1
|
Oh Y, Kim S, Kim Y, Kim H, Jang D, Shin S, Lee SJ, Kim J, Lee SE, Oh J, Yang Y, Kim D, Jung HR, Kim S, Kim J, Min K, Cho B, Seo H, Han D, Park H, Cho SY. Genome-wide CRISPR screening identifies tyrosylprotein sulfotransferase-2 as a target for augmenting anti-PD1 efficacy. Mol Cancer 2024; 23:155. [PMID: 39095793 PMCID: PMC11295332 DOI: 10.1186/s12943-024-02068-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Immune checkpoint therapy (ICT) provides durable responses in select cancer patients, yet resistance remains a significant challenge, prompting the exploration of underlying molecular mechanisms. Tyrosylprotein sulfotransferase-2 (TPST2), known for its role in protein tyrosine O-sulfation, has been suggested to modulate the extracellular protein-protein interactions, but its specific role in cancer immunity remains largely unexplored. METHODS To explore tumor cell-intrinsic factors influencing anti-PD1 responsiveness, we conducted a pooled loss-of-function genetic screen in humanized mice engrafted with human immune cells. The responsiveness of cancer cells to interferon-γ (IFNγ) was estimated by evaluating IFNγ-mediated induction of target genes, STAT1 phosphorylation, HLA expression, and cell growth suppression. The sulfotyrosine-modified target gene of TPST2 was identified by co-immunoprecipitation and mass spectrometry. The in vivo effects of TPST2 inhibition were evaluated using mouse syngeneic tumor models and corroborated by bulk and single-cell RNA sequencing analyses. RESULTS Through in vivo genome-wide CRISPR screening, TPST2 loss-of-function emerged as a potential enhancer of anti-PD1 treatment efficacy. TPST2 suppressed IFNγ signaling by sulfating IFNγ receptor 1 at Y397 residue, while its downregulation boosted IFNγ-mediated signaling and antigen presentation. Depletion of TPST2 in cancer cells augmented anti-PD1 antibody efficacy in syngeneic mouse tumor models by enhancing tumor-infiltrating lymphocytes. RNA sequencing data revealed TPST2's inverse correlation with antigen presentation, and increased TPST2 expression is associated with poor prognosis and altered cancer immunity across cancer types. CONCLUSIONS We propose TPST2's novel role as a suppressor of cancer immunity and advocate for its consideration as a therapeutic target in ICT-based treatments.
Collapse
Affiliation(s)
- Yumi Oh
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Sujeong Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Korea
| | - Yunjae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Korea
| | - Hyun Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Korea
| | - Dongjun Jang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Seungjae Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Soo-Jin Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Jiwon Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Sang Eun Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Jaeik Oh
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Yoojin Yang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Dohee Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Hae Rim Jung
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Sangjin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Korea
| | - Jihui Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Korea
| | - Kyungchan Min
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Korea
| | - Beomki Cho
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Korea
| | - Hoseok Seo
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, 03080, Korea
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Dohyun Han
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, 03080, Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Hansoo Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Korea.
- Genome&Company, Suwon, 16229, Korea.
| | - Sung-Yup Cho
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea.
| |
Collapse
|
2
|
Jara O, Maripillán J, Momboisse F, Cárdenas AM, García IE, Martínez AD. Differential Regulation of Hemichannels and Gap Junction Channels by RhoA GTPase and Actin Cytoskeleton: A Comparative Analysis of Cx43 and Cx26. Int J Mol Sci 2024; 25:7246. [PMID: 39000353 PMCID: PMC11242593 DOI: 10.3390/ijms25137246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Connexins (Cxs) are transmembrane proteins that assemble into gap junction channels (GJCs) and hemichannels (HCs). Previous researches support the involvement of Rho GTPases and actin microfilaments in the trafficking of Cxs, formation of GJCs plaques, and regulation of channel activity. Nonetheless, it remains uncertain whether distinct types of Cxs HCs and GJCs respond differently to Rho GTPases or changes in actin polymerization/depolymerization dynamics. Our investigation revealed that inhibiting RhoA, a small GTPase that controls actin polymerization, or disrupting actin microfilaments with cytochalasin B (Cyto-B), resulted in reduced GJCs plaque size at appositional membranes and increased transport of HCs to non-appositional plasma membrane regions. Notably, these effects were consistent across different Cx types, since Cx26 and Cx43 exhibited similar responses, despite having distinct trafficking routes to the plasma membrane. Functional assessments showed that RhoA inhibition and actin depolymerization decreased the activity of Cx43 GJCs while significantly increasing HC activity. However, the functional status of GJCs and HCs composed of Cx26 remained unaffected. These results support the hypothesis that RhoA, through its control of the actin cytoskeleton, facilitates the transport of HCs to appositional cell membranes for GJCs formation while simultaneously limiting the positioning of free HCs at non-appositional cell membranes, independently of Cx type. This dynamic regulation promotes intercellular communications and reduces non-selective plasma membrane permeability through a Cx-type dependent mechanism, whereby the activity of Cx43 HCs and GJCs are differentially affected but Cx26 channels remain unchanged.
Collapse
Affiliation(s)
- Oscar Jara
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Jaime Maripillán
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
| | - Fanny Momboisse
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, 75013 Paris, France
| | - Ana María Cárdenas
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
| | - Isaac E García
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
- Laboratorio de Fisiología Molecular y Biofísica, Facultad de Odontología, Universidad de Valparaíso, Valparaíso 2360004, Chile
- Centro de Investigación en Ciencias Odontológicas y Médicas, CICOM, Universidad de Valparaíso, Valparaíso 2360004, Chile
| | - Agustín D Martínez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
| |
Collapse
|
3
|
Zlomuzica A, Plank L, Dere E. A new path to mental disorders: Through gap junction channels and hemichannels. Neurosci Biobehav Rev 2022; 142:104877. [PMID: 36116574 DOI: 10.1016/j.neubiorev.2022.104877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/20/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022]
Abstract
Behavioral disturbances related to emotional regulation, reward processing, cognition, sleep-wake regulation and activity/movement represent core symptoms of most common mental disorders. Increasing empirical and theoretical evidence suggests that normal functioning of these behavioral domains relies on fine graded coordination of neural and glial networks which are maintained and modulated by intercellular gap junction channels and unapposed pannexin or connexin hemichannels. Dysfunctions in these networks might contribute to the development and maintenance of psychopathological and neurobiological features associated with mental disorders. Here we review and discuss the evidence indicating a prominent role of gap junction channel and hemichannel dysfunction in core symptoms of mental disorders. We further discuss how the increasing knowledge on intercellular gap junction channels and unapposed pannexin or connexin hemichannels in the brain might lead to deeper mechanistic insight in common mental disorders and to the development of novel treatment approaches. We further attempt to exemplify what type of future research on this topic could be integrated into multidimensional approaches to understand and cure mental disorders.
