1
|
Sun X, Decker J, Sanchez-Luege N, Rebay I. Inter-plane feedback coordinates cell morphogenesis and maintains 3D tissue organization in the Drosophila pupal retina. Development 2024; 151:dev201757. [PMID: 38533736 PMCID: PMC11006395 DOI: 10.1242/dev.201757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 01/12/2024] [Indexed: 03/28/2024]
Abstract
How complex organs coordinate cellular morphogenetic events to achieve three-dimensional (3D) form is a central question in development. The question is uniquely tractable in the late Drosophila pupal retina, where cells maintain stereotyped contacts as they elaborate the specialized cytoskeletal structures that pattern the apical, basal and longitudinal planes of the epithelium. In this study, we combined cell type-specific genetic manipulation of the cytoskeletal regulator Abelson (Abl) with 3D imaging to explore how the distinct cellular morphogenetic programs of photoreceptors and interommatidial pigment cells (IOPCs) organize tissue pattern to support retinal integrity. Our experiments show that photoreceptor and IOPC terminal differentiation is unexpectedly interdependent, connected by an intercellular feedback mechanism that coordinates and promotes morphogenetic change across orthogonal tissue planes to ensure correct 3D retinal pattern. We propose that genetic regulation of specialized cellular differentiation programs combined with inter-plane mechanical feedback confers spatial coordination to achieve robust 3D tissue morphogenesis.
Collapse
Affiliation(s)
- Xiao Sun
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jacob Decker
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Nicelio Sanchez-Luege
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Ilaria Rebay
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Fang HY, Forghani R, Clarke A, McQueen PG, Chandrasekaran A, O’Neill KM, Losert W, Papoian GA, Giniger E. Enabled primarily controls filopodial morphology, not actin organization, in the TSM1 growth cone in Drosophila. Mol Biol Cell 2023; 34:ar83. [PMID: 37223966 PMCID: PMC10398877 DOI: 10.1091/mbc.e23-01-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023] Open
Abstract
Ena/VASP proteins are processive actin polymerases that are required throughout animal phylogeny for many morphogenetic processes, including axon growth and guidance. Here we use in vivo live imaging of morphology and actin distribution to determine the role of Ena in promoting the growth of the TSM1 axon of the Drosophila wing. Altering Ena activity causes stalling and misrouting of TSM1. Our data show that Ena has a substantial impact on filopodial morphology in this growth cone but exerts only modest effects on actin distribution. This is in contrast to the main regulator of Ena, Abl tyrosine kinase, which was shown previously to have profound effects on actin and only mild effects on TSM1 growth cone morphology. We interpret these data as suggesting that the primary role of Ena in this axon may be to link actin to the morphogenetic processes of the plasma membrane, rather than to regulate actin organization itself. These data also suggest that a key role of Ena, acting downstream of Abl, may be to maintain consistent organization and reliable evolution of growth cone structure, even as Abl activity varies in response to guidance cues in the environment.
Collapse
Affiliation(s)
- Hsiao Yu Fang
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Rameen Forghani
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Akanni Clarke
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Philip G. McQueen
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Aravind Chandrasekaran
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20752
| | - Kate M. O’Neill
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
- Institute for Physical Sciences and Department of Physics, University of Maryland, College Park, MD 20752
| | - Wolfgang Losert
- Institute for Physical Sciences and Department of Physics, University of Maryland, College Park, MD 20752
| | - Garegin A. Papoian
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20752
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
3
|
Sun X, Decker J, Sanchez-Luege N, Rebay I. Orthogonal coupling of a 3D cytoskeletal scaffold coordinates cell morphogenesis and maintains tissue organization in the Drosophila pupal retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531386. [PMID: 36945525 PMCID: PMC10028844 DOI: 10.1101/2023.03.06.531386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
How complex three-dimensional (3D) organs coordinate cellular morphogenetic events to achieve the correct final form is a central question in development. The question is uniquely tractable in the late Drosophila pupal retina where cells maintain stereotyped contacts as they elaborate the specialized cytoskeletal structures that pattern the apical, basal and longitudinal planes of the epithelium. In this study, we combined cell type-specific genetic manipulation of the cytoskeletal regulator Abelson (Abl) with 3D imaging to explore how the distinct cellular morphogenetic programs of photoreceptors and interommatidial pigment cells coordinately organize tissue pattern to support retinal integrity. Our experiments revealed an unanticipated intercellular feedback mechanism whereby correct cellular differentiation of either cell type can non-autonomously induce cytoskeletal remodeling in the other Abl mutant cell type, restoring retinal pattern and integrity. We propose that genetic regulation of specialized cellular differentiation programs combined with inter-plane mechanical feedback confers spatial coordination to achieve robust 3D tissue morphogenesis.
