1
|
Flynn MJ, Harper NW, Li R, Zhu LJ, Lee MJ, Benanti JA. Calcineurin promotes adaptation to chronic stress through two distinct mechanisms. Mol Biol Cell 2024; 35:ar123. [PMID: 39083354 PMCID: PMC11481702 DOI: 10.1091/mbc.e24-03-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
Adaptation to environmental stress requires coordination between stress-defense programs and cell cycle progression. The immediate response to many stressors has been well characterized, but how cells survive in challenging environments long term is unknown. Here, we investigate the role of the stress-activated phosphatase calcineurin (CN) in adaptation to chronic CaCl2 stress in Saccharomyces cerevisiae. We find that prolonged exposure to CaCl2 impairs mitochondrial function and demonstrate that cells respond to this stressor using two CN-dependent mechanisms-one that requires the downstream transcription factor Crz1 and another that is Crz1 independent. Our data indicate that CN maintains cellular fitness by promoting cell cycle progression and preventing CaCl2-induced cell death. When Crz1 is present, transient CN activation suppresses cell death and promotes adaptation despite high levels of mitochondrial loss. However, in the absence of Crz1, prolonged activation of CN prevents mitochondrial loss and further cell death by upregulating glutathione biosynthesis genes thereby mitigating damage from reactive oxygen species. These findings illustrate how cells maintain long-term fitness during chronic stress and suggest that CN promotes adaptation in challenging environments by multiple mechanisms.
Collapse
Affiliation(s)
- Mackenzie J. Flynn
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605
- Interdisciplinary Graduate Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Nicholas W. Harper
- Interdisciplinary Graduate Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Michael J. Lee
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Jennifer A. Benanti
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605
| |
Collapse
|
2
|
Liu H, Zhang J, Wang L, Liu H, Yu C, Li H. Regulation of the RCK1 gene on the oxidative tolerance of Saccharomyces cerevisiae. Free Radic Biol Med 2024; 225:15-23. [PMID: 39326682 DOI: 10.1016/j.freeradbiomed.2024.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Our previous work indicated that the quorum sensing (QS) effect could regulate the oxidative tolerance of Saccharomyces cerevisiae, and QS may impact oxidative and antioxidative metabolisms of S. cerevisiae by regulating the RCK1 gene. Therefore, this work proposed a reasonable logic that RCK1 could play roles in regulating the oxidative and antioxidative metabolisms of yeast cells. The results presented here suggested that the overexpression of RCK1 has a regulatory effect on the reduction of ROS level and the promotion of oxidative tolerance of S. cerevisiae. The overexpression of RCK1 promoted the ROS generation through activating the MAPK pathway; on the other hand, RCK1-regulated antioxidative metabolism played a more significant role to realize lower ROS level and higher oxidative tolerance of S288c-RCK1 and ΔARO80-RCK1 strains. To improve the fermentation performance of yeast while circumventing metabolic burden, a recombinant strain with over time-controlled overexpression of the RCK1 gene (i.e., S288c'-RCK1 strain) derived from S288c strain was successfully constructed to achieve artificial regulation of yeast oxidative tolerance. Transcriptomics analysis was further performed on both S. cerevisiae wild-type and S288c'-RCK1 strains to identify differentially expressed genes and analyze their functional pathway classification. This work is instructive for artificially modulating the oxidative tolerance of strains to enhance the fermentation performance of yeast.
Collapse
Affiliation(s)
- Hui Liu
- School of Public Health, Jining Medical University, Jining, 272067, PR China
| | - Jiaxuan Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Lei Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Huan Liu
- School of Public Health, Jining Medical University, Jining, 272067, PR China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Hao Li
- School of Public Health, Jining Medical University, Jining, 272067, PR China.
| |
Collapse
|
3
|
Święciło A, Januś E, Krzepiłko A, Skowrońska M. The effect of DMSO on Saccharomyces cerevisiae yeast with different energy metabolism and antioxidant status. Sci Rep 2024; 14:21974. [PMID: 39304697 DOI: 10.1038/s41598-024-72400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024] Open
Abstract
We studied the effect of dimethyl sulfoxide (DMSO) on the biochemical and physiological parameters of S. cerevisiae yeast cells with varied energy metabolism and antioxidant status. The wild-type cells of varied genetic backgrounds and their isogenic mutants with impaired antioxidant defences (Δsod mutants) or response to environmental stress (ESR) (Δmsn2, Δmsn4 and double Δmsn2msn4 mutants) were used. Short-term exposure to DMSO even at a wide range of concentrations (2-20%) had little effect on the metabolic activity of the yeast cells and the stability of their cell membranes, but induced free radicals production and clearly altered their proliferative activity. Cells of the Δsod1 mutant showed greater sensitivity to DMSO in these conditions. DMSO at concentrations from 4 to 10-14% (depending on the strain and genetic background) activated the ESR programme. The effects of long-term exposure to DMSO were mainly depended on the type of energy metabolism and antioxidant system efficiency. Yeast cells with reduced antioxidant system efficiency and/or aerobic respiration were more susceptible to the toxic effects of DMSO than cells with a wild-type phenotype and respiro-fermentative or fully fermentative metabolism. These studies suggest a key role of stress response programs in both the processes of cell adaptation to small doses of this xenobiotic and the processes related to its toxicity resulting from large doses or chronic exposure to DMSO.
Collapse
Affiliation(s)
- Agata Święciło
- Department of Environmental Microbiology, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069, Lublin, Poland.
| | - Ewa Januś
- Department of Cattle Breeding and Genetic Resources Conservation, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Anna Krzepiłko
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704, Lublin, Poland
| | - Monika Skowrońska
- Department of Agricultural and Environmental Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland
| |
Collapse
|
4
|
Abreu CI, Mathur S, Petrov DA. Environmental memory alters the fitness effects of adaptive mutations in fluctuating environments. Nat Ecol Evol 2024; 8:1760-1775. [PMID: 39020024 DOI: 10.1038/s41559-024-02475-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 06/11/2024] [Indexed: 07/19/2024]
Abstract
Evolution in a static laboratory environment often proceeds via large-effect beneficial mutations that may become maladaptive in other environments. Conversely, natural settings require populations to endure environmental fluctuations. A sensible assumption is that the fitness of a lineage in a fluctuating environment is the time average of its fitness over the sequence of static conditions it encounters. However, transitions between conditions may pose entirely new challenges, which could cause deviations from this time average. To test this, we tracked hundreds of thousands of barcoded yeast lineages evolving in static and fluctuating conditions and subsequently isolated 900 mutants for pooled fitness assays in 15 environments. Here we find that fitness in fluctuating environments indeed often deviates from the time average, leading to fitness non-additivity. Moreover, closer examination reveals that fitness in one component of a fluctuating environment is often strongly influenced by the previous component. We show that this environmental memory is especially common for mutants with high variance in fitness across tested environments. We use a simple mathematical model and whole-genome sequencing to propose mechanisms underlying this effect, including lag time evolution and sensing mutations. Our results show that environmental fluctuations impact fitness and suggest that variance in static environments can explain these impacts.
Collapse
Affiliation(s)
- Clare I Abreu
- Department of Biology, Stanford University, Stanford, CA, USA.
| | - Shaili Mathur
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Renganaath K, Albert FW. Trans-eQTL hotspots shape complex traits by modulating cellular states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.14.567054. [PMID: 38014174 PMCID: PMC10680915 DOI: 10.1101/2023.11.14.567054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Regulatory genetic variation shapes gene expression, providing an important mechanism connecting DNA variation and complex traits. The causal relationships between gene expression and complex traits remain poorly understood. Here, we integrated transcriptomes and 46 genetically complex growth traits in a large cross between two strains of the yeast Saccharomyces cerevisiae. We discovered thousands of genetic correlations between gene expression and growth, suggesting potential functional connections. Local regulatory variation was a minor source of these genetic correlations. Instead, genetic correlations tended to arise from multiple independent trans-acting regulatory loci. Trans-acting hotspots that affect the expression of numerous genes accounted for particularly large fractions of genetic growth variation and of genetic correlations between gene expression and growth. Genes with genetic correlations were enriched for similar biological processes across traits, but with heterogeneous direction of effect. Our results reveal how trans-acting regulatory hotspots shape complex traits by altering cellular states.
Collapse
Affiliation(s)
- Kaushik Renganaath
- Department of Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Frank W Albert
- Department of Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Zhu M, Dai X. Shaping of microbial phenotypes by trade-offs. Nat Commun 2024; 15:4238. [PMID: 38762599 PMCID: PMC11102524 DOI: 10.1038/s41467-024-48591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024] Open
Abstract
Growth rate maximization is an important fitness strategy for microbes. However, the wide distribution of slow-growing oligotrophic microbes in ecosystems suggests that rapid growth is often not favored across ecological environments. In many circumstances, there exist trade-offs between growth and other important traits (e.g., adaptability and survival) due to physiological and proteome constraints. Investments on alternative traits could compromise growth rate and microbes need to adopt bet-hedging strategies to improve fitness in fluctuating environments. Here we review the mechanistic role of trade-offs in controlling bacterial growth and further highlight its ecological implications in driving the emergences of many important ecological phenomena such as co-existence, population heterogeneity and oligotrophic/copiotrophic lifestyles.
Collapse
Affiliation(s)
- Manlu Zhu
- State Key Laboratory of Green Pesticide, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Xiongfeng Dai
- State Key Laboratory of Green Pesticide, School of Life Sciences, Central China Normal University, Wuhan, PR China.
| |
Collapse
|
7
|
Jacobus AP, Cavassana SD, de Oliveira II, Barreto JA, Rohwedder E, Frazzon J, Basso TP, Basso LC, Gross J. Optimal trade-off between boosted tolerance and growth fitness during adaptive evolution of yeast to ethanol shocks. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:63. [PMID: 38730312 PMCID: PMC11088041 DOI: 10.1186/s13068-024-02503-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND The selection of Saccharomyces cerevisiae strains with higher alcohol tolerance can potentially increase the industrial production of ethanol fuel. However, the design of selection protocols to obtain bioethanol yeasts with higher alcohol tolerance poses the challenge of improving industrial strains that are already robust to high ethanol levels. Furthermore, yeasts subjected to mutagenesis and selection, or laboratory evolution, often present adaptation trade-offs wherein higher stress tolerance is attained at the expense of growth and fermentation performance. Although these undesirable side effects are often associated with acute selection regimes, the utility of using harsh ethanol treatments to obtain robust ethanologenic yeasts still has not been fully investigated. RESULTS We conducted an adaptive laboratory evolution by challenging four populations (P1-P4) of the Brazilian bioethanol yeast, Saccharomyces cerevisiae PE-2_H4, through 68-82 cycles of 2-h ethanol shocks (19-30% v/v) and outgrowths. Colonies isolated from the final evolved populations (P1c-P4c) were subjected to whole-genome sequencing, revealing mutations in genes enriched for the cAMP/PKA and trehalose degradation pathways. Fitness analyses of the isolated clones P1c-P3c and reverse-engineered strains demonstrated that mutations were primarily selected for cell viability under ethanol stress, at the cost of decreased growth rates in cultures with or without ethanol. Under this selection regime for stress survival, the population P4 evolved a protective snowflake phenotype resulting from BUD3 disruption. Despite marked adaptation trade-offs, the combination of reverse-engineered mutations cyr1A1474T/usv1Δ conferred 5.46% higher fitness than the parental PE-2_H4 for propagation in 8% (v/v) ethanol, with only a 1.07% fitness cost in a culture medium without alcohol. The cyr1A1474T/usv1Δ strain and evolved P1c displayed robust fermentations of sugarcane molasses using cell recycling and sulfuric acid treatments, mimicking Brazilian bioethanol production. CONCLUSIONS Our study combined genomic, mutational, and fitness analyses to understand the genetic underpinnings of yeast evolution to ethanol shocks. Although fitness analyses revealed that most evolved mutations impose a cost for cell propagation, combination of key mutations cyr1A1474T/usv1Δ endowed yeasts with higher tolerance for growth in the presence of ethanol. Moreover, alleles selected for acute stress survival comprising the P1c genotype conferred stress tolerance and optimal performance under conditions simulating the Brazilian industrial ethanol production.