Collapse
Affiliation(s)
- Armin Zlomuzica
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany.
| | - Laurin Plank
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany
| | - Ekrem Dere
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany; Sorbonne Université. Institut de Biologie Paris-Seine, (IBPS), Département UMR 8256: Adaptation Biologique et Vieillissement, UFR des Sciences de la Vie, Campus Pierre et Marie Curie, Bâtiment B, 9 quai Saint Bernard, F-75005 Paris, France.
| |
Collapse
|
4
|
Gap Junction-Dependent and -Independent Functions of Connexin43 in Biology. BIOLOGY 2022; 11:biology11020283. [PMID: 35205149 PMCID: PMC8869330 DOI: 10.3390/biology11020283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022]
Abstract
For the first time in animal evolution, the emergence of gap junctions allowed direct exchanges of cellular substances for communication between two cells. Innexin proteins constituted primordial gap junctions until the connexin protein emerged in deuterostomes and took over the gap junction function. After hundreds of millions of years of gene duplication, the connexin gene family now comprises 21 members in the human genome. Notably, GJA1, which encodes the Connexin43 protein, is one of the most widely expressed and commonly studied connexin genes. The loss of Gja1 in mice leads to swelling and a blockage of the right ventricular outflow tract and death of the embryos at birth, suggesting a vital role of Connexin43 gap junction in heart development. Since then, the importance of Connexin43-mediated gap junction function has been constantly expanded to other types of cells. Other than forming gap junctions, Connexin43 can also form hemichannels to release or uptake small molecules from the environment or even mediate many physiological processes in a gap junction-independent manner on plasma membranes. Surprisingly, Connexin43 also localizes to mitochondria in the cell, playing important roles in mitochondrial potassium import and respiration. At the molecular level, Connexin43 mRNA and protein are processed with very distinct mechanisms to yield carboxyl-terminal fragments with different sizes, which have their unique subcellular localization and distinct biological activities. Due to many exciting advancements in Connexin43 research, this review aims to start with a brief introduction of Connexin43 and then focuses on updating our knowledge of its gap junction-independent functions.
Collapse
|
5
|
Connexins in the Heart: Regulation, Function and Involvement in Cardiac Disease. Int J Mol Sci 2021; 22:ijms22094413. [PMID: 33922534 PMCID: PMC8122935 DOI: 10.3390/ijms22094413] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Connexins are a family of transmembrane proteins that play a key role in cardiac physiology. Gap junctional channels put into contact the cytoplasms of connected cardiomyocytes, allowing the existence of electrical coupling. However, in addition to this fundamental role, connexins are also involved in cardiomyocyte death and survival. Thus, chemical coupling through gap junctions plays a key role in the spreading of injury between connected cells. Moreover, in addition to their involvement in cell-to-cell communication, mounting evidence indicates that connexins have additional gap junction-independent functions. Opening of unopposed hemichannels, located at the lateral surface of cardiomyocytes, may compromise cell homeostasis and may be involved in ischemia/reperfusion injury. In addition, connexins located at non-canonical cell structures, including mitochondria and the nucleus, have been demonstrated to be involved in cardioprotection and in regulation of cell growth and differentiation. In this review, we will provide, first, an overview on connexin biology, including their synthesis and degradation, their regulation and their interactions. Then, we will conduct an in-depth examination of the role of connexins in cardiac pathophysiology, including new findings regarding their involvement in myocardial ischemia/reperfusion injury, cardiac fibrosis, gene transcription or signaling regulation.
Collapse
|
6
|
Meng L, Yan D. NLR-1/CASPR Anchors F-Actin to Promote Gap Junction Formation. Dev Cell 2020; 55:574-587.e3. [PMID: 33238150 DOI: 10.1016/j.devcel.2020.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/05/2020] [Accepted: 10/28/2020] [Indexed: 12/31/2022]
Abstract
Gap junctions are present in most tissues and play essential roles in various biological processes. However, we know surprisingly little about the molecular mechanisms underlying gap junction formation. Here, we uncover the essential role of a conserved EGF- and laminin-G-domain-containing protein nlr-1/CASPR in the regulation of gap junction formation in multiple tissues across different developmental stages in C. elegans. NLR-1 is located in the gap junction perinexus, a region adjacent to but not overlapping with gap junctions, and forms puncta before the clusters of gap junction channels appear on the membrane. We show that NLR-1 can directly bind to actin to recruit F-actin networks at the gap junction formation plaque, and the formation of F-actin patches plays a critical role in the assembly of gap junction channels. Our findings demonstrate that nlr-1/CASPR acts as an early stage signal for gap junction formation through anchoring of F-actin networks.
Collapse
Affiliation(s)
- Lingfeng Meng
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Dong Yan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Regeneration Next, and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
7
|
Beckmann A, Hainz N, Tschernig T, Meier C. Facets of Communication: Gap Junction Ultrastructure and Function in Cancer Stem Cells and Tumor Cells. Cancers (Basel) 2019; 11:cancers11030288. [PMID: 30823688 PMCID: PMC6468480 DOI: 10.3390/cancers11030288] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 12/28/2022] Open
Abstract
Gap junction proteins are expressed in cancer stem cells and non-stem cancer cells of many tumors. As the morphology and assembly of gap junction channels are crucial for their function in intercellular communication, one focus of our review is to outline the data on gap junction plaque morphology available for cancer cells. Electron microscopic studies and freeze-fracture analyses on gap junction ultrastructure in cancer are summarized. As the presence of gap junctions is relevant in solid tumors, we exemplarily outline their role in glioblastomas and in breast cancer. These were also shown to contain cancer stem cells, which are an essential cause of tumor onset and of tumor transmission into metastases. For these processes, gap junctional communication was shown to be important and thus we summarize, how the expression of gap junction proteins and the resulting communication between cancer stem cells and their surrounding cells contributes to the dissemination of cancer stem cells via blood or lymphatic vessels. Based on their importance for tumors and metastases, future cancer-specific therapies are expected to address gap junction proteins. In turn, gap junctions also seem to contribute to the unattainability of cancer stem cells by certain treatments and might thus contribute to therapeutic resistance.
Collapse
Affiliation(s)
- Anja Beckmann
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany.
| | - Nadine Hainz
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany.
| | - Thomas Tschernig
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany.
| | - Carola Meier
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany.
| |
Collapse
|
8
|
Beckmann A, Grißmer A, Wolf S, Recktenwald J, Meier C. Oxygen-Glucose Deprivation in Mouse Astrocytes is Associated with Ultrastructural Changes in Connexin 43 Gap Junctions. Neuroscience 2018; 397:67-79. [PMID: 30513376 DOI: 10.1016/j.neuroscience.2018.11.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 01/09/2023]
Abstract
In the intact brain, astrocytes play an important role in a number of physiological functions like spatial buffering of potassium, maintenance of calcium homeostasis, neurotransmitter release, regulation of the cerebral blood flow, and many more. As pathophysiological events upon hypoxic-ischemic brain injury include excitotoxicity by glutamate release as well as oxidative stress, astrocytes and their gap junction-based syncytium are of major relevance for regulating the extent of resulting brain damage. The gap junction protein Connexin (Cx) 43 contributes mainly to the astrocytic intercellular communication. As little is known about the ultrastructural assemblage of Cx43 and its changes in response to hypoxic events, we chose temporary oxygen and glucose deprivation with subsequent reoxygenation (OGD-R) as a metabolic inhibition model of hypoxia in primary murine astrocytes. Gap junction morphology and assembly/disintegration were analyzed at the ultrastructural level using freeze-fracture replica immunolabeling. The exposure of cultured astrocytes to short-term OGD-R resulted in the activation of ERK1/2 (p44/p42), downregulation of Cx43 protein expression, and the rearrangement of Cx43 particles within the cell membrane and within gap junctions. These changes in gap junction morphology were associated with phosphorylation of Cx43 at Serine 368. Analysis of the nearest-neighbor distance within gap junction plaques revealed the loosening of Cx43 particle clusters. Together with the observation of additional connexons being present in the vicinity of gap junction plaques after OGD-R treatment, our study indicates that changes in gap junction assembly are associated with the early phase of hypoxic cell damage.
