1
|
Brown TJ, Pichurin J, Parrado CR, Kabeche L, Baserga SJ. A role for the kinetochore protein, NUF2, in ribosome biogenesis. Mol Biol Cell 2025; 36:ar16. [PMID: 39705402 DOI: 10.1091/mbc.e24-08-0337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
Ribosome biogenesis (RB) is an intricate and evolutionarily conserved process that takes place mainly in the nucleolus and is required for eukaryotic cells to maintain homeostasis, grow in size, and divide. Our laboratory has identified the NUF2 protein, part of the mitotic kinetochore, in a genome-wide siRNA screen for proteins required for making ribosomes in MCF10A human breast epithelial cells. After rigorous validation and using several biochemical and cell-based assays, we find a role for NUF2 in pre-rRNA transcription, the primary and rate-limiting step of RB. siRNA depletion of other components of the NUF2 kinetochore sub-complex, NDC80, SPC24, and SPC25, also reduce pre-rRNA transcription. Interestingly, essential protein components for pre-rRNA transcription, including the largest subunit of RNA polymerase I, POLR1A, are reduced upon siRNA depletion of NUF2 and its protein partners. Their reduced levels are a likely mechanism for the decrease in pre-rRNA transcription. siRNA depletion of NUF2 and NDC80 also cause increased TP53 and CDKN1A (p21) mRNA levels, which can be restored by codepletion of RPL5, indicating activation of the nucleolar stress pathway (NSP). These results reveal a new connection between proteins with a known role in mitosis to the function of the nucleolus in RB during interphase.
Collapse
Affiliation(s)
- Ty J Brown
- Department of Genetics, Yale University and the Yale School of Medicine, New Haven, 06520 CT
| | - Jennifer Pichurin
- Department of Molecular Biophysics and Biochemistry, Yale University and the Yale School of Medicine, New Haven, 06520 CT
| | - Carlos Ramirez Parrado
- Department of Molecular Biophysics and Biochemistry, Yale University and the Yale School of Medicine, New Haven, 06520 CT
| | - Lilian Kabeche
- Department of Molecular Biophysics and Biochemistry, Yale University and the Yale School of Medicine, New Haven, 06520 CT
- Yale Cancer Biology Institute, Yale University and the Yale School of Medicine, West Haven, 06516 CT
| | - Susan J Baserga
- Department of Genetics, Yale University and the Yale School of Medicine, New Haven, 06520 CT
- Department of Molecular Biophysics and Biochemistry, Yale University and the Yale School of Medicine, New Haven, 06520 CT
- Department of Therapeutic Radiology, Yale University and the Yale School of Medicine, New Haven, 06520 CT
| |
Collapse
|
2
|
Huang S, Wei G, Jia X, Tang Z, Chen Q, Li C, Yan W, Jin M, Li X, Chen Y, Zheng H, Chen G, Liao W, Liao Y, Wang Y, Li J, Bin J. CircRNA-RBAC induces cardiac repair by promoting ribosome biogenesis and cell cycle progression in cardiomyocytes. Int J Biol Macromol 2025; 287:138406. [PMID: 39643169 DOI: 10.1016/j.ijbiomac.2024.138406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Ribosome biogenesis (RiBi) is an essential process that controls the protein synthesis rate, but its function in regulating endogenous cardiac regeneration remains unknown. Herein, we investigated the function and underlying mechanism of RiBi-associated circRNAs in cardiomyocyte (CM) proliferation and cardiac regeneration. We used high-throughput sequencing, quantitative PCR and in situ hybridization techniques to identify an adult downregulated circRNA, RiBi-associated circRNA (RBAC), in CMs. A functional study further revealed that RBAC overexpression increased ribosome biogenesis activity and cell cycle progression in CMs, while silencing RBAC decreased ribosome biogenesis activity and cell cycle progression. Moreover, RBAC overexpression induced adult CM proliferation and improved cardiac function after myocardial infarction in adult mice. Mechanistically, RBAC controlled ribosome biogenesis and cell proliferation by regulating the proteasome-dependent degradation of Ddx21, thereby altering the localization of Rps14 and reducing Rb expression. Our findings indicate that RBAC upregulation might be a plausible therapeutic strategy to induce endogenous cardiac regeneration.
Collapse
Affiliation(s)
- Senlin Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Guoquan Wei
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Xiaoqian Jia
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Zhenquan Tang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Qiqi Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Chuling Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Wen Yan
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Ming Jin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Xinzhong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Hao Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Guojun Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Yuegang Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Jianyong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China.
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China.
| |
Collapse
|
3
|
Vizcarra EA, Goerner AL, Ulu A, Hong DD, Bergersen KV, Talavera MA, Le Roch K, Wilson EH, White MW. An ex vivo model of Toxoplasma recrudescence reveals developmental plasticity of the bradyzoite stage. mBio 2023; 14:e0183623. [PMID: 37675999 PMCID: PMC10653814 DOI: 10.1128/mbio.01836-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 09/08/2023] Open
Abstract
IMPORTANCE The classical depiction of the Toxoplasma lifecycle is bradyzoite excystation conversion to tachyzoites, cell lysis, and immune control, followed by the reestablishment of bradyzoites and cysts. In contrast, we show that tachyzoite growth slows independent of the host immune response at a predictable time point following excystation. Furthermore, we demonstrate a host cell-dependent pathway of continuous amplification of the cyst-forming bradyzoite population. The developmental plasticity of the excysted bradyzoites further underlines the critical role the cyst plays in the flexibility of the lifecycle of this ubiquitous parasite. This revised model of Toxoplasma recrudescence uncovers previously unknown complexity in the clinically important bradyzoite stage of the parasite, which opens the door to further study these novel developmental features of the Toxoplasma intermediate life cycle.