Collapse
Affiliation(s)
- Ana Paula Jacobus
- Bioenergy Research Institute, São Paulo State University, Rio Claro, Brazil
- SENAI Innovation Institute for Biotechnology, São Paulo, Brazil
| | | | | | | | - Ewerton Rohwedder
- Biological Science Department, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Jeverson Frazzon
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Thalita Peixoto Basso
- Department of Agri-Food Industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Luiz Carlos Basso
- Biological Science Department, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Jeferson Gross
- Bioenergy Research Institute, São Paulo State University, Rio Claro, Brazil.
| |
Collapse
|
8
|
Alugoju P, Tencomnao T. Effect of levan polysaccharide on chronological aging in the yeast Saccharomyces cerevisiae. Int J Biol Macromol 2024; 266:131307. [PMID: 38574907 DOI: 10.1016/j.ijbiomac.2024.131307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
Levan is a fructose-based biopolymer with diverse applications in the medicinal, pharmaceutical, and food industries. However, despite its extensive biological and pharmacological actions, including antioxidant, anti-inflammatory, and antidiabetic properties, research on its anti-aging potential is limited. This study explored levan's impact on the chronological lifespan (CLS) of yeast Saccharomyces cerevisiae for the first time. The results show that levan treatment significantly extended the CLS of wild-type (WT) yeast by preventing the accumulation of oxidative stress markers (reactive oxygen species, malondialdehyde, and protein carbonyl content) and ameliorating apoptotic features such as reduced mitochondrial membrane potential, loss of plasma membrane integrity, and externalization of phosphatidylserine. By day 40 of the CLS, a significant increase in yeast viability of 6.8 % (p < 0.01), 11.9 % (p < 0.01), and 20.8 % (p < 0.01) was observed at 0.25, 0.5, and 1 mg/mL of levan concentrations, respectively, compared to control (0 %). This study's results indicate that levan treatment substantially modulates the expression of genes involved in the TORC1/Sch9 pathway. Moreover, levan treatment significantly extended the CLS of yeast antioxidant-deficient mutant sod2Δ and antiapoptotic gene-deficient mutant pep4Δ. Levan also extended the CLS of signaling pathway gene-deficient mutants such as pkh2Δ, rim15Δ, atg1, and ras2Δ, while not affecting the CLS of tor1Δ and sch9Δ.
Collapse
Affiliation(s)
- Phaniendra Alugoju
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
9
|
Flynn MJ, Harper NW, Li R, Zhu LJ, Lee MJ, Benanti JA. Calcineurin promotes adaptation to chronic stress through two distinct mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585797. [PMID: 38562881 PMCID: PMC10983906 DOI: 10.1101/2024.03.19.585797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Adaptation to environmental stress requires coordination between stress-defense programs and cell cycle progression. The immediate response to many stressors has been well characterized, but how cells survive in challenging environments long-term is unknown. Here, we investigate the role of the stress-activated phosphatase calcineurin (CN) in adaptation to chronic CaCl2 stress in Saccharomyces cerevisiae. We find that prolonged exposure to CaCl2 impairs mitochondrial function and demonstrate that cells respond to this stressor using two CN-dependent mechanisms - one that requires the downstream transcription factor Crz1 and another that is Crz1-independent. Our data indicate that CN maintains cellular fitness by promoting cell cycle progression and preventing CaCl2-induced cell death. When Crz1 is present, transient CN activation suppresses cell death and promotes adaptation despite high levels of mitochondrial loss. However, in the absence of Crz1, prolonged activation of CN prevents mitochondrial loss and further cell death by upregulating glutathione (GSH) biosynthesis genes thereby mitigating damage from reactive oxygen species. These findings illustrate how cells maintain long-term fitness during chronic stress and suggest that CN promotes adaptation in challenging environments by multiple mechanisms.
Collapse
Affiliation(s)
- Mackenzie J. Flynn
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605
- Interdisciplinary Graduate Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Nicholas W. Harper
- Interdisciplinary Graduate Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester MA 01605
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester MA 01605
| | - Michael J. Lee
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Jennifer A. Benanti
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605
| |
Collapse
|
10
|
Kim D, Hwang CY, Cho KH. The fitness trade-off between growth and stress resistance determines the phenotypic landscape. BMC Biol 2024; 22:62. [PMID: 38475791 PMCID: PMC10935846 DOI: 10.1186/s12915-024-01856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND A central challenge in biology is to discover a principle that determines individual phenotypic differences within a species. The growth rate is particularly important for a unicellular organism, and the growth rate under a certain condition is negatively associated with that of another condition, termed fitness trade-off. Therefore, there should exist a common molecular mechanism that regulates multiple growth rates under various conditions, but most studies so far have focused on discovering those genes associated with growth rates under a specific condition. RESULTS In this study, we found that there exists a recurrent gene expression signature whose expression levels are related to the fitness trade-off between growth preference and stress resistance across various yeast strains and multiple conditions. We further found that the genomic variation of stress-response, ribosomal, and cell cycle regulators are potential causal genes that determine the sensitivity between growth and survival. Intriguingly, we further observed that the same principle holds for human cells using anticancer drug sensitivities across multiple cancer cell lines. CONCLUSIONS Together, we suggest that the fitness trade-off is an evolutionary trait that determines individual growth phenotype within a species. By using this trait, we can possibly overcome anticancer drug resistance in cancer cells.
Collapse
Affiliation(s)
- Dongsan Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Chae Young Hwang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
11
|
Bratkic A, Jazbec A, Toplak N, Koren S, Lojen S, Tinta T, Kostanjsek R, Snoj L. The colonization of an irradiated environment: the case of microbial biofilm in a nuclear reactor. Int J Radiat Biol 2024; 100:108-121. [PMID: 37812192 DOI: 10.1080/09553002.2023.2258206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 08/19/2023] [Indexed: 10/10/2023]
Abstract
The investigation of the microbial community change in the biofilm, growing on the walls of a containment tank of TRIGA nuclear reactor revealed a thriving community in an oligotrophic and heavy-metal-laden environment, periodically exposed to high pulses of ionizing radiation (IR). We observed a vertical IR resistance/tolerance stratification of microbial genera, with higher resistance and less diversity closer to the reactor core. One of the isolated Bacillus strains survived 15 kGy of combined gamma and proton radiation, which was surprising. It appears that there is a succession of genera that colonizes or re-colonizes new or IR-sterilized surfaces, led by Bacilli and/or Actinobacteria, upon which a photoautotrophic and diazotrophic community is established within a fortnight. The temporal progression of the biofilm community was evaluated also as a proxy for microbial response to radiological contamination events. This indicated there is a need for better dose-response models that could describe microbial response to contamination events. Overall, TRIGA nuclear reactor offers a unique insight into IR microbiology and provides useful means to study relevant microbial dose-thresholds during and after radiological contamination.
Collapse
Affiliation(s)
- Arne Bratkic
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Anze Jazbec
- Reactor Physics Division, Jožef Stefan Institute, Ljubljana, Slovenia
| | | | | | - Sonja Lojen
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Tinkara Tinta
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
| | - Rok Kostanjsek
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Luka Snoj
- Reactor Physics Division, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
12
|
Sánchez-Adriá IE, Sanmartín G, Prieto JA, Estruch F, Fortis E, Randez-Gil F. Adaptive laboratory evolution for acetic acid-tolerance matches sourdough challenges with yeast phenotypes. Microbiol Res 2023; 277:127487. [PMID: 37713908 DOI: 10.1016/j.micres.2023.127487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Acetic acid tolerance of Saccharomyces cerevisiae is an important trait in sourdough fermentation processes, where the accumulation of acid by the growth of lactic acid bacteria reduces the yeast metabolic activity. In this work, we have carried out adaptive laboratory evolution (ALE) experiments in two sourdough isolates of S. cerevisiae exposed to acetic acid, or alternatively to acetic acid and myriocin, an inhibitor of sphingolipid biosynthesis that sped-up the evolutionary adaptation. Evolution approaches resulted in acetic tolerance, and surprisingly, increased lactic susceptibility. Four evolved clones, one from each parental strain and evolutionary scheme, were selected on the basis of their potential for CO2 production in sourdough conditions. Among them, two showed phenotypic instability characterized by strong lactic sensitivity after several rounds of growth under unstressed conditions, while two others, displayed increased constitutive acetic tolerance with no loss of growth in lactic medium. Genome sequencing and ploidy level analysis of all strains revealed aneuploidies, which could account for phenotypic heterogeneity. In addition, copy number variations (CNVs), affecting specially to genes involved in ion transport or flocculation, and single nucleotide polymorphisms (SNPs) were identified. Mutations in several genes, ARG82, KEX1, CTK1, SPT20, IRA2, ASG1 or GIS4, were confirmed as involved in acetic and/or lactic tolerance, and new determinants of these phenotypes, MSN5 and PSP2, identified.
Collapse
Affiliation(s)
- Isabel E Sánchez-Adriá
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, Paterna, 46980 Valencia, Spain
| | - Gemma Sanmartín
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, Paterna, 46980 Valencia, Spain
| | - Jose A Prieto
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, Paterna, 46980 Valencia, Spain
| | - Francisco Estruch
- Department of Biochemistry and Molecular Biology, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Spain
| | - Estefanía Fortis
- Cereal (Center for Research Europastry Advanced Lab), Europastry S.A., Marie Curie, 6, Sant Joan Despí, 08970 Barcelona, Spain
| | - Francisca Randez-Gil
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, Paterna, 46980 Valencia, Spain.
| |
Collapse
|
13
|
Abreu CI, Mathur S, Petrov DA. Strong environmental memory revealed by experimental evolution in static and fluctuating environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557739. [PMID: 37745585 PMCID: PMC10515930 DOI: 10.1101/2023.09.14.557739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Evolution in a static environment, such as a laboratory setting with constant and uniform conditions, often proceeds via large-effect beneficial mutations that may become maladaptive in other environments. Conversely, natural settings require populations to endure environmental fluctuations. A sensible assumption is that the fitness of a lineage in a fluctuating environment is the time-average of its fitness over the sequence of static conditions it encounters. However, transitions between conditions may pose entirely new challenges, which could cause deviations from this time-average. To test this, we tracked hundreds of thousands of barcoded yeast lineages evolving in static and fluctuating conditions and subsequently isolated 900 mutants for pooled fitness assays in 15 environments. We find that fitness in fluctuating environments indeed often deviates from the expectation based on static components, leading to fitness non-additivity. Moreover, closer examination reveals that fitness in one component of a fluctuating environment is often strongly influenced by the previous component. We show that this environmental memory is especially common for mutants with high variance in fitness across tested environments, even if the components of the focal fluctuating environment are excluded from this variance. We employ a simple mathematical model and whole-genome sequencing to propose mechanisms underlying this effect, including lag time evolution and sensing mutations. Our results demonstrate that environmental fluctuations have large impacts on fitness and suggest that variance in static environments can explain these impacts.
