1
|
Sokac AM, Biel N, De Renzis S. Membrane-actin interactions in morphogenesis: Lessons learned from Drosophila cellularization. Semin Cell Dev Biol 2023; 133:107-122. [PMID: 35396167 PMCID: PMC9532467 DOI: 10.1016/j.semcdb.2022.03.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 01/12/2023]
Abstract
During morphogenesis, changes in the shapes of individual cells are harnessed to mold an entire tissue. These changes in cell shapes require the coupled remodeling of the plasma membrane and underlying actin cytoskeleton. In this review, we highlight cellularization of the Drosophila embryo as a model system to uncover principles of how membrane and actin dynamics are co-regulated in space and time to drive morphogenesis.
Collapse
Affiliation(s)
- Anna Marie Sokac
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA; Graduate Program in Integrative and Molecular Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Natalie Biel
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA; Graduate Program in Integrative and Molecular Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stefano De Renzis
- European Molecular Biology Laboratory Heidelberg, 69117 Heidelberg, Germany
| |
Collapse
|
2
|
Blake-Hedges C, Megraw TL. Coordination of Embryogenesis by the Centrosome in Drosophila melanogaster. Results Probl Cell Differ 2019; 67:277-321. [PMID: 31435800 DOI: 10.1007/978-3-030-23173-6_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The first 3 h of Drosophila melanogaster embryo development are exemplified by rapid nuclear divisions within a large syncytium, transforming the zygote to the cellular blastoderm after 13 successive cleavage divisions. As the syncytial embryo develops, it relies on centrosomes and cytoskeletal dynamics to transport nuclei, maintain uniform nuclear distribution throughout cleavage cycles, ensure generation of germ cells, and coordinate cellularization. For the sake of this review, we classify six early embryo stages that rely on processes coordinated by the centrosome and its regulation of the cytoskeleton. The first stage features migration of one of the female pronuclei toward the male pronucleus following maturation of the first embryonic centrosomes. Two subsequent stages distribute the nuclei first axially and then radially in the embryo. The remaining three stages involve centrosome-actin dynamics that control cortical plasma membrane morphogenesis. In this review, we highlight the dynamics of the centrosome and its role in controlling the six stages that culminate in the cellularization of the blastoderm embryo.
Collapse
Affiliation(s)
- Caitlyn Blake-Hedges
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| | - Timothy L Megraw
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
3
|
Abstract
In this extra view, we comment on our recent work concerning the mRNA localization of the gene slow as molasses (slam). slam is a gene essential for the polarized invagination of the plasma membrane and separation of basal and lateral cortical domains during cellularization as well as for germ cell migration in later embryogenesis. We have demonstrated an intimate relationship between slam RNA and its encoded protein. Slam RNA co-localizes and forms a complex with its encoded protein. Slam mRNA localization not only is required for reaching full levels of functional Slam protein but also depends on Slam protein. The translation of slam mRNA is subject to tight spatio-temporal regulation leading to a rapid accumulation of Slam protein and zygotic slam RNA at the furrow canal. In this extra view, we first discuss the mechanism controlling localization and translation of slam RNA. In addition, we document in detail the maternal and zygotic expression of slam RNA and protein and provide data for a function in membrane stabilization. Furthermore, we mapped the region of Slam protein mediating cortical localization in cultured cells.
