1
|
Feng J, Xie L, Lu W, Yu X, Dong H, Ma Y, Kong R. Hyperactivation of p53 contributes to mitotic catastrophe in podocytes through regulation of the Wee1/CDK1/cyclin B1 axis. Ren Fail 2024; 46:2365408. [PMID: 38874119 PMCID: PMC11182053 DOI: 10.1080/0886022x.2024.2365408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
Podocyte loss in glomeruli is a fundamental event in the pathogenesis of chronic kidney diseases. Currently, mitotic catastrophe (MC) has emerged as the main cause of podocyte loss. However, the regulation of MC in podocytes has yet to be elucidated. The current work aimed to study the role and mechanism of p53 in regulating the MC of podocytes using adriamycin (ADR)-induced nephropathy. In vitro podocyte stimulation with ADR triggered the occurrence of MC, which was accompanied by hyperactivation of p53 and cyclin-dependent kinase (CDK1)/cyclin B1. The inhibition of p53 reversed ADR-evoked MC in podocytes and protected against podocyte injury and loss. Further investigation showed that p53 mediated the activation of CDK1/cyclin B1 by regulating the expression of Wee1. Restraining Wee1 abolished the regulatory effect of p53 inhibition on CDK1/cyclin B1 and rebooted MC in ADR-stimulated podocytes via p53 inhibition. In a mouse model of ADR nephropathy, the inhibition of p53 ameliorated proteinuria and podocyte injury. Moreover, the inhibition of p53 blocked the progression of MC in podocytes in ADR nephropathy mice through the regulation of the Wee1/CDK1/cyclin B1 axis. Our findings confirm that p53 contributes to MC in podocytes through regulation of the Wee1/CDK1/Cyclin B1 axis, which may represent a novel mechanism underlying podocyte injury and loss during the progression of chronic kidney disorder.
Collapse
Affiliation(s)
- Jie Feng
- Department of Nephrology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Liyi Xie
- Department of Nephrology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Wanhong Lu
- Department of Nephrology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaoyang Yu
- Department of Nephrology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hongjuan Dong
- Department of Nephrology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yuefeng Ma
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ranran Kong
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Gassaway BM, Huttlin EL, Huntsman EM, Yaron-Barir TM, Johnson JL, Kurmi K, Cantley LC, Paulo JA, Ringel AE, Gygi SP, Haigis MC. Profiling Proteins and Phosphorylation Sites During T Cell Activation Using an Integrated Thermal Shift Assay. Mol Cell Proteomics 2024; 23:100801. [PMID: 38880243 PMCID: PMC11298636 DOI: 10.1016/j.mcpro.2024.100801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024] Open
Abstract
T cell activation is a complex biological process of naive cells maturing into effector cells. Proteomic and phospho-proteomic approaches have provided critical insights into this process, yet it is not always clear how changes in individual proteins or phosphorylation sites have functional significance. Here, we developed the Phosphorylation Integrated Thermal Shift Assay (PITSA) that combines the measurement of protein or phosphorylation site abundance and thermal stability into a single tandem mass tags experiment and apply this method to study T cell activation. We quantified the abundance and thermal stability of over 7500 proteins and 5000 phosphorylation sites and identified significant differences in chromatin-related, TCR signaling, DNA repair, and proliferative phosphoproteins. PITSA may be applied to a wide range of biological contexts to generate hypotheses as to which proteins or phosphorylation sites are functionally regulated in a given system as well as the mechanisms by which this regulation may occur.
Collapse
Affiliation(s)
- Brandon M Gassaway
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA; Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Emily M Huntsman
- Meyer Cancer Center and Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Tomer M Yaron-Barir
- Meyer Cancer Center and Department of Medicine, Weill Cornell Medicine, New York, New York, USA; Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Jared L Johnson
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA; Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kiran Kurmi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lewis C Cantley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA; Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Alison E Ringel
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA; Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, USA.
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
| | - Marcia C Haigis
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
3
|
Yamazoe K, Inoue YH. Cyclin B Export to the Cytoplasm via the Nup62 Subcomplex and Subsequent Rapid Nuclear Import Are Required for the Initiation of Drosophila Male Meiosis. Cells 2023; 12:2611. [PMID: 37998346 PMCID: PMC10670764 DOI: 10.3390/cells12222611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
The cyclin-dependent kinase 1 (Cdk1)-cyclin B (CycB) complex plays critical roles in cell-cycle regulation. Before Drosophila male meiosis, CycB is exported from the nucleus to the cytoplasm via the nuclear porin 62kD (Nup62) subcomplex of the nuclear pore complex. When this export is inhibited, Cdk1 is not activated, and meiosis does not initiate. We investigated the mechanism that controls the cellular localization and activation of Cdk1. Cdk1-CycB continuously shuttled into and out of the nucleus before meiosis. Overexpression of CycB, but not that of CycB with nuclear localization signal sequences, rescued reduced cytoplasmic CycB and inhibition of meiosis in Nup62-silenced cells. Full-scale Cdk1 activation occurred in the nucleus shortly after its rapid nuclear entry. Cdk1-dependent centrosome separation did not occur in Nup62-silenced cells, whereas Cdk1 interacted with Cdk-activating kinase and Twine/Cdc25C in the nuclei of Nup62-silenced cells, suggesting the involvement of another suppression mechanism. Silencing of roughex rescued Cdk1 inhibition and initiated meiosis. Nuclear export of Cdk1 ensured its escape from inhibition by a cyclin-dependent kinase inhibitor. The complex re-entered the nucleus via importin β at the onset of meiosis. We propose a model regarding the dynamics and activation mechanism of Cdk1-CycB to initiate male meiosis.
Collapse
Affiliation(s)
| | - Yoshihiro H. Inoue
- Biomedical Research Center, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-0962, Japan;
| |
Collapse
|
4
|
Pita JM, Raspé E, Coulonval K, Decaussin-Petrucci M, Tarabichi M, Dom G, Libert F, Craciun L, Andry G, Wicquart L, Leteurtre E, Trésallet C, Marlow LA, Copland JA, Durante C, Maenhaut C, Cavaco BM, Dumont JE, Costante G, Roger PP. CDK4 phosphorylation status and rational use for combining CDK4/6 and BRAF/MEK inhibition in advanced thyroid carcinomas. Front Endocrinol (Lausanne) 2023; 14:1247542. [PMID: 37964967 PMCID: PMC10641312 DOI: 10.3389/fendo.2023.1247542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Background CDK4/6 inhibitors (CDK4/6i) have been established as standard treatment against advanced Estrogen Receptor-positive breast cancers. These drugs are being tested against several cancers, including in combinations with other therapies. We identified the T172-phosphorylation of CDK4 as the step determining its activity, retinoblastoma protein (RB) inactivation, cell cycle commitment and sensitivity to CDK4/6i. Poorly differentiated (PDTC) and anaplastic (ATC) thyroid carcinomas, the latter considered one of the most lethal human malignancies, represent major clinical challenges. Several molecular evidence suggest that CDK4/6i could be considered for treating these advanced thyroid cancers. Methods We analyzed by two-dimensional gel electrophoresis the CDK4 modification profile and the presence of T172-phosphorylated CDK4 in a collection of 98 fresh-frozen tissues and in 21 cell lines. A sub-cohort of samples was characterized by RNA sequencing and immunohistochemistry. Sensitivity to CDK4/6i (palbociclib and abemaciclib) was assessed by BrdU incorporation/viability assays. Treatment of cell lines with CDK4/6i and combination with BRAF/MEK inhibitors (dabrafenib/trametinib) was comprehensively evaluated by western blot, characterization of immunoprecipitated CDK4 and CDK2 complexes and clonogenic assays. Results CDK4 phosphorylation was detected in all well-differentiated thyroid carcinomas (n=29), 19/20 PDTC, 16/23 ATC and 18/21 thyroid cancer cell lines, including 11 ATC-derived ones. Tumors and cell lines without phosphorylated CDK4 presented very high p16CDKN2A levels, which were associated with proliferative activity. Absence of CDK4 phosphorylation in cell lines was associated with CDK4/6i insensitivity. RB1 defects (the primary cause of intrinsic CDK4/6i resistance) were not found in 5/7 tumors without detectable phosphorylated CDK4. A previously developed 11-gene expression signature identified the likely unresponsive tumors, lacking CDK4 phosphorylation. In cell lines, palbociclib synergized with dabrafenib/trametinib by completely and permanently arresting proliferation. These combinations prevented resistance mechanisms induced by palbociclib, most notably Cyclin E1-CDK2 activation and a paradoxical stabilization of phosphorylated CDK4 complexes. Conclusion Our study supports further clinical evaluation of CDK4/6i and their combination with anti-BRAF/MEK therapies as a novel effective treatment against advanced thyroid tumors. Moreover, the complementary use of our 11 genes predictor with p16/KI67 evaluation could represent a prompt tool for recognizing the intrinsically CDK4/6i insensitive patients, who are potentially better candidates to immediate chemotherapy.
Collapse
Affiliation(s)
- Jaime M. Pita
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Eric Raspé
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Katia Coulonval
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Maxime Tarabichi
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Geneviève Dom
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Frederick Libert
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
- BRIGHTCore, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ligia Craciun
- Tumor Bank of the Institut Jules Bordet Comprehensive Cancer Center – Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Guy Andry
- Department of Head & Neck and Thoracic Surgery, Institut Jules Bordet Comprehensive Cancer Center – Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Laurence Wicquart
- Tumorothèque du Groupement de Coopération Sanitaire-Centre Régional de Référence en Cancérologie (C2RC) de Lille, Lille, France
| | - Emmanuelle Leteurtre
- Department of Pathology, Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Inserm, Centre Hospitalo-Universitaire (CHU) Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Christophe Trésallet
- Department of General and Endocrine Surgery - Pitié-Salpêtrière Hospital, Sorbonne University, Assistance Publique des Hôpitaux de Paris, Paris, France
- Department of Digestive, Bariatric and Endocrine Surgery - Avicenne University Hospital, Paris Nord - Sorbonne University, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Laura A. Marlow
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - John A. Copland
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Cosimo Durante
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Carine Maenhaut
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Branca M. Cavaco
- Molecular Endocrinology Group, Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Jacques E. Dumont
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Giuseppe Costante
- Departments of Endocrinology and Medical Oncology, Institut Jules Bordet Comprehensive Cancer Center – Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pierre P. Roger
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
5
|
Ross KE, Zhang G, Akcora C, Lin Y, Fang B, Koomen J, Haura EB, Grimes M. Network models of protein phosphorylation, acetylation, and ubiquitination connect metabolic and cell signaling pathways in lung cancer. PLoS Comput Biol 2023; 19:e1010690. [PMID: 36996232 PMCID: PMC10089347 DOI: 10.1371/journal.pcbi.1010690] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/11/2023] [Accepted: 03/11/2023] [Indexed: 04/01/2023] Open
Abstract
We analyzed large-scale post-translational modification (PTM) data to outline cell signaling pathways affected by tyrosine kinase inhibitors (TKIs) in ten lung cancer cell lines. Tyrosine phosphorylated, lysine ubiquitinated, and lysine acetylated proteins were concomitantly identified using sequential enrichment of post translational modification (SEPTM) proteomics. Machine learning was used to identify PTM clusters that represent functional modules that respond to TKIs. To model lung cancer signaling at the protein level, PTM clusters were used to create a co-cluster correlation network (CCCN) and select protein-protein interactions (PPIs) from a large network of curated PPIs to create a cluster-filtered network (CFN). Next, we constructed a Pathway Crosstalk Network (PCN) by connecting pathways from NCATS BioPlanet whose member proteins have PTMs that co-cluster. Interrogating the CCCN, CFN, and PCN individually and in combination yields insights into the response of lung cancer cells to TKIs. We highlight examples where cell signaling pathways involving EGFR and ALK exhibit crosstalk with BioPlanet pathways: Transmembrane transport of small molecules; and Glycolysis and gluconeogenesis. These data identify known and previously unappreciated connections between receptor tyrosine kinase (RTK) signal transduction and oncogenic metabolic reprogramming in lung cancer. Comparison to a CFN generated from a previous multi-PTM analysis of lung cancer cell lines reveals a common core of PPIs involving heat shock/chaperone proteins, metabolic enzymes, cytoskeletal components, and RNA-binding proteins. Elucidation of points of crosstalk among signaling pathways employing different PTMs reveals new potential drug targets and candidates for synergistic attack through combination drug therapy.
