, and plays an important role in the maintenance of clock and metabolic gene oscillation.
Collapse
Affiliation(s)
| | - Kristin Eckel-Mahan
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, and
| | | | | | - Igor F. Tsigelny
- San Diego Supercomputer Center and Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, and
| | - Louis J. Ptáček
- Department of Neurology, and
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California 94158
| | | |
Collapse
|
35
|
Abstract
Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration.
Collapse
Affiliation(s)
- Hang Yin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
36
|
Liu JX, Brännström T, Andersen PM, Pedrosa-Domellöf F. Distinct changes in synaptic protein composition at neuromuscular junctions of extraocular muscles versus limb muscles of ALS donors. PLoS One 2013; 8:e57473. [PMID: 23468993 PMCID: PMC3582511 DOI: 10.1371/journal.pone.0057473] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/21/2013] [Indexed: 12/11/2022] Open
Abstract
The pathophysiology of amyotrophic lateral sclerosis (ALS) is very complex and still rather elusive but in recent years evidence of early involvement of the neuromuscular junctions (NMJs) has accumulated. We have recently reported that the human extraocular muscles (EOMs) are far less affected than limb muscles at the end-stage of ALS from the same donor. The present study aimed to compare the differences in synaptic protein composition at NMJ and in nerve fibers between EOM and limb muscles from ALS donors and controls. Neurofilament light subunit and synaptophysin decreased significantly at NMJs and in nerve fibers in limb muscles with ALS whereas they were maintained in ALS EOMs. S100B was significantly decreased at NMJs and in nerve fibers in both EOMs and limb muscles of ALS donors, but other markers confirmed the presence of terminal Schwann cells in these NMJs. p75 neurotrophin receptor was present in nerve fibers but absent at NMJs in ALS limb muscles. The EOMs were able to maintain the integrity of their NMJs to a very large extent until the end-stage of ALS, in contrast to the limb muscles. Changes in Ca2+ homeostasis, reflected by altered S100B distribution, might be involved in the breakdown of nerve-muscle contact at NMJs in ALS.
Collapse
Affiliation(s)
- Jing-Xia Liu
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden.
| | | | | | | |
Collapse
|
37
|
Szarama KB, Gavara N, Petralia RS, Chadwick RS, Kelley MW. Thyroid hormone increases fibroblast growth factor receptor expression and disrupts cell mechanics in the developing organ of corti. BMC DEVELOPMENTAL BIOLOGY 2013; 13:6. [PMID: 23394545 PMCID: PMC3598248 DOI: 10.1186/1471-213x-13-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 01/29/2013] [Indexed: 01/13/2023]
Abstract
Background Thyroid hormones regulate growth and development. However, the molecular mechanisms by which thyroid hormone regulates cell structural development are not fully understood. The mammalian cochlea is an intriguing system to examine these mechanisms, as cellular structure plays a key role in tissue development, and thyroid hormone is required for the maturation of the cochlea in the first postnatal week. Results In hypothyroid conditions, we found disruptions in sensory outer hair cell morphology and fewer microtubules in non-sensory supporting pillar cells. To test the functional consequences of these cytoskeletal defects on cell mechanics, we combined atomic force microscopy with live cell imaging. Hypothyroidism stiffened outer hair cells and supporting pillar cells, but pillar cells ultimately showed reduced cell stiffness, in part from a lack of microtubules. Analyses of changes in transcription and protein phosphorylation suggest that hypothyroidism prolonged expression of fibroblast growth factor receptors, and decreased phosphorylated Cofilin. Conclusions These findings demonstrate that thyroid hormones may be involved in coordinating the processes that regulate cytoskeletal dynamics and suggest that manipulating thyroid hormone sensitivity might provide insight into the relationship between cytoskeletal formation and developing cell mechanical properties.