Collapse
Affiliation(s)
- Shuling Yan
- a Institute for Developmental Biochemistry, Medical School , University of Göttingen , Göttingen , Germany
| | - Jörg Großhans
- a Institute for Developmental Biochemistry, Medical School , University of Göttingen , Göttingen , Germany
| |
Collapse
|
4
|
Sheng C, Javed U, Gibbs M, Long C, Yin J, Qin B, Yuan Q. Experience-dependent structural plasticity targets dynamic filopodia in regulating dendrite maturation and synaptogenesis. Nat Commun 2018; 9:3362. [PMID: 30135566 PMCID: PMC6105721 DOI: 10.1038/s41467-018-05871-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/27/2018] [Indexed: 11/21/2022] Open
Abstract
Highly motile dendritic protrusions are hallmarks of developing neurons. These exploratory filopodia sample the environment and initiate contacts with potential synaptic partners. To understand the role for dynamic filopodia in dendrite morphogenesis and experience-dependent structural plasticity, we analyzed dendrite dynamics, synapse formation, and dendrite volume expansion in developing ventral lateral neurons (LNvs) of the Drosophila larval visual circuit. Our findings reveal the temporal coordination between heightened dendrite dynamics with synaptogenesis in LNvs and illustrate the strong influence imposed by sensory experience on the prevalence of dendritic filopodia, which regulate the formation of synapses and the expansion of dendritic arbors. Using genetic analyses, we further identified Amphiphysin (Amph), a BAR (Bin/Amphiphysin/Rvs) domain-containing protein as a required component for tuning the dynamic state of LNv dendrites and promoting dendrite maturation. Taken together, our study establishes dynamic filopodia as the key cellular target for experience-dependent regulation of dendrite development. During development, dendrites display structural plasticity, as reflected in the appearance of long, thin and highly motile dendritic filopodia. Here, the authors examine dendritic dynamics of ventral lateral neurons in the developing Drosophila larva, and identify Amphiphysin as an important regulator of this process.
Collapse
Affiliation(s)
- Chengyu Sheng
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Uzma Javed
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mary Gibbs
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Caixia Long
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jun Yin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bo Qin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Quan Yuan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Schmidt A, Grosshans J. Dynamics of cortical domains in early Drosophila development. J Cell Sci 2018; 131:131/7/jcs212795. [DOI: 10.1242/jcs.212795] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
Underlying the plasma membrane of eukaryotic cells is an actin cortex that includes actin filaments and associated proteins. A special feature of all polarized and epithelial cells are cortical domains, each of which is characterized by specific sets of proteins. Typically, an epithelial cell contains apical, subapical, lateral and basal domains. The domain-specific protein sets contain evolutionarily conserved proteins, as well as cell-type-specific factors. Among the conserved proteins are, the Par proteins, Crumbs complex and the lateral proteins Scribbled and Discs large 1. Organization of the plasma membrane into cortical domains is dynamic and depends on cell type, differentiation and developmental stage. The dynamics of cortical organization is strikingly visible in early Drosophila embryos, which increase the number of distinct cortical domains from one, during the pre-blastoderm stage, to two in syncytial blastoderm embryos, before finally acquiring the four domains that are typical for epithelial cells during cellularization. In this Review, we will describe the dynamics of cortical organization in early Drosophila embryos and discuss the processes and mechanisms underlying cortical remodeling.
Collapse
Affiliation(s)
- Anja Schmidt
- Institute for Developmental Biochemistry, Medical School, University of Göttingen, 37077 Göttingen, Germany
| | - Jörg Grosshans
- Institute for Developmental Biochemistry, Medical School, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
6
|
Phosphorylation of Pnut in the Early Stages of Drosophila Embryo Development Affects Association of the Septin Complex with the Membrane and Is Important for Viability. G3-GENES GENOMES GENETICS 2018; 8:27-38. [PMID: 29079679 PMCID: PMC5765355 DOI: 10.1534/g3.117.300186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Septin proteins are polymerizing GTPases that are found in most eukaryotic species. Septins are important for cytokinesis and participate in many processes involving spatial modifications of the cell cortex. In Drosophila, septin proteins Pnut, Sep1, and Sep2 form a hexameric septin complex. Here, we found that septin protein Pnut is phosphorylated during the first 2 hr of Drosophila embryo development. To study the effect of Pnut phosphorylation in a live organism, we created a new Drosophila pnut null mutant that allows for the analysis of Pnut mutations during embryogenesis. To understand the functional significance of Pnut phosphorylation, Drosophila strains carrying nonphosphorylatable and phospho-mimetic mutant pnut transgenes were established. The expression of the nonphosphorylatable Pnut protein resulted in semilethality and abnormal protein localization, whereas the expression of the phospho-mimetic mutant form of Pnut disrupted the assembly of a functional septin complex and septin filament formation in vitro. Overall, our findings indicate that the controlled phosphorylation of Pnut plays an important role in regulating septin complex functions during organism development.