Collapse
Affiliation(s)
- Clare I. Abreu
- Department of Biology, Stanford University; Stanford CA, USA
| | - Shaili Mathur
- Department of Biology, Stanford University; Stanford CA, USA
| | | |
Collapse
|
14
|
Attfield PV. Crucial aspects of metabolism and cell biology relating to industrial production and processing of Saccharomyces biomass. Crit Rev Biotechnol 2023; 43:920-937. [PMID: 35731243 DOI: 10.1080/07388551.2022.2072268] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/27/2022] [Accepted: 04/21/2022] [Indexed: 12/16/2022]
Abstract
The multitude of applications to which Saccharomyces spp. are put makes these yeasts the most prolific of industrial microorganisms. This review considers biological aspects pertaining to the manufacture of industrial yeast biomass. It is proposed that the production of yeast biomass can be considered in two distinct but interdependent phases. Firstly, there is a cell replication phase that involves reproduction of cells by their transitions through multiple budding and metabolic cycles. Secondly, there needs to be a cell conditioning phase that enables the accrued biomass to withstand the physicochemical challenges associated with downstream processing and storage. The production of yeast biomass is not simply a case of providing sugar, nutrients, and other growth conditions to enable multiple budding cycles to occur. In the latter stages of culturing, it is important that all cells are induced to complete their current budding cycle and subsequently enter into a quiescent state engendering robustness. Both the cell replication and conditioning phases need to be optimized and considered in concert to ensure good biomass production economics, and optimum performance of industrial yeasts in food and fermentation applications. Key features of metabolism and cell biology affecting replication and conditioning of industrial Saccharomyces are presented. Alternatives for growth substrates are discussed, along with the challenges and prospects associated with defining the genetic bases of industrially important phenotypes, and the generation of new yeast strains."I must be cruel only to be kind: Thus bad begins, and worse remains behind." William Shakespeare: Hamlet, Act 3, Scene 4.
Collapse
|
15
|
Turco G, Chang C, Wang RY, Kim G, Stoops EH, Richardson B, Sochat V, Rust J, Oughtred R, Thayer N, Kang F, Livstone MS, Heinicke S, Schroeder M, Dolinski KJ, Botstein D, Baryshnikova A. Global analysis of the yeast knockout phenome. SCIENCE ADVANCES 2023; 9:eadg5702. [PMID: 37235661 PMCID: PMC11326039 DOI: 10.1126/sciadv.adg5702] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Genome-wide phenotypic screens in the budding yeast Saccharomyces cerevisiae, enabled by its knockout collection, have produced the largest, richest, and most systematic phenotypic description of any organism. However, integrative analyses of this rich data source have been virtually impossible because of the lack of a central data repository and consistent metadata annotations. Here, we describe the aggregation, harmonization, and analysis of ~14,500 yeast knockout screens, which we call Yeast Phenome. Using this unique dataset, we characterized two unknown genes (YHR045W and YGL117W) and showed that tryptophan starvation is a by-product of many chemical treatments. Furthermore, we uncovered an exponential relationship between phenotypic similarity and intergenic distance, which suggests that gene positions in both yeast and human genomes are optimized for function.
Collapse
Affiliation(s)
- Gina Turco
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Christie Chang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | | - Griffin Kim
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | - Brianna Richardson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Vanessa Sochat
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jennifer Rust
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Rose Oughtred
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | | - Fan Kang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Michael S Livstone
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Sven Heinicke
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Mark Schroeder
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Kara J Dolinski
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | | | |
Collapse
|
16
|
Videvall E, Burraco P, Orizaola G. Impact of ionizing radiation on the environmental microbiomes of Chornobyl wetlands. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121774. [PMID: 37178954 DOI: 10.1016/j.envpol.2023.121774] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Radioactive contamination has the potential to cause damage to DNA and other biomolecules. Anthropogenic sources of radioactive contamination include accidents in nuclear power plants, such as the one in Chornobyl in 1986 which caused long-term radioactive pollution. Studies on animals within radioactive zones have provided us with a greater understanding of how wildlife can persevere despite chronic radiation exposure. However, we still know very little about the effects of radiation on the microbial communities in the environment. We examined the impact of ionizing radiation and other environmental factors on the diversity and composition of environmental microbiomes in the wetlands of Chornobyl. We combined detailed field sampling along a gradient of radiation together with 16 S rRNA high-throughput metabarcoding. While radiation did not affect the alpha diversity of the microbiomes in sediment, soil, or water, it had a significant effect on the beta diversity in all environment types, indicating that the microbial composition was affected by ionizing radiation. Specifically, we detected several microbial taxa that were more abundant in areas with high radiation levels within the Chornobyl Exclusion Zone, including bacteria and archaea known to be radioresistant. Our results reveal the existence of rich and diverse microbiomes in Chornobyl wetlands, with multiple taxonomic groups that are able to thrive despite the radioactive contamination. These results, together with additional field and laboratory-based approaches examining how microbes cope with ionizing radiation will help to forecast the functionality and re-naturalization dynamics of radiocontaminated environments.
Collapse
Affiliation(s)
- Elin Videvall
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI, 02912, USA; Institute at Brown for Environment and Society, Brown University, Providence, RI, 02912, USA; Center for Conservation Genomics, Smithsonian Conservation Biology Institute, 20013, Washington, DC, USA; Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236, Uppsala, Sweden
| | - Pablo Burraco
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236, Uppsala, Sweden; Doñana Biological Station, Spanish Research Council (EBD-CSIC), 41092, Sevilla, Spain
| | - Germán Orizaola
- IMIB-Biodiversity Research Institute (Univ. Oviedo-CSIC-Princip. Asturias), 33600, Mieres, Asturias, Spain; Zoology Unit, Department of Biology of Organisms and Systems, University of Oviedo, 33071, Oviedo, Asturias, Spain.
| |
Collapse
|
17
|
Chen T, Ma J, Xu C, Jiang N, Li G, Fu W, Feng B, Wang D, Wu Z, Tao L, Fu G. Increased ATPase activity promotes heat-resistance, high-yield, and high-quality traits in rice by improving energy status. FRONTIERS IN PLANT SCIENCE 2022; 13:1035027. [PMID: 36600923 PMCID: PMC9806274 DOI: 10.3389/fpls.2022.1035027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 06/17/2023]
Abstract
Heat stress during the reproductive stage results in major losses in yield and quality, which might be mainly caused by an energy imbalance. However, how energy status affected heat response, yield and quality remains unclear. No relationships were observed among the heat resistance, yield, and quality of the forty-nine early rice cultivars under normal temperature conditions. However, two cultivars, Zhuliangyou30 (ZLY30) and Luliangyou35 (LLY35), differing in heat resistance, yield, and quality were detected. The yield was higher and the chalkiness degree was lower in ZLY30 than in LLY35. Decreases in yields and increases in the chalkiness degree with temperatures were more pronounced in LLY35 than in ZLY30. The accumulation and allocation (ratio of the panicle to the whole plant) of dry matter weight and non-structural carbohydrates were higher in ZLY30 than in LLY35 across all sowing times and temperatures. The accumulation and allocation of dry matter weight and non-structural carbohydrates in panicles were higher in ZLY30 than in LLY35. Similar patterns were observed in the relative expression levels of sucrose unloading related genes SUT1 and SUT2 in grains. The ATP content was higher in the grains of LLY35 than in ZLY30, whereas the ATPase activity, which determined the energy status, was significantly lower in the former than in the latter. Thus, increased ATPase activity, which improved the energy status of rice, was the factor mediating the balance among heat-resistance, high-yield, and high-quality traits in rice.
Collapse
Affiliation(s)
- Tingting Chen
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Agronomy College, Jilin Agricultural University, Changchun, China
| | - Jiaying Ma
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Chunmei Xu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ning Jiang
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guangyan Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College, Yangzhou University, Yangzhou, China
| | - Weimeng Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Baohua Feng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Danying Wang
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhihai Wu
- Agronomy College, Jilin Agricultural University, Changchun, China
| | - Longxing Tao
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guanfu Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Agronomy College, Jilin Agricultural University, Changchun, China
| |
Collapse
|
18
|
The regulatory mechanism of the yeast osmoresponse under different glucose concentrations. iScience 2022; 26:105809. [PMID: 36636353 PMCID: PMC9830198 DOI: 10.1016/j.isci.2022.105809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/20/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Cells constantly respond to environmental changes by modulating gene expression programs. These responses may demand substantial costs and, thus, affect cell growth. Understanding the regulation of these processes represents a key question in biology and biotechnology. Here, we studied the responses to osmotic stress in glucose-limited environments. By analyzing seventeen osmotic stress-induced genes and stress-activated protein kinase Hog1, we found that cells exhibited stronger osmotic gene expression response and larger integral of Hog1 nuclear localization during adaptation to osmotic stress under glucose-limited conditions than under glucose-rich conditions. We proposed and verified that in glucose-limited environment, glycolysis intermediates (representing "reserve flux") were limited, which required cells to express more glycerol-production enzymes for stress adaptation. Consequently, the regulatory mechanism of osmoresponse was derived in the presence and absence of such reserve flux. Further experiments suggested that this reserve flux-dependent stress-defense strategy may be a general principle under nutrient-limited environments.
Collapse
|
19
|
Johnston N, Cline G, Strobel SA. Cells Adapt to Resist Fluoride through Metabolic Deactivation and Intracellular Acidification. Chem Res Toxicol 2022; 35:2085-2096. [PMID: 36282204 PMCID: PMC9683101 DOI: 10.1021/acs.chemrestox.2c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 01/09/2023]
Abstract
Fluoride is highly abundant in the environment. Many organisms have adapted specific defense mechanisms against high concentrations of fluoride, including the expression of proteins capable of removing fluoride from cells. However, these fluoride transporters have not been identified in all organisms, and even organisms that express fluoride transporters vary in tolerance capabilities across species, individuals, and even tissue types. This suggests that alternative factors influence fluoride tolerance. We screened for adaptation against fluoride toxicity through an unbiased mutagenesis assay conducted on Saccharomyces cerevisiae lacking the fluoride exporter FEX, the primary mechanism of fluoride resistance. Over 80 independent fluoride-hardened strains were generated, with anywhere from 100- to 1200-fold increased fluoride tolerance compared to the original strain. The whole genome of each mutant strain was sequenced and compared to the wild type. The fluoride-hardened strains utilized a combination of phenotypes that individually conferred fluoride tolerance. These included intracellular acidification, cellular dormancy, nutrient storage, and a communal behavior reminiscent of flocculation. Of particular importance to fluoride resistance was intracellular acidification, which served to reverse the accumulation of fluoride and lead to its excretion from the cell as HF without the activity of a fluoride-specific protein transporter. This transport mechanism was also observed in wild-type yeast through a manual mutation to lower their cytoplasmic pH. The results demonstrate that the yeast developed a protein-free adaptation for removing an intracellular toxicant.
Collapse
Affiliation(s)
- Nichole
R. Johnston
- Department
of Molecular Biophysics and Biochemistry, Yale University, New Haven 06477, Connecticut, United States
| | - Gary Cline
- Department
of Internal Medicine, Yale School of Medicine, New Haven 06510, Connecticut, United States
| | - Scott A. Strobel
- Department
of Molecular Biophysics and Biochemistry, Yale University, New Haven 06477, Connecticut, United States
- Department
of Chemistry, Yale University, New Haven 06477, Connecticut, United States
| |
Collapse
|
20
|
La Fortezza M, Rendueles O, Keller H, Velicer GJ. Hidden paths to endless forms most wonderful: ecology latently shapes evolution of multicellular development in predatory bacteria. Commun Biol 2022; 5:977. [PMID: 36114258 PMCID: PMC9481553 DOI: 10.1038/s42003-022-03912-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/30/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractEcological causes of developmental evolution, for example from predation, remain much investigated, but the potential importance of latent phenotypes in eco-evo-devo has received little attention. Using the predatory bacterium Myxococcus xanthus, which undergoes aggregative fruiting body development upon starvation, we tested whether adaptation to distinct growth environments that do not induce development latently alters developmental phenotypes under starvation conditions that do induce development. In an evolution experiment named MyxoEE-3, growing M. xanthus populations swarmed across agar surfaces while adapting to conditions varying at factors such as surface stiffness or prey identity. Such ecological variation during growth was found to greatly impact the latent evolution of development, including fruiting body morphology, the degree of morphological trait correlation, reaction norms, degrees of developmental plasticity and stochastic diversification. For example, some prey environments promoted retention of developmental proficiency whereas others led to its systematic loss. Our results have implications for understanding evolutionary interactions among predation, development and motility in myxobacterial life cycles, and, more broadly, how ecology can profoundly shape the evolution of developmental systems latently rather than by direct selection on developmental features.