Collapse
Affiliation(s)
- Karen E Ross
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Guolin Zhang
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Cuneyt Akcora
- Department of Computer Science and Statistics, University of Manitoba, Winnipeg, Manitoba Canada
| | - Yu Lin
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Bin Fang
- Proteomics & Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - John Koomen
- Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Mark Grimes
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| |
Collapse
|
6
|
Phosphorylation of VP1 Mediated by CDK1-Cyclin B1 Facilitates Infectious Bursal Disease Virus Replication. J Virol 2023; 97:e0194122. [PMID: 36602364 PMCID: PMC9888224 DOI: 10.1128/jvi.01941-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Infectious bursal disease virus (IBDV) is a double-stranded RNA (dsRNA) virus belonging to the genus Avibirnavirus in the family Birnaviridae. It can cause serious failure of vaccination in young poultry birds with impaired immune systems. Post-translational modifications of the VP1 protein are essential for viral RNA transcription, genome replication, and viral multiplication. Little information is available so far regarding the exact mechanism of phosphorylation of IBDV VP1 and its significance in the viral life cycle. Here, we provide several lines of evidence that the cyclin-dependent kinase 1 (CDK1)-cyclin B1 complex phosphorylates VP1, which facilitates viral replication. We show that the CDK1-cyclin B1 specifically interacts with VP1 and phosphorylates VP1 on the serine 7 residue, located in the N-terminal 7SPAQ10 region, which follows the optimal phosphorylation motif of CDK1, p-S/T-P. Additionally, IBDV infection drives the cytoplasmic accumulation of CDK1-cyclin B1, which co-localizes with VP1, supporting the kinase activity of CDK1-cyclin B1. Treatment with CDK1 inhibitor RO3306 and knockdown of CDK1-cyclin B1 severely disrupts the polymerase activity of VP1, resulting in diminished viral replication. Moreover, the replication of S7A mutant recombinant IBDV was significantly decreased compared to that of wild-type (WT) IBDV. Thus, CDK1-cyclin B1 is a crucial enzyme which phosphorylates IBDV VP1 on serine 7, which is necessary both for the polymerase activity of VP1 and for viral replication. IMPORTANCE Infectious bursal disease virus still poses a great economic threat to the global poultry farming industry. Detailed information on the steps of viral genome replication is essential for the development of antiviral therapeutics. Phosphorylation is a common post-translational modification in several viral proteins. There is a lack of information regarding the significance of VP1 phosphorylation and its role in modulating the viral life cycle. In this study, we found that CDK1-cyclin B1 accumulates in the cytoplasm and phosphorylates VP1 on serine 7. The presence of a CDK1 inhibitor and the silencing of CDK1-cyclin B1 decrease IBDV replication. The mutation of VP1 serine 7 to alanine reduces VP1 polymerase activity, disrupting the viral life cycle, which suggests that this residue serves an essential function. Our study offers novel insights into the regulatory mechanism of VP1 phosphorylation.
Collapse
|
7
|
Li J, Lu J, Xu M, Yang S, Yu T, Zheng C, Huang X, Pan Y, Chen Y, Long J, Zhang C, Huang H, Dai Q, Li B, Wang W, Yao S, Pan C. ODF2L acts as a synthetic lethal partner with WEE1 inhibition in epithelial ovarian cancer models. J Clin Invest 2023; 133:161544. [PMID: 36378528 PMCID: PMC9843051 DOI: 10.1172/jci161544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
WEE1 has emerged as an attractive target in epithelial ovarian cancer (EOC), but how EOC cells may alter their sensitivity to WEE1 inhibition remains unclear. Here, through a cell cycle machinery-related gene RNAi screen, we found that targeting outer dense fiber of sperm tails 2-like (ODF2L) was a synthetic lethal partner with WEE1 kinase inhibition in EOC cells. Knockdown of ODF2L robustly sensitized cells to treatment with the WEE1 inhibitor AZD1775 in EOC cell lines in vitro as well as in xenografts in vivo. Mechanistically, the increased sensitivity to WEE1 inhibition upon ODF2L loss was accompanied by accumulated DNA damage. ODF2L licensed the recruitment of PKMYT1, a functionally redundant kinase of WEE1, to the CDK1-cyclin B complex and thus restricted the activity of CDK1 when WEE1 was inhibited. Clinically, upregulation of ODF2L correlated with CDK1 activity, DNA damage levels, and sensitivity to WEE1 inhibition in patient-derived EOC cells. Moreover, ODF2L levels predicted the response to WEE1 inhibition in an EOC patient-derived xenograft model. Combination treatment with tumor-targeted lipid nanoparticles that packaged ODF2L siRNA and AZD1775 led to the synergistic attenuation of tumor growth in the ID8 ovarian cancer syngeneic mouse model. These data suggest that WEE1 inhibition is a promising precision therapeutic strategy for EOC cells expressing low levels of ODF2L.
Collapse
Affiliation(s)
- Jie Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital
| | - Jingyi Lu
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, and
| | - Manman Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital
| | - Shiyu Yang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, and
| | - Tiantian Yu
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, and
| | - Cuimiao Zheng
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xi Huang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuwen Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital
| | - Yangyang Chen
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Junming Long
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunyu Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital
| | - Hua Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital
| | - Qingyuan Dai
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bo Li
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, and,Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital
| | - Chaoyun Pan
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, and,Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Barbiero M, Cirillo L, Veerapathiran S, Coates C, Ruffilli C, Pines J. Cell cycle-dependent binding between Cyclin B1 and Cdk1 revealed by time-resolved fluorescence correlation spectroscopy. Open Biol 2022; 12:220057. [PMID: 35765818 PMCID: PMC9240681 DOI: 10.1098/rsob.220057] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/07/2022] [Indexed: 01/04/2023] Open
Abstract
Measuring the dynamics with which the regulatory complexes assemble and disassemble is a crucial barrier to our understanding of how the cell cycle is controlled that until now has been difficult to address. This considerable gap in our understanding is due to the difficulty of reconciling biochemical assays with single cell-based techniques, but recent advances in microscopy and gene editing techniques now enable the measurement of the kinetics of protein-protein interaction in living cells. Here, we apply fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy to study the dynamics of the cell cycle machinery, beginning with Cyclin B1 and its binding to its partner kinase Cdk1 that together form the major mitotic kinase. Although Cyclin B1 and Cdk1 are known to bind with high affinity, our results reveal that in living cells there is a pool of Cyclin B1 that is not bound to Cdk1. Furthermore, we provide evidence that the affinity of Cyclin B1 for Cdk1 increases during the cell cycle, indicating that the assembly of the complex is a regulated step. Our work lays the groundwork for studying the kinetics of protein complex assembly and disassembly during the cell cycle in living cells.
Collapse
Affiliation(s)
- Martina Barbiero
- Cancer Biology, The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, London SW3 6JB, UK
| | - Luca Cirillo
- Cancer Biology, The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, London SW3 6JB, UK
| | - Sapthaswaran Veerapathiran
- Cancer Biology, The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, London SW3 6JB, UK
| | - Catherine Coates
- Cancer Biology, The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, London SW3 6JB, UK
| | - Camilla Ruffilli
- Cancer Biology, The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, London SW3 6JB, UK
| | - Jonathon Pines
- Cancer Biology, The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, London SW3 6JB, UK
| |
Collapse
|
9
|
Gallo D, Young JTF, Fourtounis J, Martino G, Álvarez-Quilón A, Bernier C, Duffy NM, Papp R, Roulston A, Stocco R, Szychowski J, Veloso A, Alam H, Baruah PS, Fortin AB, Bowlan J, Chaudhary N, Desjardins J, Dietrich E, Fournier S, Fugère-Desjardins C, Goullet de Rugy T, Leclaire ME, Liu B, Bhaskaran V, Mamane Y, Melo H, Nicolas O, Singhania A, Szilard RK, Tkáč J, Yin SY, Morris SJ, Zinda M, Marshall CG, Durocher D. CCNE1 amplification is synthetic lethal with PKMYT1 kinase inhibition. Nature 2022; 604:749-756. [PMID: 35444283 PMCID: PMC9046089 DOI: 10.1038/s41586-022-04638-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 03/14/2022] [Indexed: 12/13/2022]
Abstract
Amplification of the CCNE1 locus on chromosome 19q12 is prevalent in multiple tumour types, particularly in high-grade serous ovarian cancer, uterine tumours and gastro-oesophageal cancers, where high cyclin E levels are associated with genome instability, whole-genome doubling and resistance to cytotoxic and targeted therapies1-4. To uncover therapeutic targets for tumours with CCNE1 amplification, we undertook genome-scale CRISPR-Cas9-based synthetic lethality screens in cellular models of CCNE1 amplification. Here we report that increasing CCNE1 dosage engenders a vulnerability to the inhibition of the PKMYT1 kinase, a negative regulator of CDK1. To inhibit PKMYT1, we developed RP-6306, an orally bioavailable and selective inhibitor that shows single-agent activity and durable tumour regressions when combined with gemcitabine in models of CCNE1 amplification. RP-6306 treatment causes unscheduled activation of CDK1 selectively in CCNE1-overexpressing cells, promoting early mitosis in cells undergoing DNA synthesis. CCNE1 overexpression disrupts CDK1 homeostasis at least in part through an early activation of the MMB-FOXM1 mitotic transcriptional program. We conclude that PKMYT1 inhibition is a promising therapeutic strategy for CCNE1-amplified cancers.
Collapse
Affiliation(s)
- David Gallo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | - Alejandro Álvarez-Quilón
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Repare Therapeutics, Saint-Laurent, Quebec, Canada
| | | | | | - Robert Papp
- Repare Therapeutics, Saint-Laurent, Quebec, Canada
| | | | - Rino Stocco
- Repare Therapeutics, Saint-Laurent, Quebec, Canada
| | | | | | - Hunain Alam
- Repare Therapeutics, Saint-Laurent, Quebec, Canada
| | | | | | | | - Natasha Chaudhary
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | | - Theo Goullet de Rugy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Repare Therapeutics, Saint-Laurent, Quebec, Canada
| | | | - Bingcan Liu
- Repare Therapeutics, Saint-Laurent, Quebec, Canada
| | | | - Yael Mamane
- Repare Therapeutics, Saint-Laurent, Quebec, Canada
| | - Henrique Melo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | - Rachel K Szilard
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ján Tkáč
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Shou Yun Yin
- Repare Therapeutics, Saint-Laurent, Quebec, Canada
| | | | | | | | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Krumm J, Sekine K, Samaras P, Brazovskaja A, Breunig M, Yasui R, Kleger A, Taniguchi H, Wilhelm M, Treutlein B, Camp JG, Kuster B. High temporal resolution proteome and phosphoproteome profiling of stem cell-derived hepatocyte development. Cell Rep 2022; 38:110604. [PMID: 35354033 DOI: 10.1016/j.celrep.2022.110604] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/29/2021] [Accepted: 03/09/2022] [Indexed: 11/29/2022] Open
Abstract
Primary human hepatocytes are widely used to evaluate liver toxicity of drugs, but they are scarce and demanding to culture. Stem cell-derived hepatocytes are increasingly discussed as alternatives. To obtain a better appreciation of the molecular processes during the differentiation of induced pluripotent stem cells into hepatocytes, we employ a quantitative proteomic approach to follow the expression of 9,000 proteins, 12,000 phosphorylation sites, and 800 acetylation sites over time. The analysis reveals stage-specific markers, a major molecular switch between hepatic endoderm versus immature hepatocyte-like cells impacting, e.g., metabolism, the cell cycle, kinase activity, and the expression of drug transporters. Comparing the proteomes of two- (2D) and three-dimensional (3D)-derived hepatocytes with fetal and adult liver indicates a fetal-like status of the in vitro models and lower expression of important ADME/Tox proteins. The collective data enable constructing a molecular roadmap of hepatocyte development that serves as a valuable resource for future research.