Collapse
|
7
|
Partial Functional Diversification of Drosophila melanogaster Septin Genes Sep2 and Sep5. G3-GENES GENOMES GENETICS 2016; 6:1947-57. [PMID: 27172205 PMCID: PMC4938648 DOI: 10.1534/g3.116.028886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The septin family of hetero-oligomeric complex-forming proteins can be divided into subgroups, and subgroup members are interchangeable at specific positions in the septin complex. Drosophila melanogaster has five septin genes, including the two SEPT6 subgroup members Sep2 and Sep5. We previously found that Sep2 has a unique function in oogenesis, which is not performed by Sep5. Here, we find that Sep2 is uniquely required for follicle cell encapsulation of female germline cysts, and that Sep2 and Sep5 are redundant for follicle cell proliferation. The five D. melanogaster septins localize similarly in oogenesis, including as rings flanking the germline ring canals. Pnut fails to localize in Sep5; Sep2 double mutant follicle cells, indicating that septin complexes fail to form in the absence of both Sep2 and Sep5. We also find that mutations in septins enhance the mutant phenotype of bazooka, a key component in the establishment of cell polarity, suggesting a link between septin function and cell polarity. Overall, this work suggests that Sep5 has undergone partial loss of ancestral protein function, and demonstrates redundant and unique functions of septins.
Collapse
|
8
|
Abstract
Functional studies in Drosophila have been key for establishing a role for the septin family of proteins in animal cell division and thus extending for the first time observations from the budding yeast to animal cells. Visualizing the distribution of specific septins in different Drosophila tissues and, in particular, in the Drosophila embryo, together with biochemical and mutant phenotype data, has contributed important advances to our understanding of animal septin biology, suggesting roles in processes other than in cytokinesis. Septin localization using immunofluorescence assays has been possible due to the generation of antibodies against different Drosophila septins. The recent availability of lines expressing fluorescent protein fusions of specific septins further promises to facilitate studies on septin dynamics. Here, we provide protocols for preparing early Drosophila embryos to visualize septins using immunofluorescence assays and live fluorescence microscopy. The genetic tractability of the Drosophila embryo together with its amenability to high-resolution fluorescence microscopy promises to provide novel insights into animal septin structure and function.
Collapse
Affiliation(s)
- M Mavrakis
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel UMR 7249, Marseille, France.
| |
Collapse
|
9
|
Sherlekar A, Rikhy R. Syndapin promotes pseudocleavage furrow formation by actin organization in the syncytial Drosophila embryo. Mol Biol Cell 2016; 27:2064-79. [PMID: 27146115 PMCID: PMC4927280 DOI: 10.1091/mbc.e15-09-0656] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 04/26/2016] [Indexed: 12/03/2022] Open
Abstract
F-BAR domain–containing proteins link the actin cytoskeleton to the membrane during membrane remodeling. Syndapin associates with the pseudocleavage furrow membrane and is essential for furrow morphology, actin organization, and extension downstream of initiation factor RhoGEF2. Coordinated membrane and cytoskeletal remodeling activities are required for membrane extension in processes such as cytokinesis and syncytial nuclear division cycles in Drosophila. Pseudocleavage furrow membranes in the syncytial Drosophila blastoderm embryo show rapid extension and retraction regulated by actin-remodeling proteins. The F-BAR domain protein Syndapin (Synd) is involved in membrane tubulation, endocytosis, and, uniquely, in F-actin stability. Here we report a role for Synd in actin-regulated pseudocleavage furrow formation. Synd localized to these furrows, and its loss resulted in short, disorganized furrows. Synd presence was important for the recruitment of the septin Peanut and distribution of Diaphanous and F-actin at furrows. Synd and Peanut were both absent in furrow-initiation mutants of RhoGEF2 and Diaphanous and in furrow-progression mutants of Anillin. Synd overexpression in rhogef2 mutants reversed its furrow-extension phenotypes, Peanut and Diaphanous recruitment, and F-actin organization. We conclude that Synd plays an important role in pseudocleavage furrow extension, and this role is also likely to be crucial in cleavage furrow formation during cell division.