Collapse
Affiliation(s)
- Katherine B Szarama
- Section on Developmental Neuroscience, Laboratory of Cochlear Development, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | |
Collapse
|
38
|
Mengarelli I, Barberi T. Derivation of multiple cranial tissues and isolation of lens epithelium-like cells from human embryonic stem cells. Stem Cells Transl Med 2013; 2:94-106. [PMID: 23341438 DOI: 10.5966/sctm.2012-0100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Human embryonic stem cells (hESCs) provide a powerful tool to investigate early events occurring during human embryonic development. In the present study, we induced differentiation of hESCs in conditions that allowed formation of neural and non-neural ectoderm and to a lesser extent mesoderm. These tissues are required for correct specification of the neural plate border, an early embryonic transient structure from which neural crest cells (NCs) and cranial placodes (CPs) originate. Although isolation of CP derivatives from hESCs has not been previously reported, isolation of hESC-derived NC-like cells has been already described. We performed a more detailed analysis of fluorescence-activated cell sorting (FACS)-purified cell populations using the surface antigens previously used to select hESC-derived NC-like cells, p75 and HNK-1, and uncovered their heterogeneous nature. In addition to the NC component, we identified a neural component within these populations using known surface markers, such as CD15 and FORSE1. We have further exploited this information to facilitate the isolation and purification by FACS of a CP derivative, the lens, from differentiating hESCs. Two surface markers expressed on lens cells, c-Met/HGFR and CD44, were used for positive selection of multiple populations with a simultaneous subtraction of the neural/NC component mediated by p75, HNK-1, and CD15. In particular, the c-Met/HGFR allowed early isolation of proliferative lens epithelium-like cells capable of forming lentoid bodies. Isolation of hESC-derived lens cells represents an important step toward the understanding of human lens development and regeneration and the devising of future therapeutic applications.
Collapse
Affiliation(s)
- Isabella Mengarelli
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
39
|
Ettinger K, Lecht S, Arien-Zakay H, Cohen G, Aga-Mizrachi S, Yanay N, Saragovi HU, Nedev H, Marcinkiewicz C, Nevo Y, Lazarovici P. Nerve growth factor stimulation of ERK1/2 phosphorylation requires both p75NTR and α9β1 integrin and confers myoprotection towards ischemia in C2C12 skeletal muscle cell model. Cell Signal 2012; 24:2378-88. [PMID: 22960610 DOI: 10.1016/j.cellsig.2012.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/06/2012] [Accepted: 08/23/2012] [Indexed: 01/11/2023]
Abstract
The functions of nerve growth factor (NGF) in skeletal muscles physiology and pathology are not clear and call for an updated investigation. To achieve this goal we sought to investigate NGF-induced ERK1/2 phosphorylation and its role in the C2C12 skeletal muscle myoblasts and myotubes. RT-PCR and western blotting experiments demonstrated expression of p75(NTR), α9β1 integrin, and its regulator ADAM12, but not trkA in the cells, as also found in gastrocnemius and quadriceps mice muscles. Both proNGF and βNGF induced ERK1/2 phosphorylation, a process blocked by (a) the specific MEK inhibitor, PD98059; (b) VLO5, a MLD-disintegrin with relative selectivity towards α9β1 integrin; and (c) p75(NTR) antagonists Thx-B and LM-24, but not the inactive control molecule backbone Thx. Upon treatment for 4 days with either anti-NGF antibody or VLO5 or Thx-B, the proliferation of myoblasts was decreased by 60-70%, 85-90% and 60-80% respectively, indicative of trophic effect of NGF which was autocrinically released by the cells. Exposure of myotubes to ischemic insult in the presence of βNGF, added either 1h before oxygen-glucose-deprivation or concomitant with reoxygenation insults, resulted with about 20% and 33% myoprotection, an effect antagonized by VLO5 and Thx-B, further supporting the trophic role of NGF in C2C12 cells. Cumulatively, the present findings propose that proNGF and βNGF-induced ERK1/2 phosphorylation in C2C12 cells by functional cooperation between p75(NTR) and α9β1 integrin, which are involved in myoprotective effects of autocrine released NGF. Furthermore, the present study establishes an important trophic role of α9β1 in NGF-induced signaling in skeletal muscle model, resembling the role of trkA in neurons. Future molecular characterization of the interactions between NGF receptors in the skeletal muscle will contribute to the understanding of NGF mechanism of action and may provide novel therapeutic targets.