Collapse
Affiliation(s)
- Edward A. Vizcarra
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Amber L. Goerner
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Arzu Ulu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - David D. Hong
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Kristina V. Bergersen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Michael A. Talavera
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Karine Le Roch
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California, USA
| | - Emma H. Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Michael W. White
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
4
|
Ni C, Buszczak M. The homeostatic regulation of ribosome biogenesis. Semin Cell Dev Biol 2023; 136:13-26. [PMID: 35440410 PMCID: PMC9569395 DOI: 10.1016/j.semcdb.2022.03.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022]
Abstract
The continued integrity of biological systems depends on a balance between interdependent elements at the molecular, cellular, and organismal levels. This is particularly true for the generation of ribosomes, which influence almost every aspect of cell and organismal biology. Ribosome biogenesis (RiBi) is an energetically demanding process that involves all three RNA polymerases, numerous RNA processing factors, chaperones, and the coordinated expression of 79-80 ribosomal proteins (r-proteins). Work over the last several decades has revealed that the dynamic regulation of ribosome production represents a major mechanism by which cells maintain homeostasis in response to changing environmental conditions and acute stress. More recent studies suggest that cells and tissues within multicellular organisms exhibit dramatically different levels of ribosome production and protein synthesis, marked by the differential expression of RiBi factors. Thus, distinct bottlenecks in the RiBi process, downstream of rRNA transcription, may exist within different cell populations of multicellular organisms during development and in adulthood. This review will focus on our current understanding of the mechanisms that link the complex molecular process of ribosome biogenesis with cellular and organismal physiology. We will discuss diverse topics including how different steps in the RiBi process are coordinated with one another, how MYC and mTOR impact RiBi, and how RiBi levels change between stem cells and their differentiated progeny. In turn, we will also review how regulated changes in ribosome production itself can feedback to influence cell fate and function.
Collapse
Affiliation(s)
- Chunyang Ni
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.
| |
Collapse
|
5
|
Inhibition of Ribosome Assembly and Ribosome Translation Has Distinctly Different Effects on Abundance and Paralogue Composition of Ribosomal Protein mRNAs in Saccharomyces cerevisiae. mSystems 2023; 8:e0109822. [PMID: 36651729 PMCID: PMC9948716 DOI: 10.1128/msystems.01098-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Many mutations in genes for ribosomal proteins (r-proteins) and assembly factors cause cell stress and altered cell fate, resulting in congenital diseases collectively called ribosomopathies. Even though all such mutations depress the cell's protein synthesis capacity, they generate many different phenotypes, suggesting that the diseases are not due simply to insufficient protein synthesis capacity. To learn more, we investigated how the global transcriptome in Saccharomyces cerevisiae responds to reduced protein synthesis generated in two different ways: abolishing the assembly of new ribosomes and inhibiting ribosomal function. Our results showed that the mechanism by which protein synthesis is obstructed affects the ribosomal protein transcriptome differentially: ribosomal protein mRNA abundance increases during the abolition of ribosome formation but decreases during the inhibition of ribosome function. Interestingly, the ratio between mRNAs from some, but not all, pairs of paralogous ribosomal protein genes encoding slightly different versions of a given r-protein changed differently during the two types of stress, suggesting that expression of specific ribosomal protein paralogous mRNAs may contribute to the stress response. Unexpectedly, the abundance of transcripts for ribosome assembly factors and translation factors remained relatively unaffected by the stresses. On the other hand, the state of the translation apparatus did affect cell physiology: mRNA levels for some other proteins not directly related to the translation apparatus also changed differentially, though not coordinately with the r-protein genes, in response to the stresses. IMPORTANCE Mutations in genes for ribosomal proteins or assembly factors cause a variety of diseases called ribosomopathies. These diseases are typically ascribed to a reduction in the cell's capacity for protein synthesis. Paradoxically, ribosomal mutations result in a wide variety of disease phenotypes, even though they all reduce protein synthesis. Here, we show that the transcriptome changes differently depending on how the protein synthesis capacity is reduced. Most strikingly, inhibiting ribosome formation and ribosome function had opposite effects on the abundance of mRNA for ribosomal proteins, while genes for ribosome translation and assembly factors showed no systematic responses. Thus, the process by which the protein synthesis capacity is reduced contributes decisively to global mRNA composition. This emphasis on process is a new concept in understanding ribosomopathies and other stress responses.
Collapse
|
6
|
Cattò C, Corte L, Roscini L, Cardinali G, Villa F, Cappitelli F. Metabolomic and Proteomic Changes in Candida albicans Biofilm in Response to Zosteric Acid Treatment. Int J Mol Sci 2022; 23:ijms232214067. [PMID: 36430545 PMCID: PMC9697788 DOI: 10.3390/ijms232214067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Zosteric acid (ZA) is a secondary metabolite of the seagrass Zostera marina, with antibiofilm activity against fungi. Information concerning its mechanisms of action is lacking and this limits the development of more potent derivatives based on the same target and activity structure. The aim of this work was to investigate the ZA mode of action by analyzing the metabolic status of Candida albicans biofilm and its protein expression profile upon ZA treatment. Fourier-Transform Infrared Spectroscopy confirmed that ZA modified the metabolomic response of treated cells, showing changes in the spectral regions, mainly related to the protein compartment. Nano Liquid Chromatography-High-Resolution Mass Spectrometry highlighted that 10 proteins were differentially expressed in the C. albicans proteome upon ZA treatment. Proteins involved in the biogenesis, structure and integrity of cell walls as well as adhesion and stable attachment of hyphae were found downregulated, whereas some proteins involved in the stress response were found overexpressed. Additionally, ZA was involved in the modulation of non-DNA-based epigenetic regulatory mechanisms triggered by reactive oxygen species. These results partially clarified the ZA mechanism of action against fungi and provided insight into the major C. albicans pathways responsible for biofilm formation.