Collapse
Affiliation(s)
- Aparna Sherlekar
- Biology, Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| | - Richa Rikhy
- Biology, Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| |
Collapse
|
10
|
Eichenlaub T, Cohen SM, Herranz H. Cell Competition Drives the Formation of Metastatic Tumors in a Drosophila Model of Epithelial Tumor Formation. Curr Biol 2016; 26:419-27. [PMID: 26853367 DOI: 10.1016/j.cub.2015.12.042] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 10/29/2015] [Accepted: 12/08/2015] [Indexed: 01/09/2023]
Abstract
Cell competition is a homeostatic process in which proliferating cells compete for survival. Elimination of otherwise normal healthy cells through competition is important during development and has recently been shown to contribute to maintaining tissue health during organismal aging. The mechanisms that allow for ongoing cell competition during adult life could, in principle, contribute to tumorigenesis. However, direct evidence supporting this hypothesis has been lacking. Here, we provide evidence that cell competition drives tumor formation in a Drosophila model of epithelial cancer. Cells expressing EGFR together with the conserved microRNA miR-8 acquire the properties of supercompetitors. Neoplastic transformation and metastasis depend on the ability of these cells to induce apoptosis and engulf nearby cells. miR-8 expression causes genome instability by downregulating expression of the Septin family protein Peanut. Cytokinesis failure due to downregulation of Peanut is required for tumorigenesis. This study provides evidence that the cellular mechanisms that drive cell competition during normal tissue growth can be co-opted to drive tumor formation and metastasis. Analogous mechanisms for cytokinesis failure may lead to polyploid intermediates in tumorigenesis in mammalian cancer models.
Collapse
Affiliation(s)
- Teresa Eichenlaub
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark
| | - Stephen M Cohen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore.
| | - Héctor Herranz
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark.
| |
Collapse
|
11
|
Safi F, Shteiman-Kotler A, Zhong Y, Iliadi KG, Boulianne GL, Rotin D. Drosophila Nedd4-long reduces Amphiphysin levels in muscles and leads to impaired T-tubule formation. Mol Biol Cell 2016; 27:907-18. [PMID: 26823013 PMCID: PMC4791135 DOI: 10.1091/mbc.e15-06-0420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 01/15/2016] [Indexed: 12/01/2022] Open
Abstract
An isoform of the fly ubiquitin ligase Nedd4 binds and degrades Amphiphysin, a postsynaptic and transverse tubule (T-tubule) protein in flies, thus impairing T-tubule formation and muscle function. Drosophila Nedd4 (dNedd4) is a HECT ubiquitin ligase with two main splice isoforms: dNedd4-short (dNedd4S) and -long (dNedd4Lo). DNedd4Lo has a unique N-terminus containing a Pro-rich region. We previously showed that whereas dNedd4S promotes neuromuscular synaptogenesis, dNedd4Lo inhibits it and impairs larval locomotion. To delineate the cause of the impaired locomotion, we searched for binding partners to the N-terminal unique region of dNedd4Lo in larval lysates using mass spectrometry and identified Amphiphysin (dAmph). dAmph is a postsynaptic protein containing SH3-BAR domains and regulates muscle transverse tubule (T-tubule) formation in flies. We validated the interaction by coimmunoprecipitation and showed direct binding between dAmph-SH3 domain and dNedd4Lo N-terminus. Accordingly, dNedd4Lo was colocalized with dAmph postsynaptically and at muscle T-tubules. Moreover, expression of dNedd4Lo in muscle during embryonic development led to disappearance of dAmph and impaired T-tubule formation, phenocopying amph-null mutants. This effect was not seen in muscles expressing dNedd4S or a catalytically-inactive dNedd4Lo(C→A). We propose that dNedd4Lo destabilizes dAmph in muscles, leading to impaired T-tubule formation and muscle function.