Collapse
|
4
|
Li H, Sung HH, Huang YC, Cheng YJ, Yeh HF, Pi H, Giniger E, Chien CT. Fringe-positive Golgi outposts unite temporal Furin 2 convertase activity and spatial Delta signal to promote dendritic branch retraction. Cell Rep 2022; 40:111372. [PMID: 36130510 PMCID: PMC11463699 DOI: 10.1016/j.celrep.2022.111372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/07/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022] Open
Abstract
Golgi outposts (GOPs) in dendrites are known for their role in promoting branch extension, but whether GOPs have other functions is unclear. We found that terminal branches of Drosophila class IV dendritic arborization (C4da) neurons actively grow during the early third-instar (E3) larval stage but retract in the late third (L3) stage. Interestingly, the Fringe (Fng) glycosyltransferase localizes increasingly at GOPs in distal dendritic regions through the E3 to the L3 stage. Expression of the endopeptidase Furin 2 (Fur2), which proteolyzes and inactivates Fng, decreases from E3 to L3 in C4da neurons, thereby increasing Fng-positive GOPs in dendrites. The epidermal Delta ligand and neuronal Notch receptor, the substrate for Fng-mediated O-glycosylation, also negatively regulate dendrite growth. Fng inhibits actin dynamics in dendrites, linking dendritic branch retraction to suppression of the C4da-mediated thermal nociception response in late larval stages. Thus, Fng-positive GOPs function in dendrite retraction, which would add another function to the repertoire of GOPs in dendrite arborization.
Collapse
Affiliation(s)
- Hsun Li
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 11529, Taiwan
| | - Hsin-Ho Sung
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Chun Huang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ying-Ju Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hsiao-Fong Yeh
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
| | - Haiwei Pi
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cheng-Ting Chien
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 11529, Taiwan; Neuroscience Program of Academia Sinica, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
5
|
Chandrasekaran A, Clarke A, McQueen P, Fang HY, Papoian GA, Giniger E. Computational simulations reveal that Abl activity controls cohesiveness of actin networks in growth cones. Mol Biol Cell 2022; 33:ar92. [PMID: 35857718 PMCID: PMC9582807 DOI: 10.1091/mbc.e21-11-0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 11/11/2022] Open
Abstract
Extensive studies of growing axons have revealed many individual components and protein interactions that guide neuronal morphogenesis. Despite this, however, we lack any clear picture of the emergent mechanism by which this nanometer-scale biochemistry generates the multimicron-scale morphology and cell biology of axon growth and guidance in vivo. To address this, we studied the downstream effects of the Abl signaling pathway using a computer simulation software (MEDYAN) that accounts for mechanochemical dynamics of active polymers. Previous studies implicate two Abl effectors, Arp2/3 and Enabled, in Abl-dependent axon guidance decisions. We now find that Abl alters actin architecture primarily by activating Arp2/3, while Enabled plays a more limited role. Our simulations show that simulations mimicking modest levels of Abl activity bear striking similarity to actin profiles obtained experimentally from live imaging of actin in wild-type axons in vivo. Using a graph theoretical filament-filament contact analysis, moreover, we find that networks mimicking hyperactivity of Abl (enhanced Arp2/3) are fragmented into smaller domains of actin that interact weakly with each other, consistent with the pattern of actin fragmentation observed upon Abl overexpression in vivo. Two perturbative simulations further confirm that high-Arp2/3 actin networks are mechanically disconnected and fail to mount a cohesive response to perturbation. Taken together, these data provide a molecular-level picture of how the large-scale organization of the axonal cytoskeleton arises from the biophysics of actin networks.