Collapse
Affiliation(s)
- Cristina Cattò
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milano, Italy
- Correspondence: ; Tel.: +39-02-503-19121
| | - Laura Corte
- Department of Pharmaceutical Sciences-Microbiology, Università di Perugia, 06121 Perugia, Italy
| | - Luca Roscini
- Department of Pharmaceutical Sciences-Microbiology, Università di Perugia, 06121 Perugia, Italy
| | - Gianluigi Cardinali
- Department of Pharmaceutical Sciences-Microbiology, Università di Perugia, 06121 Perugia, Italy
| | - Federica Villa
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Francesca Cappitelli
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
7
|
Valencia-Lozano E, Herrera-Isidrón L, Flores-López JA, Recoder-Meléndez OS, Barraza A, Cabrera-Ponce JL. Solanum tuberosum Microtuber Development under Darkness Unveiled through RNAseq Transcriptomic Analysis. Int J Mol Sci 2022; 23:ijms232213835. [PMID: 36430314 PMCID: PMC9696990 DOI: 10.3390/ijms232213835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
Abstract
Potato microtuber (MT) development through in vitro techniques are ideal propagules for producing high quality potato plants. MT formation is influenced by several factors, i.e., photoperiod, sucrose, hormones, and osmotic stress. We have previously developed a protocol of MT induction in medium with sucrose (8% w/v), gelrite (6g/L), and 2iP as cytokinin under darkness. To understand the molecular mechanisms involved, we performed a transcriptome-wide analysis. Here we show that 1715 up- and 1624 down-regulated genes were involved in this biological process. Through the protein-protein interaction (PPI) network analyses performed in the STRING database (v11.5), we found 299 genes tightly associated in 14 clusters. Two major clusters of up-regulated proteins fundamental for life growth and development were found: 29 ribosomal proteins (RPs) interacting with 6 PEBP family members and 117 cell cycle (CC) proteins. The PPI network of up-regulated transcription factors (TFs) revealed that at least six TFs-MYB43, TSF, bZIP27, bZIP43, HAT4 and WOX9-may be involved during MTs development. The PPI network of down-regulated genes revealed a cluster of 83 proteins involved in light and photosynthesis, 110 in response to hormone, 74 in hormone mediate signaling pathway and 22 related to aging.
Collapse
Affiliation(s)
- Eliana Valencia-Lozano
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
| | - Lisset Herrera-Isidrón
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Jorge Abraham Flores-López
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Osiel Salvador Recoder-Meléndez
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Aarón Barraza
- CONACYT-Centro de Investigaciones Biológicas del Noreste, SC. IPN 195, Playa Palo de Santa Rita Sur, La Paz 23096, Baja California Sur, Mexico
| | - José Luis Cabrera-Ponce
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
- Correspondence: ; Tel.: +52-462-6239600 (ext. 9421)
| |
Collapse
|
8
|
Cunha Nascimento P, Alana Bragança Aragão W, Oliveira Bittencourt L, Dionizio A, A. R. Buzalaf M, Crespo-Lopez ME, Lima RR. Maternal methylmercury exposure changes the proteomic profile of the offspring's salivary glands: Prospects on translational toxicology. PLoS One 2021; 16:e0258969. [PMID: 34748590 PMCID: PMC8575261 DOI: 10.1371/journal.pone.0258969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022] Open
Abstract
Background Methylmercury (MeHg) remains a public health issue since developing organisms are particularly vulnerable to this environmental contaminant. This study investigated the effect of maternal MeHg exposure on the modulation of proteomic profile of parotid (PA), submandibular (SM), and sublingual (SL) glands of offspring rats. Materials and methods Pregnant Wistar rats were daily exposed to 40 μg/kg MeHg during both gestational and lactation periods. The proteomic profiles of the major salivary glands of the offspring rats were analyzed through mass spectrometry. Results The offspring rats exposed to MeHg showed significant alterations in the proteomic profiles of the PA, SM, and SL glands. Altered proteins were associated with cytoskeleton components, tissue morphogenesis, and response to stimulus and stress. Conclusion This original study showed that maternal MeHg exposure significantly modulates the expression of proteins and induces alterations in the proteomic profiles of developing salivary glands.
Collapse
Affiliation(s)
- Priscila Cunha Nascimento
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Walessa Alana Bragança Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Marilia A. R. Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
- * E-mail:
| |
Collapse
|
9
|
DU X, Xiao J, Fu X, Xu B, Han H, Wang Y, Pei X. A proteomic analysis of Bcl-2 regulation of cell cycle arrest: insight into the mechanisms. J Zhejiang Univ Sci B 2021; 22:839-855. [PMID: 34636187 DOI: 10.1631/jzus.b2000802] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
B cell lymphoma 2 (Bcl-2) is an important antiapoptotic gene that plays a dual role in the maintenance of the dynamic balance between the survival and death of cancer cells. In our previous study, Bcl-2 was shown to delay the G0/G1 to S phase entry by regulating the mitochondrial metabolic pathways to produce lower levels of adenosine triphosphate (ATP) and reactive oxygen species (ROS). However, the detailed molecular mechanisms or pathways by which Bcl-2 regulates the cell cycle remain unknown. Here, we compared the effects of Bcl-2 overexpression with an empty vector control in the NIH3T3 cell line synchronized by serum starvation, and evaluated the effects using proteomic analysis. The effect of Bcl-2 on cell cycle regulation was detected by monitoring Bcl-2 and p27 expression. The result of subsequent proteomic analysis of Bcl-2 overexpressing cells identified 169 upregulated and 120 downregulated proteins with a 1.5-fold change. These differentially expressed proteins were enriched in a number of signaling pathways predominantly involving the ribosome and oxidative phosphorylation, according to the data of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. These results indicated that Bcl-2 potentially acts at the translation level to influence proteins or enzymes of the respiratory chain or in the ribosome, and thereby regulates the cell cycle. Additionally, differentially expressed proteins involved in oxidative phosphorylation were determined to account for most of the effects of Bcl-2 on the cell cycle mediated by the mitochondrial pathway investigated in our previous study. These results can provide assistance for additional in-depth studies on the regulation of the cell cycle by Bcl-2. The results of the proteomic analysis determined the mechanism of Bcl-2-dependent delay of the cell cycle progression. In summary, the results of this study provide a novel mechanistic basis for identifying the key proteins or pathways for designing and developing precisely targeted cancer drugs.
Collapse
Affiliation(s)
- Xing DU
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.,Department of Biochemistry and Molecular Biology, Ningxia Medical University, Yinchuan 750004, China
| | - Jingjing Xiao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.,Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan 750004, China
| | - Xufeng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.,Department of Biochemistry and Molecular Biology, Ningxia Medical University, Yinchuan 750004, China
| | - Bo Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Hang Han
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Yin Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China. .,Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan 750004, China.