Collapse
|
21
|
O'Brien AM, Yu ZH, Pencer C, Frederickson ME, LeFevre GH, Passeport E. Harnessing plant-microbiome interactions for bioremediation across a freshwater urbanization gradient. WATER RESEARCH 2022; 223:118926. [PMID: 36044799 DOI: 10.1016/j.watres.2022.118926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Urbanization impacts land, air, and water, creating environmental gradients between cities and rural areas. Urban stormwater delivers myriad co-occurring, understudied, and mostly unregulated contaminants to aquatic ecosystems, causing a pollution gradient. Recipient ecosystems host interacting species that can affect each others' growth and responses to these contaminants. For example, plants and their microbiomes often reciprocally increase growth and contaminant tolerance. Here, we identified ecological variables affecting contaminant fate across an urban-rural gradient using 50 sources of the aquatic plant Lemna minor (duckweed) and associated microbes, and two co-occurring winter contaminants of temperate cities, benzotriazole and salt. We conducted experiments totalling >2,500 independent host-microbe-contaminant microcosms. Benzotriazole and salt negatively affected duckweed growth, but not microbial growth, and duckweeds maintained faster growth with their local, rather than disrupted, microbiota. Benzotriazole transformation products of plant, microbial, and phototransformation pathways were linked to duckweed and microbial growth, and were affected by salt co-contamination, microbiome disruption, and source sites of duckweeds and microbes. Duckweeds from urban sites grew faster and enhanced phytotransformation, but supported less total transformation of benzotriazole. Increasing microbial community diversity correlated with greater removal of benzotriazole, but taxonomic groups may explain shifts across transformation pathways: the genus Aeromonas was linked to increasing phototransformation. Because benzotriazole toxicity could depend on amount and type of in situ transformation, this variation across duckweeds and microbes could be harnessed for better management of urban stormwater. Broadly, our results demonstrate that plant-microbiome interactions harbour manipulable variation for bioremediation applications.
Collapse
Affiliation(s)
- Anna M O'Brien
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada; Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 46 College Rd, Durham, NH, 03824, USA.
| | - Zhu Hao Yu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Clara Pencer
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| | - Gregory H LeFevre
- Department of Civil & Environmental Engineering and IIHR-Hydroscience & Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA, 52242, USA
| | - Elodie Passeport
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada; Department of Civil and Mineral Engineering, University of Toronto, 35 St George St, Toronto, ON, M5S 1A4, Canada
| |
Collapse
|
22
|
Ercan O, den Besten HMW, Smid EJ, Kleerebezem M. The growth-survival trade-off is hard-wired in the Lactococcus lactis gene regulation network. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:632-636. [PMID: 35445553 PMCID: PMC9544163 DOI: 10.1111/1758-2229.13073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Most microbes reside in oligotrophic environments for extended periods of time, requiring survival strategies that maintain proliferative capacity. We demonstrate that the non-spore-forming Lactococcus lactis KF147 progressively activates the expression of stress-associated functions in response to the declining growth rate elicited by prolonged retentostat cultivation, which coincides with up to 104 -fold increased stress tolerance. Our findings provide a quantified view of the transcription and stress-tolerance adaptations underlying the growth-survival trade-off in L. lactis, and exemplify the hard-wiring of this trade-off in the lactococcal gene regulation network.
Collapse
Affiliation(s)
- Onur Ercan
- TiFN, Agro Business Park 82Wageningen6708 PWThe Netherlands
- NIZO Food Research, P.O. Box 20Ede6710 BAThe Netherlands
| | - Heidy M. W. den Besten
- Laboratory of Food MicrobiologyWageningen University, P.O. Box 17Wageningen6700 AAThe Netherlands
| | - Eddy J. Smid
- TiFN, Agro Business Park 82Wageningen6708 PWThe Netherlands
- Laboratory of Food MicrobiologyWageningen University, P.O. Box 17Wageningen6700 AAThe Netherlands
| | - Michiel Kleerebezem
- TiFN, Agro Business Park 82Wageningen6708 PWThe Netherlands
- NIZO Food Research, P.O. Box 20Ede6710 BAThe Netherlands
- Host Microbe InteractomicsWageningen University, P.O. Box 338Wageningen6700 AHThe Netherlands
| |
Collapse
|
23
|
Alster CJ, Allison SD, Treseder KK. Trait relationships of fungal decomposers in response to drought using a dual field and laboratory approach. Ecosphere 2022. [DOI: 10.1002/ecs2.4063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Charlotte J. Alster
- Ecology and Evolutionary Biology University of California Irvine Irvine California USA
| | - Steven D. Allison
- Ecology and Evolutionary Biology University of California Irvine Irvine California USA
- Department of Earth System Science University of California Irvine Irvine California USA
| | - Kathleen K. Treseder
- Ecology and Evolutionary Biology University of California Irvine Irvine California USA
| |
Collapse
|
24
|
Cip1 tunes cell cycle arrest duration upon calcineurin activation. Proc Natl Acad Sci U S A 2022; 119:e2202469119. [PMID: 35653562 DOI: 10.1073/pnas.2202469119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceTo ensure their survival, cells arrest the cell division cycle when they are exposed to environmental stress. The duration of this arrest is dependent upon the time it takes a cell to adapt to a particular environment. How cells adjust the amount of time they remain arrested is not known. This study investigates the role of the phosphatase calcineurin in controlling cell cycle arrest duration in yeast. We show that calcineurin lengthens arrest by prolonging Hog1-dependent activation of the poorly characterized cyclin-dependent kinase inhibitor Cip1. Cip1 only impacts cell cycle arrest in response to stressors that robustly activate calcineurin, suggesting that Cip1 is a context-specific regulator that differentially adjusts the length of arrest depending on the particular stressor.
Collapse
|
25
|
Andersen N, Veuthey T, Blanco MG, Silbestri GF, Rayes D, De Rosa MJ. 1-Mesityl-3-(3-Sulfonatopropyl) Imidazolium Protects Against Oxidative Stress and Delays Proteotoxicity in C. elegans. Front Pharmacol 2022; 13:908696. [PMID: 35685626 PMCID: PMC9171001 DOI: 10.3389/fphar.2022.908696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 11/20/2022] Open
Abstract
Due to the increase in life expectancy worldwide, age-related disorders such as neurodegenerative diseases (NDs) have become more prevalent. Conventional treatments comprise drugs that only attenuate some of the symptoms, but fail to arrest or delay neuronal proteotoxicity that characterizes these diseases. Due to their diverse biological activities, imidazole rings are intensively explored as powerful scaffolds for the development of new bioactive molecules. By using C. elegans, our work aims to explore novel biological roles for these compounds. To this end, we have tested the in vivo anti-proteotoxic effects of imidazolium salts. Since NDs have been largely linked to impaired antioxidant defense mechanisms, we focused on 1-Mesityl-3-(3-sulfonatopropyl) imidazolium (MSI), one of the imidazolium salts that we identified as capable of improving iron-induced oxidative stress resistance in wild-type animals. By combining mutant and gene expression analysis we have determined that this protective effect depends on the activation of the Heat Shock Transcription Factor (HSF-1), whereas it is independent of other canonical cytoprotective molecules such as abnormal Dauer Formation-16 (DAF-16/FOXO) and Skinhead-1 (SKN-1/Nrf2). To delve deeper into the biological roles of MSI, we analyzed the impact of this compound on previously established C. elegans models of protein aggregation. We found that MSI ameliorates β-amyloid-induced paralysis in worms expressing the pathological protein involved in Alzheimer’s Disease. Moreover, this compound also delays age-related locomotion decline in other proteotoxic C. elegans models, suggesting a broad protective effect. Taken together, our results point to MSI as a promising anti-proteotoxic compound and provide proof of concept of the potential of imidazole derivatives in the development of novel therapies to retard age-related proteotoxic diseases.
Collapse
Affiliation(s)
- Natalia Andersen
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - Tania Veuthey
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - María Gabriela Blanco
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - Gustavo Fabian Silbestri
- Departamento de Química, INQUISUR, Universidad Nacional Del Sur, UNS-CONICET, Bahía Blanca, Argentina
| | - Diego Rayes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
- *Correspondence: Diego Rayes, ; María José De Rosa,
| | - María José De Rosa
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
- *Correspondence: Diego Rayes, ; María José De Rosa,
| |
Collapse
|
26
|
Abstract
![]()
Stable cell performance
in a fluctuating environment is essential
for sustainable bioproduction and synthetic cell functionality; however,
microbial robustness is rarely quantified. Here, we describe a high-throughput
strategy for quantifying robustness of multiple cellular functions
and strains in a perturbation space. We evaluated quantification theory
on experimental data and concluded that the mean-normalized Fano factor
allowed accurate, reliable, and standardized quantification. Our methodology
applied to perturbations related to lignocellulosic bioethanol production
showed that the industrial bioethanol producing strain Saccharomyces
cerevisiae Ethanol Red exhibited both higher and more robust
growth rates than the laboratory strain CEN.PK and industrial strain
PE-2, while a more robust product yield traded off for lower mean
levels. The methodology validated that robustness is function-specific
and characterized by positive and negative function-specific trade-offs.
Systematic quantification of robustness to end-use perturbations will
be important to analyze and construct robust strains with more predictable
functions.
Collapse
Affiliation(s)
- Cecilia Trivellin
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Lisbeth Olsson
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Peter Rugbjerg
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg 412 96, Sweden
- Enduro Genetics ApS, Copenhagen 2200, Denmark
| |
Collapse
|
27
|
Gan Y, Qi X, Lin Y, Guo Y, Zhang Y, Wang Q. A Hierarchical Transcriptional Regulatory Network Required for Long-Term Thermal Stress Tolerance in an Industrial Saccharomyces cerevisiae Strain. Front Bioeng Biotechnol 2022; 9:826238. [PMID: 35118059 PMCID: PMC8804346 DOI: 10.3389/fbioe.2021.826238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Yeast cells suffer from continuous and long-term thermal stress during high-temperature ethanol fermentation. Understanding the mechanism of yeast thermotolerance is important not only for studying microbial stress biology in basic research but also for developing thermotolerant strains for industrial application. Here, we compared the effects of 23 transcription factor (TF) deletions on high-temperature ethanol fermentation and cell survival after heat shock treatment and identified three core TFs, Sin3p, Srb2p and Mig1p, that are involved in regulating the response to long-term thermotolerance. Further analyses of comparative transcriptome profiling of the core TF deletions and transcription regulatory associations revealed a hierarchical transcriptional regulatory network centered on these three TFs. This global transcriptional regulatory network provided a better understanding of the regulatory mechanism behind long-term thermal stress tolerance as well as potential targets for transcriptome engineering to improve the performance of high-temperature ethanol fermentation by an industrial Saccharomyces cerevisiae strain.
