1
|
Waguia Kontchou C, Häcker G. Role of mitochondrial outer membrane permeabilization during bacterial infection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 374:83-127. [PMID: 36858657 DOI: 10.1016/bs.ircmb.2022.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Beyond the initial 'powerhouse' view, mitochondria have numerous functions in their mammalian cell and contribute to many physiological processes, and many of these we understand only partially. The control of apoptosis by mitochondria is firmly established. Many questions remain however how this function is embedded into physiology, and how other signaling pathways regulate mitochondrial apoptosis; the interplay of bacteria with the mitochondrial apoptosis pathway is one such example. The outer mitochondrial membrane regulates both import into mitochondria and the release of intermembrane, and in some situations also matrix components from mitochondria, and these mitochondrial components can have signaling function in the cytosol. One function is the induction of apoptotic cell death. An exciting, more recently discovered function is the regulation of inflammation. Mitochondrial molecules, both proteins and nucleic acids, have inflammatory activity when released from mitochondria, an activity whose regulation is intertwined with the activation of apoptotic caspases. Bacterial infection can have more general effects on mitochondrial apoptosis-regulation, through effects on host transcription and other pathways, such as signals controlled by pattern recognition. Some specialized bacteria have products that more specifically regulate signaling to the outer mitochondrial membrane, and to apoptosis; both pro- and anti-apoptotic mechanisms have been reported. Among the intriguing recent findings in this area are signaling contributions of porins and the sub-lethal release of intermembrane constituents. We will here review the literature and place the new developments into the established context of mitochondrial signaling during the contact of bacterial pathogens with human cells.
Collapse
Affiliation(s)
- Collins Waguia Kontchou
- Institute of Medical Microbiology and Hygiene, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Moitra A, Rapaport D. The Biogenesis Process of VDAC - From Early Cytosolic Events to Its Final Membrane Integration. Front Physiol 2021; 12:732742. [PMID: 34456757 PMCID: PMC8388839 DOI: 10.3389/fphys.2021.732742] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Voltage dependent anion-selective channel (VDAC) is the most abundant protein in the mitochondrial outer membrane. It is a membrane embedded β-barrel protein composed of 19 mostly anti-parallel β-strands that form a hydrophilic pore. Similar to the vast majority of mitochondrial proteins, VDAC is encoded by nuclear DNA, and synthesized on cytosolic ribosomes. The protein is then targeted to the mitochondria while being maintained in an import competent conformation by specific cytosolic factors. Recent studies, using yeast cells as a model system, have unearthed the long searched for mitochondrial targeting signal for VDAC and the role of cytosolic chaperones and mitochondrial import machineries in its proper biogenesis. In this review, we summarize our current knowledge regarding the early cytosolic stages of the biogenesis of VDAC molecules, the specific targeting of VDAC to the mitochondrial surface, and the subsequent integration of VDAC into the mitochondrial outer membrane by the TOM and TOB/SAM complexes.
Collapse
Affiliation(s)
- Anasuya Moitra
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Doyle MT, Bernstein HD. BamA forms a translocation channel for polypeptide export across the bacterial outer membrane. Mol Cell 2021; 81:2000-2012.e3. [PMID: 33705710 DOI: 10.1016/j.molcel.2021.02.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/05/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022]
Abstract
The β-barrel assembly machine (BAM) integrates β-barrel proteins into the outer membrane (OM) of Gram-negative bacteria. An essential BAM subunit (BamA) catalyzes integration by promoting the formation of a hybrid-barrel intermediate state between its own β-barrel domain and that of its client proteins. Here we show that in addition to catalyzing the integration of β-barrel proteins, BamA functions as a polypeptide export channel. In vivo structural mapping via intermolecular disulfide crosslinking showed that the extracellular "passenger" domain of a member of the "autotransporter" superfamily of virulence factors traverses the OM through the BamA β-barrel lumen. Furthermore, we demonstrate that a highly conserved residue within autotransporter β-barrels is required to position the passenger inside BamA to initiate translocation and that during translocation, the passenger stabilizes the hybrid-barrel state. Our results not only establish a new function for BamA but also unify the divergent functions of BamA and other "Omp85" superfamily transporters.