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
10
|
Delgado-Román I, Muñoz-Centeno MC. Coupling Between Cell Cycle Progression and the Nuclear RNA Polymerases System. Front Mol Biosci 2021; 8:691636. [PMID: 34409067 PMCID: PMC8365833 DOI: 10.3389/fmolb.2021.691636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic life is possible due to the multitude of complex and precise phenomena that take place in the cell. Essential processes like gene transcription, mRNA translation, cell growth, and proliferation, or membrane traffic, among many others, are strictly regulated to ensure functional success. Such systems or vital processes do not work and adjusts independently of each other. It is required to ensure coordination among them which requires communication, or crosstalk, between their different elements through the establishment of complex regulatory networks. Distortion of this coordination affects, not only the specific processes involved, but also the whole cell fate. However, the connection between some systems and cell fate, is not yet very well understood and opens lots of interesting questions. In this review, we focus on the coordination between the function of the three nuclear RNA polymerases and cell cycle progression. Although we mainly focus on the model organism Saccharomyces cerevisiae, different aspects and similarities in higher eukaryotes are also addressed. We will first focus on how the different phases of the cell cycle affect the RNA polymerases activity and then how RNA polymerases status impacts on cell cycle. A good example of how RNA polymerases functions impact on cell cycle is the ribosome biogenesis process, which needs the coordinated and balanced production of mRNAs and rRNAs synthesized by the three eukaryotic RNA polymerases. Distortions of this balance generates ribosome biogenesis alterations that can impact cell cycle progression. We also pay attention to those cases where specific cell cycle defects generate in response to repressed synthesis of ribosomal proteins or RNA polymerases assembly defects.
Collapse
Affiliation(s)
- Irene Delgado-Román
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. Del Rocío, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Mari Cruz Muñoz-Centeno
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. Del Rocío, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
11
|
Zhao Z, Wu X, He F, Xiang C, Feng X, Bai X, Liu X, Zhao J, Takeda S, Qing Y. Critical roles of Rad54 in tolerance to apigenin-induced Top1-mediated DNA damage. Exp Ther Med 2021; 21:505. [PMID: 33791014 DOI: 10.3892/etm.2021.9936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/07/2020] [Indexed: 02/05/2023] Open
Abstract
Apigenin (APG), a flavone sub-class of flavonoids, possesses a diverse range of biological activities, including anti-cancer and anti-inflammatory effects. Previous studies identified the genotoxicity of APG in certain cancer cells, which may be associated with its anticancer effect. However, the DNA damage repair mechanism induced by APG has remained elusive. In order to clarify the molecular mechanisms, the present study determined the toxicity of APG to the wild-type (WT) DT40 chicken B-lymphocyte cell line, as well as to DT40 cells with deletions in various DNA repair genes, and their sensitivities were compared. It was demonstrated that cells deficient of Rad54, a critical homologous recombination gene, were particularly sensitive to APG. Cell-cycle analysis demonstrated that APG caused an increase in the G2/M-phase population of Rad54- / - cells that was greater than that in WT cells. Furthermore, it was demonstrated by immunofluorescence assay that Rad54- / - cells exhibited significantly increased numbers of γ-phosphorylated H2AX variant histone foci and chromosomal aberrations compared to the WT cells in response to APG. Of note, the in vitro complex of enzyme assay indicated that APG induced increased topoisomerase I (Top1) covalent protein DNA complex in Rad54- / - cells compared to WT cells. Finally, these results were verified using the TK6 human lymphoblastoid cell line and it was demonstrated that, as for DT40 cells, Rad54 deficiency sensitized TK6 cells to APG. The present study demonstrated that Rad54 was involved in the repair of APG-induced DNA damage, which was associated with Top1 inhibition.
Collapse
Affiliation(s)
- Zilu Zhao
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaohua Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fang He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Cuifang Xiang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaoyu Feng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin Bai
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin Liu
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jingxia Zhao
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yong Qing
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
12
|
Zhao J, Yang Y, Fan Y, Yi J, Zhang C, Gu Z, Pan W, Gu J, Liao W, Fang W. Ribosomal Protein L40e Fused With a Ubiquitin Moiety Is Essential for the Vegetative Growth, Morphological Homeostasis, Cell Cycle Progression, and Pathogenicity of Cryptococcus neoformans. Front Microbiol 2020; 11:570269. [PMID: 33224112 PMCID: PMC7674629 DOI: 10.3389/fmicb.2020.570269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/20/2020] [Indexed: 11/13/2022] Open
Abstract
Ubiquitin is a highly conserved protein required for various fundamental cellular processes in eukaryotes. Herein, we first report the contribution of the ubiquitin fusion protein Ubi1 (a ubiquitin monomer fused with the ribosome protein L40e, Rpl40e) in the growth and pathogenicity of Cryptococcus neoformans. UBI1 deletion resulted in severe growth restriction of C. neoformans, whose growth rate was positively correlated with UBI1 expression level. The growth defect of the ubi1Δ strain could be closely associated with its morphological abnormalities, such as its reduced ribosome particles. In addition, the ubi1Δ mutant also displayed increased cell ploidy, cell cycle arrest, and decreased intracellular survival inside macrophages. All these phenotypes were reversed by the reconstitution of the full-length UBI1 gene or RPL40a domain. Mouse survival and fungal burden assays further revealed a severely attenuated pathogenicity for the ubi1Δ mutant, which is probably associated with its reduced stress tolerance and the induction of T-helper 1-type immune response. Taken together, Ubi1 is required for maintaining the vegetative growth, morphological homeostasis, cell cycle progression, and pathogenicity in vivo of C. neoformans. The pleiotropic roles of Ubi1 are dependent on the presence of Rpl40e and associated with its regulation of cryptococcal ribosome biogenesis.
Collapse
Affiliation(s)
- Jingyu Zhao
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Dermatology, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yali Yang
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Dermatology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yibin Fan
- Department of Dermatology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jiu Yi
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chao Zhang
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhongkai Gu
- The Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Weihua Pan
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Julin Gu
- Department of Dermatology, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Wanqing Liao
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei Fang
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
13
|
Maitra N, He C, Blank HM, Tsuchiya M, Schilling B, Kaeberlein M, Aramayo R, Kennedy BK, Polymenis M. Translational control of one-carbon metabolism underpins ribosomal protein phenotypes in cell division and longevity. eLife 2020; 9:53127. [PMID: 32432546 PMCID: PMC7263821 DOI: 10.7554/elife.53127] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
A long-standing problem is how cells that lack one of the highly similar ribosomal proteins (RPs) often display distinct phenotypes. Yeast and other organisms live longer when they lack specific ribosomal proteins, especially of the large 60S subunit of the ribosome. However, longevity is neither associated with the generation time of RP deletion mutants nor with bulk inhibition of protein synthesis. Here, we queried actively dividing RP mutants through the cell cycle. Our data link transcriptional, translational, and metabolic changes to phenotypes associated with the loss of paralogous RPs. We uncovered translational control of transcripts encoding enzymes of methionine and serine metabolism, which are part of one-carbon (1C) pathways. Cells lacking Rpl22Ap, which are long-lived, have lower levels of metabolites associated with 1C metabolism. Loss of 1C enzymes increased the longevity of wild type cells. 1C pathways exist in all organisms and targeting the relevant enzymes could represent longevity interventions.