Collapse
Affiliation(s)
- Johannes Krumm
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Keisuke Sekine
- Laboratory of Cancer Cell Systems, National Cancer Center Research Institute, Tokyo 104-0045, Japan; Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-004, Japan
| | - Patroklos Samaras
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Agnieska Brazovskaja
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Markus Breunig
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany
| | - Ryota Yasui
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-004, Japan
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-004, Japan; Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Mathias Wilhelm
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany; Computational Mass Spectrometry, Technical University of Munich, 85354 Freising, Germany
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - J Gray Camp
- Institute of Molecular and Clinical Ophthalmology Basel, 4056 Basel, Switzerland
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany; Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Technical University of Munich, 85354 Freising, Germany.
| |
Collapse
|
11
|
Ohba S, Tang Y, Johannessen TCA, Mukherjee J. PKM2 Interacts With the Cdk1-CyclinB Complex to Facilitate Cell Cycle Progression in Gliomas. Front Oncol 2022; 12:844861. [PMID: 35392228 PMCID: PMC8981990 DOI: 10.3389/fonc.2022.844861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
PKM2 is a phosphotyrosine-binding glycolytic enzyme upregulated in many cancers, including glioma, and contributes to tumor growth by regulating cell cycle progression. We noted, however, that in multiple glioma cell lines, PKM2 knock-down resulted in an accumulation of cells in G2-M phase. Moreover, PKM2 knock-down decreased Cdk1 activity while introducing a constitutively active Cdk1 reversed the effects of PKM2 knock-down on cell cycle progression. The means by which PKM2 increases Cdk1 activity have not been described. Transient interaction of T14/Y15-phosphorylated Cdk1 with cyclin B allows Cdk7-mediated pT161 Cdk1 phosphorylation followed by cdc25C-mediated removal of pT14/Y15 and activation of Cdk1 in cycling cells. In the present course of investigation, PKM2 modulation did not influence Cdk7 activity, but phosphotyrosine binding forms of PKM2 co-immunoprecipitated with pY15-containing Cdk1-cyclinB and enhanced formation of active pT161 Cdk1-cyclin B complexes. Moreover, exogenous expression of phosphotyrosine binding forms of PKM2 reversed the effects of PKM2 knock-down on G2-M arrest. We here show that PKM2 binds and stabilize otherwise transient pY15-containing Cdk1-cyclinB complexes that in turn facilitate Cdk1-cyclin B activation and entry of cells into mitosis. These results, therefore, establish metabolic enzyme PKM2 as a direct interactor and activator of Cdk1-cyclin B complex and thereby directly controls mitotic progression and the growth of brain tumor cells.
Collapse
Affiliation(s)
- Shigeo Ohba
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurosurgery, Fujita Health University, Toyoake, Japan
| | - Yongjian Tang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Tor-Christian Aase Johannessen
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- The Kristian Gerhard Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Joydeep Mukherjee
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Joydeep Mukherjee,
| |
Collapse
|
12
|
Cell cycle involvement in cancer therapy; WEE1 kinase, a potential target as therapeutic strategy. Mutat Res 2022; 824:111776. [PMID: 35247630 DOI: 10.1016/j.mrfmmm.2022.111776] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/22/2022]
Abstract
Mitosis is the process of cell division and is regulated by checkpoints in the cell cycle. G1-S, S, and G2-M are the three main checkpoints that prevent initiation of the next phase of the cell cycle phase until previous phase has completed. DNA damage leads to activation of the G2-M checkpoint, which can trigger a downstream DNA damage response (DDR) pathway to induce cell cycle arrest while the damage is repaired. If the DNA damage cannot be repaired, the replication stress response (RSR) pathway finally leads to cell death by apoptosis, in this case called mitotic catastrophe. Many cancer treatments (chemotherapy and radiotherapy) cause DNA damages based on SSBs (single strand breaks) or DSBs (double strand breaks), which cause cell death through mitotic catastrophe. However, damaged cells can activate WEE1 kinase (as a part of the DDR and RSR pathways), which prevents apoptosis and cell death by inducing cell cycle arrest at G2 phase. Therefore, inhibition of WEE1 kinase could sensitize cancer cells to chemotherapeutic drugs. This review focuses on the role of WEE1 kinase (as a biological macromolecule which has a molecular mass of 96 kDa) in the cell cycle, and its interactions with other regulatory pathways. In addition, we discuss the potential of WEE1 inhibition as a new therapeutic approach in the treatment of various cancers, such as melanoma, breast cancer, pancreatic cancer, cervical cancer, etc.
Collapse
|
13
|
Bukhari AB, Chan GK, Gamper AM. Targeting the DNA Damage Response for Cancer Therapy by Inhibiting the Kinase Wee1. Front Oncol 2022; 12:828684. [PMID: 35251998 PMCID: PMC8891215 DOI: 10.3389/fonc.2022.828684] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer cells typically heavily rely on the G2/M checkpoint to survive endogenous and exogenous DNA damage, such as genotoxic stress due to genome instability or radiation and chemotherapy. The key regulator of the G2/M checkpoint, the cyclin-dependent kinase 1 (CDK1), is tightly controlled, including by its phosphorylation state. This posttranslational modification, which is determined by the opposing activities of the phosphatase cdc25 and the kinase Wee1, allows for a more rapid response to cellular stress than via the synthesis or degradation of modulatory interacting proteins, such as p21 or cyclin B. Reducing Wee1 activity results in ectopic activation of CDK1 activity and drives premature entry into mitosis with unrepaired or under-replicated DNA and causing mitotic catastrophe. Here, we review efforts to use small molecule inhibitors of Wee1 for therapeutic purposes, including strategies to combine Wee1 inhibition with genotoxic agents, such as radiation therapy or drugs inducing replication stress, or inhibitors of pathways that show synthetic lethality with Wee1. Furthermore, it become increasingly clear that Wee1 inhibition can also modulate therapeutic immune responses. We will discuss the mechanisms underlying combination treatments identifying both cell intrinsic and systemic anti-tumor activities.
Collapse
|
14
|
Coulonval K, Vercruysse V, Paternot S, Pita JM, Corman R, Raspé E, Roger PP. Monoclonal antibodies to activated CDK4: use to investigate normal and cancerous cell cycle regulation and involvement of phosphorylations of p21 and p27. Cell Cycle 2021; 21:12-32. [PMID: 34913830 PMCID: PMC8837260 DOI: 10.1080/15384101.2021.1984663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cyclin-dependent kinase 4 (CDK4) is a master integrator that couples mitogenic/oncogenic signaling with the cell division cycle. It is deregulated in most cancers and inhibitors of CDK4 have become standard of care drugs for metastatic estrogen-receptor positive breast cancers and are being evaluated in a variety of other cancers. We previously characterized the T-loop phosphorylation at T172 of CDK4 as the highly regulated step that determines the activity of cyclin D-CDK4 complexes. Moreover we demonstrated that the highly variable detection of T172-phosphorylated CDK4 signals the presence or absence of the active CDK4 targeted by the CDK4/6 inhibitory drugs, which predicts the tumor cell sensitivity to these drugs including palbociclib. To date, the phosphorylation of CDK4 has been very poorly studied because only few biochemical techniques and reagents are available for it. In addition, the available ones including 2D-IEF separation of CDK4 modified forms are considered too tedious. The present report describes the generation, selection and characterization of the first monoclonal antibodies that specifically recognize the active CDK4 phosphorylated on its T172 residue. One key to this success was the immunization with a long phosphopeptide corresponding to the complete activation segment of CDK4. These monoclonal antibodies specifically recognize T172-phosphorylated CDK4 in a variety of assays, including western blotting, immunoprecipitation and, as a capture antibody, a sensitive ELISA from cell lysates. The specific immunoprecipitation of T172-phosphorylated CDK4 allowed to clarify the involvement of phosphorylations of co-immunoprecipitated p21 and p27, showing a privileged interaction of T172-phosphorylated CDK4 with S130-phosphorylated p21 and S10-phosphorylated p27.
Abbreviations:
2D: two-dimensional; CAK: CDK-activating kinase; CDK: cyclin-dependent kinase; HAT: Hypoxanthine-Aminopterin-Thymidine; FBS: fetal bovine serum; IP: immunoprecipitation; ID: immunodetection; mAb: monoclonal antibody; PAGE: polyacrylamide gel electrophoresis; PBS: phosphate buffer saline; pRb: retinoblastoma susceptibility protein; SDS: sodium dodecyl sulfate; DTT: dithiotreitol; TET: tetracyclin repressor; Avi: Avi tag; TEV: tobacco etch virus cleavage site; EGFP: enhanced green fluorescent protein; BirA: bifunctional protein biotin ligase BirA; IRES: internal ribosome entry site; HIS: poly-HIS purification tag; DELFIA: dissociation-enhanced lanthanide fluorescent immunoassay; 3-MBPP1: 1-(1,1-dimethylethyl)-3[(3-methylphenyl) methyl]-1H-pyrazolo[3,4-d] pyrimidin-4-amine; BSA: bovine serum albumin; ECL: Enhanced chemiluminescence
Collapse
Affiliation(s)
- Katia Coulonval
- Institute of Interdisciplinary Research (Iribhm) and ULB-Cancer Research Center (U-crc), Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Vincent Vercruysse
- Institute of Interdisciplinary Research (Iribhm) and ULB-Cancer Research Center (U-crc), Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Sabine Paternot
- Institute of Interdisciplinary Research (Iribhm) and ULB-Cancer Research Center (U-crc), Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Jaime M Pita
- Institute of Interdisciplinary Research (Iribhm) and ULB-Cancer Research Center (U-crc), Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Robert Corman
- Kaneka Eurogentec, Liège Science Park, Seraing, Belgium
| | - Eric Raspé
- Institute of Interdisciplinary Research (Iribhm) and ULB-Cancer Research Center (U-crc), Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Pierre P Roger
- Institute of Interdisciplinary Research (Iribhm) and ULB-Cancer Research Center (U-crc), Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| |
Collapse
|
15
|
Hu L, Pan X, Hu J, Zeng H, Liu X, Jiang M, Jiang B. Proteasome inhibitors decrease paclitaxel‑induced cell death in nasopharyngeal carcinoma with the accumulation of CDK1/cyclin B1. Int J Mol Med 2021; 48:193. [PMID: 34435645 PMCID: PMC8416144 DOI: 10.3892/ijmm.2021.5026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
Southeast Asia is a region with high incidence of nasopharyngeal carcinoma (NPC). Paclitaxel is the mainstay for the treatment of advanced nasopharyngeal cancer. The present study investigated the effect of proteasome inhibitors on the therapeutic effect of paclitaxel and its related mechanism. The present data from Cell Counting Kit-8 and flow cytometry assays demonstrated that appropriate concentrations of proteasome inhibitors (30 nM PS341 or 700 nM MG132) reduced the lethal effect of paclitaxel on the nasopharyngeal cancer cells. While 400 nM paclitaxel effectively inhibited cell division and induced cell death, proteasome inhibitors (PS341 30 nM or MG132 700 nM) could reverse these effects. Additionally, the western blotting results demonstrated accumulation of cell cycle regulation protein CDK1 and cyclin B1 in proteasome inhibitor-treated cells. In addition, proteasome inhibitors combined with paclitaxel led to decreased MCL1 apoptosis regulator, BCL2 family member/Caspase-9/poly (ADP-ribose) polymerase apoptosis signaling triggered by CDK1/cyclin B1. Therefore, dysfunction of CDK1/cyclin B1 could be defining the loss of paclitaxel lethality against cancer cells, a phenomenon affirmed by the CDK1 inhibitor Ro3306. Overall, the present results demonstrated that a combination of paclitaxel with proteasome inhibitors or CDK1 inhibitors is antagonistic to effective clinical management of NPC.
Collapse
Affiliation(s)
- Ling Hu
- Medical Research Center, Changsha Central Hospital, University of South China, Changsha, Hunan 410004, P.R. China
| | - Xi Pan
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jinyue Hu
- Medical Research Center, Changsha Central Hospital, University of South China, Changsha, Hunan 410004, P.R. China
| | - Hong Zeng
- Reproductive Medicine Center, Foshan Maternal and Child Health Care Hospital, Southern Medical University, Foshan, Guangdong 528000, P.R. China
| | - Xueting Liu
- Medical Research Center, Changsha Central Hospital, University of South China, Changsha, Hunan 410004, P.R. China
| | - Manli Jiang
- Medical Research Center, Changsha Central Hospital, University of South China, Changsha, Hunan 410004, P.R. China
| | - Binyuan Jiang
- Medical Research Center, Changsha Central Hospital, University of South China, Changsha, Hunan 410004, P.R. China
| |
Collapse
|
16
|
Smith MP, Ferguson HR, Ferguson J, Zindy E, Kowalczyk KM, Kedward T, Bates C, Parsons J, Watson J, Chandler S, Fullwood P, Warwood S, Knight D, Clarke RB, Francavilla C. Reciprocal priming between receptor tyrosine kinases at recycling endosomes orchestrates cellular signalling outputs. EMBO J 2021; 40:e107182. [PMID: 34086370 PMCID: PMC8447605 DOI: 10.15252/embj.2020107182] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/25/2022] Open
Abstract
Integration of signalling downstream of individual receptor tyrosine kinases (RTKs) is crucial to fine-tune cellular homeostasis during development and in pathological conditions, including breast cancer. However, how signalling integration is regulated and whether the endocytic fate of single receptors controls such signalling integration remains poorly elucidated. Combining quantitative phosphoproteomics and targeted assays, we generated a detailed picture of recycling-dependent fibroblast growth factor (FGF) signalling in breast cancer cells, with a focus on distinct FGF receptors (FGFRs). We discovered reciprocal priming between FGFRs and epidermal growth factor (EGF) receptor (EGFR) that is coordinated at recycling endosomes. FGFR recycling ligands induce EGFR phosphorylation on threonine 693. This phosphorylation event alters both FGFR and EGFR trafficking and primes FGFR-mediated proliferation but not cell invasion. In turn, FGFR signalling primes EGF-mediated outputs via EGFR threonine 693 phosphorylation. This reciprocal priming between distinct families of RTKs from recycling endosomes exemplifies a novel signalling integration hub where recycling endosomes orchestrate cellular behaviour. Therefore, targeting reciprocal priming over individual receptors may improve personalized therapies in breast and other cancers.
