1
|
Moraes IR, de Oliveira HC, Fontes MRM. Structural basis of nuclear transport for NEIL DNA glycosylases mediated by importin-alpha. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140974. [PMID: 38065227 DOI: 10.1016/j.bbapap.2023.140974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/18/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
NEIL glycosylases, including NEIL1, NEIL2, and NEIL3, play a crucial role in the base excision DNA repair pathway (BER). The classical importin pathway mediated by importin α/β and cargo proteins containing nuclear localization sequences (NLS) is the most common transport mechanism of DNA repair proteins to the nucleus. Previous studies have identified putative NLSs located at the C-terminus of NEIL3 and NEIL1. Crystallographic, bioinformatics, calorimetric (ITC), and fluorescence assays were used to investigate the interaction between NEIL1 and NEIL3 putative NLSs and importin-α (Impα). Our findings showed that NEIL3 contains a typical cNLS, with medium affinity for the major binding site of Impα. In contrast, crystallographic analysis of NEIL1 NLS revealed its binding to Impα, but with high B-factors and a lack of electron density at the linker region. ITC and fluorescence assays indicated no detectable affinity between NEIL1 NLS and Impα. These data suggest that NEIL1 NLS is a non-classical NLS with low affinity to Impα. Additionally, we compared the binding mode of NEIL3 and NEIL1 with Mus musculus Impα to human isoforms HsImpα1 and HsImpα3, which revealed interesting binding differences for HsImpα3 variant. NEIL3 is a classical medium affinity monopartite NLS, while NEIL1 is likely to be an unclassical low-affinity bipartite NLS. The base excision repair pathway is one of the primary systems involved in repairing DNA. Thus, understanding the mechanisms of nuclear transport of NEIL proteins is crucial for comprehending the role of these proteins in DNA repair and disease development.
Collapse
Affiliation(s)
- Ivan R Moraes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Hamine C de Oliveira
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Marcos R M Fontes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil; Instituto de Estudos Avançados do Mar (IEAMar), Universidade Estadual Paulista (UNESP), São Vicente, SP, Brazil.
| |
Collapse
|
2
|
Athukorala A, Donnelly CM, Pavan S, Nematollahzadeh S, Djossou VA, Nath B, Helbig KJ, Di Iorio E, McSharry BP, Alvisi G, Forwood JK, Sarker S. Structural and functional characterization of siadenovirus core protein VII nuclear localization demonstrates the existence of multiple nuclear transport pathways. J Gen Virol 2024; 105. [PMID: 38261399 DOI: 10.1099/jgv.0.001928] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Adenovirus protein VII (pVII) plays a crucial role in the nuclear localization of genomic DNA following viral infection and contains nuclear localization signal (NLS) sequences for the importin (IMP)-mediated nuclear import pathway. However, functional analysis of pVII in adenoviruses to date has failed to fully determine the underlying mechanisms responsible for nuclear import of pVII. Therefore, in the present study, we extended our analysis by examining the nuclear trafficking of adenovirus pVII from a non-human species, psittacine siadenovirus F (PsSiAdV). We identified a putative classical (c)NLS at pVII residues 120-128 (120PGGFKRRRL128). Fluorescence polarization and electrophoretic mobility shift assays demonstrated direct, high-affinity interaction with both IMPα2 and IMPα3 but not IMPβ. Structural analysis of the pVII-NLS/IMPα2 complex confirmed a classical interaction, with the major binding site of IMPα occupied by K124 of pVII-NLS. Quantitative confocal laser scanning microscopy showed that PsSiAdV pVII-NLS can confer IMPα/β-dependent nuclear localization to GFP. PsSiAdV pVII also localized in the nucleus when expressed in the absence of other viral proteins. Importantly, in contrast to what has been reported for HAdV pVII, PsSiAdV pVII does not localize to the nucleolus. In addition, our study demonstrated that inhibition of the IMPα/β nuclear import pathway did not prevent PsSiAdV pVII nuclear targeting, indicating the existence of alternative pathways for nuclear localization, similar to what has been previously shown for human adenovirus pVII. Further examination of other potential NLS signals, characterization of alternative nuclear import pathways, and investigation of pVII nuclear targeting across different adenovirus species is recommended to fully elucidate the role of varying nuclear import pathways in the nuclear localization of pVII.