Collapse
Affiliation(s)
- Keren Ettinger
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Colombo E, Romaggi S, Blasevich F, Mora M, Falcone C, Lochmüller H, Morandi L, Farina C. The neurotrophin receptor p75NTR is induced on mature myofibres in inflammatory myopathies and promotes myotube survival to inflammatory stress. Neuropathol Appl Neurobiol 2012; 38:367-78. [PMID: 21851375 DOI: 10.1111/j.1365-2990.2011.01212.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AIMS Recent studies propose the neurotrophin receptor p75NTR as a marker for muscle satellite cells and a key regulator of regenerative processes after injury. Here, we investigated the contribution of cellular compartments other than satellite cells and regenerating myofibres to p75NTR signal in diseased skeletal muscle. METHODS We checked regulation of p75NTR expression in muscle biopsies from patients with inflammatory myopathies (polymyositis, dermatomyositis and inclusion body myositis), or Becker muscular dystrophy, and in nonmyopathic tissues. Quantitative PCR, immunohistochemistry, immunofluorescence or electron microscopy were used. RNA interference approaches were applied to myotubes to explore p75NTR function. RESULTS We found p75NTR transcript and protein upregulation in all inflammatory myopathies but not in dystrophic muscle, suggesting a role for inflammatory mediators in induction of p75NTR expression. In inflamed muscle p75NTR was localized on distinct cell types, including immune cells and mature myofibres. In vitro assays on human myotubes confirmed that inflammatory factors such as IL-1 could induce p75NTR. Finally, RNA interference experiments in differentiated cells showed that, in the absence of p75NTR, myotubes were more susceptible to apoptosis when exposed to inflammatory stimuli. CONCLUSIONS Our observations that p75NTR is upregulated on skeletal myofibres in inflammatory myopathies in vivo and promotes resistance to inflammatory mediators in vitro suggest that neurotrophin signalling through p75NTR may mediate a tissue-protective response to inflammation in skeletal myofibres.
Collapse
Affiliation(s)
- E Colombo
- Neuroimmunology and Neuromuscular Disorders, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Baeza-Raja B, Akassoglou K. Glucose homeostasis and p75NTR: the sweet side of neurotrophin receptor signaling. Cell Cycle 2012; 11:3151-2. [PMID: 22894898 PMCID: PMC3466508 DOI: 10.4161/cc.21590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
42
|
Spofford CM, Brennan TJ. Gene expression in skin, muscle, and dorsal root ganglion after plantar incision in the rat. Anesthesiology 2012; 117:161-72. [PMID: 22617252 PMCID: PMC3389501 DOI: 10.1097/aln.0b013e31825a2a2b] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Treating postoperative pain remains a significant challenge for perioperative medicine. Recent studies have shown that nerve growth factor is up-regulated and contributes to incisional pain. To date, few studies have examined expression of other neurotrophin-related mediators that may contribute to the development and/or maintenance of incisional pain. METHODS Male Sprague-Dawley rats underwent a plantar incision, and pain behaviors were examined (n = 6). In a separate group of rats, expression of neurotrophic factors were studied. At various times after incision (n = 4) or sham surgery (n = 4), the skin, muscle, and dorsal root ganglia were harvested and total RNA isolated. Real-time reverse transcription polymerase chain reaction was performed and the fold change in gene expression was analyzed using significance analysis of microarrays. RESULTS Several genes were changed (P < 0.05) as early as 1 h after incision. Expression of artemin and nerve growth factor were increased in both incised skin and muscle. Brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-5 were all down-regulated in the skin but up-regulated in the muscle 48 h after incision. Few genes changed in the dorsal root ganglion. Most changes in expression occurred in the first 48 h after incision, a timeframe when pain behavior was the greatest. CONCLUSION Surgical incision is associated with pain-related gene expression changes in skin, muscle, and, to a lesser extent, dorsal root ganglion. The gene expression profile provides clues as to mediators that are involved in peripheral sensitization and pain transmission after surgical incision and also suggest mechanisms for resolution of postoperative pain when more persistent pain syndromes like neuropathic pain continue.