Collapse
Affiliation(s)
- Anja Beckmann
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Saar, Germany
| | - Alexander Grißmer
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Saar, Germany
| | - Sandra Wolf
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Saar, Germany
| | - Johanna Recktenwald
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Saar, Germany
| | - Carola Meier
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Saar, Germany.
| |
Collapse
|
9
|
Dynamic intercellular transport modulates the spatial patterning of differentiation during early neural commitment. Nat Commun 2018; 9:4111. [PMID: 30291250 PMCID: PMC6173785 DOI: 10.1038/s41467-018-06693-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 09/17/2018] [Indexed: 01/01/2023] Open
Abstract
The initiation of heterogeneity within a population of phenotypically identical progenitors is a critical event for the onset of morphogenesis and differentiation patterning. Gap junction communication within multicellular systems produces complex networks of intercellular connectivity that result in heterogeneous distributions of intracellular signaling molecules. In this study, we investigate emergent systems-level behavior of the intercellular network within embryonic stem cell (ESC) populations and corresponding spatial organization during early neural differentiation. An agent-based model incorporates experimentally-determined parameters to yield complex transport networks for delivery of pro-differentiation cues between neighboring cells, reproducing the morphogenic trajectories during retinoic acid-accelerated mouse ESC differentiation. Furthermore, the model correctly predicts the delayed differentiation and preserved spatial features of the morphogenic trajectory that occurs in response to intercellular perturbation. These findings suggest an integral role of gap junction communication in the temporal coordination of emergent patterning during early differentiation and neural commitment of pluripotent stem cells.
Collapse
|
10
|
Nagy JI, Pereda AE, Rash JE. Electrical synapses in mammalian CNS: Past eras, present focus and future directions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:102-123. [PMID: 28577972 PMCID: PMC5705454 DOI: 10.1016/j.bbamem.2017.05.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 12/19/2022]
Abstract
Gap junctions provide the basis for electrical synapses between neurons. Early studies in well-defined circuits in lower vertebrates laid the foundation for understanding various properties conferred by electrical synaptic transmission. Knowledge surrounding electrical synapses in mammalian systems unfolded first with evidence indicating the presence of gap junctions between neurons in various brain regions, but with little appreciation of their functional roles. Beginning at about the turn of this century, new approaches were applied to scrutinize electrical synapses, revealing the prevalence of neuronal gap junctions, the connexin protein composition of many of those junctions, and the myriad diverse neural systems in which they occur in the mammalian CNS. Subsequent progress indicated that electrical synapses constitute key elements in synaptic circuitry, govern the collective activity of ensembles of electrically coupled neurons, and in part orchestrate the synchronized neuronal network activity and rhythmic oscillations that underlie fundamental integrative processes. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- James I Nagy
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - John E Rash
- Department of Biomedical Sciences, and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
11
|
Freeze fracture: new avenues for the ultrastructural analysis of cells in vitro. Histochem Cell Biol 2017; 149:3-13. [PMID: 29134300 DOI: 10.1007/s00418-017-1617-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2017] [Indexed: 01/02/2023]
Abstract
The ultrastructural analysis of biological membranes by freeze fracture has a 60-year tradition. In this review, we summarize the benefits of the freeze-fracture technique and review special structures analyzed by freeze fracture and by combined freeze-fracture replica immunogold labeling (FRIL) of cell cultures. In principle, every cellular membrane whether of cell suspensions, mono- or bilayers of cell cultures can be analyzed in freeze fracture. The combination of freeze fracture and immunogold labeling of the replica allows the ultrastructural identification of protein assemblies in combination with the molecular identification of their constituent proteins using specific antibodies. The analysis of fractured and labeled intramembrane particles enables determination of the arrangement and organization of proteins within the membrane due to the high resolution of the transmission electron microscope. Because of cell-specific ultrastructural features such as square arrays, identification of cell types can be performed in parallel. This review is aimed at presenting the possibilities of freeze fracture and FRIL in the high-resolution ultrastructural analysis of membrane proteins and their assembly in naïve, transfected or otherwise treated cultured cells. At the interface of molecular approaches and morphology, the application of FRIL in genetically modified cells provides a novel and intriguing aspect for their analysis.
Collapse
|
12
|
Chai H, Yan Z, Huang K, Jiang Y, Zhang L. MicroRNA expression, target genes, and signaling pathways in infants with a ventricular septal defect. Mol Cell Biochem 2017; 439:171-187. [PMID: 28822034 DOI: 10.1007/s11010-017-3146-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/02/2017] [Indexed: 10/19/2022]
Abstract
This study aimed to systematically investigate the relationship between miRNA expression and the occurrence of ventricular septal defect (VSD), and characterize the miRNA target genes and pathways that can lead to VSD. The miRNAs that were differentially expressed in blood samples from VSD and normal infants were screened and validated by implementing miRNA microarrays and qRT-PCR. The target genes regulated by differentially expressed miRNAs were predicted using three target gene databases. The functions and signaling pathways of the target genes were enriched using the GO database and KEGG database, respectively. The transcription and protein expression of specific target genes in critical pathways were compared in the VSD and normal control groups using qRT-PCR and western blotting, respectively. Compared with the normal control group, the VSD group had 22 differentially expressed miRNAs; 19 were downregulated and three were upregulated. The 10,677 predicted target genes participated in many biological functions related to cardiac development and morphogenesis. Four target genes (mGLUR, Gq, PLC, and PKC) were involved in the PKC pathway and four (ECM, FAK, PI3 K, and PDK1) were involved in the PI3 K-Akt pathway. The transcription and protein expression of these eight target genes were significantly upregulated in the VSD group. The 22 miRNAs that were dysregulated in the VSD group were mainly downregulated, which may result in the dysregulation of several key genes and biological functions related to cardiac development. These effects could also be exerted via the upregulation of eight specific target genes, the subsequent over-activation of the PKC and PI3 K-Akt pathways, and the eventual abnormal cardiac development and VSD.