Collapse
Affiliation(s)
- Frozan Safi
- Hospital for Sick Children, Toronto, ON M5G 0A4, Canada Biochemistry Department, University of Toronto, Toronto ON M5S 1A1, Canada
| | - Alina Shteiman-Kotler
- Hospital for Sick Children, Toronto, ON M5G 0A4, Canada Biochemistry Department, University of Toronto, Toronto ON M5S 1A1, Canada
| | - Yunan Zhong
- Hospital for Sick Children, Toronto, ON M5G 0A4, Canada Biochemistry Department, University of Toronto, Toronto ON M5S 1A1, Canada
| | | | - Gabrielle L Boulianne
- Hospital for Sick Children, Toronto, ON M5G 0A4, Canada Molecular Genetics Department, University of Toronto, Toronto ON M5S 1A1, Canada
| | - Daniela Rotin
- Hospital for Sick Children, Toronto, ON M5G 0A4, Canada Biochemistry Department, University of Toronto, Toronto ON M5S 1A1, Canada
| |
Collapse
|
12
|
Lye CM, Naylor HW, Sanson B. Subcellular localisations of the CPTI collection of YFP-tagged proteins in Drosophila embryos. Development 2014; 141:4006-17. [PMID: 25294944 PMCID: PMC4197698 DOI: 10.1242/dev.111310] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A key challenge in the post-genomic area is to identify the function of the genes discovered, with many still uncharacterised in all metazoans. A first step is transcription pattern characterisation, for which we now have near whole-genome coverage in Drosophila. However, we have much more limited information about the expression and subcellular localisation of the corresponding proteins. The Cambridge Protein Trap Consortium generated, via piggyBac transposition, over 600 novel YFP-trap proteins tagging just under 400 Drosophila loci. Here, we characterise the subcellular localisations and expression patterns of these insertions, called the CPTI lines, in Drosophila embryos. We have systematically analysed subcellular localisations at cellularisation (stage 5) and recorded expression patterns at stage 5, at mid-embryogenesis (stage 11) and at late embryogenesis (stages 15-17). At stage 5, 31% of the nuclear lines (41) and 26% of the cytoplasmic lines (67) show discrete localisations that provide clues on the function of the protein and markers for organelles or regions, including nucleoli, the nuclear envelope, nuclear speckles, centrosomes, mitochondria, the endoplasmic reticulum, Golgi, lysosomes and peroxisomes. We characterised the membranous/cortical lines (102) throughout stage 5 to 10 during epithelial morphogenesis, documenting their apico-basal position and identifying those secreted in the extracellular space. We identified the tricellular vertices as a specialized membrane domain marked by the integral membrane protein Sidekick. Finally, we categorised the localisation of the membranous/cortical proteins during cytokinesis.
Collapse
Affiliation(s)
- Claire M Lye
- The Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Huw W Naylor
- The Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Bénédicte Sanson
- The Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
13
|
Lee DM, Harris TJC. Coordinating the cytoskeleton and endocytosis for regulated plasma membrane growth in the early Drosophila embryo. BIOARCHITECTURE 2014; 4:68-74. [PMID: 24874871 PMCID: PMC4199814 DOI: 10.4161/bioa.28949] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Plasma membrane organization is under the control of cytoskeletal networks and endocytic mechanisms, and a growing literature is showing how closely these influences are interconnected. Here, we review how plasma membranes are formed around individual nuclei of the syncytial Drosophila embryo. Specifically, we outline the pathways that promote and maintain the growth of pseudocleavage and cellularization furrows, as well as specific pathways that keep furrow growth in check. This system has become important for studies of actin regulators, such as Rho1, Diaphanous, non-muscle myosin II and Arp2/3, and endocytic regulators, such as a cytohesin Arf-GEF (Steppke), clathrin, Amphiphysin and dynamin. More generally, it provides a model for understanding how cytoskeletal-endocytic cross-talk regulates the assembly of a cell.
Collapse
Affiliation(s)
- Donghoon M Lee
- Department of Cell and Systems Biology; University of Toronto; Toronto, ON CA
| | - Tony J C Harris
- Department of Cell and Systems Biology; University of Toronto; Toronto, ON CA
| |
Collapse
|
14
|
Renshaw MJ, Liu J, Lavoie BD, Wilde A. Anillin-dependent organization of septin filaments promotes intercellular bridge elongation and Chmp4B targeting to the abscission site. Open Biol 2014; 4:130190. [PMID: 24451548 PMCID: PMC3909275 DOI: 10.1098/rsob.130190] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The final step of cytokinesis is abscission when the intercellular bridge (ICB) linking the two new daughter cells is broken. Correct construction of the ICB is crucial for the assembly of factors involved in abscission, a failure in which results in aneuploidy. Using live imaging and subdiffraction microscopy, we identify new anillin–septin cytoskeleton-dependent stages in ICB formation and maturation. We show that after the formation of an initial ICB, septin filaments drive ICB elongation during which tubules containing anillin–septin rings are extruded from the ICB. Septins then generate sites of further constriction within the mature ICB from which they are subsequently removed. The action of the anillin–septin complex during ICB maturation also primes the ICB for the future assembly of the ESCRT III component Chmp4B at the abscission site. These studies suggest that the sequential action of distinct contractile machineries coordinates the formation of the abscission site and the successful completion of cytokinesis.