Collapse
Affiliation(s)
- Aravind Chandrasekaran
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
- National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892
| | - Akanni Clarke
- National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine/National Institutes of Health Graduate Partnerships Program, Washington, DC 20037
| | - Philip McQueen
- Center for Information Technology, National Institutes of Health, Bethesda, MD 20892
| | - Hsiao Yu Fang
- National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892
| | - Garegin A. Papoian
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742
| | - Edward Giniger
- National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892
| |
Collapse
|
6
|
Hwang T, Parker SS, Hill SM, Grant RA, Ilunga MW, Sivaraman V, Mouneimne G, Keating AE. Native proline-rich motifs exploit sequence context to target actin-remodeling Ena/VASP protein ENAH. eLife 2022; 11:70680. [PMID: 35076015 PMCID: PMC8789275 DOI: 10.7554/elife.70680] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
The human proteome is replete with short linear motifs (SLiMs) of four to six residues that are critical for protein-protein interactions, yet the importance of the sequence surrounding such motifs is underexplored. We devised a proteomic screen to examine the influence of SLiM sequence context on protein-protein interactions. Focusing on the EVH1 domain of human ENAH, an actin regulator that is highly expressed in invasive cancers, we screened 36-residue proteome-derived peptides and discovered new interaction partners of ENAH and diverse mechanisms by which context influences binding. A pocket on the ENAH EVH1 domain that has diverged from other Ena/VASP paralogs recognizes extended SLiMs and favors motif-flanking proline residues. Many high-affinity ENAH binders that contain two proline-rich SLiMs use a noncanonical site on the EVH1 domain for binding and display a thermodynamic signature consistent with the two-motif chain engaging a single domain. We also found that photoreceptor cilium actin regulator (PCARE) uses an extended 23-residue region to obtain a higher affinity than any known ENAH EVH1-binding motif. Our screen provides a way to uncover the effects of proteomic context on motif-mediated binding, revealing diverse mechanisms of control over EVH1 interactions and establishing that SLiMs can’t be fully understood outside of their native context.
Collapse
Affiliation(s)
- Theresa Hwang
- Department of Biology, Massachusetts Institute of Technology
| | - Sara S Parker
- Department of Cellular & Molecular Medicine, University of Arizona
| | - Samantha M Hill
- Department of Cellular & Molecular Medicine, University of Arizona
| | - Robert A Grant
- Department of Biology, Massachusetts Institute of Technology
| | - Meucci W Ilunga
- Department of Biology, Massachusetts Institute of Technology
| | | | | | - Amy E Keating
- Department of Biology, Massachusetts Institute of Technology
- Department of Biological Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| |
Collapse
|
7
|
Cheong HSJ, Nona M, Guerra SB, VanBerkum MF. The first quarter of the C-terminal domain of Abelson regulates the WAVE regulatory complex and Enabled in axon guidance. Neural Dev 2020; 15:7. [PMID: 32359359 PMCID: PMC7196227 DOI: 10.1186/s13064-020-00144-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
Background Abelson tyrosine kinase (Abl) plays a key role in axon guidance in linking guidance receptors to actin dynamics. The long C-terminal domain (CTD) of Drosophila Abl is important for this role, and previous work identified the ‘first quarter’ (1Q) of the CTD as essential. Here, we link the physical interactions of 1Q binding partners to Abl’s function in axon guidance. Methods Protein binding partners of 1Q were identified by GST pulldown and mass spectrometry, and validated using axon guidance assays in the embryonic nerve cord and motoneurons. The role of 1Q was assessed genetically, utilizing a battery of Abl transgenes in combination with mutation or overexpression of the genes of pulled down proteins, and their partners in actin dynamics. The set of Abl transgenes had the following regions deleted: all of 1Q, each half of 1Q (‘eighths’, 1E and 2E) or a PxxP motif in 2E, which may bind SH3 domains. Results GST pulldown identified Hem and Sra-1 as binding partners of 1Q, and our genetic analyses show that both proteins function with Abl in axon guidance, with Sra-1 likely interacting with 1Q. As Hem and Sra-1 are part of the actin-polymerizing WAVE regulatory complex (WRC), we extended our analyses to Abi and Trio, which interact with Abl and WRC members. Overall, the 1Q region (and especially 2E and its PxxP motif) are important for Abl’s ability to work with WRC in axon guidance. These areas are also important for Abl’s ability to function with the actin regulator Enabled. In comparison, 1E contributes to Abl function with the WRC at the midline, but less so with Enabled. Conclusions The 1Q region, and especially the 2E region with its PxxP motif, links Abl with the WRC, its regulators Trio and Abi, and the actin regulator Ena. Removing 1E has specific effects suggesting it may help modulate Abl’s interaction with the WRC or Ena. Thus, the 1Q region of Abl plays a key role in regulating actin dynamics during axon guidance.