Collapse
Affiliation(s)
- Matthew Thomas Doyle
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Harris David Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Fielden LF, Scott NE, Palmer CS, Khoo CA, Newton HJ, Stojanovski D. Proteomic Identification of Coxiella burnetii Effector Proteins Targeted to the Host Cell Mitochondria During Infection. Mol Cell Proteomics 2020; 20:100005. [PMID: 33177156 PMCID: PMC7950127 DOI: 10.1074/mcp.ra120.002370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/11/2020] [Indexed: 11/06/2022] Open
Abstract
Modulation of the host cell is integral to the survival and replication of microbial pathogens. Several intracellular bacterial pathogens deliver bacterial proteins, termed "effector proteins" into the host cell during infection by sophisticated protein translocation systems, which manipulate cellular processes and functions. The functional contribution of individual effectors is poorly characterized, particularly in intracellular bacterial pathogens with large effector protein repertoires. Technical caveats have limited the capacity to study these proteins during a native infection, with many effector proteins having only been demonstrated to be translocated during over-expression of tagged versions. Here, we developed a novel strategy to examine effector proteins in the context of infection. We coupled a broad, unbiased proteomics-based screen with organelle purification to study the host-pathogen interactions occurring between the host cell mitochondrion and the Gram-negative, Q fever pathogen Coxiella burnetii. We identify four novel mitochondrially-targeted C. burnetii effector proteins, renamed Mitochondrial Coxiella effector protein (Mce) B to E. Examination of the subcellular localization of ectopically expressed proteins confirmed their mitochondrial localization, demonstrating the robustness of our approach. Subsequent biochemical analysis and affinity enrichment proteomics of one of these effector proteins, MceC, revealed the protein localizes to the inner membrane and can interact with components of the mitochondrial quality control machinery. Our study adapts high-sensitivity proteomics to study intracellular host-pathogen interactions, providing a robust strategy to examine the subcellular localization of effector proteins during native infection. This approach could be applied to a range of pathogens and host cell compartments to provide a rich map of effector dynamics throughout infection.
Collapse
Affiliation(s)
- Laura F Fielden
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Catherine S Palmer
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Chen Ai Khoo
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hayley J Newton
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
5
|
Natarajan J, Moitra A, Zabel S, Singh N, Wagner S, Rapaport D. Yeast can express and assemble bacterial secretins in the mitochondrial outer membrane. MICROBIAL CELL 2019; 7:15-27. [PMID: 31921930 PMCID: PMC6946019 DOI: 10.15698/mic2020.01.703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Secretins form large multimeric pores in the outer membrane (OM) of Gram-negative bacteria. These pores are part of type II and III secretion systems (T2SS and T3SS, respectively) and are crucial for pathogenicity. Recent structural studies indicate that secretins form a structure rich in β-strands. However, little is known about the mechanism by which secretins assemble into the OM. Based on the conservation of the biogenesis of β-barrel proteins in bacteria and mitochondria, we used yeast cells as a model system to study the assembly process of secretins. To that end, we analyzed the biogenesis of PulD (T2SS), SsaC (T3SS) and InvG (T3SS) in wild type cells or in cells mutated for known mitochondrial import and assembly factors. Our results suggest that secretins can be expressed in yeast cells, where they are enriched in the mitochondrial fraction. Interestingly, deletion of mitochondrial import receptors like Tom20 and Tom70 reduces the mitochondrial association of PulD but does not affect that of InvG. SsaC shows another dependency pattern and its membrane assembly is enhanced by the absence of Tom70 and compromised in cells lacking Tom20 or the topogenesis of outer membrane β-barrel proteins (TOB) complex component, Mas37. Collectively, these findings suggest that various secretins can follow different pathways to assemble into the bacterial OM.