Collapse
Affiliation(s)
- Hui Chai
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Zhaoyuan Yan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Ke Huang
- Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang Province, China
| | | | - Lin Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China.
| |
Collapse
|
13
|
Spatio-temporal regulation of connexin43 phosphorylation and gap junction dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:83-90. [PMID: 28414037 DOI: 10.1016/j.bbamem.2017.04.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/05/2017] [Accepted: 04/11/2017] [Indexed: 01/23/2023]
Abstract
Gap junctions are specialized membrane domains containing tens to thousands of intercellular channels. These channels permit exchange of small molecules (<1000Da) including ions, amino acids, nucleotides, metabolites and secondary messengers (e.g., calcium, glucose, cAMP, cGMP, IP3) between cells. The common reductionist view of these structures is that they are composed entirely of integral membrane proteins encoded by the 21 member connexin human gene family. However, it is clear that the normal physiological function of this structure requires interaction and regulation by a variety of proteins, especially kinases. Phosphorylation is capable of directly modulating connexin channel function but the most dramatic effects on gap junction activity occur via the organization of the gap junction structures themselves. This is a direct result of the short half-life of the primary gap junction protein, connexin, which requires them to be constantly assembled, remodeled and turned over. The biological consequences of this remodeling are well illustrated during cardiac ischemia, a process wherein gap junctions are disassembled and remodeled resulting in arrhythmia and ultimately heart failure. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
|
14
|
Localisation Microscopy of Breast Epithelial ErbB-2 Receptors and Gap Junctions: Trafficking after γ-Irradiation, Neuregulin-1β, and Trastuzumab Application. Int J Mol Sci 2017; 18:ijms18020362. [PMID: 28208769 PMCID: PMC5343897 DOI: 10.3390/ijms18020362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 12/28/2022] Open
Abstract
In cancer, vulnerable breast epithelium malignance tendency correlates with number and activation of ErbB receptor tyrosine kinases. In the presented work, we observe ErbB receptors activated by irradiation-induced DNA injury or neuregulin-1β application, or alternatively, attenuated by a therapeutic antibody using high resolution fluorescence localization microscopy. The gap junction turnover coinciding with ErbB receptor activation and co-transport is simultaneously recorded. DNA injury caused by 4 Gray of 6 MeV photon γ-irradiation or alternatively neuregulin-1β application mobilized ErbB receptors in a nucleograde fashion—a process attenuated by trastuzumab antibody application. This was accompanied by increased receptor density, indicating packing into transport units. Factors mobilizing ErbB receptors also mobilized plasma membrane resident gap junction channels. The time course of ErbB receptor activation and gap junction mobilization recapitulates the time course of non-homologous end-joining DNA repair. We explain our findings under terms of DNA injury-induced membrane receptor tyrosine kinase activation and retrograde trafficking. In addition, we interpret the phenomenon of retrograde co-trafficking of gap junction connexons stimulated by ErbB receptor activation.
Collapse
|
15
|
Johnson RG, Le HC, Evenson K, Loberg SW, Myslajek TM, Prabhu A, Manley AM, O’Shea C, Grunenwald H, Haddican M, Fitzgerald PM, Robinson T, Cisterna BA, Sáez JC, Liu TF, Laird DW, Sheridan JD. Connexin Hemichannels: Methods for Dye Uptake and Leakage. J Membr Biol 2016; 249:713-741. [DOI: 10.1007/s00232-016-9925-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/22/2016] [Indexed: 01/18/2023]
|
16
|
Beckmann A, Schubert M, Hainz N, Haase A, Martin U, Tschernig T, Meier C. Ultrastructural demonstration of Cx43 gap junctions in induced pluripotent stem cells from human cord blood. Histochem Cell Biol 2016; 146:529-537. [PMID: 27456332 DOI: 10.1007/s00418-016-1469-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2016] [Indexed: 01/13/2023]
Abstract
Gap junction proteins are essential for direct intercellular communication but also influence cellular differentiation and migration. The expression of various connexin gap junction proteins has been demonstrated in embryonic stem cells, with Cx43 being the most intensely studied. As Cx43 is the most prominent gap junction protein in the heart, cardiomyocyte-differentiated stem cells have been studied intensely. To date, however, little is known about the expression and the subcellular distribution of Cx43 in undifferentiated stem cells or about the structural arrangement of channels. We, therefore, here investigate expression of Cx43 in undifferentiated human cord-blood-derived induced pluripotent stem cells (hCBiPS2). For this purpose, we carried out quantitative real-time PCR and immunohistochemistry. For analysis of Cx43 ultrastructure and protein assembly, we performed freeze-fracture replica immunogold labeling (FRIL). Cx43 expression was detected at mRNA and protein level in hCBIPS2 cells. For the first time, ultrastructural data are presented on gap junction morphology in induced pluripotent stem (iPS) cells from cord blood: Our FRIL and electron microscopical analysis revealed the occurrence of gap junction plaques in undifferentiated iPS cells. In addition, these gap junctions were shown to contain the gap junction protein Cx43.
Collapse
Affiliation(s)
- Anja Beckmann
- Department of Anatomy and Cell Biology, Saarland University, Kirrberger Straße, Building 61, 66421, Homburg/Saar, Germany
| | - Madline Schubert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, 30625, Hannover, Germany
| | - Nadine Hainz
- Department of Anatomy and Cell Biology, Saarland University, Kirrberger Straße, Building 61, 66421, Homburg/Saar, Germany
| | - Alexandra Haase
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, 30625, Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, 30625, Hannover, Germany
| | - Thomas Tschernig
- Department of Anatomy and Cell Biology, Saarland University, Kirrberger Straße, Building 61, 66421, Homburg/Saar, Germany
| | - Carola Meier
- Department of Anatomy and Cell Biology, Saarland University, Kirrberger Straße, Building 61, 66421, Homburg/Saar, Germany.
| |
Collapse
|
17
|
Falk MM, Bell CL, Kells Andrews RM, Murray SA. Molecular mechanisms regulating formation, trafficking and processing of annular gap junctions. BMC Cell Biol 2016; 17 Suppl 1:22. [PMID: 27230503 PMCID: PMC4896261 DOI: 10.1186/s12860-016-0087-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Internalization of gap junction plaques results in the formation of annular gap junction vesicles. The factors that regulate the coordinated internalization of the gap junction plaques to form annular gap junction vesicles, and the subsequent events involved in annular gap junction processing have only relatively recently been investigated in detail. However it is becoming clear that while annular gap junction vesicles have been demonstrated to be degraded by autophagosomal and endo-lysosomal pathways, they undergo a number of additional processing events. Here, we characterize the morphology of the annular gap junction vesicle and review the current knowledge of the processes involved in their formation, fission, fusion, and degradation. In addition, we address the possibility for connexin protein recycling back to the plasma membrane to contribute to gap junction formation and intercellular communication. Information on gap junction plaque removal from the plasma membrane and the subsequent processing of annular gap junction vesicles is critical to our understanding of cell-cell communication as it relates to events regulating development, cell homeostasis, unstable proliferation of cancer cells, wound healing, changes in the ischemic heart, and many other physiological and pathological cellular phenomena.