Collapse
Affiliation(s)
| | - Mark Nona
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | | | | |
Collapse
|
8
|
Clarke A, McQueen PG, Fang HY, Kannan R, Wang V, McCreedy E, Buckley T, Johannessen E, Wincovitch S, Giniger E. Dynamic morphogenesis of a pioneer axon in Drosophila and its regulation by Abl tyrosine kinase. Mol Biol Cell 2020; 31:452-465. [PMID: 31967935 PMCID: PMC7185889 DOI: 10.1091/mbc.e19-10-0563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The fundamental problem in axon growth and guidance is to understand how cytoplasmic signaling modulates the cytoskeleton to produce directed growth cone motility. We here dissect this process using live imaging of the TSM1 axon of the developing Drosophila wing. We find that the growth cone is almost purely filopodial, and that it extends by a protrusive mode of growth. Quantitative analysis reveals two separate groups of growth cone properties that together account for growth cone structure and dynamics. The core morphological features of the growth cone are strongly correlated with one another and define two discrete morphs. Genetic manipulation of a critical mediator of axon guidance signaling, Abelson (Abl) tyrosine kinase, shows that while Abl weakly modulates the ratio of the two morphs it does not greatly change their properties. Rather, Abl primarily regulates the second group of properties, which report the organization and distribution of actin in the growth cone and are coupled to growth cone velocity. Other experiments dissect the nature of that regulation of actin organization and how it controls the spatial localization of filopodial dynamics and thus axon extension. Together, these observations suggest a novel, probabilistic mechanism by which Abl biases the stochastic fluctuations of growth cone actin to direct axon growth and guidance.
Collapse
Affiliation(s)
- Akanni Clarke
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892.,Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine/NIH Graduate Partnership Program, Washington, DC 20037
| | - Philip G McQueen
- Center for Information Technology, National Institutes of Health, Bethesda, MD 20892
| | - Hsiao Yu Fang
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Ramakrishnan Kannan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Victor Wang
- Center for Information Technology, National Institutes of Health, Bethesda, MD 20892
| | - Evan McCreedy
- Center for Information Technology, National Institutes of Health, Bethesda, MD 20892
| | - Tyler Buckley
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Erika Johannessen
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Stephen Wincovitch
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
9
|
Kannan R, Cox E, Wang L, Kuzina I, Gu Q, Giniger E. Tyrosine phosphorylation and proteolytic cleavage of Notch are required for non-canonical Notch/Abl signaling in Drosophila axon guidance. Development 2018; 145:dev.151548. [PMID: 29343637 DOI: 10.1242/dev.151548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023]
Abstract
Notch signaling is required for the development and physiology of nearly every tissue in metazoans. Much of Notch signaling is mediated by transcriptional regulation of downstream target genes, but Notch controls axon patterning in Drosophila by local modulation of Abl tyrosine kinase signaling, via direct interactions with the Abl co-factors Disabled and Trio. Here, we show that Notch-Abl axonal signaling requires both of the proteolytic cleavage events that initiate canonical Notch signaling. We further show that some Notch protein is tyrosine phosphorylated in Drosophila, that this form of the protein is selectively associated with Disabled and Trio, and that relevant tyrosines are essential for Notch-dependent axon patterning but not for canonical Notch-dependent regulation of cell fate. Based on these data, we propose a model for the molecular mechanism by which Notch controls Abl signaling in Drosophila axons.