Collapse
Affiliation(s)
- Janani Natarajan
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Anasuya Moitra
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Sussanne Zabel
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.,Current address: Center for Bioinformatics (ZBIT), University of Tübingen, Tübingen, Germany
| | - Nidhi Singh
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Tübingen, Germany
| | - Samuel Wagner
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), partner-site Tübingen, Tübingen, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Sequential Translocation of Polypeptides across the Bacterial Outer Membrane through the Trimeric Autotransporter Pathway. mBio 2019; 10:mBio.01973-19. [PMID: 31641085 PMCID: PMC6805991 DOI: 10.1128/mbio.01973-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Trimeric autotransporter adhesins (TAAs) are a family of bacterial outer membrane (OM) proteins that are comprised of three identical subunits. Each subunit contains an N-terminal extracellular ("passenger") domain and a short C-terminal segment that contributes four β strands to a single 12-stranded β barrel. The mechanism by which the passenger domains are translocated across the OM and the energetics of the translocation reaction are poorly understood. To address these issues, we examined the secretion of modified versions of the passenger domain of UpaG, a TAA produced by Escherichia coli CFT073. Using the SpyTag-SpyCatcher system to probe passenger domain localization, we found that both intrinsically disordered polypeptides fused to the UpaG passenger domain and artificially disulfide-bonded polypeptides were secreted effectively but relatively slowly. Surprisingly, we also found that in some cases, the three nonnative passenger domain segments associated with a single trimer were secreted sequentially. Photo-cross-linking experiments indicated that incompletely assembled UpaG derivatives remained bound to the barrel assembly machinery (Bam) complex until all three passenger domains were fully secreted. Taken together, our results strongly suggest that the secretion of polypeptides through the TAA pathway is coordinated with the assembly of the β barrel domain and that the folding of passenger domains in the extracellular space maximizes the rate of secretion. Furthermore, our work provides evidence for an unprecedented sequential mode of protein translocation, at least under specific experimental conditions.IMPORTANCE Trimeric autotransporter adhesins (TAAs) are specialized bacterial outer membrane proteins consisting of three identical subunits. TAAs contain large extracellular domains that trimerize and promote virulence, but the mechanism by which they are secreted is poorly understood. We found that the extracellular domains of a native TAA were secreted rapidly but that disordered and artificially folded polypeptides fused to native passenger domains were secreted in a slow, sequential fashion. Our results strongly suggest that the efficient secretion of native extracellular domains is driven by their trimerization following export but that alternative energy sources can be harnessed to secrete nonnative polypeptides. Furthermore, we obtained evidence that TAA extracellular domains are secreted before the assembly of the linked membrane spanning domain is completed.
Collapse
|
7
|
Ricci DP, Silhavy TJ. Outer Membrane Protein Insertion by the β-barrel Assembly Machine. EcoSal Plus 2019; 8:10.1128/ecosalplus.ESP-0035-2018. [PMID: 30869065 PMCID: PMC6419762 DOI: 10.1128/ecosalplus.esp-0035-2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Like all outer membrane (OM) constituents, integral OM β-barrel proteins in Gram-negative bacteria are synthesized in the cytoplasm and trafficked to the OM, where they are locally assembled into the growing OM by the ubiquitous β-barrel assembly machine (Bam). While the identities and structures of all essential and accessory Bam components have been determined, the basic mechanism of Bam-assisted OM protein integration remains elusive. Here we review mechanistic analyses of OM β-barrel protein folding and Bam dynamics and summarize recent insights that inform a general model for OM protein recognition and assembly by the Bam complex.
Collapse
Affiliation(s)
- Dante P Ricci
- Department of Early Research, Achaogen, Inc., South San Francisco, CA 94080
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
8
|
Chaturvedi D, Mahalakshmi R. Transmembrane β-barrels: Evolution, folding and energetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2467-2482. [PMID: 28943271 DOI: 10.1016/j.bbamem.2017.09.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/23/2022]
Abstract
The biogenesis of transmembrane β-barrels (outer membrane proteins, or OMPs) is an elaborate multistep orchestration of the nascent polypeptide with translocases, barrel assembly machinery, and helper chaperone proteins. Several theories exist that describe the mechanism of chaperone-assisted OMP assembly in vivo and unassisted (spontaneous) folding in vitro. Structurally, OMPs of bacterial origin possess even-numbered strands, while mitochondrial β-barrels are even- and odd-stranded. Several underlying similarities between prokaryotic and eukaryotic β-barrels and their folding machinery are known; yet, the link in their evolutionary origin is unclear. While OMPs exhibit diversity in sequence and function, they share similar biophysical attributes and structure. Similarly, it is important to understand the intricate OMP assembly mechanism, particularly in eukaryotic β-barrels that have evolved to perform more complex functions. Here, we deliberate known facets of β-barrel evolution, folding, and stability, and attempt to highlight outstanding questions in β-barrel biogenesis and proteostasis.