Collapse
Affiliation(s)
- Matthias M Falk
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, 18049, USA.
| | - Cheryl L Bell
- Department of Cell Biology and Physiology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, l5261, USA
| | | | - Sandra A Murray
- Department of Cell Biology and Physiology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, l5261, USA.
| |
Collapse
|
18
|
Yang X, Chu H, Tang Y, Dong Q. The role of connexin43 in hemorrhagic transformation after thrombolysis in vivo and in vitro. Neuroscience 2016; 329:54-65. [PMID: 27138645 DOI: 10.1016/j.neuroscience.2016.04.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 11/17/2022]
Abstract
Thrombolysis with recombinant tissue plasminogen activator (rtPA) is the most effective drug treatment for acute ischemic stroke within 4.5h after symptom onset. However, the use of rtPA may increase the risk of hemorrhagic transformation (HT), particularly when it is administered after the first 4.5h. However, no effective treatments are available to reduce the HT risk. Disruption of the blood-brain barrier (BBB) is central to the genesis of HT. Connexin43 (Cx43)-mediated gap junction intercellular communication (GJIC) has been demonstrated to regulate the integrity of the BBB in ischemia. We investigated the effect of Cx43 on BBB permeability during rtPA-induced HT. Spontaneously hypertensive rats (SHRs) underwent a 1.5-h middle cerebral artery occlusion and were treated with rtPA at 4.5h. The rats were sacrificed at 24h, and their brains were evaluated for BBB permeability and the expression of tight junction (TJ) proteins and Cx43. We examined whether the effects were Cx43 dependent using multiple Cx43 inhibitors. Phosphorylated Cx43 (p-Cx43) but not total Cx43 protein expression was increased after rtPA treatment. Delayed rtPA administration induced significant HT and BBB disruption. These effects were attenuated by inhibitors that blocked GJIC and Cx43 phosphorylation and expression but not Cx43 redistribution. Additionally, rtPA administration upregulated p-Cx43 expression in hypoxia/reoxygenation (H/R)-exposed brain endothelial cells. These effects were suppressed by the phosphatidylinositol 3'-kinase (PI3K) inhibitor LY294002 and the extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor U0126. We suggest that rtPA-associated hemorrhage due to an alteration in the integrity of the BBB is highly associated with an increase in p-Cx43 resulting from the activation of the PI3K and ERK pathways.
Collapse
Affiliation(s)
- Xiaobo Yang
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China; Department of Neurology, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Heling Chu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yuping Tang
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| |
Collapse
|
19
|
Rash JE, Vanderpool KG, Yasumura T, Hickman J, Beatty JT, Nagy JI. KV1 channels identified in rodent myelinated axons, linked to Cx29 in innermost myelin: support for electrically active myelin in mammalian saltatory conduction. J Neurophysiol 2016; 115:1836-59. [PMID: 26763782 PMCID: PMC4869480 DOI: 10.1152/jn.01077.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/04/2016] [Indexed: 11/22/2022] Open
Abstract
Saltatory conduction in mammalian myelinated axons was thought to be well understood before recent discoveries revealed unexpected subcellular distributions and molecular identities of the K(+)-conductance pathways that provide for rapid axonal repolarization. In this study, we visualize, identify, localize, quantify, and ultrastructurally characterize axonal KV1.1/KV1.2 channels in sciatic nerves of rodents. With the use of light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling electron microscopy, KV1.1/KV1.2 channels are localized to three anatomically and compositionally distinct domains in the internodal axolemmas of large myelinated axons, where they form densely packed "rosettes" of 9-nm intramembrane particles. These axolemmal KV1.1/KV1.2 rosettes are precisely aligned with and ultrastructurally coupled to connexin29 (Cx29) channels, also in matching rosettes, in the surrounding juxtaparanodal myelin collars and along the inner mesaxon. As >98% of transmembrane proteins large enough to represent ion channels in these specialized domains, ∼500,000 KV1.1/KV1.2 channels define the paired juxtaparanodal regions as exclusive membrane domains for the voltage-gated K(+)conductance that underlies rapid axonal repolarization in mammals. The 1:1 molecular linkage of KV1 channels to Cx29 channels in the apposed juxtaparanodal collars, plus their linkage to an additional 250,000-400,000 Cx29 channels along each inner mesaxon in every large-diameter myelinated axon examined, supports previously proposed K(+)conductance directly from juxtaparanodal axoplasm into juxtaparanodal myeloplasm in mammalian axons. With neither Cx29 protein nor myelin rosettes detectable in frog myelinated axons, these data showing axon-to-myelin linkage by abundant KV1/Cx29 channels in rodent axons support renewed consideration of an electrically active role for myelin in increasing both saltatory conduction velocity and maximum propagation frequency in mammalian myelinated axons.
Collapse
Affiliation(s)
- John E Rash
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado; Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, Colorado; and
| | - Kimberly G Vanderpool
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Thomas Yasumura
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Jordan Hickman
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Jonathan T Beatty
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - James I Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
20
|
Calkins TL, Woods-Acevedo MA, Hildebrandt O, Piermarini PM. The molecular and immunochemical expression of innexins in the yellow fever mosquito, Aedes aegypti: insights into putative life stage- and tissue-specific functions of gap junctions. Comp Biochem Physiol B Biochem Mol Biol 2015; 183:11-21. [PMID: 25585357 DOI: 10.1016/j.cbpb.2014.11.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/17/2014] [Accepted: 11/21/2014] [Indexed: 11/28/2022]
Abstract
Gap junctions (GJ) mediate direct intercellular communication by forming channels through which certain small molecules and/or ions can pass. Connexins, the proteins that form vertebrate GJ, are well studied and known to contribute to neuronal, muscular and epithelial physiology. Innexins, the GJ proteins of insects, have only recently received much investigative attention and many of their physiological roles remain to be determined. Here we characterize the molecular expression of six innexin (Inx) genes in the yellow fever mosquito Aedes aegypti (AeInx1, AeInx2, AeInx3, AeInx4, AeInx7, and AeInx8) and the immunochemical expression of one innexin protein, AeInx3, in the alimentary canal. We detected the expression of no less than four innexin genes in each mosquito life stage (larva, pupa, adult) and tissue/body region from adult males and females (midgut, Malpighian tubules, hindgut, head, carcass, gonads), suggesting a remarkable potential molecular diversity of GJ in mosquitoes. Moreover, the expression patterns of some innexins were life stage and/or tissue specific, suggestive of potential functional specializations. Cloning of the four full-length cDNAs expressed in the Malpighian tubules of adult females (AeInx1, AeInx2, AeInx3, and AeInx7) revealed evidence for 1) alternative splicing of AeInx1 and AeInx3 transcripts, and 2) putative N-glycosylation of AeInx3 and AeInx7. Finally, immunohistochemistry of AeInx3 in the alimentary canal of larval and adult female mosquitoes confirmed localization of this innexin to the intercellular regions of Malpighian tubule and hindgut epithelial cells, suggesting that it is an important component of GJ in these tissues.
Collapse
Affiliation(s)
- Travis L Calkins
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, United States
| | - Mikal A Woods-Acevedo
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, United States
| | - Oliver Hildebrandt
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, United States
| | - Peter M Piermarini
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, United States.
| |
Collapse
|
21
|
Two classes of gap junction channels mediate soma-germline interactions essential for germline proliferation and gametogenesis in Caenorhabditis elegans. Genetics 2014; 198:1127-53. [PMID: 25195067 PMCID: PMC4224157 DOI: 10.1534/genetics.114.168815] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In all animals examined, somatic cells of the gonad control multiple biological processes essential for germline development. Gap junction channels, composed of connexins in vertebrates and innexins in invertebrates, permit direct intercellular communication between cells and frequently form between somatic gonadal cells and germ cells. Gap junctions comprise hexameric hemichannels in apposing cells that dock to form channels for the exchange of small molecules. Here we report essential roles for two classes of gap junction channels, composed of five innexin proteins, in supporting the proliferation of germline stem cells and gametogenesis in the nematode Caenorhabditis elegans. Transmission electron microscopy of freeze-fracture replicas and fluorescence microscopy show that gap junctions between somatic cells and germ cells are more extensive than previously appreciated and are found throughout the gonad. One class of gap junctions, composed of INX-8 and INX-9 in the soma and INX-14 and INX-21 in the germ line, is required for the proliferation and differentiation of germline stem cells. Genetic epistasis experiments establish a role for these gap junction channels in germline proliferation independent of the glp-1/Notch pathway. A second class of gap junctions, composed of somatic INX-8 and INX-9 and germline INX-14 and INX-22, is required for the negative regulation of oocyte meiotic maturation. Rescue of gap junction channel formation in the stem cell niche rescues germline proliferation and uncovers a later channel requirement for embryonic viability. This analysis reveals gap junctions as a central organizing feature of many soma–germline interactions in C. elegans.