Collapse
Affiliation(s)
- Ramakrishnan Kannan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eric Cox
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lei Wang
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, N., Seattle, WA 98109, USA
| | - Irina Kuzina
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qun Gu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA .,Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, N., Seattle, WA 98109, USA
| |
Collapse
|
10
|
Su YH, Rastegri E, Kao SH, Lai CM, Lin KY, Liao HY, Wang MH, Hsu HJ. Diet regulates membrane extension and survival of niche escort cells for germline homeostasis via insulin signaling. Development 2018; 145:dev.159186. [DOI: 10.1242/dev.159186] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 03/09/2018] [Indexed: 12/29/2022]
Abstract
Diet is an important regulator of stem cell homeostasis, however, the underlying mechanisms of this regulation are not fully known. Here, we report that insulin signaling mediates dietary maintenance of Drosophila ovarian germline stem cells (GSCs) by promoting the extension of niche escort cell (EC) membranes to wrap around GSCs. This wrapping may facilitate the delivery of BMP stemness factors from ECs in the niche to GSCs. In addition to the effects on GSCs, insulin signaling-mediated regulation of EC number and protrusions controls the division and growth of GSC progeny. The effects of insulin signaling on EC membrane extension are, at least in part, driven by enhanced translation of Failed axon connections (Fax) via Ribosomal protein S6 kinase. Fax is a membrane protein that may participate in Abl-regulated cytoskeletal dynamics and is known to be involved in axon bundle formation. Therefore, we conclude that dietary cues stimulate insulin signaling in the niche to regulate EC cellular structure, probably via Fax-dependent cytoskeleton remodeling. This mechanism enhances intercellular contact and facilitates homeostatic interactions between somatic and germline cells in response to diet.
Collapse
Affiliation(s)
- Yu-Han Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Elham Rastegri
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei 11529, Taiwan
| | - Shih-Han Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chun-Min Lai
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Kun-Yang Lin
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Hung-Yu Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Mu-Hsiang Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hwei-Jan Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
11
|
Cheong HSJ, VanBerkum MFA. Long disordered regions of the C-terminal domain of Abelson tyrosine kinase have specific and additive functions in regulation and axon localization. PLoS One 2017; 12:e0189338. [PMID: 29232713 PMCID: PMC5726718 DOI: 10.1371/journal.pone.0189338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/22/2017] [Indexed: 01/28/2023] Open
Abstract
Abelson tyrosine kinase (Abl) is a key regulator of actin-related morphogenetic processes including axon guidance, where it functions downstream of several guidance receptors. While the long C-terminal domain (CTD) of Abl is required for function, its role is poorly understood. Here, a battery of mutants of Drosophila Abl was created that systematically deleted large segments of the CTD from Abl or added them back to the N-terminus alone. The functionality of these Abl transgenes was assessed through rescue of axon guidance defects and adult lethality in Abl loss-of-function, as well as through gain-of-function effects in sensitized slit or frazzled backgrounds that perturb midline guidance in the Drosophila embryonic nerve cord. Two regions of the CTD play important and distinct roles, but additive effects for other regions were also detected. The first quarter of the CTD, including a conserved PxxP motif and its surrounding sequence, regulates Abl function while the third quarter localizes Abl to axons. These regions feature long stretches of intrinsically disordered sequence typically found in hub proteins and are associated with diverse protein-protein interactions. Thus, the CTD of Abl appears to use these disordered regions to establish a variety of different signaling complexes required during formation of axon tracts.