Collapse
Affiliation(s)
- Michael P Smith
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
| | - Harriet R Ferguson
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
| | - Jennifer Ferguson
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
| | - Egor Zindy
- Division of Cell Matrix and Regenerative MedicineSchool of Biological Science, FBMHThe University of ManchesterManchesterUK
- Present address:
Center for Microscopy and Molecular ImagingUniversité Libre de Bruxelles (ULB)GosseliesBelgium
| | - Katarzyna M Kowalczyk
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
- Present address:
Department of BiochemistryUniversity of OxfordOxfordUK
| | - Thomas Kedward
- Division of Cancer SciencesSchool of Medical ScienceFBMHThe University of ManchesterManchesterUK
| | - Christian Bates
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
| | - Joseph Parsons
- Division of Cancer SciencesSchool of Medical ScienceFBMHThe University of ManchesterManchesterUK
| | - Joanne Watson
- Division of Evolution and Genomic SciencesSchool of Biological ScienceFBMHThe University of ManchesterManchesterUK
| | - Sarah Chandler
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
| | - Paul Fullwood
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
| | - Stacey Warwood
- Bio‐MS Core Research FacilityFBMHThe University of ManchesterManchesterUK
| | - David Knight
- Bio‐MS Core Research FacilityFBMHThe University of ManchesterManchesterUK
| | - Robert B Clarke
- Division of Cancer SciencesSchool of Medical ScienceFBMHThe University of ManchesterManchesterUK
- Manchester Breast CentreManchester Cancer Research CentreManchesterUK
| | - Chiara Francavilla
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
- Manchester Breast CentreManchester Cancer Research CentreManchesterUK
| |
Collapse
|
17
|
Maziero RRD, Guaitolini CRDF, Paschoal DM, Crespilho AM, Sestari DAO, Dode MAN, Landim-Alvarenga FDC. Effects of the addition of oocyte meiosis-inhibiting drugs on the expression of maturation-promoting factor components and organization of cytoplasmic organelles. Reprod Biol 2020; 20:48-62. [DOI: 10.1016/j.repbio.2019.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/16/2019] [Accepted: 12/22/2019] [Indexed: 11/28/2022]
|
18
|
Okazaki R, Yamazoe K, Inoue YH. Nuclear Export of Cyclin B Mediated by the Nup62 Complex Is Required for Meiotic Initiation in Drosophila Males. Cells 2020; 9:E270. [PMID: 31979075 PMCID: PMC7072204 DOI: 10.3390/cells9020270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The central channel of the nuclear pore complex plays an important role in the selective transport of proteins between the nucleus and cytoplasm. Previous studies have demonstrated that the depletion of the Nup62 complex, constructing the nuclear pore channel in premeiotic Drosophila cells, resulted in the absence of meiotic cells. We attempted to understand the mechanism underlying the cell cycle arrest before meiosis. METHODS We induced dsRNAs against the nucleoporin mRNAs using the Gal4/UAS system in Drosophila. RESULTS The cell cycle of the Nup62-depleted cells was arrested before meiosis without CDK1 activation. The ectopic over-expression of CycB, but not constitutively active CDK1, resulted in partial rescue from the arrest. CycB continued to exist in the nuclei of Nup62-depleted cells and cells depleted of exportin encoded by emb. Protein complexes containing CycB, Emb, and Nup62 were observed in premeiotic spermatocytes. CycB, which had temporally entered the nucleus, was associated with Emb, and the complex was transported back to the cytoplasm through the central channel, interacting with the Nup62 complex. Conclusion: We proposed that CycB is exported with Emb through the channel interacting with the Nup62 complex before the onset of meiosis. The nuclear export ensures the modification and formation of sufficient CycB-CDK1 in the cytoplasm.
Collapse
Affiliation(s)
| | | | - Yoshihiro H. Inoue
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Kyoto, Japan; (R.O.); (K.Y.)
| |
Collapse
|
19
|
Lewis CW, Bukhari AB, Xiao EJ, Choi WS, Smith JD, Homola E, Mackey JR, Campbell SD, Gamper AM, Chan GK. Upregulation of Myt1 Promotes Acquired Resistance of Cancer Cells to Wee1 Inhibition. Cancer Res 2019; 79:5971-5985. [PMID: 31594837 DOI: 10.1158/0008-5472.can-19-1961] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/04/2019] [Accepted: 10/04/2019] [Indexed: 11/16/2022]
Abstract
Adavosertib (also known as AZD1775 or MK1775) is a small-molecule inhibitor of the protein kinase Wee1, with single-agent activity in multiple solid tumors, including sarcoma, glioblastoma, and head and neck cancer. Adavosertib also shows promising results in combination with genotoxic agents such as ionizing radiation or chemotherapy. Previous studies have investigated molecular mechanisms of primary resistance to Wee1 inhibition. Here, we investigated mechanisms of acquired resistance to Wee1 inhibition, focusing on the role of the Wee1-related kinase Myt1. Myt1 and Wee1 kinases were both capable of phosphorylating and inhibiting Cdk1/cyclin B, the key enzymatic complex required for mitosis, demonstrating their functional redundancy. Ectopic activation of Cdk1 induced aberrant mitosis and cell death by mitotic catastrophe. Cancer cells with intrinsic adavosertib resistance had higher levels of Myt1 compared with sensitive cells. Furthermore, cancer cells that acquired resistance following short-term adavosertib treatment had higher levels of Myt1 compared with mock-treated cells. Downregulating Myt1 enhanced ectopic Cdk1 activity and restored sensitivity to adavosertib. These data demonstrate that upregulating Myt1 is a mechanism by which cancer cells acquire resistance to adavosertib. SIGNIFICANCE: Myt1 is a candidate predictive biomarker of acquired resistance to the Wee1 kinase inhibitor adavosertib.
Collapse
Affiliation(s)
- Cody W Lewis
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada
| | - Amirali B Bukhari
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada
| | - Edric J Xiao
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada
| | - Won-Shik Choi
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada
| | - Joanne D Smith
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada
| | - Ellen Homola
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - John R Mackey
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Medical Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Shelagh D Campbell
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Armin M Gamper
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada
| | - Gordon K Chan
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada. .,Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
20
|
Deota S, Rathnachalam S, Namrata K, Boob M, Fulzele A, Radhika S, Ganguli S, Balaji C, Kaypee S, Vishwakarma KK, Kundu TK, Bhandari R, Gonzalez de Peredo A, Mishra M, Venkatramani R, Kolthur-Seetharam U. Allosteric Regulation of Cyclin-B Binding by the Charge State of Catalytic Lysine in CDK1 Is Essential for Cell-Cycle Progression. J Mol Biol 2019; 431:2127-2142. [PMID: 30974121 DOI: 10.1016/j.jmb.2019.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 01/19/2023]
Abstract
Cyclin-dependent kinase 1 (CDK1) is essential for cell-cycle progression. While dependence of CDK activity on cyclin levels is well established, molecular mechanisms that regulate their binding are less understood. Here, we report for the first time that CDK1:cyclin-B binding is not default but rather determined by the evolutionarily conserved catalytic residue, lysine-33 in CDK1. We demonstrate that the charge state of this lysine allosterically remodels the CDK1:cyclin-B interface. Cell cycle-dependent acetylation of lysine-33 or its mutation to glutamine, which mimics acetylation, abrogates cyclin-B binding. Using biochemical approaches and atomistic molecular dynamics simulations, we have uncovered both short-range and long-range effects of perturbing the charged state of the catalytic lysine, which lead to inhibition of kinase activity. Specifically, although loss of the charge state of catalytic lysine did not impact ATP binding significantly, it altered its orientation in the active site. In addition, the catalytic lysine also acts as an intra-molecular electrostatic tether at the active site to orient structural elements interfacing with cyclin-B. Physiologically, opposing activities of SIRT1 and P300 regulate acetylation and thus control the charge state of lysine-33. Importantly, cells expressing acetylation mimic mutant of Cdc2/CDK1 in yeast are arrested in G2 and fail to divide, indicating the requirement of the deacetylated state of the catalytic lysine for cell division. Thus, by illustrating the molecular role of the catalytic lysine and cell cycle-dependent deacetylation as a determinant of CDK1:cyclin-B interaction, our results redefine the current model of CDK1 activation and cell-cycle progression.
Collapse
Affiliation(s)
- Shaunak Deota
- Department of Biological Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai 400005, India
| | - Sivasudhan Rathnachalam
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai 400005, India
| | - Kanojia Namrata
- Department of Biological Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai 400005, India
| | - Mayank Boob
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai 400005, India
| | - Amit Fulzele
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Toulouse 31400, France
| | - S Radhika
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai 400005, India
| | - Shubhra Ganguli
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad 500039, India; Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, India
| | - Chinthapalli Balaji
- Department of Biological Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai 400005, India
| | - Stephanie Kaypee
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, India
| | - Krishna Kant Vishwakarma
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai 400005, India
| | - Tapas Kumar Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, India
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad 500039, India
| | | | - Mithilesh Mishra
- Department of Biological Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai 400005, India
| | - Ravindra Venkatramani
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai 400005, India.
| | - Ullas Kolthur-Seetharam
- Department of Biological Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai 400005, India.
| |
Collapse
|
21
|
Premature activation of Cdk1 leads to mitotic events in S phase and embryonic lethality. Oncogene 2018; 38:998-1018. [PMID: 30190546 PMCID: PMC6756125 DOI: 10.1038/s41388-018-0464-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/15/2018] [Accepted: 07/27/2018] [Indexed: 01/08/2023]
Abstract
Cell cycle regulation, especially faithful DNA replication and mitosis, are crucial to maintain genome stability. Cyclin-dependent kinase (CDK)/cyclin complexes drive most processes in cellular proliferation. In response to DNA damage, cell cycle surveillance mechanisms enable normal cells to arrest and undergo repair processes. Perturbations in genomic stability can lead to tumor development and suggest that cell cycle regulators could be effective targets in anticancer therapy. However, many clinical trials ended in failure due to off-target effects of the inhibitors used. Here, we investigate in vivo the importance of WEE1- and MYT1-dependent inhibitory phosphorylation of mammalian CDK1. We generated Cdk1AF knockin mice, in which two inhibitory phosphorylation sites are replaced by the non-phosphorylatable amino acids T14A/Y15F. We uncovered that monoallelic expression of CDK1AF is early embryonic lethal in mice and induces S phase arrest accompanied by γH2AX and DNA damage checkpoint activation in mouse embryonic fibroblasts (MEFs). The chromosomal fragmentation in Cdk1AF MEFs does not rely on CDK2 and is partly caused by premature activation of MUS81-SLX4 structure-specific endonuclease complexes, as well as untimely onset of chromosome condensation followed by nuclear lamina disassembly. We provide evidence that tumor development in liver expressing CDK1AF is inhibited. Interestingly, the regulatory mechanisms that impede cell proliferation in CDK1AF expressing cells differ partially from the actions of the WEE1 inhibitor, MK-1775, with p53 expression determining the sensitivity of cells to the drug response. Thus, our work highlights the importance of improved therapeutic strategies for patients with various cancer types and may explain why some patients respond better to WEE1 inhibitors.
Collapse
|
22
|
Dai L, Zhao T, Bisteau X, Sun W, Prabhu N, Lim YT, Sobota RM, Kaldis P, Nordlund P. Modulation of Protein-Interaction States through the Cell Cycle. Cell 2018; 173:1481-1494.e13. [PMID: 29706543 DOI: 10.1016/j.cell.2018.03.065] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/25/2018] [Accepted: 03/26/2018] [Indexed: 11/25/2022]
Abstract
Global profiling of protein expression through the cell cycle has revealed subsets of periodically expressed proteins. However, expression levels alone only give a partial view of the biochemical processes determining cellular events. Using a proteome-wide implementation of the cellular thermal shift assay (CETSA) to study specific cell-cycle phases, we uncover changes of interaction states for more than 750 proteins during the cell cycle. Notably, many protein complexes are modulated in specific cell-cycle phases, reflecting their roles in processes such as DNA replication, chromatin remodeling, transcription, translation, and disintegration of the nuclear envelope. Surprisingly, only small differences in the interaction states were seen between the G1 and the G2 phase, suggesting similar hardwiring of biochemical processes in these two phases. The present work reveals novel molecular details of the cell cycle and establishes proteome-wide CETSA as a new strategy to study modulation of protein-interaction states in intact cells.