Collapse
Affiliation(s)
- Yuman Gan
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Xianni Qi
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Yuping Lin
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- *Correspondence: Qinhong Wang, ; Yuping Lin,
| | - Yufeng Guo
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Yuanyuan Zhang
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Qinhong Wang
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- *Correspondence: Qinhong Wang, ; Yuping Lin,
| |
Collapse
|
28
|
Jaquet V, Wallerich S, Voegeli S, Túrós D, Viloria EC, Becskei A. Determinants of the temperature adaptation of mRNA degradation. Nucleic Acids Res 2022; 50:1092-1110. [PMID: 35018460 PMCID: PMC8789057 DOI: 10.1093/nar/gkab1261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022] Open
Abstract
The rate of chemical reactions increases proportionally with temperature, but the interplay of biochemical reactions permits deviations from this relation and adaptation. The degradation of individual mRNAs in yeast increased to varying degrees with temperature. We examined how these variations are influenced by the translation and codon composition of mRNAs. We developed a method that revealed the existence of a neutral half-life above which mRNAs are stabilized by translation but below which they are destabilized. The proportion of these two mRNA subpopulations remained relatively constant under different conditions, even with slow cell growth due to nutrient limitation, but heat shock reduced the proportion of translationally stabilized mRNAs. At the same time, the degradation of these mRNAs was partially temperature-compensated through Upf1, the mediator of nonsense-mediated decay. Compensation was also promoted by some asparagine and serine codons, whereas tyrosine codons promote temperature sensitization. These codons play an important role in the degradation of mRNAs encoding key cell membrane and cell wall proteins, which promote cell integrity.
Collapse
Affiliation(s)
- Vincent Jaquet
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Sandrine Wallerich
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Sylvia Voegeli
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Demeter Túrós
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Eduardo C Viloria
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Attila Becskei
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
29
|
Šoštarić N, Arslan A, Carvalho B, Plech M, Voordeckers K, Verstrepen KJ, van Noort V. Integrated Multi-Omics Analysis of Mechanisms Underlying Yeast Ethanol Tolerance. J Proteome Res 2021; 20:3840-3852. [PMID: 34236875 PMCID: PMC8353626 DOI: 10.1021/acs.jproteome.1c00139] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
For yeast cells,
tolerance to high levels of ethanol is vital both
in their natural environment and in industrially relevant conditions.
We recently genotyped experimentally evolved yeast strains adapted
to high levels of ethanol and identified mutations linked to ethanol
tolerance. In this study, by integrating genomic sequencing data with
quantitative proteomics profiles from six evolved strains (data set
identifier PXD006631) and construction of protein interaction networks,
we elucidate exactly how the genotype and phenotype are related at
the molecular level. Our multi-omics approach points to the rewiring
of numerous metabolic pathways affected by genomic and proteomic level
changes, from energy-producing and lipid pathways to differential
regulation of transposons and proteins involved in cell cycle progression.
One of the key differences is found in the energy-producing metabolism,
where the ancestral yeast strain responds to ethanol by switching
to respiration and employing the mitochondrial electron transport
chain. In contrast, the ethanol-adapted strains appear to have returned
back to energy production mainly via glycolysis and ethanol fermentation,
as supported by genomic and proteomic level changes. This work is
relevant for synthetic biology where systems need to function under
stressful conditions, as well as for industry and in cancer biology,
where it is important to understand how the genotype relates to the
phenotype.
Collapse
Affiliation(s)
- Nikolina Šoštarić
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| | - Ahmed Arslan
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| | - Bernardo Carvalho
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| | - Marcin Plech
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Bioincubator, Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Karin Voordeckers
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Bioincubator, Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Kevin J Verstrepen
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Bioincubator, Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Vera van Noort
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium.,Institute of Biology Leiden, Faculty of Science, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
30
|
Meza E, Muñoz-Arellano AJ, Johansson M, Chen X, Petranovic D. Development of a method for heat shock stress assessment in yeast based on transcription of specific genes. Yeast 2021; 38:549-565. [PMID: 34182606 DOI: 10.1002/yea.3658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/22/2021] [Accepted: 06/22/2021] [Indexed: 11/11/2022] Open
Abstract
All living cells, including yeast cells, are challenged by different types of stresses in their environments and must cope with challenges such as heat, chemical stress, or oxidative damage. By reversibly adjusting the physiology while maintaining structural and genetic integrity, cells can achieve a competitive advantage and adapt environmental fluctuations. The yeast Saccharomyces cerevisiae has been extensively used as a model for study of stress responses due to the strong conservation of many essential cellular processes between yeast and human cells. We focused here on developing a tool to detect and quantify early responses using specific transcriptional responses. We analyzed the published transcriptional data on S. cerevisiae DBY strain responses to 10 different stresses in different time points. The principal component analysis (PCA) and the Pearson analysis were used to assess the stress response genes that are highly expressed in each individual stress condition. Except for these stress response genes, we also identified the reference genes in each stress condition, which would not be induced under stress condition and show stable transcriptional expression over time. We then tested our candidates experimentally in the CEN.PK strain. After data analysis, we identified two stress response genes (UBI4 and RRP) and two reference genes (MEX67 and SSY1) under heat shock (HS) condition. These genes were further verified by real-time PCR at mild (42°C), severe (46°C), to lethal temperature (50°C), respectively.
Collapse
Affiliation(s)
- Eugenio Meza
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ana Joyce Muñoz-Arellano
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Magnus Johansson
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Xin Chen
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Dina Petranovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
31
|
Liukkonen M, Kronholm I, Ketola T. Evolutionary rescue at different rates of environmental change is affected by trade-offs between short-term performance and long-term survival. J Evol Biol 2021; 34:1177-1184. [PMID: 33963623 DOI: 10.1111/jeb.13797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 04/20/2021] [Indexed: 11/29/2022]
Abstract
As climate change accelerates and habitats free from anthropogenic impacts diminish, populations are forced to migrate or to adapt quickly. Evolutionary rescue (ER) is a phenomenon, in which a population is able to avoid extinction through adaptation. ER is considered to be more likely at slower rates of environmental change. However, the effects of correlated characters on evolutionary rescue are seldom explored yet correlated characters could play a major role in ER. We tested how evolutionary background in different fluctuating environments and the rate of environmental change affect the probability of ER by exposing populations of the bacteria Serratia marcescens to two different rates of steady temperature increase. As suggested by theory, slower environmental change allowed populations to grow more effectively even at extreme temperatures, but at the expense of long-term survival at extreme conditions due to correlated selection. Our results indicate important gap of knowledge on the effects of correlated selection during the environmental change and on evolutionary rescue at differently changing environments.
Collapse
Affiliation(s)
- Martta Liukkonen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Ilkka Kronholm
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Tarmo Ketola
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
32
|
Augusto L, Martynowicz J, Amin PH, Carlson KR, Wek RC, Sullivan WJ. TgIF2K-B Is an eIF2α Kinase in Toxoplasma gondii That Responds to Oxidative Stress and Optimizes Pathogenicity. mBio 2021; 12:e03160-20. [PMID: 33500345 PMCID: PMC7858062 DOI: 10.1128/mbio.03160-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/01/2020] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that persists in its vertebrate hosts in the form of dormant tissue cysts, which facilitate transmission through predation. The parasite must strike a balance that allows it to disseminate throughout its host without killing it, which requires the ability to properly counter host cell defenses. For example, oxidative stress encountered by Toxoplasma is suggested to impair parasite replication and dissemination. However, the strategies by which Toxoplasma mitigates oxidative stress are not yet clear. Among eukaryotes, environmental stresses induce the integrated stress response via phosphorylation of a translation initiation factor, eukaryotic initiation factor 2 (eIF2). Here, we show that the Toxoplasma eIF2 kinase TgIF2K-B is activated in response to oxidative stress and affords protection. Knockout of the TgIF2K-B gene, Δtgif2k-b, disrupted parasite responses to oxidative stresses and enhanced replication, diminishing the ability of the parasite to differentiate into tissue cysts. In addition, parasites lacking TgIF2K-B exhibited resistance to activated macrophages and showed greater virulence in an in vivo model of infection. Our results establish that TgIF2K-B is essential for Toxoplasma responses to oxidative stress, which are important for the parasite's ability to establish persistent infection in its host.IMPORTANCEToxoplasma gondii is a single-celled parasite that infects nucleated cells of warm-blooded vertebrates, including one-third of the human population. The parasites are not cleared by the immune response and persist in the host by converting into a latent tissue cyst form. Development of tissue cysts can be triggered by cellular stresses, which activate a family of TgIF2 kinases to phosphorylate the eukaryotic translation initiation factor TgIF2α. Here, we establish that the TgIF2 kinase TgIF2K-B is activated by oxidative stress and is critical for maintaining oxidative balance in the parasite. Depletion of TgIF2K-B alters gene expression, leading to accelerated growth and a diminished ability to convert into tissue cysts. This study establishes that TgIF2K-B is essential for the parasite's oxidative stress response and its ability to persist in the host as a latent infection.
Collapse
Affiliation(s)
- Leonardo Augusto
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jennifer Martynowicz
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Parth H Amin
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kenneth R Carlson
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ronald C Wek
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - William J Sullivan
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
33
|
Balarezo-Cisneros LN, Parker S, Fraczek MG, Timouma S, Wang P, O’Keefe RT, Millar CB, Delneri D. Functional and transcriptional profiling of non-coding RNAs in yeast reveal context-dependent phenotypes and in trans effects on the protein regulatory network. PLoS Genet 2021; 17:e1008761. [PMID: 33493158 PMCID: PMC7886133 DOI: 10.1371/journal.pgen.1008761] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 02/16/2021] [Accepted: 12/19/2020] [Indexed: 12/19/2022] Open
Abstract
Non-coding RNAs (ncRNAs), including the more recently identified Stable Unannotated Transcripts (SUTs) and Cryptic Unstable Transcripts (CUTs), are increasingly being shown to play pivotal roles in the transcriptional and post-transcriptional regulation of genes in eukaryotes. Here, we carried out a large-scale screening of ncRNAs in Saccharomyces cerevisiae, and provide evidence for SUT and CUT function. Phenotypic data on 372 ncRNA deletion strains in 23 different growth conditions were collected, identifying ncRNAs responsible for significant cellular fitness changes. Transcriptome profiles were assembled for 18 haploid ncRNA deletion mutants and 2 essential ncRNA heterozygous deletants. Guided by the resulting RNA-seq data we analysed the genome-wide dysregulation of protein coding genes and non-coding transcripts. Novel functional ncRNAs, SUT125, SUT126, SUT035 and SUT532 that act in trans by modulating transcription factors were identified. Furthermore, we described the impact of SUTs and CUTs in modulating coding gene expression in response to different environmental conditions, regulating important biological process such as respiration (SUT125, SUT126, SUT035, SUT432), steroid biosynthesis (CUT494, SUT053, SUT468) or rRNA processing (SUT075 and snR30). Overall, these data capture and integrate the regulatory and phenotypic network of ncRNAs and protein-coding genes, providing genome-wide evidence of the impact of ncRNAs on cellular homeostasis. A quarter of the yeast genome comprises non-coding RNA molecules (ncRNAs), which do not translate into proteins but are involved in the regulation of gene expression. ncRNAs can affect nearby genes by physically interfering with their transcription (cis mode of action), or they interact with DNA, proteins or other RNAs to regulate the expression of distant genes (trans mode of action). Examples of cis-acting ncRNAs have been broadly described, however, genome-wide studies to identify functional trans-acting ncRNAs involved in global gene regulation are still lacking. Here, we used a ncRNA yeast deletion collection to score ncRNA impact on cellular function in different environmental conditions. A group of 20 ncRNA deletion mutants with broad fitness diversity were selected to investigate the ncRNA effect on the protein and ncRNA expression network. We showed a high correlation between altered phenotypes and global transcriptional changes, in an environmental dependent manner. We confirmed the trans acting regulation of ncRNAs in the genome and their role in altering the expression of transcription factors. These findings support the notion of the involvement of ncRNAs in fine tuning cellular expression via regulation of transcription factors, as an advantageous RNA-mediated mechanism that can be fast and cost-effective for the cells.