Collapse
Affiliation(s)
- Deepti Chaturvedi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
| |
Collapse
|
9
|
Affiliation(s)
- Tobias Jores
- Interfaculty Institute of Biochemistry; University of Tuebingen; Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry; University of Tuebingen; Germany
| |
Collapse
|
10
|
Pfitzner AK, Steblau N, Ulrich T, Oberhettinger P, Autenrieth IB, Schütz M, Rapaport D. Mitochondrial-bacterial hybrids of BamA/Tob55 suggest variable requirements for the membrane integration of β-barrel proteins. Sci Rep 2016; 6:39053. [PMID: 27982054 PMCID: PMC5159795 DOI: 10.1038/srep39053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/16/2016] [Indexed: 11/10/2022] Open
Abstract
β-Barrel proteins are found in the outer membrane (OM) of Gram-negative bacteria, chloroplasts and mitochondria. The assembly of these proteins into the corresponding OM is facilitated by a dedicated protein complex that contains a central conserved β-barrel protein termed BamA in bacteria and Tob55/Sam50 in mitochondria. BamA and Tob55 consist of a membrane-integral C-terminal domain that forms a β-barrel pore and a soluble N-terminal portion comprised of one (in Tob55) or five (in BamA) polypeptide transport-associated (POTRA) domains. Currently the functional significance of this difference and whether the homology between BamA and Tob55 can allow them to replace each other are unclear. To address these issues we constructed hybrid Tob55/BamA proteins with differently configured N-terminal POTRA domains. We observed that constructs harboring a heterologous C-terminal domain could not functionally replace the bacterial BamA or the mitochondrial Tob55 demonstrating species-specific requirements. Interestingly, the various hybrid proteins in combination with the bacterial chaperones Skp or SurA supported to a variable extent the assembly of bacterial β-barrel proteins into the mitochondrial OM. Collectively, our findings suggest that the membrane assembly of various β-barrel proteins depends to a different extent on POTRA domains and periplasmic chaperones.
Collapse
Affiliation(s)
| | - Nadja Steblau
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas Ulrich
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Philipp Oberhettinger
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - Ingo B Autenrieth
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - Monika Schütz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
11
|
Abstract
Type V secretion denotes a variety of secretion systems that cross the outer membrane in Gram-negative bacteria but that depend on the Sec machinery for transport through the inner membrane. They are possibly the simplest bacterial secretion systems, because they consist only of a single polypeptide chain (or two chains in the case of two-partner secretion). Their seemingly autonomous transport through the outer membrane has led to the term "autotransporters" for various subclasses of type V secretion. In this chapter, we review the structure and function of these transporters and review recent findings on additional factors involved in the secretion process, which have put the term "autotransporter" to debate.
Collapse
|
12
|
Hoseini H, Pandey S, Jores T, Schmitt A, Franz-Wachtel M, Macek B, Buchner J, Dimmer KS, Rapaport D. The cytosolic cochaperone Sti1 is relevant for mitochondrial biogenesis and morphology. FEBS J 2016; 283:3338-52. [PMID: 27412066 DOI: 10.1111/febs.13813] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/30/2016] [Accepted: 07/12/2016] [Indexed: 11/28/2022]
Abstract
Most mitochondrial proteins are synthesized in the cytosol prior to their import into the organelle. It is commonly accepted that cytosolic factors are required for delivering precursor proteins to the mitochondrial surface and for keeping newly synthesized proteins in an import-competent conformation. However, the identity of such factors and their defined contribution to the import process are mostly unknown. Using a presequence-containing model protein and a site-directed photo-crosslinking approach in yeast cells we identified the cytosolic chaperones Hsp70 (Ssa1) and Hsp90 (Hsp82) as well as their cochaperones, Sti1 and Ydj1, as putative cytosolic factors involved in mitochondrial protein import. Deletion of STI1 caused both alterations in mitochondrial morphology and lower steady-state levels of a subset of mitochondrial proteins. In addition, double deletion of STI1 with the mitochondrial import factors, MIM1 or TOM20, showed a synthetic growth phenotype indicating a genetic interaction of STI1 with these genes. Moreover, recombinant cytosolic domains of the import receptors Tom20 and Tom70 were able to bind in vitro Sti1 and other cytosolic factors. In summary, our observations point to a, direct or indirect, role of Sti1 for mitochondrial functionality.