Collapse
Affiliation(s)
- Lingyun Dai
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Tianyun Zhao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Xavier Bisteau
- Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Wendi Sun
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Nayana Prabhu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yan Ting Lim
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Radoslaw M Sobota
- Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Institute of Medical Biology, A(∗)STAR, Singapore 138648, Singapore
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Biochemistry, National University of Singapore, Singapore 117597, Singapore
| | - Pär Nordlund
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Oncology and Pathology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
23
|
Pan-class I PI3-kinase inhibitor BKM120 induces MEK1/2-dependent mitotic catastrophe in non-Hodgkin lymphoma leading to apoptosis or polyploidy determined by Bax/Bak and p53. Cell Death Dis 2018. [PMID: 29515122 PMCID: PMC5841308 DOI: 10.1038/s41419-018-0413-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Constitutive signaling of PI3K/Akt/mTOR plays a prominent role in malignant transformation and progression of B-cell non-Hodgkin lymphomas (B-NHL) underscoring the need for PI3K targeted therapies. The pan-class I PI3-kinase inhibitor BKM120 has shown preclinical activity in distinct malignancies and is currently tested in clinical trials. Intratumor heterogeneity is an intrinsic property of cancers that contributes to drug resistance and tumor recurrence. Here, we demonstrate that inhibition of PI3-kinases by BKM120 attenuates growth and survival of B-NHL cell lines by inducing mitotic arrest with subsequent induction of intrinsic apoptosis. BKM120-mediated downregulation of Cyclin A and activation of the CDK1/Cyclin B1 complex facilitates mitotic entry. In addition, concomitant BKM120-mediated upregulation of Cyclin B1 expression attenuates completion of mitosis, which results in mitotic catastrophe and apoptotic cell death. In Bax and Bak deficient B-NHL, which are resistant to BKM120-induced apoptosis, BKM120-induced mitotic catastrophe results in polyploidy. Upon re-expression of wt p53 in these p53 mutated cells, BKM120-induced polyploidy is strongly reduced demonstrating that the genetic status of the cells determines the outcome of a BKM120-mediated pathway inhibition. Mitotic catastrophe and unfavorable induction of polyploidy can be prevented in this setting by additional inhibition of MEK1/2 signaling. Combining MEK1/2 inhibitors with BKM120 enhances the anti-tumor effects of BKM120, prevents prognostic unfavorable polyploidy and might be a potential strategy for the treatment of B-NHL.
Collapse
|
24
|
Schmidt M, Rohe A, Platzer C, Najjar A, Erdmann F, Sippl W. Regulation of G2/M Transition by Inhibition of WEE1 and PKMYT1 Kinases. Molecules 2017; 22:E2045. [PMID: 29168755 PMCID: PMC6149964 DOI: 10.3390/molecules22122045] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/21/2017] [Indexed: 01/04/2023] Open
Abstract
In the cell cycle, there are two checkpoint arrests that allow cells to repair damaged DNA in order to maintain genomic integrity. Many cancer cells have defective G1 checkpoint mechanisms, thus depending on the G2 checkpoint far more than normal cells. G2 checkpoint abrogation is therefore a promising concept to preferably damage cancerous cells over normal cells. The main factor influencing the decision to enter mitosis is a complex composed of Cdk1 and cyclin B. Cdk1/CycB is regulated by various feedback mechanisms, in particular inhibitory phosphorylations at Thr14 and Tyr15 of Cdk1. In fact, Cdk1/CycB activity is restricted by the balance between WEE family kinases and Cdc25 phosphatases. The WEE kinase family consists of three proteins: WEE1, PKMYT1, and the less important WEE1B. WEE1 exclusively mediates phosphorylation at Tyr15, whereas PKMYT1 is dual-specific for Tyr15 as well as Thr14. Inhibition by a small molecule inhibitor is therefore proposed to be a promising option since WEE kinases bind Cdk1, altering equilibria and thus affecting G2/M transition.
Collapse
Affiliation(s)
- Matthias Schmidt
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany.
| | - Alexander Rohe
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany.
| | - Charlott Platzer
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany.
| | - Abdulkarim Najjar
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany.
| | - Frank Erdmann
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany.
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany.
| |
Collapse
|
25
|
Ziemann F, Seltzsam S, Dreffke K, Preising S, Arenz A, Subtil FSB, Rieckmann T, Engenhart-Cabillic R, Dikomey E, Wittig A. Roscovitine strongly enhances the effect of olaparib on radiosensitivity for HPV neg. but not for HPV pos. HNSCC cell lines. Oncotarget 2017; 8:105170-105183. [PMID: 29285242 PMCID: PMC5739629 DOI: 10.18632/oncotarget.22005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023] Open
Abstract
At present, advanced stage human Papillomavirus (HPV) negative and positive head and neck squamous cell carcinoma (HNSCC) are treated by intense multimodal therapy that includes radiochemotherapy, which are associated with relevant side effects. Patients with HPV positive tumors possess a far better prognosis than those with HPV negative cancers. Therefore, new therapeutic strategies are needed to improve the outcome especially of the latter one as well as quality of life for all HNSCC patients. Here we tested whether roscovitine, an inhibitor of cyclin-dependent kinases (CDKs), which hereby also blocks homologous recombination (HR), can be used to enhance the radiation sensitivity of HNSCC cell lines. In all five HPV negative and HPV positive cell lines tested, roscovitine caused inhibition of CDK1 and 2. Surprisingly, all HPV positive cell lines were found to be defective in HR. In contrast, HPV negative strains demonstrated efficient HR, which was completely suppressed by roscovitine. In line with this, for HPV negative but not for HPV positive cell lines, treatment with roscovitine resulted in a pronounced enhancement of the radiation-induced G2 arrest as well as a significant increase in radiosensitivity. Due to a defect in HR, all HPV positive cell lines were efficiently radiosensitized by the PARP-1 inhibitor olaparib. In contrast, in HPV negative cell lines a significant radiosensitization by olaparib was only achieved when combined with roscovitine.
Collapse
Affiliation(s)
- Frank Ziemann
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital GieΔen and Marburg, Marburg, Germany
| | - Steve Seltzsam
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital GieΔen and Marburg, Marburg, Germany
| | - Kristin Dreffke
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital GieΔen and Marburg, Marburg, Germany
| | - Stefanie Preising
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital GieΔen and Marburg, Marburg, Germany
| | - Andrea Arenz
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital GieΔen and Marburg, Marburg, Germany
| | - Florentine S B Subtil
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital GieΔen and Marburg, Marburg, Germany
| | - Thorsten Rieckmann
- Laboratory for Radiobiology & Experimental Radiooncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,Department of Otolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Rita Engenhart-Cabillic
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital GieΔen and Marburg, Marburg, Germany
| | - Ekkehard Dikomey
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital GieΔen and Marburg, Marburg, Germany.,Laboratory for Radiobiology & Experimental Radiooncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Andrea Wittig
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital GieΔen and Marburg, Marburg, Germany
| |
Collapse
|
26
|
Smith SE, Mellor P, Ward AK, Kendall S, McDonald M, Vizeacoumar FS, Vizeacoumar FJ, Napper S, Anderson DH. Molecular characterization of breast cancer cell lines through multiple omic approaches. Breast Cancer Res 2017; 19:65. [PMID: 28583138 PMCID: PMC5460504 DOI: 10.1186/s13058-017-0855-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/09/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Breast cancer cell lines are frequently used as model systems to study the cellular properties and biology of breast cancer. Our objective was to characterize a large, commonly employed panel of breast cancer cell lines obtained from the American Type Culture Collection (ATCC 30-4500 K) to enable researchers to make more informed decisions in selecting cell lines for specific studies. Information about these cell lines was obtained from a wide variety of sources. In addition, new information about cellular pathways that are activated within each cell line was generated. METHODS We determined key protein expression data using immunoblot analyses. In addition, two analyses on serum-starved cells were carried out to identify cellular proteins and pathways that are activated in these cells. These analyses were performed using a commercial PathScan array and a novel and more extensive phosphopeptide-based kinome analysis that queries 1290 phosphorylation events in major signaling pathways. Data about this panel of breast cancer cell lines was also accessed from several online sources, compiled and summarized for the following areas: molecular classification, mRNA expression, mutational status of key proteins and other possible cancer-associated mutations, and the tumorigenic and metastatic capacity in mouse xenograft models of breast cancer. RESULTS The cell lines that were characterized included 10 estrogen receptor (ER)-positive, 12 human epidermal growth factor receptor 2 (HER2)-amplified and 18 triple negative breast cancer cell lines, in addition to 4 non-tumorigenic breast cell lines. Within each subtype, there was significant genetic heterogeneity that could impact both the selection of model cell lines and the interpretation of the results obtained. To capture the net activation of key signaling pathways as a result of these mutational combinations, profiled pathway activation status was examined. This provided further clarity for which cell lines were particularly deregulated in common or unique ways. CONCLUSIONS These two new kinase or "Kin-OMIC" analyses add another dimension of important data about these frequently used breast cancer cell lines. This will assist researchers in selecting the most appropriate cell lines to use for breast cancer studies and provide context for the interpretation of the emerging results.
Collapse
Affiliation(s)
- Shari E Smith
- Cancer Cluster, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Paul Mellor
- Cancer Cluster, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Alison K Ward
- Cancer Cluster, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Stephanie Kendall
- Cancer Cluster, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Megan McDonald
- Vaccine Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada
| | - Frederick S Vizeacoumar
- Cancer Cluster, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Franco J Vizeacoumar
- Cancer Cluster, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.,Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Scott Napper
- Vaccine Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada
| | - Deborah H Anderson
- Cancer Cluster, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada. .,Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
27
|
Lewis CW, Jin Z, Macdonald D, Wei W, Qian XJ, Choi WS, He R, Sun X, Chan G. Prolonged mitotic arrest induced by Wee1 inhibition sensitizes breast cancer cells to paclitaxel. Oncotarget 2017; 8:73705-73722. [PMID: 29088738 PMCID: PMC5650293 DOI: 10.18632/oncotarget.17848] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/27/2017] [Indexed: 11/25/2022] Open
Abstract
Wee1 kinase is a crucial negative regulator of Cdk1/cyclin B1 activity and is required for normal entry into and exit from mitosis. Wee1 activity can be chemically inhibited by the small molecule MK-1775, which is currently being tested in phase I/II clinical trials in combination with other anti-cancer drugs. MK-1775 promotes cancer cells to bypass the cell-cycle checkpoints and prematurely enter mitosis. In our study, we show premature mitotic cells that arise from MK-1775 treatment exhibited centromere fragmentation, a morphological feature of mitotic catastrophe that is characterized by centromeres and kinetochore proteins that co-cluster away from the condensed chromosomes. In addition to stimulating early mitotic entry, MK-1775 treatment also delayed mitotic exit. Specifically, cells treated with MK-1775 following release from G1/S or prometaphase arrested in mitosis. MK-1775 induced arrest occurred at metaphase and thus, cells required 12 times longer to transition into anaphase compared to controls. Consistent with an arrest in mitosis, MK-1775 treated prometaphase cells maintained high cyclin B1 and low phospho-tyrosine 15 Cdk1. Importantly, MK-1775 induced mitotic arrest resulted in cell death regardless the of cell-cycle phase prior to treatment suggesting that Wee1 inhibitors are also anti-mitotic agents. We found that paclitaxel enhances MK-1775 mediated cell killing. HeLa and different breast cancer cell lines (T-47D, MCF7, MDA-MB-468 and MDA-MB-231) treated with different concentrations of MK-1775 and low dose paclitaxel exhibited reduced cell survival compared to mono-treatments. Our data highlight a new potential strategy for enhancing MK-1775 mediated cell killing in breast cancer cells.
