1
|
Ghosh S, Choudhury D, Ghosh D, Mondal M, Singha D, Malakar P. Characterization of polyploidy in cancer: Current status and future perspectives. Int J Biol Macromol 2024; 268:131706. [PMID: 38643921 DOI: 10.1016/j.ijbiomac.2024.131706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Various cancers frequently exhibit polyploidy, observed in a condition where a cell possesses more than two sets of chromosomes, which is considered a hallmark of the disease. The state of polyploidy often leads to aneuploidy, where cells possess an abnormal number or structure of chromosomes. Recent studies suggest that oncogenes contribute to aneuploidy. This finding significantly underscores its impact on cancer. Cancer cells exposed to certain chemotherapeutic drugs tend to exhibit an increased incidence of polyploidy. This occurrence is strongly associated with several challenges in cancer treatment, including metastasis, resistance to chemotherapy and the recurrence of malignant tumors. Indeed, it poses a significant hurdle to achieve complete tumor eradication and effective cancer therapy. Recently, there has been a growing interest in the field of polyploidy related to cancer for developing effective anti-cancer therapies. Polyploid cancer cells confer both advantages and disadvantages to tumor pathogenicity. This review delineates the diverse characteristics of polyploid cells, elucidates the pivotal role of polyploidy in cancer, and explores the advantages and disadvantages it imparts to cancer cells, along with the current approaches tried in lab settings to target polyploid cells. Additionally, it considers experimental strategies aimed at addressing the outstanding questions within the realm of polyploidy in relation to cancer.
Collapse
Affiliation(s)
- Srijonee Ghosh
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Debopriya Choudhury
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Dhruba Ghosh
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Meghna Mondal
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Didhiti Singha
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Pushkar Malakar
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India.
| |
Collapse
|
2
|
Balachandra S, Sarkar S, Amodeo AA. The Nuclear-to-Cytoplasmic Ratio: Coupling DNA Content to Cell Size, Cell Cycle, and Biosynthetic Capacity. Annu Rev Genet 2022; 56:165-185. [PMID: 35977407 PMCID: PMC10165727 DOI: 10.1146/annurev-genet-080320-030537] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Though cell size varies between different cells and across species, the nuclear-to-cytoplasmic (N/C) ratio is largely maintained across species and within cell types. A cell maintains a relatively constant N/C ratio by coupling DNA content, nuclear size, and cell size. We explore how cells couple cell division and growth to DNA content. In some cases, cells use DNA as a molecular yardstick to control the availability of cell cycle regulators. In other cases, DNA sets a limit for biosynthetic capacity. Developmentally programmed variations in the N/C ratio for a given cell type suggest that a specific N/C ratio is required to respond to given physiological demands. Recent observations connecting decreased N/C ratios with cellular senescence indicate that maintaining the proper N/C ratio is essential for proper cellular functioning. Together, these findings suggest a causative, not simply correlative, role for the N/C ratio in regulating cell growth and cell cycle progression.
Collapse
Affiliation(s)
- Shruthi Balachandra
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA; ,
| | - Sharanya Sarkar
- Department of Microbiology and Immunology, Dartmouth College, Hanover, New Hampshire, USA;
| | - Amanda A Amodeo
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA; ,
| |
Collapse
|
3
|
Naranjo-Ortiz MA, Molina M, Fuentes D, Mixão V, Gabaldón T. Karyon: a computational framework for the diagnosis of hybrids, aneuploids, and other nonstandard architectures in genome assemblies. Gigascience 2022; 11:giac088. [PMID: 36205401 PMCID: PMC9540331 DOI: 10.1093/gigascience/giac088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/23/2021] [Accepted: 08/24/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Recent technological developments have made genome sequencing and assembly highly accessible and widely used. However, the presence in sequenced organisms of certain genomic features such as high heterozygosity, polyploidy, aneuploidy, heterokaryosis, or extreme compositional biases can challenge current standard assembly procedures and result in highly fragmented assemblies. Hence, we hypothesized that genome databases must contain a nonnegligible fraction of low-quality assemblies that result from such type of intrinsic genomic factors. FINDINGS Here we present Karyon, a Python-based toolkit that uses raw sequencing data and de novo genome assembly to assess several parameters and generate informative plots to assist in the identification of nonchanonical genomic traits. Karyon includes automated de novo genome assembly and variant calling pipelines. We tested Karyon by diagnosing 35 highly fragmented publicly available assemblies from 19 different Mucorales (Fungi) species. CONCLUSIONS Our results show that 10 (28.57%) of the assemblies presented signs of unusual genomic configurations, suggesting that these are common, at least for some lineages within the Fungi.