Collapse
|
22
|
Cone AC, Cavin G, Ambrosi C, Hakozaki H, Wu-Zhang AX, Kunkel MT, Newton AC, Sosinsky GE. Protein kinase Cδ-mediated phosphorylation of Connexin43 gap junction channels causes movement within gap junctions followed by vesicle internalization and protein degradation. J Biol Chem 2014; 289:8781-98. [PMID: 24500718 PMCID: PMC3979370 DOI: 10.1074/jbc.m113.533265] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/29/2014] [Indexed: 01/14/2023] Open
Abstract
Phosphorylation of gap junction proteins, connexins, plays a role in global signaling events involving kinases. Connexin43 (Cx43), a ubiquitous and important connexin, has several phosphorylation sites for specific kinases. We appended an imaging reporter tag for the activity of the δ isoform of protein kinase C (PKCδ) to the carboxyl terminus of Cx43. The FRET signal of this reporter is inversely related to the phosphorylation of serine 368 of Cx43. By activating PKC with the phorbol ester phorbol 12,13-dibutyrate (PDBu) or a natural stimulant, UTP, time lapse live cell imaging movies indicated phosphorylated Ser-368 Cx43 separated into discrete domains within gap junctions and was internalized in small vesicles, after which it was degraded by lysosomes and proteasomes. Mutation of Ser-368 to an Ala eliminated the response to PDBu and changes in phosphorylation of the reporter. A phosphatase inhibitor, calyculin A, does not change this pattern, indicating PKC phosphorylation causes degradation of Cx43 without dephosphorylation, which is in accordance with current hypotheses that cells control their intercellular communication by a fast and constant turnover of connexins, using phosphorylation as part of this mechanism.
Collapse
Affiliation(s)
- Angela C. Cone
- From the National Center for Microscopy and Imaging Research
| | - Gabriel Cavin
- From the National Center for Microscopy and Imaging Research
| | - Cinzia Ambrosi
- From the National Center for Microscopy and Imaging Research
| | | | | | | | | | - Gina E. Sosinsky
- From the National Center for Microscopy and Imaging Research
- the Department of Neurosciences, University of California, San Diego, California 92093
| |
Collapse
|
23
|
Billaud M, Lohman AW, Johnstone SR, Biwer LA, Mutchler S, Isakson BE. Regulation of cellular communication by signaling microdomains in the blood vessel wall. Pharmacol Rev 2014; 66:513-69. [PMID: 24671377 DOI: 10.1124/pr.112.007351] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.
Collapse
Affiliation(s)
- Marie Billaud
- Dept. of Molecular Physiology and Biophysics, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22902.
| | | | | | | | | | | |
Collapse
|
24
|
Sáez JC, Leybaert L. Hunting for connexin hemichannels. FEBS Lett 2014; 588:1205-11. [PMID: 24631534 DOI: 10.1016/j.febslet.2014.03.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/01/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
Abstract
Connexin hemichannels (connexons) are building blocks of gap junctions but also function as free unapposed channels, which has become an active field of research. Defining functions of hemichannels and their involvement in any biological event requires ruling out possible participation of other channels that share biophysical and regulatory properties, for example pannexins, CALHM1 and P2X receptors. The lack of specific inhibitors for these channels has become an obstacle in elucidating the role of connexin hemichannels. Several experimental approaches are now available to identify hemichannels at the cell surface and to characterize their electrophysiological, permeability and regulatory properties. The use of connexin knockout/knockdown, and the development of peptides that target intracellular connexin domains and specific antibodies directed to extracellular domains have helped to dissect the role of hemichannels in endogenously expressing systems. Moreover, studies of connexin mutants in exogenous expression systems have provided convincing evidence on hemichannels in the pathogenesis of several human genetic diseases. We here present a brief overview of connexin hemichannels as functional channels and itemize a list of aspects to consider when concluding on their involvement.
Collapse
Affiliation(s)
- Juan C Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago and Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso, Chile.
| | - Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185 (Block B - Rm 031), 9000 Ghent, Belgium.
| |
Collapse
|
25
|
Baker MW, Macagno ER. Control of neuronal morphology and connectivity: Emerging developmental roles for gap junctional proteins. FEBS Lett 2014; 588:1470-9. [DOI: 10.1016/j.febslet.2014.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 11/25/2022]
|
26
|
Thévenin AF, Kowal TJ, Fong JT, Kells RM, Fisher CG, Falk MM. Proteins and mechanisms regulating gap-junction assembly, internalization, and degradation. Physiology (Bethesda) 2014; 28:93-116. [PMID: 23455769 DOI: 10.1152/physiol.00038.2012] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gap junctions (GJs) are the only known cellular structures that allow a direct cell-to-cell transfer of signaling molecules by forming densely packed arrays or "plaques" of hydrophilic channels that bridge the apposing membranes of neighboring cells. The crucial role of GJ-mediated intercellular communication (GJIC) for all aspects of multicellular life, including coordination of development, tissue function, and cell homeostasis, has been well documented. Assembly and degradation of these membrane channels is a complex process that includes biosynthesis of the connexin (Cx) subunit proteins (innexins in invertebrates) on endoplasmic reticulum (ER) membranes, oligomerization of compatible subunits into hexameric hemichannels (connexons), delivery of the connexons to the plasma membrane (PM), head-on docking of compatible connexons in the extracellular space at distinct locations, arrangement of channels into dynamic spatially and temporally organized GJ channel plaques, as well as internalization of GJs into the cytoplasm followed by their degradation. Clearly, precise modulation of GJIC, biosynthesis, and degradation are crucial for accurate function, and much research currently addresses how these fundamental processes are regulated. Here, we review posttranslational protein modifications (e.g., phosphorylation and ubiquitination) and the binding of protein partners (e.g., the scaffolding protein ZO-1) known to regulate GJ biosynthesis, internalization, and degradation. We also look closely at the atomic resolution structure of a GJ channel, since the structure harbors vital cues relevant to GJ biosynthesis and turnover.