Collapse
Affiliation(s)
- Cody W Lewis
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2.,Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada T6G 1Z2.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada T6G 2J7
| | - Zhigang Jin
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2.,Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada T6G 1Z2.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada T6G 2J7
| | - Dawn Macdonald
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2.,Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada T6G 1Z2.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada T6G 2J7
| | - Wenya Wei
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2
| | - Xu Jing Qian
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2
| | - Won Shik Choi
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2
| | - Ruicen He
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2
| | - Xuejun Sun
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2.,Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada T6G 1Z2.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada T6G 2J7
| | - Gordon Chan
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2.,Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada T6G 1Z2.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada T6G 2J7
| |
Collapse
|
28
|
JNKs function as CDK4-activating kinases by phosphorylating CDK4 and p21. Oncogene 2017; 36:4349-4361. [PMID: 28368408 PMCID: PMC5537611 DOI: 10.1038/onc.2017.7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/16/2016] [Accepted: 01/11/2017] [Indexed: 12/12/2022]
Abstract
Cyclin D-CDK4/6 are the first cyclin-dependent kinase (CDK) complexes to be activated by mitogenic/oncogenic pathways. They have a central role in the cell multiplication decision and in its deregulation in cancer cells. We identified T172 phosphorylation of CDK4 rather than cyclin D accumulation as the distinctly regulated step determining CDK4 activation. This finding challenges the view that the only identified metazoan CDK-activating kinase, cyclin H-CDK7-Mat1 (CAK), which is constitutively active, is responsible for the activating phosphorylation of all cell cycle CDKs. We previously showed that T172 phosphorylation of CDK4 is conditioned by an adjacent proline (P173), which is not present in CDK6 and CDK1/2. Although CDK7 activity was recently shown to be required for CDK4 activation, we proposed that proline-directed kinases might specifically initiate the activation of CDK4. Here, we report that JNKs, but not ERK1/2 or CAK, can be direct CDK4-activating kinases for cyclin D-CDK4 complexes that are inactivated by p21-mediated stabilization. JNKs and ERK1/2 also phosphorylated p21 at S130 and T57, which might facilitate CDK7-dependent activation of p21-bound CDK4, however, mutation of these sites did not impair the phosphorylation of CDK4 by JNKs. In two selected tumor cells, two different JNK inhibitors inhibited the phosphorylation and activation of cyclin D1-CDK4-p21 but not the activation of cyclin D3-CDK4 that is mainly associated to p27. Specific inhibition by chemical genetics in MEFs confirmed the involvement of JNK2 in cyclin D1-CDK4 activation. Therefore, JNKs could be activating kinases for cyclin D1-CDK4 bound to p21, by independently phosphorylating both CDK4 and p21.
Collapse
|
29
|
de Gooijer MC, van den Top A, Bockaj I, Beijnen JH, Würdinger T, van Tellingen O. The G2 checkpoint-a node-based molecular switch. FEBS Open Bio 2017; 7:439-455. [PMID: 28396830 PMCID: PMC5377395 DOI: 10.1002/2211-5463.12206] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/09/2017] [Accepted: 01/18/2017] [Indexed: 12/20/2022] Open
Abstract
Tight regulation of the eukaryotic cell cycle is paramount to ensure genomic integrity throughout life. Cell cycle checkpoints are present in each phase of the cell cycle and prevent cell cycle progression when genomic integrity is compromised. The G2 checkpoint is an intricate signaling network that regulates the progression of G2 to mitosis (M). We propose here a node-based model of G2 checkpoint regulation, in which the action of the central CDK1-cyclin B1 node is determined by the concerted but opposing activities of the Wee1 and cell division control protein 25C (CDC25C) nodes. Phosphorylation of both Wee1 and CDC25C at specific sites determines their subcellular localization, driving them either toward activity within the nucleus or to the cytoplasm and subsequent ubiquitin-mediated proteasomal degradation. In turn, this subcellular balance of the Wee1 and CDC25C nodes is directed by the action of the PLK1 and CHK1 nodes via what we have termed the 'nuclear and cytoplasmic decision states' of Wee1 and CDC25C. The proposed node-based model provides an intelligible structure of the complex interactions that govern the decision to delay or continue G2/M progression. The model may also aid in predicting the effects of agents that target these G2 checkpoint nodes.
Collapse
Affiliation(s)
- Mark C. de Gooijer
- Division of Pharmacology/Mouse Cancer ClinicThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Arnout van den Top
- Division of Pharmacology/Mouse Cancer ClinicThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Irena Bockaj
- Division of Pharmacology/Mouse Cancer ClinicThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Jos H. Beijnen
- Department of Pharmacy and PharmacologyThe Netherlands Cancer Institute/Slotervaart HospitalAmsterdamThe Netherlands
- Division of Drug ToxicologyFaculty of PharmacyUtrecht UniversityThe Netherlands
- Division of Biomedical AnalysisFaculty of ScienceUtrecht UniversityThe Netherlands
| | - Thomas Würdinger
- Neuro‐oncology Research GroupDepartments of Neurosurgery and Pediatric Oncology/HematologyCancer Center AmsterdamVU University Medical CenterThe Netherlands
- Molecular Neurogenetics UnitDepartments of Neurology and RadiologyMassachusetts General HospitalBostonMAUSA
- Neuroscience ProgramHarvard Medical SchoolBostonMAUSA
| | - Olaf van Tellingen
- Division of Pharmacology/Mouse Cancer ClinicThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
30
|
Sakurikar N, Eastman A. Critical reanalysis of the methods that discriminate the activity of CDK2 from CDK1. Cell Cycle 2016; 15:1184-8. [PMID: 26986210 DOI: 10.1080/15384101.2016.1160983] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Cyclin dependent kinases 1 and 2 (CDK1 and CDK2) play crucial roles in regulating cell cycle progression from G1 to S, through S, and G2 to M phase. Both inhibition and aberrant activation of CDK1/2 can be detrimental to cancer cell growth. However, the tools routinely employed to discriminate between the activities of these 2 kinases do not have the selectivity commonly attributed to them. Activation of these kinases is often assayed as a decrease of the inhibitory tyrosine-15 phosphorylation, yet the antibodies used cannot discriminate between phosphorylated CDK1 and CDK2. Inhibitors of these kinases, while partially selective against purified kinases, may lack selectivity when applied to intact cells. High levels of cyclin E are often considered a marker of increased CDK2 activity, yet active CDK2 targets cyclin E for degradation, hence high levels usually reflect inactive CDK2. Finally, inhibition of CDK2 does not arrest cells in S phase suggesting CDK2 is not required for S phase progression. Furthermore, activation of CDK2 in S phase can rapidly induce DNA double-strand breaks in some cell lines. The misunderstandings associated with the use of these tools has led to misinterpretation of results. In this review, we highlight these challenges in the field.
Collapse
Affiliation(s)
- Nandini Sakurikar
- a Department of Pharmacology and Toxicology, and Norris Cotton Cancer Center , Geisel School of Medicine at Dartmouth , Lebanon , NH , USA
| | - Alan Eastman
- a Department of Pharmacology and Toxicology, and Norris Cotton Cancer Center , Geisel School of Medicine at Dartmouth , Lebanon , NH , USA
| |
Collapse
|
31
|
Risal S, Adhikari D, Liu K. Animal Models for Studying the In Vivo Functions of Cell Cycle CDKs. Methods Mol Biol 2016; 1336:155-66. [PMID: 26231715 DOI: 10.1007/978-1-4939-2926-9_13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multiple Cdks (Cdk4, Cdk6, and Cdk2) and a mitotic Cdk (Cdk1) are involved in cell cycle progression in mammals. Cyclins, Cdk inhibitors, and phosphorylations (both activating and inhibitory) at different cellular levels tightly modulate the activities of these kinases. Based on the results of biochemical studies, it was long believed that different Cdks functioned at specific stages during cell cycle progression. However, deletion of all three interphase Cdks in mice affected cell cycle entry and progression only in certain specialized cells such as hematopoietic cells, beta cells of the pancreas, pituitary lactotrophs, and cardiomyocytes. These genetic experiments challenged the prevailing biochemical model and established that Cdks function in a cell-specific, but not a stage-specific, manner during cell cycle entry and the progression of mitosis. Recent in vivo studies have further established that Cdk1 is the only Cdk that is both essential and sufficient for driving the resumption of meiosis during mouse oocyte maturation. These genetic studies suggest a minimal-essential cell cycle model in which Cdk1 is the central regulator of cell cycle progression. Cdk1 can compensate for the loss of the interphase Cdks by forming active complexes with A-, B-, E-, and D-type Cyclins in a stepwise manner. Thus, Cdk1 plays an essential role in both mitosis and meiosis in mammals, whereas interphase Cdks are dispensable.
Collapse
Affiliation(s)
- Sanjiv Risal
- Department of Chemistry and Molecular Biology, University of Gothenburg, 462, 405 30, Gothenburg, Sweden,
| | | | | |
Collapse
|
32
|
Li R, Liao G, Nirujogi RS, Pinto SM, Shaw PG, Huang TC, Wan J, Qian J, Gowda H, Wu X, Lv DW, Zhang K, Manda SS, Pandey A, Hayward SD. Phosphoproteomic Profiling Reveals Epstein-Barr Virus Protein Kinase Integration of DNA Damage Response and Mitotic Signaling. PLoS Pathog 2015; 11:e1005346. [PMID: 26714015 PMCID: PMC4699913 DOI: 10.1371/journal.ppat.1005346] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/28/2015] [Indexed: 12/21/2022] Open
Abstract
Epstein-Barr virus (EBV) is etiologically linked to infectious mononucleosis and several human cancers. EBV encodes a conserved protein kinase BGLF4 that plays a key role in the viral life cycle. To provide new insight into the host proteins regulated by BGLF4, we utilized stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics to compare site-specific phosphorylation in BGLF4-expressing Akata B cells. Our analysis revealed BGLF4-mediated hyperphosphorylation of 3,046 unique sites corresponding to 1,328 proteins. Frequency analysis of these phosphosites revealed a proline-rich motif signature downstream of BGLF4, indicating a broader substrate recognition for BGLF4 than its cellular ortholog cyclin-dependent kinase 1 (CDK1). Further, motif analysis of the hyperphosphorylated sites revealed enrichment in ATM, ATR and Aurora kinase substrates while functional analyses revealed significant enrichment of pathways related to the DNA damage response (DDR), mitosis and cell cycle. Phosphorylation of proteins associated with the mitotic spindle assembly checkpoint (SAC) indicated checkpoint activation, an event that inactivates the anaphase promoting complex/cyclosome, APC/C. Furthermore, we demonstrated that BGLF4 binds to and directly phosphorylates the key cellular proteins PP1, MPS1 and CDC20 that lie upstream of SAC activation and APC/C inhibition. Consistent with APC/C inactivation, we found that BGLF4 stabilizes the expression of many known APC/C substrates. We also noted hyperphosphorylation of 22 proteins associated the nuclear pore complex, which may contribute to nuclear pore disassembly and SAC activation. A drug that inhibits mitotic checkpoint activation also suppressed the accumulation of extracellular EBV virus. Taken together, our data reveal that, in addition to the DDR, manipulation of mitotic kinase signaling and SAC activation are mechanisms associated with lytic EBV replication. All MS data have been deposited in the ProteomeXchange with identifier PXD002411 (http://proteomecentral.proteomexchange.org/dataset/PXD002411). Epstein-Barr virus (EBV) is a herpesvirus that is associated with B cell and epithelial human cancers. Herpesviruses encode a protein kinase which is an important regulator of lytic virus replication and is consequently a target for anti-viral drug development. The EBV genome encodes for a serine/threonine protein kinase called BGLF4. Previous work on BGLF4 has largely focused on its cyclin-dependent kinase 1 (CDK1)-like activity. The range of BGLF4 cellular substrates and the full impact of BGLF4 on the intracellular microenvironment still remain to be elucidated. Here, we utilized unbiased quantitative phosphoproteomic approach to dissect the changes in the cellular phosphoproteome that are mediated by BGLF4. Our MS analyses revealed extensive hyperphosphorylation of substrates that are normally targeted by CDK1, Ataxia telangiectasia mutated (ATM), Ataxia telangiectasia and Rad3-related (ATR) proteins and Aurora kinases. The up-regulated phosphoproteins were functionally linked to the DNA damage response, mitosis and cell cycle pathways. Our data demonstrate widespread changes in the cellular phosphoproteome that occur upon BGLF4 expression and suggest that manipulation of the DNA damage and mitotic kinase signaling pathways are central to efficient EBV lytic replication.