Collapse
Affiliation(s)
- Han S J Cheong
- Department of Biological Sciences, Wayne State University, Detroit, United States of America
| | - Mark F A VanBerkum
- Department of Biological Sciences, Wayne State University, Detroit, United States of America
| |
Collapse
|
12
|
Kannan R, Giniger E. New perspectives on the roles of Abl tyrosine kinase in axon patterning. Fly (Austin) 2017; 11:260-270. [PMID: 28481649 DOI: 10.1080/19336934.2017.1327106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The Abelson tyrosine kinase (Abl) lies at the heart of one of the small set of ubiquitous, conserved signal transduction pathways that do much of the work of development and physiology. Abl signaling is essential to epithelial integrity, motility of autonomous cells such as blood cells, and axon growth and guidance in the nervous system. However, though Abl was one of the first of these conserved signaling machines to be identified, it has been among the last to have its essential architecture elucidated. Here we will first discuss some of the challenges that long delayed the dissection of this pathway, and what they tell us about the special problems of investigating dynamic processes like motility. We will then describe our recent experiments that revealed the functional organization of the Abl pathway in Drosophila neurons. Finally, in the second part of the review we will introduce a different kind of complexity in the role of Abl in motility: the discovery of a previously unappreciated function in protein secretion and trafficking. We will provide evidence that the secretory function of Abl also contributes to its role in axon growth and guidance, and finally end with a discussion of the challenges that Abl pleiotropy provide for the investigator, but the opportunities that it provides for coordinating biological regulation.
Collapse
Affiliation(s)
- Ramakrishnan Kannan
- a Neurobiology Research Center (NRC), Department of Psychiatry , National Institute of Mental Health and Neurosciences , Bangalore , India
| | - Edward Giniger
- b National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda , MD
| |
Collapse
|
13
|
Kannan R, Song JK, Karpova T, Clarke A, Shivalkar M, Wang B, Kotlyanskaya L, Kuzina I, Gu Q, Giniger E. The Abl pathway bifurcates to balance Enabled and Rac signaling in axon patterning in Drosophila. Development 2017; 144:487-498. [PMID: 28087633 DOI: 10.1242/dev.143776] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/15/2016] [Indexed: 01/31/2023]
Abstract
The Abl tyrosine kinase signaling network controls cell migration, epithelial organization, axon patterning and other aspects of development. Although individual components are known, the relationships among them remain unresolved. We now use FRET measurements of pathway activity, analysis of protein localization and genetic epistasis to dissect the structure of this network in Drosophila We find that the adaptor protein Disabled stimulates Abl kinase activity. Abl suppresses the actin-regulatory factor Enabled, and we find that Abl also acts through the GEF Trio to stimulate the signaling activity of Rac GTPase: Abl gates the activity of the spectrin repeats of Trio, allowing them to relieve intramolecular repression of Trio GEF activity by the Trio N-terminal domain. Finally, we show that a key target of Abl signaling in axons is the WAVE complex that promotes the formation of branched actin networks. Thus, we show that Abl constitutes a bifurcating network, suppressing Ena activity in parallel with stimulation of WAVE. We suggest that the balancing of linear and branched actin networks by Abl is likely to be central to its regulation of axon patterning.
Collapse
Affiliation(s)
- Ramakrishnan Kannan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeong-Kuen Song
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tatiana Karpova
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Akanni Clarke
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Madhuri Shivalkar
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Benjamin Wang
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lyudmila Kotlyanskaya
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Irina Kuzina
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qun Gu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Rogers EM, Spracklen AJ, Bilancia CG, Sumigray KD, Allred SC, Nowotarski SH, Schaefer KN, Ritchie BJ, Peifer M. Abelson kinase acts as a robust, multifunctional scaffold in regulating embryonic morphogenesis. Mol Biol Cell 2016; 27:2613-31. [PMID: 27385341 PMCID: PMC4985262 DOI: 10.1091/mbc.e16-05-0292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/20/2016] [Indexed: 11/16/2022] Open
Abstract
The importance of Abl kinase activity, the F-actin–binding site, and scaffolding ability in Abl’s many cell biological roles during Drosophila morphogenesis is examined. Abl is a robust multidomain scaffold with different protein motifs and activities contributing differentially to diverse cellular behaviors. Abelson family kinases (Abls) are key regulators of cell behavior and the cytoskeleton during development and in leukemia. Abl’s SH3, SH2, and tyrosine kinase domains are joined via a linker to an F-actin–binding domain (FABD). Research on Abl’s roles in cell culture led to several hypotheses for its mechanism of action: 1) Abl phosphorylates other proteins, modulating their activity, 2) Abl directly regulates the cytoskeleton via its cytoskeletal interaction domains, and/or 3) Abl is a scaffold for a signaling complex. The importance of these roles during normal development remains untested. We tested these mechanistic hypotheses during Drosophila morphogenesis using a series of mutants to examine Abl’s many cell biological roles. Strikingly, Abl lacking the FABD fully rescued morphogenesis, cell shape change, actin regulation, and viability, whereas kinase-dead Abl, although reduced in function, retained substantial rescuing ability in some but not all Abl functions. We also tested the function of four conserved motifs in the linker region, revealing a key role for a conserved PXXP motif known to bind Crk and Abi. We propose that Abl acts as a robust multidomain scaffold with different protein motifs and activities contributing differentially to diverse cellular behaviors.