Collapse
Affiliation(s)
- Laura Natalia Balarezo-Cisneros
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Steven Parker
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Marcin G. Fraczek
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Soukaina Timouma
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Ping Wang
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Raymond T. O’Keefe
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Catherine B. Millar
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- * E-mail: (CM); (DD)
| | - Daniela Delneri
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- * E-mail: (CM); (DD)
| |
Collapse
|
34
|
Schultzhaus Z, Chen A, Shuryak I, Wang Z. The Transcriptomic and Phenotypic Response of the Melanized Yeast Exophiala dermatitidis to Ionizing Particle Exposure. Front Microbiol 2021; 11:609996. [PMID: 33510728 PMCID: PMC7835796 DOI: 10.3389/fmicb.2020.609996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/14/2020] [Indexed: 01/20/2023] Open
Abstract
Fungi can tolerate extremely high doses of ionizing radiation compared with most other eukaryotes, a phenomenon encompassing both the recovery from acute exposure and the growth of melanized fungi in chronically contaminated environments such as nuclear disaster sites. This observation has led to the use of fungi in radiobiology studies, with the goal of finding novel resistance mechanisms. However, it is still not entirely clear what underlies this phenomenon, as genetic studies have not pinpointed unique responses to ionizing radiation in the most resistant fungi. Additionally, little work has been done examining how fungi (other than budding yeast) respond to irradiation by ionizing particles (e.g., protons, α-particles), although particle irradiation may cause distinct cellular damage, and is more relevant for human risks. To address this paucity of data, in this study we have characterized the phenotypic and transcriptomic response of the highly radioresistant yeast Exophiala dermatitidis to irradiation by three separate ionizing radiation sources: protons, deuterons, and α-particles. The experiment was performed with both melanized and non-melanized strains of E. dermatitidis, to determine the effect of this pigment on the response. No significant difference in survival was observed between these strains under any condition, suggesting that melanin does not impart protection to acute irradiation to these particles. The transcriptomic response during recovery to particle exposure was similar to that observed after γ-irradiation, with DNA repair and replication genes upregulated, and genes involved in translation and ribosomal biogenesis being heavily repressed, indicating an attenuation of cell growth. However, a comparison of global gene expression showed clear clustering of particle and γ-radiation groups. The response elicited by particle irradiation was, in total, more complex. Compared to the γ-associated response, particle irradiation resulted in greater changes in gene expression, a more diverse set of differentially expressed genes, and a significant induction of gene categories such as autophagy and protein catabolism. Additionally, analysis of individual particle responses resulted in identification of the first unique expression signatures and individual genes for each particle type that could be used as radionuclide discrimination markers.
Collapse
Affiliation(s)
- Zachary Schultzhaus
- Center for Biomolecular Science and Engineering, United States Naval Research Laboratory, Washington, DC, United States
| | - Amy Chen
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, United States
| | - Zheng Wang
- Center for Biomolecular Science and Engineering, United States Naval Research Laboratory, Washington, DC, United States
| |
Collapse
|
35
|
Involvement of glycogen metabolism in circadian control of UV resistance in cyanobacteria. PLoS Genet 2020; 16:e1009230. [PMID: 33253146 PMCID: PMC7728383 DOI: 10.1371/journal.pgen.1009230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/10/2020] [Accepted: 10/28/2020] [Indexed: 11/30/2022] Open
Abstract
Most organisms harbor circadian clocks as endogenous timing systems in order to adapt to daily environmental changes, such as exposure to ultraviolet (UV) light. It has been hypothesized that the circadian clock evolved to prevent UV-sensitive activities, such as DNA replication and cell division, during the daytime. Indeed, circadian control of UV resistance has been reported in several eukaryotic organisms, from algae to higher organisms, although the underlying mechanisms remain unknown. Here, we demonstrate that the unicellular cyanobacterium Synechococcus elongatus PCC 7942 exhibits a circadian rhythm in resistance to UV-C and UV-B light, which is higher during subjective dawn and lower during subjective dusk. Nullification of the clock gene cluster kaiABC or the DNA-photolyase phr abolished rhythmicity with constitutively lower resistance to UV-C light, and amino acid substitutions of KaiC altered the period lengths of the UV-C resistance rhythm. In order to elucidate the molecular mechanism underlying the circadian regulation of UV-C resistance, transposon insertion mutants that alter UV-C resistance were isolated. Mutations to the master circadian output mediator genes sasA and rpaA and the glycogen degradation enzyme gene glgP abolished circadian rhythms of UV-C resistance with constitutively high UV-C resistance. Combining these results with further experiments using ATP synthesis inhibitor and strains with modified metabolic pathways, we showed that UV-C resistance is weakened by directing more metabolic flux from the glycogen degradation to catabolic pathway such as oxidative pentose phosphate pathway and glycolysis. We suggest glycogen-related metabolism in the dark affects circadian control in UV sensitivity, while the light masks this effect through the photolyase function. Most organisms harbor circadian clocks to adapt to daily environmental changes. It has been hypothesized that adaptation to UV radiation during the day was a driving force of the evolution of the circadian clock (known as “the flight from light” hypothesis). Thus, understanding the relationship with UV resistance is important to consider the physiological relevance and an evolutionary origin of the circadian clock. We here demonstrate that the unicellular cyanobacterium, Synechococcus elongatus exhibits a circadian rhythm in resistance to UV-C light, which is higher and lower during subjective dawn and dusk, respectively. This rhythm was abolished by nullification of the clock gene cluster kaiABC, and the period length was changed consistently by period mutations on kaiC. Genetic screening revealed that nullification of clock-associating genes sasA, cikA and rpaA, and of a glycogen degradation enzyme gene glgP abolished or attenuated the UV-resistance rhythm. Combining these results with further experiments using an ATP synthesis inhibitor and strains with modified metabolic pathways, we suggest a that the circadian clock confers adaptive fitness by balancing a trade-off between glycogen-related energy metabolism and the UV-resistance property.
Collapse
|
36
|
Yang J, Tavazoie S. Regulatory and evolutionary adaptation of yeast to acute lethal ethanol stress. PLoS One 2020; 15:e0239528. [PMID: 33170850 PMCID: PMC7654773 DOI: 10.1371/journal.pone.0239528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/09/2020] [Indexed: 11/19/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has been the subject of many studies aimed at understanding mechanisms of adaptation to environmental stresses. Most of these studies have focused on adaptation to sub-lethal stresses, upon which a stereotypic transcriptional program called the environmental stress response (ESR) is activated. However, the genetic and regulatory factors that underlie the adaptation and survival of yeast cells to stresses that cross the lethality threshold have not been systematically studied. Here, we utilized a combination of gene expression profiling, deletion-library fitness profiling, and experimental evolution to systematically explore adaptation of S. cerevisiae to acute exposure to threshold lethal ethanol concentrations—a stress with important biotechnological implications. We found that yeast cells activate a rapid transcriptional reprogramming process that is likely adaptive in terms of post-stress survival. We also utilized repeated cycles of lethal ethanol exposure to evolve yeast strains with substantially higher ethanol tolerance and survival. Importantly, these strains displayed bulk growth-rates that were indistinguishable from the parental wild-type strain. Remarkably, these hyper-ethanol tolerant strains had reprogrammed their pre-stress gene expression states to match the likely adaptive post-stress response in the wild-type strain. Our studies reveal critical determinants of yeast survival to lethal ethanol stress and highlight potentially general principles that may underlie evolutionary adaptation to lethal stresses in general.
Collapse
Affiliation(s)
- Jamie Yang
- Department of Systems Biology, Columbia University, New York City, New York, United States of America
- Department of Biochemistry and Molecular Biology, Columbia University, New York City, New York, United States of America
| | - Saeed Tavazoie
- Department of Systems Biology, Columbia University, New York City, New York, United States of America
- Department of Biochemistry and Molecular Biology, Columbia University, New York City, New York, United States of America
- Department of Biological Sciences, Columbia University, New York City, New York, United States of America
- * E-mail:
| |
Collapse
|
37
|
Boulc'h PN, Caullireau E, Faucher E, Gouerou M, Guérin A, Miray R, Couée I. Abiotic stress signalling in extremophile land plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5771-5785. [PMID: 32687568 DOI: 10.1093/jxb/eraa336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Plant life relies on complex arrays of environmental stress sensing and signalling mechanisms. Extremophile plants develop and grow in harsh environments with extremes of cold, heat, drought, desiccation, or salinity, which have resulted in original adaptations. In accordance with their polyphyletic origins, extremophile plants likely possess core mechanisms of plant abiotic stress signalling. However, novel properties or regulations may have emerged in the context of extremophile adaptations. Comparative omics of extremophile genetic models, such as Arabidopsis lyrata, Craterostigma plantagineum, Eutrema salsugineum, and Physcomitrella patens, reveal diverse strategies of sensing and signalling that lead to a general improvement in abiotic stress responses. Current research points to putative differences of sensing and emphasizes significant modifications of regulatory mechanisms, at the level of secondary messengers (Ca2+, phospholipids, reactive oxygen species), signal transduction (intracellular sensors, protein kinases, transcription factors, ubiquitin-mediated proteolysis) or signalling crosstalk. Involvement of hormone signalling, especially ABA signalling, cell homeostasis surveillance, and epigenetic mechanisms, also shows that large-scale gene regulation, whole-plant integration, and probably stress memory are important features of adaptation to extreme conditions. This evolutionary and functional plasticity of signalling systems in extremophile plants may have important implications for plant biotechnology, crop improvement, and ecological risk assessment under conditions of climate change.
Collapse
Affiliation(s)
- Pierre-Nicolas Boulc'h
- University of Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
| | - Emma Caullireau
- University of Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
| | - Elvina Faucher
- University of Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
| | - Maverick Gouerou
- University of Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
- University of Rennes 1, CNRS, ECOBIO (Ecosystems-Biodiversity-Evolution) - UMR, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
| | - Amandine Guérin
- University of Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
| | - Romane Miray
- University of Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
| | - Ivan Couée
- University of Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
- University of Rennes 1, CNRS, ECOBIO (Ecosystems-Biodiversity-Evolution) - UMR, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
| |
Collapse
|
38
|
Tonner PD, Darnell CL, Bushell FML, Lund PA, Schmid AK, Schmidler SC. A Bayesian non-parametric mixed-effects model of microbial growth curves. PLoS Comput Biol 2020; 16:e1008366. [PMID: 33104703 PMCID: PMC7644099 DOI: 10.1371/journal.pcbi.1008366] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 11/05/2020] [Accepted: 08/30/2020] [Indexed: 11/19/2022] Open
Abstract
Substantive changes in gene expression, metabolism, and the proteome are manifested in overall changes in microbial population growth. Quantifying how microbes grow is therefore fundamental to areas such as genetics, bioengineering, and food safety. Traditional parametric growth curve models capture the population growth behavior through a set of summarizing parameters. However, estimation of these parameters from data is confounded by random effects such as experimental variability, batch effects or differences in experimental material. A systematic statistical method to identify and correct for such confounding effects in population growth data is not currently available. Further, our previous work has demonstrated that parametric models are insufficient to explain and predict microbial response under non-standard growth conditions. Here we develop a hierarchical Bayesian non-parametric model of population growth that identifies the latent growth behavior and response to perturbation, while simultaneously correcting for random effects in the data. This model enables more accurate estimates of the biological effect of interest, while better accounting for the uncertainty due to technical variation. Additionally, modeling hierarchical variation provides estimates of the relative impact of various confounding effects on measured population growth.