Collapse
Affiliation(s)
- Renfeng Li
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail: (RL); (AP); (SDH)
| | - Gangling Liao
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Raja Sekhar Nirujogi
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Sneha M. Pinto
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Patrick G. Shaw
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tai-Chung Huang
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jun Wan
- Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jiang Qian
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Xinyan Wu
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Dong-Wen Lv
- Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kun Zhang
- Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Srikanth S. Manda
- Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Akhilesh Pandey
- Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana, United States of America
- * E-mail: (RL); (AP); (SDH)
| | - S. Diane Hayward
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (RL); (AP); (SDH)
| |
Collapse
|
33
|
Toledo CM, Ding Y, Hoellerbauer P, Davis RJ, Basom R, Girard EJ, Lee E, Corrin P, Hart T, Bolouri H, Davison J, Zhang Q, Hardcastle J, Aronow BJ, Plaisier CL, Baliga NS, Moffat J, Lin Q, Li XN, Nam DH, Lee J, Pollard SM, Zhu J, Delrow JJ, Clurman BE, Olson JM, Paddison PJ. Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells. Cell Rep 2015; 13:2425-2439. [PMID: 26673326 PMCID: PMC4691575 DOI: 10.1016/j.celrep.2015.11.021] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/12/2015] [Accepted: 11/03/2015] [Indexed: 12/31/2022] Open
Abstract
To identify therapeutic targets for glioblastoma (GBM), we performed genome-wide CRISPR-Cas9 knockout (KO) screens in patient-derived GBM stem-like cells (GSCs) and human neural stem/progenitors (NSCs), non-neoplastic stem cell controls, for genes required for their in vitro growth. Surprisingly, the vast majority GSC-lethal hits were found outside of molecular networks commonly altered in GBM and GSCs (e.g., oncogenic drivers). In vitro and in vivo validation of GSC-specific targets revealed several strong hits, including the wee1-like kinase, PKMYT1/Myt1. Mechanistic studies demonstrated that PKMYT1 acts redundantly with WEE1 to inhibit cyclin B-CDK1 activity via CDK1-Y15 phosphorylation and to promote timely completion of mitosis in NSCs. However, in GSCs, this redundancy is lost, most likely as a result of oncogenic signaling, causing GBM-specific lethality.
Collapse
Affiliation(s)
- Chad M Toledo
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Yu Ding
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Pia Hoellerbauer
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Ryan J Davis
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ryan Basom
- Genomics and Bioinformatics Shared Resources, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Emily J Girard
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Eunjee Lee
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Philip Corrin
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Traver Hart
- Department of Molecular Genetics, University of Toronto and Donnelly Centre, Toronto, ON M5S3E1, Canada; Canadian Institute for Advanced Research, Toronto, ON M5G1Z8, Canada
| | - Hamid Bolouri
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jerry Davison
- Genomics and Bioinformatics Shared Resources, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Qing Zhang
- Genomics and Bioinformatics Shared Resources, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Justin Hardcastle
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Bruce J Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | - Jason Moffat
- Department of Molecular Genetics, University of Toronto and Donnelly Centre, Toronto, ON M5S3E1, Canada; Canadian Institute for Advanced Research, Toronto, ON M5G1Z8, Canada
| | - Qi Lin
- Brain Tumor Program, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiao-Nan Li
- Brain Tumor Program, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 135-710, Korea
| | - Jeongwu Lee
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44192, USA
| | - Steven M Pollard
- Edinburgh CRUK Cancer Research Centre and MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Jun Zhu
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeffery J Delrow
- Genomics and Bioinformatics Shared Resources, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Bruce E Clurman
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - James M Olson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Patrick J Paddison
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
34
|
Ayeni JO, Campbell SD. "Ready, set, go": checkpoint regulation by Cdk1 inhibitory phosphorylation. Fly (Austin) 2015; 8:140-7. [PMID: 25483135 DOI: 10.4161/19336934.2014.969147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
ABSTRACT Cell cycle checkpoints prevent mitosis from occurring before DNA replication and repair are completed during S and G2 phases. The checkpoint mechanism involves inhibitory phosphorylation of Cdk1, a conserved kinase that regulates the onset of mitosis. Metazoans have two distinct Cdk1 inhibitory kinases with specialized developmental functions: Wee1 and Myt1. Ayeni et al used transgenic Cdk1 phospho-acceptor mutants to analyze how the distinct biochemical properties of these kinases affected their functions. They concluded from their results that phosphorylation of Cdk1 on Y15 was necessary and sufficient for G2/M checkpoint arrest in imaginal wing discs, whereas phosphorylation on T14 promoted chromosome stability by a different mechanism. A curious relationship was also noted between Y15 inhibitory phosphorylation and T161 activating phosphorylation. These unexpected complexities in Cdk1 inhibitory phosphorylation demonstrate that the checkpoint mechanism is not a simple binary "off/on" switch, but has at least three distinct states: "Ready", to prevent chromosome damage and apoptosis, "Set", for developmentally regulated G2 phase arrest, and "Go", when Cdc25 phosphatases remove inhibitory phosphates to trigger Cdk1 activation at the G2/M transition.
Collapse
Affiliation(s)
- J O Ayeni
- a Department of Biological Sciences ; University of Alberta ; Edmonton , AB , Canada
| | | |
Collapse
|
35
|
NSun2 Promotes Cell Growth via Elevating Cyclin-Dependent Kinase 1 Translation. Mol Cell Biol 2015; 35:4043-52. [PMID: 26391950 DOI: 10.1128/mcb.00742-15] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/14/2015] [Indexed: 11/20/2022] Open
Abstract
The tRNA methytransferase NSun2 promotes cell proliferation, but the molecular mechanism has not been elucidated. Here, we report that NSun2 regulates cyclin-dependent kinase 1 (CDK1) expression in a cell cycle-dependent manner. Knockdown of NSun2 decreased the CDK1 protein level, while overexpression of NSun2 elevated it without altering CDK1 mRNA levels. Further studies revealed that NSun2 methylated CDK1 mRNA in vitro and in cells and that methylation by NSun2 enhanced CDK1 translation. Importantly, NSun2-mediated regulation of CDK1 expression had an impact on the cell division cycle. These results provide new insight into the regulation of CDK1 during the cell division cycle.
Collapse
|
36
|
Caspari T, Hilditch V. Two Distinct Cdc2 Pools Regulate Cell Cycle Progression and the DNA Damage Response in the Fission Yeast S.pombe. PLoS One 2015; 10:e0130748. [PMID: 26131711 PMCID: PMC4488491 DOI: 10.1371/journal.pone.0130748] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/23/2015] [Indexed: 01/28/2023] Open
Abstract
The activity of Cdc2 (CDK1) kinase, which coordinates cell cycle progression and DNA break repair, is blocked upon its phosphorylation at tyrosine 15 (Y15) by Wee1 kinase in the presence of DNA damage. How Cdc2 can support DNA repair whilst being inactivated by the DNA damage checkpoint remains to be explained. Human CDK1 is phosphorylated by Myt1 kinase at threonine 14 (T14) close to its ATP binding site before being modified at threonine 161 (T167Sp) in its T-loop by the CDK-activating kinase (CAK). While modification of T161 promotes association with the cyclin partner, phosphorylation of T14 inhibits the CDK1-cyclin complex. This inhibition is further enforced by the modification of Y15 by Wee1 in the presence of DNA lesions. In S.pombe, the dominant inhibition of Cdc2 is provided by the phosphorylation of Y15 and only a small amount of Cdc2 is modified at T14 when cells are in S phase. Unlike human cells, both inhibitory modifications are executed by Wee1. Using the novel IEFPT technology, which combines isoelectric focusing (IEF) with Phos-tag SDS electrophoresis (PT), we report here that S.pombe Cdc2 kinase exists in seven forms. While five forms are phosphorylated, two species are not. Four phospho-forms associate with cyclin B (Cdc13) of which only two are modified at Y15 by Wee1. Interestingly, only one Y15-modified species carries also the T14 modification. The fifth phospho-form has a low affinity for cyclin B and is neither Y15 nor T14 modified. The two unphosphorylated forms may contribute directly to the DNA damage response as only they associate with the DNA damage checkpoint kinase Chk1. Interestingly, cyclin B is also present in the unphosphorylated pool. We also show that the G146D mutation in Cdc2.1w, which renders Cdc2 insensitive to Wee1 inhibition, is aberrantly modified in a Wee1-dependent manner. In conclusion, our work adds support to the idea that two distinct Cdc2 pools regulate cell cycle progression and the response to DNA damage.
Collapse
Affiliation(s)
- Thomas Caspari
- Genome Biology Group, School of Medical Sciences, Bangor University, Bangor, LL57 2UW, Wales, United Kingdom
- * E-mail:
| | - Victoria Hilditch
- Genome Biology Group, School of Medical Sciences, Bangor University, Bangor, LL57 2UW, Wales, United Kingdom
| |
Collapse
|
37
|
Xu H, Zhou Y, Coughlan KA, Ding Y, Wang S, Wu Y, Song P, Zou MH. AMPKα1 deficiency promotes cellular proliferation and DNA damage via p21 reduction in mouse embryonic fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:65-73. [PMID: 25307521 DOI: 10.1016/j.bbamcr.2014.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/22/2014] [Accepted: 10/01/2014] [Indexed: 10/24/2022]
Abstract
Emerging evidence suggests that activation of adenosine monophosphate-activated protein kinase (AMPK), an energy gauge and redox sensor, controls the cell cycle and protects against DNA damage. However, the molecular mechanisms by which AMPKα isoform regulates DNA damage remain largely unknown. The aim of this study was to determine if AMPKα deletion contributes to cellular hyperproliferation by reducing p21(WAF1/Cip1) (p21) expression thereby leading to accumulated DNA damage. The markers for DNA damage, cell cycle proteins, and apoptosis were monitored in cultured mouse embryonic fibroblasts (MEFs) isolated from wild type (WT, C57BL/6J), AMPKα1, or AMPKα2 homozygous deficient (AMPKα1(-/-), AMPKα2(-/-)) mice by Western blot, flow cytometry, and cellular immunofluorescence staining. Deletion of AMPKα1, the predominant AMPKα isoform, but not AMPKα2 in immortalized MEFs led to spontaneous DNA double-strand breaks (DSB) which corresponded to repair protein p53-binding protein 1 (53BP1) foci formation and subsequent apoptosis. Furthermore, AMPKα1 localizes to chromatin and AMPKα1 deletion down-regulates cyclin-dependent kinase inhibitor, p21, an important protein that plays a role in decreasing the incidence of spontaneous DSB via inhibition of cell proliferation. In addition, AMPKα1 null cells exhibited enhanced cell proliferation. Finally, p21 overexpression partially blocked the cellular hyperproliferation of AMPKα1-deleted MEFs via the inhibition of cyclin-dependent kinase 2 (CDK2). Taken together, our results suggest that AMPKα1 plays a fundamental role in controlling the cell cycle thereby affecting DNA damage and cellular apoptosis.
Collapse
Affiliation(s)
- Hairong Xu
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yanhong Zhou
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Key Laboratory of Hubei Province on Cardio-Cerebral Diseases, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Kathleen A Coughlan
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ye Ding
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Shaobin Wang
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yue Wu
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ping Song
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Ming-Hui Zou
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
38
|
Pandey AN, Chaube SK. A moderate increase of hydrogen peroxide level is beneficial for spontaneous resumption of meiosis from diplotene arrest in rat oocytes cultured in vitro. Biores Open Access 2014; 3:183-91. [PMID: 25126482 PMCID: PMC4120648 DOI: 10.1089/biores.2014.0013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Hydrogen peroxide (H2O2) acts as a signaling molecule and modulates various aspects of cell functions in a wide variety of cells including mammalian germ cells. We examined whether a decreased level of intra-oocyte cyclic 3′,5′-adenosine monophosphate (cAMP) leads to accumulation of H2O2, and if so, whether a moderate increase of H2O2 inactivates maturation promoting factor (MPF) during spontaneous resumption of meiosis in rat oocytes cultured in vitro. Removal of cumulus cells and culture of denuded oocytes in vitro significantly decreased oocyte cAMP level and led to spontaneous meiotic resumption from diplotene arrest. The reduced oocyte cAMP level was associated with an increased oocyte H2O2 level and reduced catalase activity. Exogenous supplementation of H2O2 induced meiotic resumption from diplotene arrest in a concentration- and time-dependent manner in oocytes treated with 0.1 mM of 3-isobutyl-1-methylxanthine, while dibutyryl-cAMP and 3-t-butyl-4-hydroxyanisole inhibited the stimulatory effect of exogenous H2O2. The increased intra-oocyte H2O2 level induced Thr-14/Tyr-15 phosphorylation of CDK1, while Thr-161 phosphorylated CDK1 and cyclin B1 levels were reduced significantly. These results suggest that a decreased level of intra-oocyte cAMP is associated with an increased level of H2O2. The increased level of H2O2 was associated with high phosphorylation of Thr-14/Tyr-15 and dephosphorylation of the Thr-161 residue of CDK1 and reduced the cyclin B1 level, which eventually inactivated MPF. The MPF inactivation triggered spontaneous resumption of meiosis from diplotene arrest in rat oocytes cultured in vitro.