Collapse
Affiliation(s)
- Hoda Hoseini
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| | - Saroj Pandey
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| | - Tobias Jores
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| | - Anja Schmitt
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| | - Mirita Franz-Wachtel
- Proteome Center Tübingen, Interfaculty Institute for Cell Biology, University of Tübingen, Germany
| | - Boris Macek
- Proteome Center Tübingen, Interfaculty Institute for Cell Biology, University of Tübingen, Germany
| | - Johannes Buchner
- Department Chemie, Center for Integrated Protein Science, Technische Universität München, Garching, Germany
| | - Kai Stefan Dimmer
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany.
| |
Collapse
|
13
|
Jores T, Klinger A, Groß LE, Kawano S, Flinner N, Duchardt-Ferner E, Wöhnert J, Kalbacher H, Endo T, Schleiff E, Rapaport D. Characterization of the targeting signal in mitochondrial β-barrel proteins. Nat Commun 2016; 7:12036. [PMID: 27345737 PMCID: PMC4931251 DOI: 10.1038/ncomms12036] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/24/2016] [Indexed: 01/15/2023] Open
Abstract
Mitochondrial β-barrel proteins are synthesized on cytosolic ribosomes and must be specifically targeted to the organelle before their integration into the mitochondrial outer membrane. The signal that assures such precise targeting and its recognition by the organelle remained obscure. In the present study we show that a specialized β-hairpin motif is this long searched for signal. We demonstrate that a synthetic β-hairpin peptide competes with the import of mitochondrial β-barrel proteins and that proteins harbouring a β-hairpin peptide fused to passenger domains are targeted to mitochondria. Furthermore, a β-hairpin motif from mitochondrial proteins targets chloroplast β-barrel proteins to mitochondria. The mitochondrial targeting depends on the hydrophobicity of the β-hairpin motif. Finally, this motif interacts with the mitochondrial import receptor Tom20. Collectively, we reveal that β-barrel proteins are targeted to mitochondria by a dedicated β-hairpin element, and this motif is recognized at the organelle surface by the outer membrane translocase. Mitochondrial β-barrel proteins are synthesized in the cytosol before being targeted to the organelle. Here, Jores et al. show that a specialized hydrophobic β-hairpin motif is the previously undefined targeting sequence and is recognized by the mitochondrial outer membrane translocase.
Collapse
Affiliation(s)
- Tobias Jores
- Interfaculty Institute of Biochemistry, University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany
| | - Anna Klinger
- Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Lucia E Groß
- Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Shin Kawano
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Nadine Flinner
- Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Elke Duchardt-Ferner
- Institute for Molecular Biosciences, Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Enrico Schleiff
- Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.,Cluster of Excellence Frankfurt, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany
| |
Collapse
|
14
|
Ulrich T, Oberhettinger P, Autenrieth IB, Rapaport D. Yeast Mitochondria as a Model System to Study the Biogenesis of Bacterial β-Barrel Proteins. Methods Mol Biol 2015; 1329:17-31. [PMID: 26427673 DOI: 10.1007/978-1-4939-2871-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Beta-barrel proteins are found in the outer membrane of Gram-negative bacteria, mitochondria, and chloroplasts. The evolutionary conservation in the biogenesis of these proteins allows mitochondria to assemble bacterial β-barrel proteins in their functional form. In this chapter, we describe exemplarily how the capacity of yeast mitochondria to process the trimeric autotransporter YadA can be used to study the role of bacterial periplasmic chaperones in this process.
Collapse
Affiliation(s)
- Thomas Ulrich
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Straße 4, Tübingen, 72076, Germany
| | - Philipp Oberhettinger
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, 72076, Germany
| | - Ingo B Autenrieth
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, 72076, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Straße 4, Tübingen, 72076, Germany.
| |
Collapse
|
15
|
Abstract
The vast majority of outer membrane (OM) proteins in Gram-negative bacteria belongs to the class of membrane-embedded β-barrel proteins. Besides Gram-negative bacteria, the presence of β-barrel proteins is restricted to the OM of the eukaryotic organelles mitochondria and chloroplasts that were derived from prokaryotic ancestors. The assembly of these proteins into the corresponding OM is in each case facilitated by a dedicated protein complex that contains a highly conserved central β-barrel protein termed BamA/YaeT/Omp85 in Gram-negative bacteria and Tob55/Sam50 in mitochondria. However, little is known about the exact mechanism by which these complexes mediate the integration of β-barrel precursors into the lipid bilayer. Interestingly, previous studies showed that during evolution, these complexes retained the ability to functionally assemble β-barrel proteins from different origins. In this review we summarize the current knowledge on the biogenesis pathway of β-barrel proteins in Gram-negative bacteria, mitochondria and chloroplasts and focus on the commonalities and divergences that evolved between the different β-barrel assembly machineries.