Collapse
Affiliation(s)
- Edward M Rogers
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Andrew J Spracklen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Colleen G Bilancia
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kaelyn D Sumigray
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - S Colby Allred
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephanie H Nowotarski
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kristina N Schaefer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Benjamin J Ritchie
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
15
|
Tang D, Zhang X, Huang S, Yuan H, Li J, Wang Y. Mena-GRASP65 interaction couples actin polymerization to Golgi ribbon linking. Mol Biol Cell 2015; 27:137-52. [PMID: 26538023 PMCID: PMC4694753 DOI: 10.1091/mbc.e15-09-0650] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/27/2015] [Indexed: 01/08/2023] Open
Abstract
GRASP65 plays a role in Golgi ribbon formation. Because the gaps between Golgi stacks are heterogeneous and large, it is possible that other proteins may help GRASP65 in ribbon linking. Mena is a novel GRASP65-binding protein that promotes actin elongation and enhances GRASP65 oligomerization to link Golgi stacks into a ribbon. In mammalian cells, the Golgi reassembly stacking protein 65 (GRASP65) has been implicated in both Golgi stacking and ribbon linking by forming trans-oligomers through the N-terminal GRASP domain. Because the GRASP domain is globular and relatively small, but the gaps between stacks are large and heterogeneous, it remains puzzling how GRASP65 physically links Golgi stacks into a ribbon. To explore the possibility that other proteins may help GRASP65 in ribbon linking, we used biochemical methods and identified the actin elongation factor Mena as a novel GRASP65-binding protein. Mena is recruited onto the Golgi membranes through interaction with GRASP65. Depleting Mena or disrupting actin polymerization resulted in Golgi fragmentation. In cells, Mena and actin were required for Golgi ribbon formation after nocodazole washout; in vitro, Mena and microfilaments enhanced GRASP65 oligomerization and Golgi membrane fusion. Thus Mena interacts with GRASP65 to promote local actin polymerization, which facilitates Golgi ribbon linking.
Collapse
Affiliation(s)
- Danming Tang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Xiaoyan Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Shijiao Huang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Hebao Yuan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048 Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI 48109-1048
| |
Collapse
|
16
|
Gonfloni S. Defying c-Abl signaling circuits through small allosteric compounds. Front Genet 2014; 5:392. [PMID: 25429298 PMCID: PMC4228975 DOI: 10.3389/fgene.2014.00392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 10/25/2014] [Indexed: 11/13/2022] Open
Abstract
Many extracellular and intracellular signals promote the c-Abl tyrosine kinase activity. c-Abl in turn triggers a multitude of changes either in protein phosphorylation or in gene expression in the cell. Yet, c-Abl takes part in diverse signaling routes because of several domains linked to its catalytic core. Complex conformational changes turn on and off its kinase activity. These changes affect surface features of the c-Abl kinase and likely its capability to bind actin and/or DNA. Two specific inhibitors (ATP-competitive or allosteric compounds) regulate the c-Abl kinase through different mechanisms. NMR studies show that a c-Abl fragment (SH3-SH2-linker-SH1) adopts different conformational states upon binding to each inhibitor. This supports an unconventional use for allosteric compounds to unraveling physiological c-Abl signaling circuits.
Collapse
|