Collapse
|
43
|
Szarama KB, Gavara N, Petralia RS, Kelley MW, Chadwick RS. Cytoskeletal changes in actin and microtubules underlie the developing surface mechanical properties of sensory and supporting cells in the mouse cochlea. Development 2012; 139:2187-97. [PMID: 22573615 DOI: 10.1242/dev.073734] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Correct patterning of the inner ear sensory epithelium is essential for the conversion of sound waves into auditory stimuli. Although much is known about the impact of the developing cytoskeleton on cellular growth and cell shape, considerably less is known about the role of cytoskeletal structures on cell surface mechanical properties. In this study, atomic force microscopy (AFM) was combined with fluorescence imaging to show that developing inner ear hair cells and supporting cells have different cell surface mechanical properties with different developmental time courses. We also explored the cytoskeletal organization of developing sensory and non-sensory cells, and used pharmacological modulation of cytoskeletal elements to show that the developmental increase of hair cell stiffness is a direct result of actin filaments, whereas the development of supporting cell surface mechanical properties depends on the extent of microtubule acetylation. Finally, this study found that the fibroblast growth factor signaling pathway is necessary for the developmental time course of cell surface mechanical properties, in part owing to the effects on microtubule structure.
Collapse
Affiliation(s)
- Katherine B Szarama
- Section on Auditory Mechanics, Laboratory of Cellular Biology, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
44
|
p75 neurotrophin receptor regulates glucose homeostasis and insulin sensitivity. Proc Natl Acad Sci U S A 2012; 109:5838-43. [PMID: 22460790 DOI: 10.1073/pnas.1103638109] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Insulin resistance is a key factor in the etiology of type 2 diabetes. Insulin-stimulated glucose uptake is mediated by the glucose transporter 4 (GLUT4), which is expressed mainly in skeletal muscle and adipose tissue. Insulin-stimulated translocation of GLUT4 from its intracellular compartment to the plasma membrane is regulated by small guanosine triphosphate hydrolases (GTPases) and is essential for the maintenance of normal glucose homeostasis. Here we show that the p75 neurotrophin receptor (p75(NTR)) is a regulator of glucose uptake and insulin resistance. p75(NTR) knockout mice show increased insulin sensitivity on normal chow diet, independent of changes in body weight. Euglycemic-hyperinsulinemic clamp studies demonstrate that deletion of the p75(NTR) gene increases the insulin-stimulated glucose disposal rate and suppression of hepatic glucose production. Genetic depletion or shRNA knockdown of p75(NTR) in adipocytes or myoblasts increases insulin-stimulated glucose uptake and GLUT4 translocation. Conversely, overexpression of p75(NTR) in adipocytes decreases insulin-stimulated glucose transport. In adipocytes, p75(NTR) forms a complex with the Rab5 family GTPases Rab5 and Rab31 that regulate GLUT4 trafficking. Rab5 and Rab31 directly interact with p75(NTR) primarily via helix 4 of the p75(NTR) death domain. Adipocytes from p75(NTR) knockout mice show increased Rab5 and decreased Rab31 activities, and dominant negative Rab5 rescues the increase in glucose uptake seen in p75(NTR) knockout adipocytes. Our results identify p75(NTR) as a unique player in glucose metabolism and suggest that signaling from p75(NTR) to Rab5 family GTPases may represent a unique therapeutic target for insulin resistance and diabetes.