Collapse
Affiliation(s)
- Thomas Ulrich
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
16
|
Höhr AIC, Straub SP, Warscheid B, Becker T, Wiedemann N. Assembly of β-barrel proteins in the mitochondrial outer membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:74-88. [PMID: 25305573 DOI: 10.1016/j.bbamcr.2014.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/25/2014] [Accepted: 10/01/2014] [Indexed: 12/15/2022]
Abstract
Mitochondria evolved through endosymbiosis of a Gram-negative progenitor with a host cell to generate eukaryotes. Therefore, the outer membrane of mitochondria and Gram-negative bacteria contain pore proteins with β-barrel topology. After synthesis in the cytosol, β-barrel precursor proteins are first transported into the mitochondrial intermembrane space. Folding and membrane integration of β-barrel proteins depend on the mitochondrial sorting and assembly machinery (SAM) located in the outer membrane, which is related to the β-barrel assembly machinery (BAM) in bacteria. The SAM complex recognizes β-barrel proteins by a β-signal in the C-terminal β-strand that is required to initiate β-barrel protein insertion into the outer membrane. In addition, the SAM complex is crucial to form membrane contacts with the inner mitochondrial membrane by interacting with the mitochondrial contact site and cristae organizing system (MICOS) and shares a subunit with the endoplasmic reticulum-mitochondria encounter structure (ERMES) that links the outer mitochondrial membrane to the endoplasmic reticulum (ER).
Collapse
Affiliation(s)
- Alexandra I C Höhr
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Sebastian P Straub
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany; Abteilung Biochemie und Funktionelle Proteomik, Institut für Biologie II, Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany
| | - Nils Wiedemann
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
17
|
Ulrich T, Oberhettinger P, Schütz M, Holzer K, Ramms AS, Linke D, Autenrieth IB, Rapaport D. Evolutionary conservation in biogenesis of β-barrel proteins allows mitochondria to assemble a functional bacterial trimeric autotransporter protein. J Biol Chem 2014; 289:29457-70. [PMID: 25190806 DOI: 10.1074/jbc.m114.565655] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Yersinia adhesin A (YadA) belongs to a class of bacterial adhesins that form trimeric structures. Their mature form contains a passenger domain and a C-terminal β-domain that anchors the protein in the outer membrane (OM). Little is known about how precursors of such proteins cross the periplasm and assemble into the OM. In the present study we took advantage of the evolutionary conservation in the biogenesis of β-barrel proteins between bacteria and mitochondria. We previously observed that upon expression in yeast cells, bacterial β-barrel proteins including the transmembrane domain of YadA assemble into the mitochondrial OM. In the current study we found that when expressed in yeast cells both the monomeric and trimeric forms of full-length YadA were detected in mitochondria but only the trimeric species was fully integrated into the OM. The oligomeric form was exposed on the surface of the organelle in its native conformation and maintained its capacity to adhere to host cells. The co-expression of YadA with a mitochondria-targeted form of the bacterial periplasmic chaperone Skp, but not with SurA or SecB, resulted in enhanced levels of both forms of YadA. Taken together, these results indicate that the proper assembly of trimeric autotransporter can occur also in a system lacking the lipoproteins of the BAM machinery and is specifically enhanced by the chaperone Skp.