Collapse
Affiliation(s)
- Nairita Maitra
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| | - Chong He
- Buck Institute for Research on Aging, Novato, United States
| | - Heidi M Blank
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| | - Mitsuhiro Tsuchiya
- Department of Pathology, University of Washington, Seattle, United States
| | | | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, United States
| | - Rodolfo Aramayo
- Department of Biology, Texas A&M University, College Station, United States
| | - Brian K Kennedy
- Buck Institute for Research on Aging, Novato, United States.,Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Centre for Healthy Ageing, National University of Singapore, National University Health System, Singapore, Singapore
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| |
Collapse
|
14
|
Cell trapping microfluidic chip made of Cyclo olefin polymer enabling two concurrent cell biology experiments with long term durability. Biomed Microdevices 2020; 22:20. [DOI: 10.1007/s10544-020-0474-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Yang S, Li H, Bhatti S, Zhou S, Yang Y, Fish T, Thannhauser TW. The Al-induced proteomes of epidermal and outer cortical cells in root apex of cherry tomato ‘LA 2710’. J Proteomics 2020; 211:103560. [DOI: 10.1016/j.jprot.2019.103560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
|
16
|
Alqahtani FM, Arivett BA, Taylor ZE, Handy ST, Farone AL, Farone MB. Chemogenomic profiling to understand the antifungal action of a bioactive aurone compound. PLoS One 2019; 14:e0226068. [PMID: 31825988 PMCID: PMC6905557 DOI: 10.1371/journal.pone.0226068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
Every year, more than 250,000 invasive candidiasis infections are reported with 50,000 deaths worldwide. The limited number of antifungal agents necessitates the need for alternative antifungals with potential novel targets. The 2-benzylidenebenzofuran-3-(2H)-ones have become an attractive scaffold for antifungal drug design. This study aimed to determine the antifungal activity of a synthetic aurone compound and characterize its mode of action. Using the broth microdilution method, aurone SH1009 exhibited inhibition against C. albicans, including resistant isolates, as well as C. glabrata, and C. tropicalis with IC50 values of 4-29 μM. Cytotoxicity assays using human THP-1, HepG2, and A549 human cell lines showed selective toxicity toward fungal cells. The mode of action for SH1009 was characterized using chemical-genetic interaction via haploinsufficiency (HIP) and homozygous (HOP) profiling of a uniquely barcoded Saccharomyces cerevisiae mutant collection. Approximately 5300 mutants were competitively treated with SH1009 followed by DNA extraction, amplification of unique barcodes, and quantification of each mutant using multiplexed next-generation sequencing. Barcode post-sequencing analysis revealed 238 sensitive and resistant mutants that significantly (FDR P values ≤ 0.05) responded to aurone SH1009. The enrichment analysis of KEGG pathways and gene ontology demonstrated the cell cycle pathway as the most significantly enriched pathway along with DNA replication, cell division, actin cytoskeleton organization, and endocytosis. Phenotypic studies of these significantly enriched responses were validated in C. albicans. Flow cytometric analysis of SH1009-treated C. albicans revealed a significant accumulation of cells in G1 phase, indicating cell cycle arrest. Fluorescence microscopy detected abnormally interrupted actin dynamics, resulting in enlarged, unbudded cells. RT-qPCR confirmed the effects of SH1009 in differentially expressed cell cycle, actin polymerization, and signal transduction genes. These findings indicate the target of SH1009 as a cell cycle-dependent organization of the actin cytoskeleton, suggesting a novel mode of action of the aurone compound as an antifungal inhibitor.
Collapse
Affiliation(s)
- Fatmah M. Alqahtani
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Brock A. Arivett
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Zachary E. Taylor
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Scott T. Handy
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Anthony L. Farone
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Mary B. Farone
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| |
Collapse
|
17
|
Gregory B, Rahman N, Bommakanti A, Shamsuzzaman M, Thapa M, Lescure A, Zengel JM, Lindahl L. The small and large ribosomal subunits depend on each other for stability and accumulation. Life Sci Alliance 2019; 2:e201800150. [PMID: 30837296 PMCID: PMC6402506 DOI: 10.26508/lsa.201800150] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
The 1:1 balance between the numbers of large and small ribosomal subunits can be disturbed by mutations that inhibit the assembly of only one of the subunits. Here, we have investigated if the cell can counteract an imbalance of the number of the two subunits. We show that abrogating 60S assembly blocks 40S subunit accumulation. In contrast, cessation of the 40S pathways does not prevent 60S accumulation, but does, however, lead to fragmentation of the 25S rRNA in 60S subunits and formation of a 55S ribosomal particle derived from the 60S. We also present evidence suggesting that these events occur post assembly and discuss the possibility that the turnover of subunits is due to vulnerability of free subunits not paired with the other subunit to form 80S ribosomes.