Collapse
Affiliation(s)
- Matthew J Renshaw
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | | | | | | |
Collapse
|
15
|
Figard L, Xu H, Garcia HG, Golding I, Sokac AM. The plasma membrane flattens out to fuel cell-surface growth during Drosophila cellularization. Dev Cell 2013; 27:648-55. [PMID: 24316147 DOI: 10.1016/j.devcel.2013.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 08/29/2013] [Accepted: 11/06/2013] [Indexed: 10/25/2022]
Abstract
Cell-shape change demands cell-surface growth, but how growth is fueled and choreographed is still debated. Here we use cellularization, the first complete cytokinetic event in Drosophila embryos, to show that cleavage furrow ingression is kinetically coupled to the loss of surface microvilli. We modulate furrow kinetics with RNAi against the Rho1-GTPase regulator slam and show that furrow ingression controls the rate of microvillar depletion. Finally, we directly track the microvillar membrane and see it move along the cell surface and into ingressing furrows, independent of endocytosis. Together, our results demonstrate that the kinetics of the ingressing furrow regulate the utilization of a microvillar membrane reservoir. Because membranes of the furrow and microvilli are contiguous, we suggest that ingression drives unfolding of the microvilli and incorporation of microvillar membrane into the furrow. We conclude that plasma membrane folding/unfolding can contribute to the cell-shape changes that promote embryonic morphogenesis.
Collapse
Affiliation(s)
- Lauren Figard
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Heng Xu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hernan G Garcia
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Ido Golding
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Anna Marie Sokac
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Lee DM, Harris TJC. An Arf-GEF regulates antagonism between endocytosis and the cytoskeleton for Drosophila blastoderm development. Curr Biol 2013; 23:2110-20. [PMID: 24120639 DOI: 10.1016/j.cub.2013.08.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 08/15/2013] [Accepted: 08/27/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND Actin cytoskeletal networks push and pull the plasma membrane (PM) to control cell structure and behavior. Endocytosis also regulates the PM and can be promoted or inhibited by cytoskeletal networks. However, endocytic regulation of the general membrane cytoskeleton is undocumented. RESULTS Here, we provide evidence for endocytic inhibition of actomyosin networks. Specifically, we find that Steppke, a cytohesin Arf-guanine nucleotide exchange factor (GEF), controls initial PM furrow ingression during the syncytial nuclear divisions and cellularization of the Drosophila embryo. Acting at the tips of ingressing furrows, Steppke promotes local endocytic events through its Arf-GEF activity and in cooperation with the AP-2 clathrin adaptor complex. These Steppke activities appear to reduce local Rho1 protein levels and ultimately restrain actomyosin networks. Without Steppke, Rho1 pathways linked to actin polymerization and myosin activation abnormally expand the membrane cytoskeleton into taut sheets emanating perpendicularly from the furrow tips. These expansions lead to premature cellularization and abnormal expulsions of nuclei from the forming blastoderm. Finally, consistent with earlier reports, we also find that actomyosin activity can act reciprocally to inhibit the endocytosis at furrow tips. CONCLUSIONS We propose that Steppke-dependent endocytosis keeps the cytoskeleton in check as early PM furrows form. Specifically, a cytohesin Arf-GEF-Arf G protein-AP-2 endocytic axis appears to antagonize Rho1 cytoskeletal pathways to restrain the membrane cytoskeleton. However, as furrows lengthen during cellularization, the cytoskeleton gains strength, blocks the endocytic inhibition, and finally closes off the base of each cell to form the blastoderm.
Collapse
Affiliation(s)
- Donghoon M Lee
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | | |
Collapse
|