Collapse
Affiliation(s)
- Ajani Athukorala
- Department of Microbiology, Anatomy, Physiology, and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia
| | - Camilla M Donnelly
- School of Dentistry and Medical Sciences, Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Silvia Pavan
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy
| | - Sepehr Nematollahzadeh
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy
| | | | - Babu Nath
- School of Dentistry and Medical Sciences, Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Karla J Helbig
- Department of Microbiology, Anatomy, Physiology, and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia
| | - Enzo Di Iorio
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy
| | - Brian P McSharry
- School of Dentistry and Medical Sciences, Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Gualtiero Alvisi
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy
| | - Jade K Forwood
- School of Dentistry and Medical Sciences, Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Subir Sarker
- Department of Microbiology, Anatomy, Physiology, and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia
- Biomedical Sciences & Molecular Biology, College of Public Health Medical, and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
3
|
Kelenis DP, Rodarte KE, Kollipara RK, Pozo K, Choudhuri SP, Spainhower KB, Wait SJ, Stastny V, Oliver TG, Johnson JE. Inhibition of Karyopherin β1-Mediated Nuclear Import Disrupts Oncogenic Lineage-Defining Transcription Factor Activity in Small Cell Lung Cancer. Cancer Res 2022; 82:3058-3073. [PMID: 35748745 PMCID: PMC9444950 DOI: 10.1158/0008-5472.can-21-3713] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/29/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022]
Abstract
Genomic studies support the classification of small cell lung cancer (SCLC) into subtypes based on the expression of lineage-defining transcription factors ASCL1 and NEUROD1, which together are expressed in ∼86% of SCLC. ASCL1 and NEUROD1 activate SCLC oncogene expression, drive distinct transcriptional programs, and maintain the in vitro growth and oncogenic properties of ASCL1 or NEUROD1-expressing SCLC. ASCL1 is also required for tumor formation in SCLC mouse models. A strategy to inhibit the activity of these oncogenic drivers may therefore provide both a targeted therapy for the predominant SCLC subtypes and a tool to investigate the underlying lineage plasticity of established SCLC tumors. However, there are no known agents that inhibit ASCL1 or NEUROD1 function. In this study, we identify a novel strategy to pharmacologically target ASCL1 and NEUROD1 activity in SCLC by exploiting the nuclear localization required for the function of these transcription factors. Karyopherin β1 (KPNB1) was identified as a nuclear import receptor for both ASCL1 and NEUROD1 in SCLC, and inhibition of KPNB1 led to impaired ASCL1 and NEUROD1 nuclear accumulation and transcriptional activity. Pharmacologic targeting of KPNB1 preferentially disrupted the growth of ASCL1+ and NEUROD1+ SCLC cells in vitro and suppressed ASCL1+ tumor growth in vivo, an effect mediated by a combination of impaired ASCL1 downstream target expression, cell-cycle activity, and proteostasis. These findings broaden the support for targeting nuclear transport as an anticancer therapeutic strategy and have implications for targeting lineage-transcription factors in tumors beyond SCLC. SIGNIFICANCE The identification of KPNB1 as a nuclear import receptor for lineage-defining transcription factors in SCLC reveals a viable therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Demetra P. Kelenis
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kathia E. Rodarte
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rahul K. Kollipara
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Karine Pozo
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA,Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Kyle B. Spainhower
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Sarah J. Wait
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Victor Stastny
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Trudy G. Oliver
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Jane E. Johnson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
4
|
Mehmood R, Jibiki K, Shibazaki N, Yasuhara N. Molecular profiling of nucleocytoplasmic transport factor genes in breast cancer. Heliyon 2021; 7:e06039. [PMID: 33553736 PMCID: PMC7851789 DOI: 10.1016/j.heliyon.2021.e06039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/14/2020] [Accepted: 01/14/2021] [Indexed: 11/24/2022] Open
Abstract
Transport of functional molecules across the nuclear membrane of a eukaryotic cell is regulated by a dedicated set of transporter proteins that carry molecules into the nucleus or out of the nucleus to the cytoplasm for homeostasis of the cell. One of the categories of cargo molecules these transporters carry are the molecules for cell cycle regulation. Therefore, their role is critical in terms of cancer development. Any misregulation of the transport factors would means aberrant abundance of cell cycle regulators and might have consequences in cell cycle progression. While earlier studies have focussed on individual transport related molecules, a collective overview of how these molecules may be dysregulated in breast cancer is lacking. Using genomic and transcriptomic datasets from TCGA (The Cancer Genome Atlas) and microarray platforms, we carried out bioinformatic analysis and provide a genetic and molecular profile of all the molecules directly related to nucleocytoplasmic shuttling of proteins and RNAs. Interestingly, we identified that many of these molecules are either mutated or have dysregulated expression in breast cancer. Strikingly, some of the molecules, namely, KPNA2, KPNA3, KPNA5, IPO8, TNPO1, XPOT, XPO7 and CSE1L were correlated with poor patient survival. This study provides a comprehensive genetic and molecular landscape of nucleocytoplasmic factors in breast cancer and points to the important roles of various nucleocytoplasmic factors in cancer progression. This data might have implications in prognosis and therapeutic targeting in breast cancer.