Collapse
MESH Headings
- Cell Survival/physiology
- Galactokinase/genetics
- Gene Expression Regulation, Fungal
- Promoter Regions, Genetic
- Protein Stability
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 18S/metabolism
- Ribosomal Proteins/metabolism
- Ribosome Subunits, Large, Eukaryotic/genetics
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Trans-Activators/genetics
Collapse
Affiliation(s)
- Brian Gregory
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Nusrat Rahman
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Ananth Bommakanti
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Md Shamsuzzaman
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Mamata Thapa
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Alana Lescure
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Janice M Zengel
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Lasse Lindahl
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
18
|
Ribosome Biogenesis Modulates Ty1 Copy Number Control in Saccharomyces cerevisiae. Genetics 2017; 207:1441-1456. [PMID: 29046400 PMCID: PMC5714458 DOI: 10.1534/genetics.117.300388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/12/2017] [Indexed: 11/26/2022] Open
Abstract
Transposons can impact the host genome by altering gene expression and participating in chromosome rearrangements. Therefore, organisms evolved different ways to minimize the level of transposition. In Saccharomyces cerevisiae and its close relative S. paradoxus, Ty1 copy number control (CNC) is mediated by the self-encoded restriction factor p22, which is derived from the GAG capsid gene and inhibits virus-like particle (VLP) assembly and function. Based on secondary screens of Ty1 cofactors, we identified LOC1, a RNA localization/ribosome biogenesis gene that affects Ty1 mobility predominantly in strains harboring Ty1 elements. Ribosomal protein mutants rps0bΔ and rpl7aΔ displayed similar CNC-specific phenotypes as loc1Δ, suggesting that ribosome biogenesis is critical for CNC. The level of Ty1 mRNA and Ty1 internal (Ty1i) transcripts encoding p22 was altered in these mutants, and displayed a trend where the level of Ty1i RNA increased relative to full-length Ty1 mRNA. The level of p22 increased in these mutants, and the half-life of p22 also increased in a loc1Δ mutant. Transcriptomic analyses revealed small changes in the level of Ty1 transcripts or efficiency of translation initiation in a loc1Δ mutant. Importantly, a loc1Δ mutant had defects in assembly of Gag complexes and packaging Ty1 RNA. Our results indicate that defective ribosome biogenesis enhances CNC by increasing the level of p22, and raise the possibility for versatile links between VLP assembly, its cytoplasmic environment, and a novel stress response.
Collapse
|
19
|
Shamsuzzaman M, Bommakanti A, Zapinsky A, Rahman N, Pascual C, Lindahl L. Analysis of cell cycle parameters during the transition from unhindered growth to ribosomal and translational stress conditions. PLoS One 2017; 12:e0186494. [PMID: 29028845 PMCID: PMC5640253 DOI: 10.1371/journal.pone.0186494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/01/2017] [Indexed: 02/07/2023] Open
Abstract
Abrogation of ribosome synthesis (ribosomal stress) leads to cell cycle arrest. However, the immediate cell response to cessation of ribosome formation and the transition from normal cell proliferation to cell cycle arrest have not been characterized. Furthermore, there are conflicting conclusions about whether cells are arrested in G2/M or G1, and whether the cause is dismantling ribosomal assembly per se, or the ensuing decreased number of translating ribosomes. To address these questions, we have compared the time kinetics of key cell cycle parameters after inhibiting ribosome formation or function in Saccharomyces cerevisiae. Within one-to-two hours of repressing genes for individual ribosomal proteins or Translation Elongation factor 3, configurations of spindles, spindle pole bodies began changing. Actin began depolarizing within 4 hours. Thus the loss of ribosome formation and function is sensed immediately. After several hours no spindles or mitotic actin rings were visible, but membrane ingression was completed in most cells and Ace2 was localized to daughter cell nuclei demonstrating that the G1 stage was reached. Thus cell division was completed without the help of a contractile actin ring. Moreover, cell wall material held mother and daughter cells together resulting in delayed cell separation, suggesting that expression or function of daughter gluconases and chitinases is inhibited. Moreover, cell development changes in very similar ways in response to inhibition of ribosome formation and function, compatible with the notion that decreased translation capacity contributes to arresting the cell cycle after abrogation of ribosome biogenesis. Potential implications for the mechanisms of diseases caused by mutations in ribosomal genes (ribosomopathies) are discussed.
Collapse
Affiliation(s)
- Md Shamsuzzaman
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, United States of America
| | - Ananth Bommakanti
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, United States of America
| | - Aviva Zapinsky
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, United States of America
| | - Nusrat Rahman
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, United States of America
| | - Clarence Pascual
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, United States of America
| | - Lasse Lindahl
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, United States of America
| |
Collapse
|
20
|
Diaz de Cerio O, Bilbao E, Ruiz P, Pardo BG, Martínez P, Cajaraville MP, Cancio I. Hepatic gene transcription profiles in turbot (Scophthalmus maximus) experimentally exposed to heavy fuel oil nº 6 and to styrene. MARINE ENVIRONMENTAL RESEARCH 2017; 123:14-24. [PMID: 27846414 DOI: 10.1016/j.marenvres.2016.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/04/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
Oil and chemical spills in the marine environment, although sporadic, are highly dangerous to biota inhabiting coastal and estuarine areas. Effects of spilled compounds in exposed organisms occur at different biological organization levels: from molecular, cellular or tissue levels to the physiological one. The present study aims to determine the specific hepatic gene transcription profiles observed in turbot juveniles under exposure to fuel oil n °6 and styrene vs controls using an immune enriched turbot (Scophthalmus maximus) oligo-microarray containing 2716 specific gene probes. After 3 days of exposure, fuel oil specifically induced aryl hydrocarbon receptor mediated transcriptional response through up-regulation of genes, such as ahrr and cyp1a1. More gene transcripts were regulated after 14 days of exposure involved in ribosomal biosynthesis, immune modulation, and oxidative response among the most significantly regulated functional pathways. On the contrary, gene transcription alterations caused by styrene did not highlight any significantly regulated molecular or metabolic pathway. This was also previously reported at cell and tissue level where no apparent responses were distinguishable. For the fuel oil experiment, obtained specific gene profiles could be related to changes in cell-tissue organization in the same individuals, such as increased hepatocyte vacuolization, decrease in melano-macrophage centers and the regulation of leukocyte numbers. In conclusion, the mode of action reflected by gene transcription profiles analyzed hereby in turbot livers could be linked with the responses previously reported at higher biological organization levels. Molecular alterations described hereby could be preceding observed alterations at cell and tissue levels.