Collapse
Affiliation(s)
- Peter D. Tonner
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA
- Biology Department, Duke University, Durham, NC, USA
| | | | - Francesca M. L. Bushell
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter A. Lund
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Amy K. Schmid
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA
- Biology Department, Duke University, Durham, NC, USA
- Center for Computational Biology and Bioinformatics, Duke University, Durham, NC, USA
| | - Scott C. Schmidler
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA
- Department of Statistical Science, Duke University, Durham, USA
- Department of Computer Science, Duke University, Durham, USA
| |
Collapse
|
39
|
Synthetic Methylotrophy in Yeasts: Towards a Circular Bioeconomy. Trends Biotechnol 2020; 39:348-358. [PMID: 33008643 DOI: 10.1016/j.tibtech.2020.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/07/2020] [Accepted: 08/24/2020] [Indexed: 01/04/2023]
Abstract
Mitigating climate change is a key driver for the development of sustainable and CO2-neutral production processes. In this regard, connecting carbon capture and utilization processes to derive microbial C1 fermentation substrates from CO2 is highly promising. This strategy uses methylotrophic microbes to unlock next-generation processes, converting CO2-derived methanol. Synthetic biology approaches in particular can empower synthetic methylotrophs to produce a variety of commodity chemicals. We believe that yeasts have outstanding potential for this purpose, because they are able to separate toxic intermediates and metabolic reactions in organelles. This compartmentalization can be harnessed to design superior synthetic methylotrophs, capable of utilizing methanol and other hitherto largely disregarded C1 compounds, thus supporting the establishment of a future circular economy.
Collapse
|
40
|
Paul K, Hartmann T, Posch C, Behrens D, Herwig C. Investigation of cell line specific responses to pH inhomogeneity and consequences for process design. Eng Life Sci 2020; 20:412-421. [PMID: 32944016 PMCID: PMC7481767 DOI: 10.1002/elsc.202000034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/15/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
With increasing bioreactor volumes, the mixing time of the reactor increases as well, which creates an inhomogeneous environment for the cells. This can result in impaired process performance in large-scale production reactors. Particularly the addition of base through the reactor headspace can be problematic, since it creates an area, where cells are repeatedly exposed to an increased pH. The aim of this study is to simulate this large-scale phenomenon at lab-scale and investigate its impact. Two different cell lines were exposed to pH amplitudes of a maximal magnitude of 0.05 units (pH of 6.95). Both cell lines showed similar responses, like decreased viable cell counts, but unaffected lactate levels. However, cell line B showed an initially increased specific productivity in response to the introduced amplitudes, whereas cell line A showed a consistently lower specific productivity. Furthermore, the time point at which base addition is started influences the impact, which pH amplitudes have on process performance. When pH control was started earlier in the process, maximal viable cell counts decreased and the lactate metabolic shift was less pronounced. These results show that the potential negative impact of pH amplitudes can be minimized by strategic process design.
Collapse
Affiliation(s)
- Katrin Paul
- Institute of ChemicalEnvironmental and Bioscience EngineeringTU WienViennaAustria
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved BioprocessesTU WienViennaAustria
| | - Thomas Hartmann
- Institute of ChemicalEnvironmental and Bioscience EngineeringTU WienViennaAustria
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved BioprocessesTU WienViennaAustria
| | | | | | - Christoph Herwig
- Institute of ChemicalEnvironmental and Bioscience EngineeringTU WienViennaAustria
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved BioprocessesTU WienViennaAustria
| |
Collapse
|
41
|
Tondini F, Onetto CA, Jiranek V. Early adaptation strategies of Saccharomyces cerevisiae and Torulaspora delbrueckii to co-inoculation in high sugar grape must-like media. Food Microbiol 2020; 90:103463. [DOI: 10.1016/j.fm.2020.103463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/18/2019] [Accepted: 02/18/2020] [Indexed: 12/28/2022]
|
42
|
Transcriptional Rewiring, Adaptation, and the Role of Gene Duplication in the Metabolism of Ethanol of Saccharomyces cerevisiae. mSystems 2020; 5:5/4/e00416-20. [PMID: 32788405 PMCID: PMC7426151 DOI: 10.1128/msystems.00416-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ethanol is the main by-product of yeast sugar fermentation that affects microbial growth parameters, being considered a dual molecule, a nutrient and a stressor. Previous works demonstrated that the budding yeast arose after an ancient hybridization process resulted in a tier of duplicated genes within its genome, many of them with implications in this ethanol "produce-accumulate-consume" strategy. The evolutionary link between ethanol production, consumption, and tolerance versus ploidy and stability of the hybrids is an ongoing debatable issue. The implication of ancestral duplicates in this metabolic rewiring, and how these duplicates differ transcriptionally, remains unsolved. Here, we study the transcriptomic adaptive signatures to ethanol as a nonfermentative carbon source to sustain clonal yeast growth by experimental evolution, emphasizing the role of duplicated genes in the adaptive process. As expected, ethanol was able to sustain growth but at a lower rate than glucose. Our results demonstrate that in asexual populations a complete transcriptomic rewiring was produced, strikingly by downregulation of duplicated genes, mainly whole-genome duplicates, whereas small-scale duplicates exhibited significant transcriptional divergence between copies. Overall, this study contributes to the understanding of evolution after gene duplication, linking transcriptional divergence with duplicates' fate in a multigene trait as ethanol tolerance.IMPORTANCE Gene duplication events have been related with increasing biological complexity through the tree of life, but also with illnesses, including cancer. Early evolutionary theories indicated that duplicated genes could explore alternative functions due to relaxation of selective constraints in one of the copies, as the other remains as ancestral-function backup. In unicellular eukaryotes like yeasts, it has been demonstrated that the fate and persistence of duplicates depend on duplication mechanism (whole-genome or small-scale events), shaping their actual genomes. Although it has been shown that small-scale duplicates tend to innovate and whole-genome duplicates specialize in ancestral functions, the implication of duplicates' transcriptional plasticity and transcriptional divergence on environmental and metabolic responses remains largely obscure. Here, by experimental adaptive evolution, we show that Saccharomyces cerevisiae is able to respond to metabolic stress (ethanol as nonfermentative carbon source) due to the persistence of duplicated genes. These duplicates respond by transcriptional rewiring, depending on their transcriptional background. Our results shed light on the mechanisms that determine the role of duplicates, and on their evolvability.
Collapse
|
43
|
Walters BM, Connelly MT, Young B, Traylor-Knowles N. The Complicated Evolutionary Diversification of the Mpeg-1/Perforin-2 Family in Cnidarians. Front Immunol 2020; 11:1690. [PMID: 32849589 PMCID: PMC7424014 DOI: 10.3389/fimmu.2020.01690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/24/2020] [Indexed: 11/13/2022] Open
Abstract
The invertebrate innate immune system is surprisingly complex, yet our knowledge is limited to a few select model systems. One understudied group is the phylum Cnidaria (corals, sea anemones, etc.). Cnidarians are the sister group to Bilateria and by studying their innate immunity repertoire, a better understanding of the ancestral state can be gained. Corals in particular have evolved a highly diverse innate immune system that can uncover evolutionarily basal functions of conserved genes and proteins. One rudimentary function of the innate immune system is defense against harmful bacteria using pore forming proteins. Macrophage expressed gene 1/Perforin-2 protein (Mpeg-1/P2) is a particularly important pore forming molecule as demonstrated by previous studies in humans and mice, and limited studies in non-bilaterians. However, in cnidarians, little is known about Mpeg-1/P2. In this perspective article, we will summarize the current state of knowledge of Mpeg-1/P2 in invertebrates, analyze identified Mpeg-1/P2 homologs in cnidarians, and demonstrate the evolutionary diversity of this gene family using phylogenetic analysis. We will also show that Mpeg-1 is upregulated in one species of stony coral in response to lipopolysaccharides and downregulated in another species of stony coral in response to white band disease. This data presents evidence that Mpeg-1/P2 is conserved in cnidarians and we hypothesize that it plays an important role in cnidarian innate immunity. We propose that future research focus on the function of Mpeg-1/P2 family in cnidarians to identify its primary role in innate immunity and beyond.
Collapse
Affiliation(s)
- Brian M. Walters
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Michael T. Connelly
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Coral Gables, FL, United States
| | - Benjamin Young
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Coral Gables, FL, United States
| | - Nikki Traylor-Knowles
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
44
|
Lucena RM, Dolz-Edo L, Brul S, de Morais MA, Smits G. Extreme Low Cytosolic pH Is a Signal for Cell Survival in Acid Stressed Yeast. Genes (Basel) 2020; 11:genes11060656. [PMID: 32560106 PMCID: PMC7349538 DOI: 10.3390/genes11060656] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
Yeast biomass is recycled in the process of bioethanol production using treatment with dilute sulphuric acid to control the bacterial population. This treatment can lead to loss of cell viability, with consequences on the fermentation yield. Thus, the aim of this study was to define the functional cellular responses to inorganic acid stress. Saccharomyces cerevisiae strains with mutation in several signalling pathways, as well as cells expressing pH-sensitive GFP derivative ratiometric pHluorin, were tested for cell survival and cytosolic pH (pHc) variation during exposure to low external pH (pHex). Mutants in calcium signalling and proton extrusion were transiently sensitive to low pHex, while the CWI slt2Δ mutant lost viability. Rescue of this mutant was observed when cells were exposed to extreme low pHex or glucose starvation and was dependent on the induced reduction of pHc. Therefore, a lowered pHc leads to a complete growth arrest, which protects the cells from lethal stress and keeps cells alive. Cytosolic pH is thus a signal that directs the growth stress-tolerance trade-off in yeast. A regulatory model was proposed to explain this mechanism, indicating the impairment of glucan synthesis as the primary cause of low pHex sensitivity.
Collapse
Affiliation(s)
- Rodrigo Mendonça Lucena
- Department of Genetics, Biosciences Centre, Federal University of Pernambuco, Recife 50670-901, Brazil;
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands; (L.D.-E.); (S.B.)
| | - Laura Dolz-Edo
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands; (L.D.-E.); (S.B.)
| | - Stanley Brul
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands; (L.D.-E.); (S.B.)
| | - Marcos Antonio de Morais
- Department of Genetics, Biosciences Centre, Federal University of Pernambuco, Recife 50670-901, Brazil;
- Correspondence: (G.S.); (M.A.d.M.J.)
| | - Gertien Smits
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands; (L.D.-E.); (S.B.)
- Correspondence: (G.S.); (M.A.d.M.J.)
| |
Collapse
|
45
|
Ravishankar A, Pupo A, Gallagher JEG. Resistance Mechanisms of Saccharomyces cerevisiae to Commercial Formulations of Glyphosate Involve DNA Damage Repair, the Cell Cycle, and the Cell Wall Structure. G3 (BETHESDA, MD.) 2020; 10:2043-2056. [PMID: 32299824 PMCID: PMC7263678 DOI: 10.1534/g3.120.401183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/13/2020] [Indexed: 12/16/2022]
Abstract
The use of glyphosate-based herbicides is widespread and despite their extensive use, their effects are yet to be deciphered completely. The additives in commercial formulations of glyphosate, though labeled inert when used individually, have adverse effects when used in combination with other additives along with the active ingredient. As a species, Saccharomyces cerevisiae has a wide range of resistance to glyphosate-based herbicides. To investigate the underlying genetic differences between sensitive and resistant strains, global changes in gene expression were measured, when yeast were exposed to a glyphosate-based herbicide (GBH). Expression of genes involved in numerous pathways crucial to the cell's functioning, such as DNA replication, MAPK signaling, meiosis, and cell wall synthesis changed. Because so many diverse pathways were affected, these strains were then subjected to in-lab-evolutions (ILE) to select mutations that confer increased resistance. Common fragile sites were found to play a role in adaptation to resistance to long-term exposure of GBHs. Copy number increased in approximately 100 genes associated with cell wall proteins, mitochondria, and sterol transport. Taking ILE and transcriptomic data into account it is evident that GBHs affect multiple biological processes in the cell. One such component is the cell wall structure which acts as a protective barrier in alleviating the stress caused by exposure to inert additives in GBHs. Sed1, a GPI-cell wall protein, plays an important role in tolerance of a GBH. Hence, a detailed study of the changes occurring at the genome and transcriptome levels is essential to better understand the effects of an environmental stressor such as a GBH, on the cell as a whole.