Collapse
Affiliation(s)
- Anastasia F Thévenin
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
27
|
Role of gap junctions and hemichannels in parasitic infections. BIOMED RESEARCH INTERNATIONAL 2013; 2013:589130. [PMID: 24236292 PMCID: PMC3819887 DOI: 10.1155/2013/589130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/07/2013] [Accepted: 08/26/2013] [Indexed: 02/06/2023]
Abstract
In vertebrates, connexins (Cxs) and pannexins (Panxs) are proteins that form gap junction channels and/or hemichannels located at cell-cell interfaces and cell surface, respectively. Similar channel types are formed by innexins in invertebrate cells. These channels serve as pathways for cellular communication that coordinate diverse physiologic processes. However, it is known that many acquired and inherited diseases deregulate Cx and/or Panx channels, condition that frequently worsens the pathological state of vertebrates. Recent evidences suggest that Cx and/or Panx hemichannels play a relevant role in bacterial and viral infections. Nonetheless, little is known about the role of Cx- and Panx-based channels in parasitic infections of vertebrates. In this review, available data on changes in Cx and gap junction channel changes induced by parasitic infections are summarized. Additionally, we describe recent findings that suggest possible roles of hemichannels in parasitic infections. Finally, the possibility of new therapeutic designs based on hemichannel blokers is presented.
Collapse
|
28
|
Johnson RG, Sáez JC. We've had important advances in the connexin/pannexin field, yet there is still much to do. Neuropharmacology 2013; 75:467-70. [PMID: 23969002 DOI: 10.1016/j.neuropharm.2013.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ross G Johnson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Juan C Sáez
- Department of Physiology, Pontificia Universidad Catolica de Chile, Santiago, Chile; Instituto Interdiciplinarios de Neurocienicas de Valparaiso, Chile.
| |
Collapse
|
29
|
D'hondt C, Iyyathurai J, Vinken M, Rogiers V, Leybaert L, Himpens B, Bultynck G. Regulation of connexin- and pannexin-based channels by post-translational modifications. Biol Cell 2013; 105:373-98. [PMID: 23718186 DOI: 10.1111/boc.201200096] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 05/24/2013] [Indexed: 12/28/2022]
Abstract
Connexin (Cx) and pannexin (Panx) proteins form large conductance channels, which function as regulators of communication between neighbouring cells via gap junctions and/or hemichannels. Intercellular communication is essential to coordinate cellular responses in tissues and organs, thereby fulfilling an essential role in the spreading of signalling, survival and death processes. The functional properties of gap junctions and hemichannels are modulated by different physiological and pathophysiological stimuli. At the molecular level, Cxs and Panxs function as multi-protein channel complexes, regulating their channel localisation and activity. In addition to this, gap junctional channels and hemichannels are modulated by different post-translational modifications (PTMs), including phosphorylation, glycosylation, proteolysis, N-acetylation, S-nitrosylation, ubiquitination, lipidation, hydroxylation, methylation and deamidation. These PTMs influence almost all aspects of communicating junctional channels in normal cell biology and pathophysiology. In this review, we will provide a systematic overview of PTMs of communicating junction proteins and discuss their effects on Cx and Panx-channel activity and localisation.
Collapse
Affiliation(s)
- Catheleyne D'hondt
- Laboratory of Molecular and Cellular Signalling, Department Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N 1, BE-3000, Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
30
|
Riquelme MA, Kar R, Gu S, Jiang JX. Antibodies targeting extracellular domain of connexins for studies of hemichannels. Neuropharmacology 2013; 75:525-32. [PMID: 23499293 DOI: 10.1016/j.neuropharm.2013.02.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/25/2013] [Accepted: 02/27/2013] [Indexed: 01/11/2023]
Abstract
Hemichannels are transmembrane channels composed of either a connexin or pannexin hexamer. The docking of the extracellular domains of connexin hemichannels contributed by neighboring cells forms a gap junction channel that joins the cytoplasm of adjacent cells. Connexins are expressed ubiquitously in different organs, but some subtypes are expressed exclusively in certain tissues and tumors. Both gap junction channels and hemichannels participate in diverse physiological and pathological responses. However, the lack of specific reagents that inhibit only gap junction channels or hemichannels is a challenge that makes it different to discern the specific roles of either channel. Fortunately, the available information regarding the connexin sequence, secondary and tertiary structure, and their biochemical and physiological properties permits the development of strategies to block exclusively the hemichannel activity exclusively, with no effect on gap junction activity. This task is accomplished through the use of specifics antibodies that target the extracellular sites of desired connexin subtype. However, the underlying mechanism of how antibodies targeting extracellular connexin epitopes actually inhibit hemichannels remains unknown. Although these antibodies are being used for detecting and blocking of hemichannels in normal and tumor cells, they can also be potentially used for tissue-specific treatment and drug delivery in clinical applications. In this article, we will first review the literature concerning the structure of connexins and the unique properties of extracellular loop domains of the connexins. Furthermore, we will discuss briefly the development of connexin (Cx) 43(E2) antibody, a specific antibody which detects the second extracellular loop of Cx43 and specifically prevents the opening of Cx43 hemichannels. We will then summarize the reported studies of specific reagents used for the inhibition of connexin hemichannels including antibodies developed against extracellular loop domains. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'.
Collapse
Affiliation(s)
- Manuel A Riquelme
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Rekha Kar
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Sumin Gu
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Jean X Jiang
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
31
|
Rhett JM, Ongstad EL, Jourdan J, Gourdie RG. Cx43 associates with Na(v)1.5 in the cardiomyocyte perinexus. J Membr Biol 2012; 245:411-22. [PMID: 22811280 DOI: 10.1007/s00232-012-9465-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/20/2012] [Indexed: 01/24/2023]
Abstract
Gap junctions (GJs) are aggregates of channels that provide for direct cytoplasmic connection between cells. Importantly, this connection is thought responsible for cell-to-cell transfer of the cardiac action potential. The GJ channels of ventricular myocytes are composed of connexin43 (Cx43). Interaction of Cx43 with zonula occludens-1 (ZO-1) is localized not only at the GJ plaque, but also to the region surrounding the GJ, the perinexus. Cx43 in the perinexus is not detectable by immunofluorescence, yet localization of Cx43/ZO-1 interaction to this region indicated the presence of Cx43. Therefore, we hypothesized that Cx43 occurs in the perinexus at a lower concentration per unit membrane than in the GJ itself, making it difficult to visualize. To overcome this, the Duolink protein-protein interaction assay was used to detect Cx43. Duolink labeling of cardiomyocytes localized Cx43 to the perinexus. Quantification demonstrated that signal in the perinexus was lower than in the GJ but significantly higher than in nonjunctional regions. Additionally, Duolink of Triton X-100-extracted cultures suggested that perinexal Cx43 is nonjunctional. Importantly, the voltage gated sodium channel Na(v)1.5, which is responsible for initiation of the action potential, was found to interact with perinexal Cx43 but not with ZO-1. This work provides a detailed characterization of the structure of the perinexus at the GJ edge and indicates that one of its potential functions in the heart may be in facilitating conduction of action potential.
Collapse
Affiliation(s)
- J Matthew Rhett
- Department of Regenerative Medicine, Medical University of South Carolina, 173 Ashley Ave, CRI Room 616, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
32
|
Johnstone SR, Billaud M, Lohman AW, Taddeo EP, Isakson BE. Posttranslational modifications in connexins and pannexins. J Membr Biol 2012; 245:319-32. [PMID: 22739962 DOI: 10.1007/s00232-012-9453-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 06/08/2012] [Indexed: 01/17/2023]
Abstract
Posttranslational modification is a common cellular process that is used by cells to ensure a particular protein function. This can happen in a variety of ways, e.g., from the addition of phosphates or sugar residues to a particular amino acid, ensuring proper protein life cycle and function. In this review, we assess the evidence for ubiquitination, glycosylation, phosphorylation, S-nitrosylation as well as other modifications in connexins and pannexin proteins. Based on the literature, we find that posttranslational modifications are an important component of connexin and pannexin regulation.