Collapse
Affiliation(s)
- Oihane Diaz de Cerio
- CBET Research Group, Dept. of Zoology and Animal Cell Biology, Fac. Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), E-48080 Bilbao, PO Box 644, Basque Country, Spain
| | - Eider Bilbao
- CBET Research Group, Dept. of Zoology and Animal Cell Biology, Fac. Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), E-48080 Bilbao, PO Box 644, Basque Country, Spain
| | - Pamela Ruiz
- CBET Research Group, Dept. of Zoology and Animal Cell Biology, Fac. Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), E-48080 Bilbao, PO Box 644, Basque Country, Spain
| | - Belén G Pardo
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, 27002, Spain
| | - Paulino Martínez
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, 27002, Spain
| | - Miren P Cajaraville
- CBET Research Group, Dept. of Zoology and Animal Cell Biology, Fac. Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), E-48080 Bilbao, PO Box 644, Basque Country, Spain
| | - Ibon Cancio
- CBET Research Group, Dept. of Zoology and Animal Cell Biology, Fac. Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), E-48080 Bilbao, PO Box 644, Basque Country, Spain.
| |
Collapse
|
21
|
Wang J, Mauvoisin D, Martin E, Atger F, Galindo AN, Dayon L, Sizzano F, Palini A, Kussmann M, Waridel P, Quadroni M, Dulić V, Naef F, Gachon F. Nuclear Proteomics Uncovers Diurnal Regulatory Landscapes in Mouse Liver. Cell Metab 2017; 25:102-117. [PMID: 27818260 PMCID: PMC5241201 DOI: 10.1016/j.cmet.2016.10.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/25/2016] [Accepted: 10/05/2016] [Indexed: 12/12/2022]
Abstract
Diurnal oscillations of gene expression controlled by the circadian clock and its connected feeding rhythm enable organisms to coordinate their physiologies with daily environmental cycles. While available techniques yielded crucial insights into regulation at the transcriptional level, much less is known about temporally controlled functions within the nucleus and their regulation at the protein level. Here, we quantified the temporal nuclear accumulation of proteins and phosphoproteins from mouse liver by SILAC proteomics. We identified around 5,000 nuclear proteins, over 500 of which showed a diurnal accumulation. Parallel analysis of the nuclear phosphoproteome enabled the inference of the temporal activity of kinases accounting for rhythmic phosphorylation. Many identified rhythmic proteins were parts of nuclear complexes involved in transcriptional regulation, ribosome biogenesis, DNA repair, and the cell cycle and its potentially associated diurnal rhythm of hepatocyte polyploidy. Taken together, these findings provide unprecedented insights into the diurnal regulatory landscape of the mouse liver nucleus.
Collapse
Affiliation(s)
- Jingkui Wang
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Daniel Mauvoisin
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Eva Martin
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Florian Atger
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland; Department of Pharmacology and Toxicology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Antonio Núñez Galindo
- Systems Nutrition, Metabonomics, and Proteomics, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Loïc Dayon
- Systems Nutrition, Metabonomics, and Proteomics, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Federico Sizzano
- Department of Cell Biology, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Alessio Palini
- Department of Cell Biology, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Martin Kussmann
- Systems Nutrition, Metabonomics, and Proteomics, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Patrice Waridel
- Protein Analysis Facility, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Manfredo Quadroni
- Protein Analysis Facility, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Vjekoslav Dulić
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, 34090 Montpellier, France
| | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - Frédéric Gachon
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland; School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
22
|
Grassi ML, Palma CDS, Thomé CH, Lanfredi GP, Poersch A, Faça VM. Proteomic analysis of ovarian cancer cells during epithelial-mesenchymal transition (EMT) induced by epidermal growth factor (EGF) reveals mechanisms of cell cycle control. J Proteomics 2016; 151:2-11. [PMID: 27394697 DOI: 10.1016/j.jprot.2016.06.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/20/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022]
Abstract
Epithelial to mesenchymal transition (EMT) is a well-orchestrated process that culminates with loss of epithelial phenotype and gain of a mesenchymal and migratory phenotype. EMT enhances cancer cell invasiveness and drug resistance, favoring metastasis. Dysregulation of transcription factors, signaling pathways, miRNAs and growth factors including EGF, TGF-beta and HGF can trigger EMT. In ovarian cancer, overexpression of the EGFR family is associated with more aggressive clinical behavior. Here, the ovarian adenocarcinoma cell line Caov-3 was induced to EMT with EGF in order to identify specific mechanisms controlled by this process. Caov-3 cells induced to EMT were thoroughly validated and a combination of subcellular proteome enrichment, GEL-LC-MS/MS and SILAC strategy allowed consistent proteome identification and quantitation. Protein network analysis of differentially expressed proteins highlighted regulation of metabolism and cell cycle. Activation of relevant signaling pathways, such as PI3K/Akt/mTOR and Ras/Erk MAPK, in response to EGF-induced EMT was validated. Also, EMT did not affected the proliferation rate of Caov-3 cells, but led to cell cycle arrest in G1 phase regulated by increased levels of p21Waf1/Cip1, independently of p53. Furthermore, a decrease in G1 and G2 checkpoint proteins was observed, supporting the involvement of EGF-induced EMT in cell cycle control. BIOLOGICAL SIGNIFICANCE Cancer is a complex multistep process characterized by accumulation of several hallmarks including epithelial to mesenchymal transition (EMT), which promotes cellular and microenvironmental changes resulting in invasion and migration to distant sites, favoring metastasis. EMT can be triggered by different extracellular stimuli, including growth factors such as EGF. In ovarian cancer, the most lethal gynecological cancer, overexpression of the EGFR family is associated with more aggressive clinical behavior, increasing mortality rate caused by metastasis. Our proteomic data, together with specific validation of specific cellular mechanisms demonstrated that EGF-induced EMT in Caov-3 cells leads to important alterations in metabolic process (protein synthesis) and cell cycle control, supporting the implication of EGF/EMT in cancer metastasis, cancer stem cell generation and, therefore, poor prognosis for the disease.
Collapse
Affiliation(s)
- Mariana Lopes Grassi
- Dept. Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Cell-Based Therapy Center, Ribeirão Preto Blood Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Camila de Souza Palma
- Dept. Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Cell-Based Therapy Center, Ribeirão Preto Blood Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carolina Hassibe Thomé
- Dept. Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Cell-Based Therapy Center, Ribeirão Preto Blood Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Guilherme Pauperio Lanfredi
- Dept. Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Cell-Based Therapy Center, Ribeirão Preto Blood Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Aline Poersch
- Dept. Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Vitor Marcel Faça
- Dept. Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Cell-Based Therapy Center, Ribeirão Preto Blood Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
23
|
Abstract
A veritable explosion of primary research papers within the past 10 years focuses on nucleolar and ribosomal stress, and for good reason: with ribosome biosynthesis consuming ~80% of a cell’s energy, nearly all metabolic and signaling pathways lead ultimately to or from the nucleolus. We begin by describing p53 activation upon nucleolar stress resulting in cell cycle arrest or apoptosis. The significance of this mechanism cannot be understated, as oncologists are now inducing nucleolar stress strategically in cancer cells as a potential anti-cancer therapy. We also summarize the human ribosomopathies, syndromes in which ribosome biogenesis or function are impaired leading to birth defects or bone narrow failures; the perplexing problem in the ribosomopathies is why only certain cells are affected despite the fact that the causative mutation is systemic. We then describe p53-independent nucleolar stress, first in yeast which lacks p53, and then in other model metazoans that lack MDM2, the critical E3 ubiquitin ligase that normally inactivates p53. Do these presumably ancient p53-independent nucleolar stress pathways remain latent in human cells? If they still exist, can we use them to target >50% of known human cancers that lack functional p53?