Collapse
Affiliation(s)
| | - Amaury Pupo
- Department of Biology, West Virginia University
| | | |
Collapse
|
46
|
Exploiting strain diversity and rational engineering strategies to enhance recombinant cellulase secretion by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2020; 104:5163-5184. [PMID: 32337628 DOI: 10.1007/s00253-020-10602-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
Consolidated bioprocessing (CBP) of lignocellulosic material into bioethanol has progressed in the past decades; however, several challenges still exist which impede the industrial application of this technology. Identifying the challenges that exist in all unit operations is crucial and needs to be optimised, but only the barriers related to the secretion of recombinant cellulolytic enzymes in Saccharomyces cerevisiae will be addressed in this review. Fundamental principles surrounding CBP as a biomass conversion platform have been established through the successful expression of core cellulolytic enzymes, namely β-glucosidases, endoglucanases, and exoglucanases (cellobiohydrolases) in S. cerevisiae. This review will briefly address the challenges involved in the construction of an efficient cellulolytic yeast, with particular focus on the secretion efficiency of cellulases from this host. Additionally, strategies for studying enhanced cellulolytic enzyme secretion, which include both rational and reverse engineering approaches, will be discussed. One such technique includes bio-engineering within genetically diverse strains, combining the strengths of both natural strain diversity and rational strain development. Furthermore, with the advancement in next-generation sequencing, studies that utilise this method of exploiting intra-strain diversity for industrially relevant traits will be reviewed. Finally, future prospects are discussed for the creation of ideal CBP strains with high enzyme production levels.Key Points• Several challenges are involved in the construction of efficient cellulolytic yeast, in particular, the secretion efficiency of cellulases from the hosts.• Strategies for enhancing cellulolytic enzyme secretion, a core requirement for CBP host microorganism development, include both rational and reverse engineering approaches.• One such technique includes bio-engineering within genetically diverse strains, combining the strengths of both natural strain diversity and rational strain development.
Collapse
|
47
|
Yao L, Shabestary K, Björk SM, Asplund-Samuelsson J, Joensson HN, Jahn M, Hudson EP. Pooled CRISPRi screening of the cyanobacterium Synechocystis sp PCC 6803 for enhanced industrial phenotypes. Nat Commun 2020; 11:1666. [PMID: 32245970 PMCID: PMC7125299 DOI: 10.1038/s41467-020-15491-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/13/2020] [Indexed: 11/09/2022] Open
Abstract
Cyanobacteria are model organisms for photosynthesis and are attractive for biotechnology applications. To aid investigation of genotype-phenotype relationships in cyanobacteria, we develop an inducible CRISPRi gene repression library in Synechocystis sp. PCC 6803, where we aim to target all genes for repression. We track the growth of all library members in multiple conditions and estimate gene fitness. The library reveals several clones with increased growth rates, and these have a common upregulation of genes related to cyclic electron flow. We challenge the library with 0.1 M L-lactate and find that repression of peroxiredoxin bcp2 increases growth rate by 49%. Transforming the library into an L-lactate-secreting Synechocystis strain and sorting top lactate producers enriches clones with sgRNAs targeting nutrient assimilation, central carbon metabolism, and cyclic electron flow. In many examples, productivity can be enhanced by repression of essential genes, which are difficult to access by transposon insertion.
Collapse
Affiliation(s)
- Lun Yao
- Science for Life Laboratory, KTH - Royal Institute of Technology, SE-171 21, Stockholm, Sweden.,Department of Protein Science, KTH - Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Kiyan Shabestary
- Science for Life Laboratory, KTH - Royal Institute of Technology, SE-171 21, Stockholm, Sweden.,Department of Protein Science, KTH - Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Sara M Björk
- Science for Life Laboratory, KTH - Royal Institute of Technology, SE-171 21, Stockholm, Sweden.,Department of Protein Science, KTH - Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Johannes Asplund-Samuelsson
- Science for Life Laboratory, KTH - Royal Institute of Technology, SE-171 21, Stockholm, Sweden.,Department of Protein Science, KTH - Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Haakan N Joensson
- Science for Life Laboratory, KTH - Royal Institute of Technology, SE-171 21, Stockholm, Sweden.,Department of Protein Science, KTH - Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Michael Jahn
- Science for Life Laboratory, KTH - Royal Institute of Technology, SE-171 21, Stockholm, Sweden.,Department of Protein Science, KTH - Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Elton P Hudson
- Science for Life Laboratory, KTH - Royal Institute of Technology, SE-171 21, Stockholm, Sweden. .,Department of Protein Science, KTH - Royal Institute of Technology, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
48
|
Kamrad S, Grossbach J, Rodríguez‐López M, Mülleder M, Townsend S, Cappelletti V, Stojanovski G, Correia‐Melo C, Picotti P, Beyer A, Ralser M, Bähler J. Pyruvate kinase variant of fission yeast tunes carbon metabolism, cell regulation, growth and stress resistance. Mol Syst Biol 2020; 16:e9270. [PMID: 32319721 PMCID: PMC7175467 DOI: 10.15252/msb.20199270] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Cells balance glycolysis with respiration to support their metabolic needs in different environmental or physiological contexts. With abundant glucose, many cells prefer to grow by aerobic glycolysis or fermentation. Using 161 natural isolates of fission yeast, we investigated the genetic basis and phenotypic effects of the fermentation-respiration balance. The laboratory and a few other strains depended more on respiration. This trait was associated with a single nucleotide polymorphism in a conserved region of Pyk1, the sole pyruvate kinase in fission yeast. This variant reduced Pyk1 activity and glycolytic flux. Replacing the "low-activity" pyk1 allele in the laboratory strain with the "high-activity" allele was sufficient to increase fermentation and decrease respiration. This metabolic rebalancing triggered systems-level adjustments in the transcriptome and proteome and in cellular traits, including increased growth and chronological lifespan but decreased resistance to oxidative stress. Thus, low Pyk1 activity does not lead to a growth advantage but to stress tolerance. The genetic tuning of glycolytic flux may reflect an adaptive trade-off in a species lacking pyruvate kinase isoforms.
Collapse
Affiliation(s)
- Stephan Kamrad
- Molecular Biology of Metabolism LaboratoryThe Francis Crick InstituteLondonUK
- Department of Genetics, Evolution & EnvironmentInstitute of Healthy AgeingUniversity College LondonLondonUK
| | - Jan Grossbach
- CECADMedical Faculty & Faculty of Mathematics and Natural SciencesUniversity of CologneCologneGermany
| | - Maria Rodríguez‐López
- Department of Genetics, Evolution & EnvironmentInstitute of Healthy AgeingUniversity College LondonLondonUK
| | - Michael Mülleder
- Molecular Biology of Metabolism LaboratoryThe Francis Crick InstituteLondonUK
- Charité University MedicineBerlinGermany
| | - StJohn Townsend
- Molecular Biology of Metabolism LaboratoryThe Francis Crick InstituteLondonUK
- Department of Genetics, Evolution & EnvironmentInstitute of Healthy AgeingUniversity College LondonLondonUK
| | - Valentina Cappelletti
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Gorjan Stojanovski
- Department of Genetics, Evolution & EnvironmentInstitute of Healthy AgeingUniversity College LondonLondonUK
| | - Clara Correia‐Melo
- Molecular Biology of Metabolism LaboratoryThe Francis Crick InstituteLondonUK
| | - Paola Picotti
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Andreas Beyer
- CECADMedical Faculty & Faculty of Mathematics and Natural SciencesUniversity of CologneCologneGermany
- Center for Molecular Medicine CologneCologneGermany
| | - Markus Ralser
- Molecular Biology of Metabolism LaboratoryThe Francis Crick InstituteLondonUK
- Charité University MedicineBerlinGermany
| | - Jürg Bähler
- Department of Genetics, Evolution & EnvironmentInstitute of Healthy AgeingUniversity College LondonLondonUK
| |
Collapse
|
49
|
Hengge R. Linking bacterial growth, survival, and multicellularity - small signaling molecules as triggers and drivers. Curr Opin Microbiol 2020; 55:57-66. [PMID: 32244175 DOI: 10.1016/j.mib.2020.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 02/05/2023]
Abstract
An overarching theme of cellular regulation in bacteria arises from the trade-off between growth and stress resilience. In addition, the formation of biofilms contributes to stress survival, since these dense multicellular aggregates, in which cells are embedded in an extracellular matrix of self-produced polymers, represent a self-constructed protective and homeostatic 'niche'. As shown here for the model bacterium Escherichia coli, the inverse coordination of bacterial growth with survival and the transition to multicellularity is achieved by a highly integrated regulatory network with several sigma subunits of RNA polymerase and a small number of transcriptional hubs as central players. By conveying information about the actual (micro)environments, nucleotide second messengers such as cAMP, (p)ppGpp, and in particular c-di-GMP are the key triggers and drivers that promote either growth or stress resistance and organized multicellularity in a world of limited resources.
Collapse
Affiliation(s)
- Regine Hengge
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| |
Collapse
|
50
|
Sokolov SS, Vorobeva MA, Smirnova AI, Smirnova EA, Trushina NI, Galkina KV, Severin FF, Knorre DA. LAM Genes Contribute to Environmental Stress Tolerance but Sensibilize Yeast Cells to Azoles. Front Microbiol 2020; 11:38. [PMID: 32047490 PMCID: PMC6997477 DOI: 10.3389/fmicb.2020.00038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/09/2020] [Indexed: 11/25/2022] Open
Abstract
Lam proteins transport sterols between the membranes of different cellular compartments. In Saccharomyces cerevisiae, the LAM gene family consists of three pairs of paralogs. Because the function of paralogous genes can be redundant, the phenotypes of only a small number of LAM gene deletions have been reported; thus, the role of these genes in yeast physiology is still unclear. Here, we surveyed the phenotypes of double and quadruple deletants of paralogous LAM2(YSP2)/LAM4 and LAM1(YSP1)/LAM3(SIP3) genes that encode proteins localized in the junctions of the plasma membrane and endoplasmic reticulum. The quadruple deletant showed increased sterol content and a strong decrease in ethanol, heat shock and high osmolarity resistance. Surprisingly, the quadruple deletant and LAM2/LAM4 double deletion strain showed increased tolerance to the azole antifungals clotrimazole and miconazole. This effect was not associated with an increased rate of ABC-transporter substrate efflux. Possibly, increased sterol pool in the LAM deletion strains postpones the effect of azoles on cell growth. Alternatively, LAM deletions might alleviate the toxic effect of sterols as Lam proteins can transport toxic sterol biosynthesis intermediates into membrane compartments that are sensitive to these compounds. Our findings reveal novel biological roles of LAM genes in stress tolerance and suggest that mutations in these genes may confer upregulation of a mechanism that provides resistance to azole antifungals in pathogenic fungi.
Collapse
Affiliation(s)
- Svyatoslav S Sokolov
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Margarita A Vorobeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Alexandra I Smirnova
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina A Smirnova
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Nataliya I Trushina
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Kseniia V Galkina
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Fedor F Severin
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry A Knorre
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|