Collapse
Affiliation(s)
- Thomas Ulrich
- From the Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Philipp Oberhettinger
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany, and
| | - Monika Schütz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany, and
| | - Katharina Holzer
- From the Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Anne S Ramms
- From the Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Dirk Linke
- Department of Protein Evolution, Max-Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Ingo B Autenrieth
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany, and
| | - Doron Rapaport
- From the Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany,
| |
Collapse
|
18
|
Hao G, Boyle M, Zhou L, Duan Y. The intracellular citrus huanglongbing bacterium, 'Candidatus Liberibacter asiaticus' encodes two novel autotransporters. PLoS One 2013; 8:e68921. [PMID: 23874813 PMCID: PMC3708911 DOI: 10.1371/journal.pone.0068921] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/04/2013] [Indexed: 01/09/2023] Open
Abstract
Proteins secreted by the type V secretion system (T5SS), known as autotransporters, are large extracellular virulence proteins localized to the bacterial poles. In this study, we characterized two novel autotransporter proteins of 'Candidatus Liberibacter asiaticus' (Las), and redesignated them as LasAI and LasAII in lieu of the previous names HyvI and HyvII. As a phloem-limited, intracellular bacterial pathogen, Las has a significantly reduced genome and causes huanglongbing (HLB), a devastating disease of citrus worldwide. Bioinformatic analyses revealed that LasAI and LasAII share the structural features of an autotransporter family containing large repeats of a passenger domain and a unique C-terminal translocator domain. When fused to the GFP gene and expressed in E. coli, the LasAI C-terminus and the full length LasAII were localized to the bacterial poles, similar to other members of autotransporter family. Despite the absence of a typical signal peptide, LasAI was found to localize at the cell surface by immuno-dot blot using a monoclonal antibody against the partial LasAI protein. Its surface localization was also confirmed by the removal of the LasAI antigen using a proteinase K treatment of the intact bacterial cells. When co-inoculated with a P19 gene silencing suppressor and transiently expressed in tobacco leaves, the GFP-LasAI translocator targeted to the mitochondria. This is the first report that Las encodes novel autotransporters that target to mitochondria when expressed in the plants. These findings may lead to a better understanding of the pathogenesis of this intracellular bacterium.
Collapse
Affiliation(s)
- Guixia Hao
- United States Horticultural Research Laboratory, United States Department of Agriculture-Agriculture Research Service, Fort Pierce, Florida, United States of America
| | - Michael Boyle
- Smithsonian Marine Station, Fort Pierce, Florida, United States of America
| | - Lijuan Zhou
- United States Horticultural Research Laboratory, United States Department of Agriculture-Agriculture Research Service, Fort Pierce, Florida, United States of America
| | - Yongping Duan
- United States Horticultural Research Laboratory, United States Department of Agriculture-Agriculture Research Service, Fort Pierce, Florida, United States of America
| |
Collapse
|
19
|
Ulrich T, Gross LE, Sommer MS, Schleiff E, Rapaport D. Chloroplast β-barrel proteins are assembled into the mitochondrial outer membrane in a process that depends on the TOM and TOB complexes. J Biol Chem 2012; 287:27467-79. [PMID: 22745120 PMCID: PMC3431683 DOI: 10.1074/jbc.m112.382093] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/27/2012] [Indexed: 11/06/2022] Open
Abstract
Membrane-embedded β-barrel proteins are found in the outer membranes (OM) of Gram-negative bacteria, mitochondria and chloroplasts. In eukaryotic cells, precursors of these proteins are synthesized in the cytosol and have to be sorted to their corresponding organelle. Currently, the signal that ensures their specific targeting to either mitochondria or chloroplasts is ill-defined. To address this issue, we studied targeting of the chloroplast β-barrel proteins Oep37 and Oep24. We found that both proteins can be integrated in vitro into isolated plant mitochondria. Furthermore, upon their expression in yeast cells Oep37 and Oep24 were exclusively located in the mitochondrial OM. Oep37 partially complemented the growth phenotype of yeast cells lacking Porin, the general metabolite transporter of this membrane. Similarly to mitochondrial β-barrel proteins, Oep37 and Oep24 expressed in yeast cells were assembled into the mitochondrial OM in a pathway dependent on the TOM and TOB complexes. Taken together, this study demonstrates that the central mitochondrial components that mediate the import of yeast β-barrel proteins can deal with precursors of chloroplast β-barrel proteins. This implies that the mitochondrial import machinery does not recognize signals that are unique to mitochondrial β-barrel proteins. Our results further suggest that dedicated targeting factors had to evolve in plant cells to prevent mis-sorting of chloroplast β-barrel proteins to mitochondria.