Collapse
Affiliation(s)
- Allison James
- a Department of Biological Sciences; Louisiana State University; Baton Rouge, LA USA
| | | | | | | | | |
Collapse
|
24
|
Wang M, Parshin AV, Shcherbik N, Pestov DG. Reduced expression of the mouse ribosomal protein Rpl17 alters the diversity of mature ribosomes by enhancing production of shortened 5.8S rRNA. RNA (NEW YORK, N.Y.) 2015; 21:1240-1248. [PMID: 25995445 PMCID: PMC4478343 DOI: 10.1261/rna.051169.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/10/2015] [Indexed: 06/04/2023]
Abstract
Processing of rRNA during ribosome assembly can proceed through alternative pathways but it is unclear whether this could affect the structure of the ribosome. Here, we demonstrate that shortage of a ribosomal protein can change pre-rRNA processing in a way that over time alters ribosome diversity in the cell. Reducing the amount of Rpl17 in mouse cells led to stalled 60S subunit maturation, causing degradation of most of the synthesized precursors. A fraction of pre-60S subunits, however, were able to complete maturation, but with a 5'-truncated 5.8S rRNA, which we named 5.8SC. The 5' exoribonuclease Xrn2 is involved in the generation of both 5.8S(C) and the canonical long form of 5.8S rRNA. Ribosomes containing 5.8S(C) rRNA are present in various mouse and human cells and engage in translation. These findings uncover a previously undescribed form of mammalian 5.8S rRNA and demonstrate that perturbations in ribosome assembly can be a source of heterogeneity in mature ribosomes.
Collapse
Affiliation(s)
- Minshi Wang
- Department of Cell Biology, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084, USA
| | - Andrey V Parshin
- Department of Cell Biology, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084, USA
| | - Natalia Shcherbik
- Department of Cell Biology, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084, USA
| | - Dimitri G Pestov
- Department of Cell Biology, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084, USA
| |
Collapse
|
25
|
Polymenis M, Aramayo R. Translate to divide: сontrol of the cell cycle by protein synthesis. MICROBIAL CELL 2015; 2:94-104. [PMID: 28357283 PMCID: PMC5348972 DOI: 10.15698/mic2015.04.198] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein synthesis underpins much of cell growth and, consequently, cell multiplication. Understanding how proliferating cells commit and progress into the cell cycle requires knowing not only which proteins need to be synthesized, but also what determines their rate of synthesis during cell division.
Collapse
Affiliation(s)
- Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Rodolfo Aramayo
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
26
|
Abstract
Cell size is determined by a complex interplay between growth and division, involving multiple
cellular pathways. To identify systematically processes affecting size control in G1 in budding
yeast, we imaged and analyzed the cell cycle of millions of individual cells representing 591
mutants implicated in size control. Quantitative metric distinguished mutants affecting the
mechanism of size control from the majority of mutants that have a perturbed size due to indirect
effects modulating cell growth. Overall, we identified 17 negative and dozens positive size control
regulators, with the negative regulators forming a small network centered on elements of mitotic
exit network. Some elements of the translation machinery affected size control with a notable
distinction between the deletions of parts of small and large ribosomal subunit: parts of small
ribosomal subunit tended to regulate size control, while parts of the large subunit affected cell
growth. Analysis of small cells revealed additional size control mechanism that functions in G2/M,
complementing the primary size control in G1. Our study provides new insights about size control
mechanisms in budding yeast.
Collapse
Affiliation(s)
- Ilya Soifer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
27
|
Zhang X, Azhar G, Rogers SC, Foster SR, Luo S, Wei JY. Overexpression of p49/STRAP alters cellular cytoskeletal structure and gross anatomy in mice. BMC Cell Biol 2014; 15:32. [PMID: 25183317 PMCID: PMC4160719 DOI: 10.1186/1471-2121-15-32] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/04/2014] [Indexed: 11/12/2022] Open
Abstract
Background The protein p49/STRAP (SRFBP1) is a transcription cofactor of serum response factor (SRF) which regulates cytoskeletal and muscle-specific genes. Results Two conserved domains were found in the p49/STRAP protein. The SRF-binding domain was at its N-terminus and was highly conserved among mammalian species, xenopus and zebrafish. A BUD22 domain was found at its C-terminus in three sequence databases. The BUD22 domain was conserved among mammalian p49/STRAP proteins, and yeast cellular morphogenesis proteins, which is involved in ribosome biogenesis that affects growth rate and cell size. The endogenous p49/SRAP protein was localized mainly in the nucleus but also widely distributed in the cytoplasm, and was in close proximity to the actin. Transfected GFP-p49/STRAP protein co-localized with nucleolin within the nucleolus. Overexpression of p49/STRAP reduced actin content in cultured cells and resulted in smaller cell size versus control cells. Increased expression of p49/STRAP in transgenic mice resulted in newborns with malformations, which included asymmetric abdominal and thoracic cavities, and substantial changes in cardiac morphology. p49/STRAP altered the expression of certain muscle-specific genes, including that of the SRF gene, which is a key regulator of cardiac genes at the developmental, structural and maintenance level and has two SRE binding sites. Conclusions Since p49/STRAP is a co-factor of SRF, our data suggest that p49/STRAP likely regulates cell size and morphology through SRF target genes. The function of its BUD22 domain warrants further investigation. The observed increase in p49/STRAP expression during cellular aging may contribute to observed morphological changes in senescence.
Collapse
Affiliation(s)
| | | | | | | | | | - Jeanne Y Wei
- Reynolds Institute on Aging & Department of Geriatrics, University of Arkansas for Medical Sciences, 4301 West Markham St, #748, Little Rock, AR 72205, USA.
| |
Collapse
|