Collapse
Affiliation(s)
- Rashid Mehmood
- Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Kazuya Jibiki
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| | - Noriko Shibazaki
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| | - Noriko Yasuhara
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
5
|
Signaling within the pineal gland: A parallelism with the central nervous system. Semin Cell Dev Biol 2018; 95:151-159. [PMID: 30502386 DOI: 10.1016/j.semcdb.2018.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/15/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022]
Abstract
The pineal gland (PG) derives from the neural tube, like the rest of the central nervous system (CNS). The PG is specialized in synthesizing and secreting melatonin in a circadian fashion. The nocturnal elevation of melatonin is a highly conserved feature among species which proves its importance in nature. Here, we review a limited set of intrinsic and extrinsic regulatory elements that have been shown or proposed to influence the PG's melatonin production, as well as pineal ontogeny and homeostasis. Intrinsic regulators include the transcription factors CREB, Pax6 and NeuroD1. In addition, microglia within the PG participate as extrinsic regulators of these functions. We further discuss how these same elements work in other parts of the CNS, and note similarities and differences to their roles in the PG. Since the PG is a relatively well-defined and highly specialized organ within the CNS, we suggest that applying this comparative approach to additional PG regulators may be a useful tool for understanding complex areas of the brain, as well as the influence of the PG in both health and disease, including circadian functions and disorders.
Collapse
|
6
|
Sachani SS, Landschoot LS, Zhang L, White CR, MacDonald WA, Golding MC, Mann MRW. Nucleoporin 107, 62 and 153 mediate Kcnq1ot1 imprinted domain regulation in extraembryonic endoderm stem cells. Nat Commun 2018; 9:2795. [PMID: 30022050 PMCID: PMC6052020 DOI: 10.1038/s41467-018-05208-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 06/21/2018] [Indexed: 12/19/2022] Open
Abstract
Genomic imprinting is a phenomenon that restricts transcription to predominantly one parental allele. How this transcriptional duality is regulated is poorly understood. Here we perform an RNA interference screen for epigenetic factors involved in paternal allelic silencing at the Kcnq1ot1 imprinted domain in mouse extraembryonic endoderm stem cells. Multiple factors are identified, including nucleoporin 107 (NUP107). To determine NUP107's role and specificity in Kcnq1ot1 imprinted domain regulation, we deplete Nup107, as well as Nup62, Nup98/96 and Nup153. Nup107, Nup62 and Nup153, but not Nup98/96 depletion, reduce Kcnq1ot1 noncoding RNA volume, displace the Kcnq1ot1 domain from the nuclear periphery, reactivate a subset of normally silent paternal alleles in the domain, alter histone modifications with concomitant changes in KMT2A, EZH2 and EHMT2 occupancy, as well as reduce cohesin interactions at the Kcnq1ot1 imprinting control region. Our results establish an important role for specific nucleoporins in mediating Kcnq1ot1 imprinted domain regulation.