Collapse
|
45
|
Colombo E, Romaggi S, Mora M, Morandi L, Farina C. A role for inflammatory mediators in the modulation of the neurotrophin receptor p75NTR on human muscle precursor cells. J Neuroimmunol 2012; 243:100-2. [DOI: 10.1016/j.jneuroim.2011.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/25/2011] [Accepted: 12/01/2011] [Indexed: 12/01/2022]
|
46
|
Le Moan N, Houslay DM, Christian F, Houslay MD, Akassoglou K. Oxygen-dependent cleavage of the p75 neurotrophin receptor triggers stabilization of HIF-1α. Mol Cell 2011; 44:476-90. [PMID: 22055192 PMCID: PMC3212815 DOI: 10.1016/j.molcel.2011.08.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 05/23/2011] [Accepted: 08/15/2011] [Indexed: 12/23/2022]
Abstract
Homeostatic control of oxygen availability allows cells to survive oxygen deprivation. Although the transcription factor hypoxia-inducible factor 1α (HIF-1α) is the main regulator of the hypoxic response, the upstream mechanisms required for its stabilization remain elusive. Here, we show that p75 neurotrophin receptor (p75(NTR)) undergoes hypoxia-induced γ-secretase-dependent cleavage to provide a positive feed-forward mechanism required for oxygen-dependent HIF-1α stabilization. The intracellular domain of p75(NTR) directly interacts with the evolutionarily conserved zinc finger domains of the E3 RING ubiquitin ligase Siah2 (seven in absentia homolog 2), which regulates HIF-1α degradation. p75(NTR) stabilizes Siah2 by decreasing its auto-ubiquitination. Genetic loss of p75(NTR) dramatically decreases Siah2 abundance, HIF-1α stabilization, and induction of HIF-1α target genes in hypoxia. p75(NTR-/-) mice show reduced HIF-1α stabilization, vascular endothelial growth factor (VEGF) expression, and neoangiogenesis after retinal hypoxia. Thus, hypoxia-induced intramembrane proteolysis of p75(NTR) constitutes an apical oxygen-dependent mechanism to control the magnitude of the hypoxic response.
Collapse
Affiliation(s)
- Natacha Le Moan
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Daniel M. Houslay
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Frank Christian
- Molecular Pharmacology Group, Biochemistry & Molecular Biology, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Miles D. Houslay
- Molecular Pharmacology Group, Biochemistry & Molecular Biology, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Katerina Akassoglou
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
47
|
Bao G, Han Y, Wang M, Xu G. Relationship between cellular apoptosis and the expression of p75 neurotrophin receptor and tyrosine kinase A receptor in tissue surrounding haematoma in intracerebral haemorrhage. J Int Med Res 2011; 39:150-60. [PMID: 21672317 DOI: 10.1177/147323001103900116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cellular apoptosis and the expression of p75 neurotrophin receptor (p75(NTR)) and tyrosine kinase A receptor (TrkA) were investigated in the tissues surrounding haematoma in patients with intracerebral haemorrhage. Specimens of tissue from near the haematoma (haemorrhagic samples) and tissue from a distant site (control samples) were collected from 14 patients with basal ganglia haemorrhage undergoing surgical intervention. Cellular apoptosis was determined by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelling (TUNEL), and p75(NTR) and TrkA location, protein and gene expression were studied using immunohistochemistry, Western blot and real-time polymerase chain reaction, respectively. The percentage of apoptotic cells and expression of p75(NTR), but not of TrkA, were significantly higher in the haemorrhagic samples than in the control samples. There was a positive correlation between the percentage of TUNEL-positive cells and the percentage of p75(NTR)-positive cells. These results suggest that the p75(NTR)-dependent signal transduction pathway plays an important role in apoptosis after intracerebral haemorrhage.