Collapse
Affiliation(s)
- Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Banaras Hindu University , Varanasi, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Banaras Hindu University , Varanasi, India
| |
Collapse
|
39
|
Orally active microtubule-targeting agent, MPT0B271, for the treatment of human non-small cell lung cancer, alone and in combination with erlotinib. Cell Death Dis 2014; 5:e1162. [PMID: 24722287 PMCID: PMC5424107 DOI: 10.1038/cddis.2014.128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/15/2014] [Accepted: 02/28/2014] [Indexed: 12/14/2022]
Abstract
Microtubule-binding agents, such as taxanes and vinca alkaloids, are used in the treatment of cancer. The limitations of these treatments, such as resistance to therapy and the need for intravenous administration, have encouraged the development of new agents. MPT0B271 (N-[1-(4-Methoxy-benzenesulfonyl)-2,3-dihydro-1H-indol-7-yl]-1-oxy-isonicotinamide), an orally active microtubule-targeting agent, is a completely synthetic compound that possesses potent anticancer effects in vitro and in vivo. Tubulin polymerization assay and immunofluorescence experiment showed that MPT0B271 caused depolymerization of tubulin at both molecular and cellular levels. MPT0B271 reduced cell growth and viability at nanomolar concentrations in numerous cancer cell lines, including a multidrug-resistant cancer cell line NCI/ADR-RES. Further studies indicated that MPT0B271 is not a substrate of P-glycoprotein (P-gp), as determined by flow cytometric analysis of rhodamine-123 (Rh-123) dye efflux and the calcein acetoxymethyl ester (calcein AM) assay. MPT0B271 also caused G2/M cell-cycle arrest, accompanied by the up-regulation of cyclin B1, p-Thr161 Cdc2/p34, serine/threonine kinases polo-like kinase 1, aurora kinase A and B and the downregulation of Cdc25C and p-Tyr15 Cdc2/p34 protein levels. The appearance of MPM2 and the nuclear translocation of cyclin B1 denoted M phase arrest in MPT0B271-treated cells. Moreover, MPT0B271 induced cell apoptosis in a concentration-dependent manner; it also reduced the expression of Bcl-2, Bcl-xL, and Mcl-1 and increased the cleavage of caspase-3 and -7 and poly (ADP-ribose) polymerase (PARP). Finally, this study demonstrated that MPT0B271 in combination with erlotinib significantly inhibits the growth of the human non-small cell lung cancer A549 cells as compared with erlotinib treatment alone, both in vitro and in vivo. These findings identify MPT0B271 as a promising new tubulin-binding compound for the treatment of various cancers.
Collapse
|
40
|
Dual phosphorylation of cdk1 coordinates cell proliferation with key developmental processes in Drosophila. Genetics 2013; 196:197-210. [PMID: 24214341 DOI: 10.1534/genetics.113.156281] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Eukaryotic organisms use conserved checkpoint mechanisms that regulate Cdk1 by inhibitory phosphorylation to prevent mitosis from interfering with DNA replication or repair. In metazoans, this checkpoint mechanism is also used for coordinating mitosis with dynamic developmental processes. Inhibitory phosphorylation of Cdk1 is catalyzed by Wee1 kinases that phosphorylate tyrosine 15 (Y15) and dual-specificity Myt1 kinases found only in metazoans that phosphorylate Y15 and the adjacent threonine (T14) residue. Despite partially redundant roles in Cdk1 inhibitory phosphorylation, Wee1 and Myt1 serve specialized developmental functions that are not well understood. Here, we expressed wild-type and phospho-acceptor mutant Cdk1 proteins to investigate how biochemical differences in Cdk1 inhibitory phosphorylation influence Drosophila imaginal development. Phosphorylation of Cdk1 on Y15 appeared to be crucial for developmental and DNA damage-induced G2-phase checkpoint arrest, consistent with other evidence that Myt1 is the major Y15-directed Cdk1 inhibitory kinase at this stage of development. Expression of non-inhibitable Cdk1 also caused chromosome defects in larval neuroblasts that were not observed with Cdk1(Y15F) mutant proteins that were phosphorylated on T14, implicating Myt1 in a novel mechanism promoting genome stability. Collectively, these results suggest that dual inhibitory phosphorylation of Cdk1 by Myt1 serves at least two functions during development. Phosphorylation of Y15 is essential for the premitotic checkpoint mechanism, whereas T14 phosphorylation facilitates accumulation of dually inhibited Cdk1-Cyclin B complexes that can be rapidly activated once checkpoint-arrested G2-phase cells are ready for mitosis.
Collapse
|
41
|
Bisteau X, Paternot S, Colleoni B, Ecker K, Coulonval K, De Groote P, Declercq W, Hengst L, Roger PP. CDK4 T172 phosphorylation is central in a CDK7-dependent bidirectional CDK4/CDK2 interplay mediated by p21 phosphorylation at the restriction point. PLoS Genet 2013; 9:e1003546. [PMID: 23737759 PMCID: PMC3667761 DOI: 10.1371/journal.pgen.1003546] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/22/2013] [Indexed: 01/24/2023] Open
Abstract
Cell cycle progression, including genome duplication, is orchestrated by cyclin-dependent kinases (CDKs). CDK activation depends on phosphorylation of their T-loop by a CDK–activating kinase (CAK). In animals, the only known CAK for CDK2 and CDK1 is cyclin H-CDK7, which is constitutively active. Therefore, the critical activation step is dephosphorylation of inhibitory sites by Cdc25 phosphatases rather than unrestricted T-loop phosphorylation. Homologous CDK4 and CDK6 bound to cyclins D are master integrators of mitogenic/oncogenic signaling cascades by initiating the inactivation of the central oncosuppressor pRb and cell cycle commitment at the restriction point. Unlike the situation in CDK1 and CDK2 cyclin complexes, and in contrast to the weak but constitutive T177 phosphorylation of CDK6, we have identified the T-loop phosphorylation at T172 as the highly regulated step determining CDK4 activity. Whether both CDK4 and CDK6 phosphorylations are catalyzed by CDK7 remains unclear. To answer this question, we took a chemical-genetics approach by using analogue-sensitive CDK7(as/as) mutant HCT116 cells, in which CDK7 can be specifically inhibited by bulky adenine analogs. Intriguingly, CDK7 inhibition prevented activating phosphorylations of CDK4/6, but for CDK4 this was at least partly dependent on its binding to p21cip1. In response to CDK7 inhibition, p21-binding to CDK4 increased concomitantly with disappearance of the most abundant phosphorylation of p21, which we localized at S130 and found to be catalyzed by both CDK4 and CDK2. The S130A mutation of p21 prevented the activating CDK4 phosphorylation, and inhibition of CDK4/6 and CDK2 impaired phosphorylations of both p21 and p21-bound CDK4. Therefore, specific CDK7 inhibition revealed the following: a crucial but partly indirect CDK7 involvement in phosphorylation/activation of CDK4 and CDK6; existence of CDK4-activating kinase(s) other than CDK7; and novel CDK7-dependent positive feedbacks mediated by p21 phosphorylation by CDK4 and CDK2 to sustain CDK4 activation, pRb inactivation, and restriction point passage. In the cell cycle, duplication of all the cellular components and subsequent cell division are governed by a family of protein kinases associated with cyclins (CDKs). Related CDK4 and CDK6 bound to cyclins D are the first CDKs to be activated in response to cell proliferation signals. They thus play a central role in the cell multiplication decision, especially in most cancer cells in which CDK4 activity is highly deregulated. We have identified the activating T172 phosphorylation instead of cyclin D expression as the highly regulated step determining CDK4 activation. This finding contrasts with the prevalent view that the only identified metazoan CDK-activating kinase, CDK7, is constitutively active. By using human cells genetically engineered for specific chemical inhibition of CDK7, we found that CDK7 activity was indeed required for CDK4 activation. However, this dependence was conditioned by CDK4 binding to the CDK inhibitory protein p21, which increased in response to CDK7 inhibition. Further investigation revealed that CDK7 inhibition affects a major phosphorylation of p21, which we found to be required for CDK4 activation and performed by CDK4 itself and CDK2. Thus, depending on CDK7 activity, CDK4 and CDK2 facilitate CDK4 activation, generating novel positive feedbacks involved in the cell cycle decision.
Collapse
Affiliation(s)
- Xavier Bisteau
- WELBIO and Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Sabine Paternot
- WELBIO and Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Bianca Colleoni
- WELBIO and Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Karin Ecker
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Katia Coulonval
- WELBIO and Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Philippe De Groote
- Department for Molecular Biomedical Research, VIB, and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Wim Declercq
- Department for Molecular Biomedical Research, VIB, and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ludger Hengst
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Pierre P. Roger
- WELBIO and Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
- * E-mail:
| |
Collapse
|
42
|
Abstract
Cyclin-dependent kinases (CDKs) play essential roles in cell proliferation and gene expression. Although distinct sets of CDKs work in cell division and transcription by RNA polymerase II (Pol II), they share a CDK-activating kinase (CAK), which is itself a CDK-Cdk7-in metazoans. Thus a unitary CDK network controls and may coordinate cycles of cell division and gene expression. Recent work reveals decisive roles for Cdk7 in both pathways. The CAK function of Cdk7 helps determine timing of activation and cyclin-binding preferences of different CDKs during the cell cycle. In the transcription cycle, Cdk7 is both an effector kinase, which phosphorylates Pol II and other proteins and helps establish promoter-proximal pausing; and a CAK for Cdk9 (P-TEFb), which releases Pol II from the pause. By governing the transition from initiation to elongation, Cdk7, Cdk9 and their substrates influence expression of genes important for developmental and cell-cycle decisions, and ensure co-transcriptional maturation of Pol II transcripts. Cdk7 engaged in transcription also appears to be regulated by phosphorylation within its own activation (T) loop. Here I review recent studies of CDK regulation in cell division and gene expression, and propose a model whereby mitogenic signals trigger a cascade of CDK T-loop phosphorylation that drives cells past the restriction (R) point, when continued cell-cycle progression becomes growth factor-independent. Because R-point control is frequently deregulated in cancer, the CAK-CDK pathway is an attractive target for chemical inhibition aimed at impeding the inappropriate commitment to cell division.
Collapse
|
43
|
Wohlbold L, Merrick KA, De S, Amat R, Kim JH, Larochelle S, Allen JJ, Zhang C, Shokat KM, Petrini JHJ, Fisher RP. Chemical genetics reveals a specific requirement for Cdk2 activity in the DNA damage response and identifies Nbs1 as a Cdk2 substrate in human cells. PLoS Genet 2012; 8:e1002935. [PMID: 22927831 PMCID: PMC3426557 DOI: 10.1371/journal.pgen.1002935] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 07/17/2012] [Indexed: 12/20/2022] Open
Abstract
The cyclin-dependent kinases (CDKs) that promote cell-cycle progression are targets for negative regulation by signals from damaged or unreplicated DNA, but also play active roles in response to DNA lesions. The requirement for activity in the face of DNA damage implies that there are mechanisms to insulate certain CDKs from checkpoint inhibition. It remains difficult, however, to assign precise functions to specific CDKs in protecting genomic integrity. In mammals, Cdk2 is active throughout S and G2 phases, but Cdk2 protein is dispensable for survival, owing to compensation by other CDKs. That plasticity obscured a requirement for Cdk2 activity in proliferation of human cells, which we uncovered by replacement of wild-type Cdk2 with a mutant version sensitized to inhibition by bulky adenine analogs. Here we show that transient, selective inhibition of analog-sensitive (AS) Cdk2 after exposure to ionizing radiation (IR) enhances cell-killing. In extracts supplemented with an ATP analog used preferentially by AS kinases, Cdk2(as) phosphorylated the Nijmegen Breakage Syndrome gene product Nbs1-a component of the conserved Mre11-Rad50-Nbs1 complex required for normal DNA damage repair and checkpoint signaling-dependent on a consensus CDK recognition site at Ser432. In vivo, selective inhibition of Cdk2 delayed and diminished Nbs1-Ser432 phosphorylation during S phase, and mutation of Ser432 to Ala or Asp increased IR-sensitivity. Therefore, by chemical genetics, we uncovered both a non-redundant requirement for Cdk2 activity in response to DNA damage and a specific target of Cdk2 within the DNA repair machinery.
Collapse
Affiliation(s)
- Lara Wohlbold
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Karl A. Merrick
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
- Program in Biochemistry and Program in Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, New York, United States of America
| | - Saurav De
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Ramon Amat
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Jun Hyun Kim
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Stéphane Larochelle
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Jasmina J. Allen
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Chao Zhang
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Kevan M. Shokat
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - John H. J. Petrini
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Robert P. Fisher
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| |
Collapse
|