Collapse
Affiliation(s)
- Scott R Johnstone
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
33
|
Yeganeh A, Stelmack GL, Fandrich RR, Halayko AJ, Kardami E, Zahradka P. Connexin 43 phosphorylation and degradation are required for adipogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1731-44. [PMID: 22705883 DOI: 10.1016/j.bbamcr.2012.06.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 06/06/2012] [Accepted: 06/07/2012] [Indexed: 11/25/2022]
Abstract
Connexin-43 (Cx43) is a membrane phosphoprotein that mediates direct inter-cellular communication by forming gap junctions. In this way Cx43 can influence gene expression, differentiation and growth. Its role in adipogenesis, however, is poorly understood. In this study, we established that Cx43 becomes highly phosphorylated in early adipocyte differentiation and translocates to the plasma membrane from the endoplasmic reticulum. As preadipocytes differentiate, Cx43 phosphorylation declines, the protein is displaced from the plasma membrane, and total cellular levels are reduced via proteosomal degradation. Notably, we show that inhibiting Cx43 degradation or constitutively over-expressing Cx43 blocks adipocyte differentiation. These data reveal that transient activation of Cx43 via phosphorylation followed by its degradation is vital for preadipocyte differentiation and maturation of functional adipocytes.
Collapse
Affiliation(s)
- Azadeh Yeganeh
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Smith TD, Mohankumar A, Minogue PJ, Beyer EC, Berthoud VM, Koval M. Cytoplasmic amino acids within the membrane interface region influence connexin oligomerization. J Membr Biol 2012; 245:221-30. [PMID: 22722762 PMCID: PMC3501836 DOI: 10.1007/s00232-012-9443-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/01/2012] [Indexed: 01/17/2023]
Abstract
Gap junction channels composed of connexins connect cells, allowing intercellular communication. Their cellular assembly involves a unique quality-control pathway. Some connexins [including connexin43 (Cx43) and Cx46] oligomerize in the trans-Golgi network following export of stabilized monomers from the endoplasmic reticulum (ER). In contrast, other connexins (e.g., Cx32) oligomerize early in the secretory pathway. Amino acids near the cytoplasmic aspect of the third transmembrane domain have previously been shown to determine this difference in assembly sites. Here, we characterized the oligomerization of two connexins expressed prominently in the vasculature, Cx37 and Cx40, using constructs containing a C-terminal dilysine-based ER retention/retrieval signal (HKKSL) or treatment with brefeldin A to block ER vesicle trafficking. Both methods led to intracellular retention of connexins, since the cells lacked gap junction plaques. Retention of Cx40 in the ER prevented it from oligomerizing, comparable to Cx43. By contrast, ER-retained Cx37 was partially oligomerized. Replacement of two amino acids near the third transmembrane domain of Cx43 (L152 and R153) with the corresponding amino acids from Cx37 (M152 and G153) resulted in early oligomerization in the ER. Thus, residues that allow Cx37 to oligomerize early in the secretory pathway could restrict its interactions with coexpressed Cx40 or Cx43 by favoring homomeric oligomerization, providing a structural basis for cells to produce gap junction channels with different connexin composition.
Collapse
Affiliation(s)
- Tekla D. Smith
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Whitehead Biomedical Research Building, 615 Michael St., Suite 205, Atlanta, GA 30022, USA
| | - Aditi Mohankumar
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Peter J. Minogue
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Eric C. Beyer
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Viviana M. Berthoud
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Michael Koval
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Whitehead Biomedical Research Building, 615 Michael St., Suite 205, Atlanta, GA 30022, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
35
|
Gap junction proteins on the move: connexins, the cytoskeleton and migration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:94-108. [PMID: 22613178 DOI: 10.1016/j.bbamem.2012.05.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/25/2012] [Accepted: 05/04/2012] [Indexed: 01/08/2023]
Abstract
Connexin43 (Cx43) has roles in cell-cell communication as well as channel independent roles in regulating motility and migration. Loss of function approaches to decrease Cx43 protein levels in neural cells result in reduced migration of neurons during cortical development in mice and impaired glioma tumor cell migration. In other cell types, correlations between Cx43 expression and cell morphology, adhesion, motility and migration have been noted. In this review we will discuss the common themes that have been revealed by a detailed comparison of the published results of neuronal cells with that of other cell types. In brief, these comparisons clearly show differences in the stability and directionality of protrusions, polarity of movement, and migration, depending on whether a) residual Cx43 levels remain after siRNA or shRNA knockdown, b) Cx43 protein levels are not detectable as in cells from Cx43(-/-) knockout mice or in cells that normally have no endogenous Cx43 expression, c) gain-of-function approaches are used to express Cx43 in cells that have no endogenous Cx43 and, d) Cx43 is over-expressed in cells that already have low endogenous Cx43 protein levels. What is clear from our comparisons is that Cx43 expression influences the adhesiveness of cells and the directionality of cellular processes. These observations are discussed in light of the ability of cells to rearrange their cytoskeleton and move in an organized manner. This article is part of a Special Issue entitled: The Communicating junctions, roles and dysfunctions.
Collapse
|
36
|
Flores CE, Nannapaneni S, Davidson KGV, Yasumura T, Bennett MVL, Rash JE, Pereda AE. Trafficking of gap junction channels at a vertebrate electrical synapse in vivo. Proc Natl Acad Sci U S A 2012; 109:E573-82. [PMID: 22323580 PMCID: PMC3295297 DOI: 10.1073/pnas.1121557109] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Trafficking and turnover of transmitter receptors required to maintain and modify the strength of chemical synapses have been characterized extensively. In contrast, little is known regarding trafficking of gap junction components at electrical synapses. By combining ultrastructural and in vivo physiological analysis at identified mixed (electrical and chemical) synapses on the goldfish Mauthner cell, we show here that gap junction hemichannels are added at the edges of GJ plaques where they dock with hemichannels in the apposed membrane to form cell-cell channels and, simultaneously, that intact junctional regions are removed from centers of these plaques into either presynaptic axon or postsynaptic dendrite. Moreover, electrical coupling is readily modified by intradendritic application of peptides that interfere with endocytosis or exocytosis, suggesting that the strength of electrical synapses at these terminals is sustained, at least in part, by fast (in minutes) turnover of gap junction channels. A peptide corresponding to a region of the carboxy terminus that is conserved in Cx36 and its two teleost homologs appears to interfere with formation of new gap junction channels, presumably by reducing insertion of hemichannels on the dendritic side. Thus, our data indicate that electrical synapses are dynamic structures and that their channels are turned over actively, suggesting that regulated trafficking of connexons may contribute to the modification of gap junctional conductance.
Collapse
Affiliation(s)
- Carmen E. Flores
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Srikant Nannapaneni
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | - Thomas Yasumura
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523; and
| | - Michael V. L. Bennett
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - John E. Rash
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523; and
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Alberto E. Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|