Collapse
Affiliation(s)
- G Bao
- Department of Neurosurgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China.
| | | | | | | |
Collapse
|
48
|
The recent understanding of the neurotrophin's role in skeletal muscle adaptation. J Biomed Biotechnol 2011; 2011:201696. [PMID: 21960735 PMCID: PMC3179880 DOI: 10.1155/2011/201696] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 07/24/2011] [Indexed: 12/31/2022] Open
Abstract
This paper summarizes the various effects of neurotrophins in skeletal muscle and how these proteins act as potential regulators of the maintenance, function, and regeneration of skeletal muscle fibers. Increasing evidence suggests that this family of neurotrophic factors influence not only the survival and function of innervating motoneurons but also the development and differentiation of myoblasts and muscle fibers. Muscle contractions (e.g., exercise) produce BDNF mRNA and protein in skeletal muscle, and the BDNF seems to play a role in enhancing glucose metabolism and may act for myokine to improve various brain disorders (e.g., Alzheimer's disease and major depression). In adults with neuromuscular disorders, variations in neurotrophin expression are found, and the role of neurotrophins under such conditions is beginning to be elucidated. This paper provides a basis for a better understanding of the role of these factors under such pathological conditions and for treatment of human neuromuscular disease.
Collapse
|
49
|
Nitahara-Kasahara Y, Hayashita-Kinoh H, Ohshima-Hosoyama S, Okada H, Wada-Maeda M, Nakamura A, Okada T, Takeda S. Long-term engraftment of multipotent mesenchymal stromal cells that differentiate to form myogenic cells in dogs with Duchenne muscular dystrophy. Mol Ther 2011; 20:168-77. [PMID: 21934652 DOI: 10.1038/mt.2011.181] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an incurable genetic disease with early mortality. Multipotent mesenchymal stromal cells (MSCs) are of interest because of their ability to differentiate to form myogenic cells in situ. In the present study, methods were developed to expand cultures of MSCs and to promote the myogenic differentiation of these cells, which were then used in a new approach for the treatment of DMD. MSC cultures enriched in CD271(+) cells grew better than CD271-depleted cultures. The transduction of CD271(+) MSCs with MyoD caused myogenic differentiation in vitro and the formation of myotubes expressing late myogenic markers. CD271(+) MSCs in the myogenic cell lineage transplanted into dog leukocyte antigen (DLA)-identical dogs formed clusters of muscle-like tissue. Intra-arterial injection of the CD271(+) MSCs resulted in engraftment at the site of the cardiotoxin (CTX)-injured muscle. Dogs affected by X-linked muscular dystrophy in Japan (CXMD(J)) treated with an intramuscular injection of CD271(+) MSCs similarly developed muscle-like tissue within 8-12 weeks in the absence of immunosuppression. In the newly formed tissues, developmental myosin heavy chain (dMyHC) and dystrophin were upregulated. These findings demonstrate that a cell transplantation strategy using CD271(+) MSCs may offer a promising treatment approach for patients with DMD.
Collapse
Affiliation(s)
- Yuko Nitahara-Kasahara
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Human neurotrophin receptor p75NTR defines differentiation-oriented skeletal muscle precursor cells: implications for muscle regeneration. J Neuropathol Exp Neurol 2011; 70:133-42. [PMID: 21343882 DOI: 10.1097/nen.0b013e3182084391] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Satellite cells are resident stem cells of adult skeletal muscle that have roles in tissue repair. Although several efforts have led to the functional characterization of distinct myogenic populations in animal models, the translation of these findings to humans has been limited. Here, we analyzed the expression and function of the neurotrophin receptor p75NTR in human skeletal muscle precursor cells. We combined histological investigations of muscle biopsies with molecular and cellular analyses of primary muscle precursor cells. p75NTR is expressed by most satellite cells in vivo and is a marker for regenerating fibers in inflamed and dystrophic muscle. p75NTR mRNA and protein are also detectable in primary myoblasts, and these levels increase transiently when cell differentiation is triggered. Transcriptome analyses of p75NTR high versus p75NTR low muscle cells showed that p75NTR is the prototype marker for a precursor cell population that has a broad transcriptional repertoire associated with muscle development and maturation. Several in vitro experiments, including receptor blockade and gene silencing in myoblasts, proved that p75NTR specifically regulates myogenesis and dystrophin expression. Taken together, the results indicate that p75NTR is a novel marker of human differentiation-prone muscle precursor cells that is involved in myogenesis in vivo and in vitro.
Collapse
|