Collapse
Affiliation(s)
- Thomas Ulrich
- From the Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen and
| | - Lucia E. Gross
- the Centre of Membrane Proteomics and Cluster of Excellence Frankfurt, Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438 Frankfurt, Germany
| | - Maik S. Sommer
- the Centre of Membrane Proteomics and Cluster of Excellence Frankfurt, Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438 Frankfurt, Germany
| | - Enrico Schleiff
- the Centre of Membrane Proteomics and Cluster of Excellence Frankfurt, Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438 Frankfurt, Germany
| | - Doron Rapaport
- From the Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen and
| |
Collapse
|
20
|
From evolution to pathogenesis: the link between β-barrel assembly machineries in the outer membrane of mitochondria and gram-negative bacteria. Int J Mol Sci 2012; 13:8038-8050. [PMID: 22942688 PMCID: PMC3430219 DOI: 10.3390/ijms13078038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/21/2012] [Accepted: 06/21/2012] [Indexed: 01/29/2023] Open
Abstract
β-barrel proteins are the highly abundant in the outer membranes of Gram-negative bacteria and the mitochondria in eukaryotes. The assembly of β-barrels is mediated by two evolutionary conserved machineries; the β-barrel Assembly Machinery (BAM) in Gram-negative bacteria; and the Sorting and Assembly Machinery (SAM) in mitochondria. Although the BAM and SAM have functionally conserved roles in the membrane integration and folding of β-barrel proteins, apart from the central BamA and Sam50 proteins, the remaining components of each of the complexes have diverged remarkably. For example all of the accessory components of the BAM complex characterized to date are located in the bacterial periplasm, on the same side as the N-terminal domain of BamA. This is the same side of the membrane as the substrates that are delivered to the BAM. On the other hand, all of the accessory components of the SAM complex are located on the cytosolic side of the membrane, the opposite side of the membrane to the N-terminus of Sam50 and the substrate receiving side of the membrane. Despite the accessory subunits being located on opposite sides of the membrane in each system, it is clear that each system is functionally equivalent with bacterial proteins having the ability to use the eukaryotic SAM and vice versa. In this review, we summarize the similarities and differences between the BAM and SAM complexes, highlighting the possible selecting pressures on bacteria and eukaryotes during evolution. It is also now emerging that bacterial pathogens utilize the SAM to target toxins and effector proteins to host mitochondria and this will also be discussed from an evolutionary perspective.
Collapse
|
21
|
Abstract
Depending on the organism, mitochondria consist approximately of 500-1,400 different proteins. By far most of these proteins are encoded by nuclear genes and synthesized on cytosolic ribosomes. Targeting signals direct these proteins into mitochondria and there to their respective subcompartment: the outer membrane, the intermembrane space (IMS), the inner membrane, and the matrix. Membrane-embedded translocation complexes allow the translocation of proteins across and, in the case of membrane proteins, the insertion into mitochondrial membranes. A small number of proteins are encoded by the mitochondrial genome: Most mitochondrial translation products represent hydrophobic proteins of the inner membrane which-together with many nuclear-encoded proteins-form the respiratory chain complexes. This chapter gives an overview on the mitochondrial protein translocases and the mechanisms by which they drive the transport and assembly of mitochondrial proteins.
Collapse
|
22
|
Mil-Homens D, Fialho AM. Trimeric autotransporter adhesins in members of the Burkholderia cepacia complex: a multifunctional family of proteins implicated in virulence. Front Cell Infect Microbiol 2011; 1:13. [PMID: 22919579 PMCID: PMC3417366 DOI: 10.3389/fcimb.2011.00013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/15/2011] [Indexed: 11/13/2022] Open
Abstract
Trimeric autotransporter adhesins (TAAs) are multimeric surface proteins exclusively found in bacteria. They are involved in various biological traits of pathogenic Gram-negative bacteria including adherence, biofilm formation, invasion, survival within eukaryotic cells, serum resistance, and cytotoxicity. TAAs have a modular architecture composed by a conserved membrane-anchored C-terminal domain and a variable number of stalk and head domains. In this study, a bioinformatic approach has been used to analyze the distribution and architecture of TAAs among Burkholderia cepacia complex (Bcc) genomes. Fifteen genomes were probed revealing a total of 74 encoding sequences. Compared with other bacterial species, the Bcc genomes contain a large number of TAAs (two genes to up to eight genes, such as in B. cenocepacia). Phylogenetic analysis showed that the TAAs grouped into at least eight distinct clusters. TAAs with serine-rich repeats are clearly well separated from others, thereby representing a different evolutionary lineage. Comparative gene mapping across Bcc genomes reveals that TAA genes are inserted within conserved synteny blocks. We further focused our analysis on the epidemic strain B. cenocepacia J2315 in which seven TAAs were annotated. Among these, three TAA-encoding genes (BCAM019, BCAM0223, and BCAM0224) are organized into a cluster and are candidates for multifunctional virulence factors. Here we review the current insights into the functional role of BCAM0224 as a model locus.
Collapse
Affiliation(s)
- Dalila Mil-Homens
- Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering, Instituto Superior Técnico Lisbon, Portugal
| | | |
Collapse
|