Collapse
Affiliation(s)
- Saqib S Sachani
- Departments of Obstetrics & Gynaecology, and Biochemistry, Western University, Schulich School of Medicine and Dentistry, London, ON, N6A 5W9, Canada
- Children's Health Research Institute, London, ON, N6C 2V5, Canada
- Departments of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA
| | - Lauren S Landschoot
- Departments of Obstetrics & Gynaecology, and Biochemistry, Western University, Schulich School of Medicine and Dentistry, London, ON, N6A 5W9, Canada
- Children's Health Research Institute, London, ON, N6C 2V5, Canada
| | - Liyue Zhang
- Departments of Obstetrics & Gynaecology, and Biochemistry, Western University, Schulich School of Medicine and Dentistry, London, ON, N6A 5W9, Canada
- Children's Health Research Institute, London, ON, N6C 2V5, Canada
| | - Carlee R White
- Departments of Obstetrics & Gynaecology, and Biochemistry, Western University, Schulich School of Medicine and Dentistry, London, ON, N6A 5W9, Canada
- Children's Health Research Institute, London, ON, N6C 2V5, Canada
| | - William A MacDonald
- Departments of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA
| | - Michael C Golding
- Department of Veterinary Physiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Mellissa R W Mann
- Departments of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
7
|
PAK5-mediated E47 phosphorylation promotes epithelial-mesenchymal transition and metastasis of colon cancer. Oncogene 2015. [PMID: 26212009 DOI: 10.1038/onc.2015.259] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The p21-activated kinase 5 (PAK5) is overexpressed in advanced cancer and the transcription factor E47 is a direct repressor of E-cadherin and inducer of epithelial-mesenchymal transition (EMT). However, the relationship between PAK5 and E47 has not been explored. In this study, we found that PAK5-mediated E47 phosphorylation promoted EMT in advanced colon cancer. PAK5 interacted with E47 and phosphorylated E47 on Ser39 under hepatocyte growth factor (HGF) stimulation, which decreased cell-cell cohesion, increased cell migration and invasion in vitro and promoted metastasis in a xenograft model. Furthermore, phosphorylation of E47 facilitated its accumulating in nucleus in an importin α-dependent manner, and enhanced E47 binding to E-cadherin promoter directly, leading to inhibition of E-cadherin transcription. In contrast, PAK5-knockdown resulted in blockage of HGF-induced E47 phosphorylation, attenuated association of E47 with importin α and decreased E47 binding to E-cadherin promoter. In addition, we demonstrated a close correlation between PAK5 and phospho-Ser39 E47 expression in colon cancer specimens. More importantly, high expression of phospho-E47 was associated with an aggressive phenotype of colon cancer and nuclear phospho-E47 staining was found in certain cases of colon cancer with metastasis. Collectively, E47 is a novel substrate of PAK5, and PAK5-mediated phosphorylation of E47 promotes EMT and metastasis of colon cancer, suggesting that phosphorylated E47 on Ser39 may be a potential therapeutic target in progressive colon cancer.
Collapse
|
8
|
Castro AE, Benitez SG, Farias Altamirano LE, Savastano LE, Patterson SI, Muñoz EM. Expression and cellular localization of the transcription factor NeuroD1 in the developing and adult rat pineal gland. J Pineal Res 2015; 58:439-51. [PMID: 25752781 DOI: 10.1111/jpi.12228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/04/2015] [Indexed: 12/13/2022]
Abstract
Circadian rhythms govern many aspects of mammalian physiology. The daily pattern of melatonin synthesis and secretion is one of the classic examples of circadian oscillations. It is mediated by a class of neuroendocrine cells known as pinealocytes which are not yet fully defined. An established method to evaluate functional and cytological characters is through the expression of lineage-specific transcriptional regulators. NeuroD1 is a basic helix-loop-helix transcription factor involved in the specification and maintenance of both endocrine and neuronal phenotypes. We have previously described developmental and adult regulation of NeuroD1 mRNA in the rodent pineal gland. However, the transcript levels were not influenced by the elimination of sympathetic input, suggesting that any rhythmicity of NeuroD1 might be found downstream of transcription. Here, we describe NeuroD1 protein expression and cellular localization in the rat pineal gland during development and the daily cycle. In embryonic and perinatal stages, protein expression follows the mRNA pattern and is predominantly nuclear. Thereafter, NeuroD1 is mostly found in pinealocyte nuclei in the early part of the night and in cytoplasm during the day, a rhythm maintained into adulthood. Additionally, nocturnal nuclear NeuroD1 levels are reduced after sympathetic disruption, an effect mimicked by the in vivo administration of α- and β-adrenoceptor blockers. NeuroD1 phosphorylation at two sites, Ser(274) and Ser(336) , associates with nuclear localization in pinealocytes. These data suggest that NeuroD1 influences pineal phenotype both during development and adulthood, in an autonomic and phosphorylation-dependent manner.
Collapse
Affiliation(s)
- Analía E Castro
- Laboratory of Neurobiology: Chronobiology Section, Institute of Histology and Embryology of Mendoza (IHEM-CONICET), School of Medicine, National University of Cuyo, Mendoza, Argentina
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
The human genome encodes seven isoforms of importin α which are grouped into three subfamilies known as α1, α2 and α3. All isoforms share a fundamentally conserved architecture that consists of an N-terminal, autoinhibitory, importin-β-binding (IBB) domain and a C-terminal Arm (Armadillo)-core that associates with nuclear localization signal (NLS) cargoes. Despite striking similarity in amino acid sequence and 3D structure, importin-α isoforms display remarkable substrate specificity in vivo. In the present review, we look at key differences among importin-α isoforms and provide a comprehensive inventory of known viral and cellular cargoes that have been shown to associate preferentially with specific isoforms. We illustrate how the diversification of the adaptor importin α into seven isoforms expands the dynamic range and regulatory control of nucleocytoplasmic transport, offering unexpected opportunities for pharmacological intervention. The emerging view of importin α is that of a key signalling molecule, with isoforms that confer preferential nuclear entry and spatiotemporal specificity on viral and cellular cargoes directly linked to human diseases.
Collapse
|
10
|
Christiansen A, Dyrskjøt L. The functional role of the novel biomarker karyopherin α 2 (KPNA2) in cancer. Cancer Lett 2012; 331:18-23. [PMID: 23268335 PMCID: PMC7126488 DOI: 10.1016/j.canlet.2012.12.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/11/2012] [Accepted: 12/14/2012] [Indexed: 12/23/2022]
Abstract
In recent years, Karyopherin α 2 (KPNA2) has emerged as a potential biomarker in multiple cancer forms. The aberrant high levels observed in cancer tissue have been associated with adverse patient characteristics, prompting the idea that KPNA2 plays a role in carcinogenesis. This notion is supported by studies in cancer cells, where KPNA2 deregulation has been demonstrated to affect malignant transformation. By virtue of its role in nucleocytoplasmic transport, KPNA2 is implicated in the translocation of several cancer-associated proteins. We provide an overview of the clinical studies that have established the biomarker potential of KPNA2 and describe its functional role with an emphasis on established associations with cancer.
Collapse
Affiliation(s)
- Anders Christiansen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
11
|
Ochocinska MJ, Muñoz EM, Veleri S, Weller JL, Coon SL, Pozdeyev N, Iuvone PM, Goebbels S, Furukawa T, Klein DC. NeuroD1 is required for survival of photoreceptors but not pinealocytes: results from targeted gene deletion studies. J Neurochem 2012; 123:44-59. [PMID: 22784109 DOI: 10.1111/j.1471-4159.2012.07870.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
NeuroD1 encodes a basic helix-loop-helix transcription factor involved in the development of neural and endocrine structures, including the retina and pineal gland. To determine the effect of NeuroD1 knockout in these tissues, a Cre/loxP recombination strategy was used to target a NeuroD1 floxed gene and generate NeuroD1 conditional knockout (cKO) mice. Tissue specificity was conferred using Cre recombinase expressed under the control of the promoter of Crx, which is selectively expressed in the pineal gland and retina. At 2 months of age, NeuroD1 cKO retinas have a dramatic reduction in rod- and cone-driven electroretinograms and contain shortened and disorganized outer segments; by 4 months, NeuroD1 cKO retinas are devoid of photoreceptors. In contrast, the NeuroD1 cKO pineal gland appears histologically normal. Microarray analysis of 2-month-old NeuroD1 cKO retina and pineal gland identified a subset of genes that were affected 2-100-fold; in addition, a small group of genes exhibit altered differential night/day expression. Included in the down-regulated genes are Aipl1, which is necessary to prevent retinal degeneration, and Ankrd33, whose protein product is selectively expressed in the outer segments. These findings suggest that NeuroD1 may act through Aipl1 and other genes to maintain photoreceptor homeostasis.
Collapse
Affiliation(s)
- Margaret J Ochocinska
- Section on Neuroendocrinology, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|