Collapse
Affiliation(s)
- Miguel A Naranjo-Ortiz
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Health and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- Biology Department, Clark University, Worcester, MA 01610, USA
- Naturhistoriskmuseum, University of Oslo, Oslo 0562, Norway
| | - Manu Molina
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Health and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- Life Sciences Department, Barcelona Supercomputing Centre (BSC-CNS), Barcelona 08034, Spain
| | - Diego Fuentes
- Life Sciences Department, Barcelona Supercomputing Centre (BSC-CNS), Barcelona 08034, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Verónica Mixão
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Health and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- Life Sciences Department, Barcelona Supercomputing Centre (BSC-CNS), Barcelona 08034, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Health and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- Life Sciences Department, Barcelona Supercomputing Centre (BSC-CNS), Barcelona 08034, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Barcelona 28029, Spain
| |
Collapse
|
4
|
Mating-Type Switching in Budding Yeasts, from Flip/Flop Inversion to Cassette Mechanisms. Microbiol Mol Biol Rev 2022; 86:e0000721. [PMID: 35195440 PMCID: PMC8941940 DOI: 10.1128/mmbr.00007-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mating-type switching is a natural but unusual genetic control process that regulates cell identity in ascomycete yeasts. It involves physically replacing one small piece of genomic DNA by another, resulting in replacement of the master regulatory genes in the mating pathway and hence a switch of cell type and mating behavior. In this review, we concentrate on recent progress that has been made on understanding the origins and evolution of mating-type switching systems in budding yeasts (subphylum Saccharomycotina). Because of the unusual nature and the complexity of the mechanism in Saccharomyces cerevisiae, mating-type switching was assumed until recently to have originated only once or twice during yeast evolution. However, comparative genomics analysis now shows that switching mechanisms arose many times independently-at least 11 times in budding yeasts and once in fission yeasts-a dramatic example of convergent evolution. Most of these lineages switch mating types by a flip/flop mechanism that inverts a section of a chromosome and is simpler than the well-characterized 3-locus cassette mechanism (MAT/HML/HMR) used by S. cerevisiae. Mating-type switching (secondary homothallism) is one of the two possible mechanisms by which a yeast species can become self-fertile. The other mechanism (primary homothallism) has also emerged independently in multiple evolutionary lineages of budding yeasts, indicating that homothallism has been favored strongly by natural selection. Recent work shows that HO endonuclease, which makes the double-strand DNA break that initiates switching at the S. cerevisiae MAT locus, evolved from an unusual mobile genetic element that originally targeted a glycolytic gene, FBA1.
Collapse
|
5
|
Moraes de Farias K, Rosa-Ribeiro R, Souza EE, Kobarg J, Banwell MG, de Brito Vieira Neto J, Leyenne Alves Sales S, Roberto Ribeiro Costa P, Cavalcante Dos Santos R, Vilaça Gaspar F, Gomes Barreto Junior A, da Conceição Ferreira Oliveira M, Odorico de Moraes M, Libardi M Furtado C, Carvalho HF, Pessoa C. The Isoflavanoid (+)-PTC Regulates Cell-Cycle Progression and Mitotic Spindle Assembly in a Prostate Cancer Cell Line. Chem Biodivers 2022; 19:e202200102. [PMID: 35362194 DOI: 10.1002/cbdv.202200102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/31/2022] [Indexed: 12/24/2022]
Abstract
Prostate cancer is the second most common malignancy in men and the development of effective therapeutic strategies remains challenging when more advanced, androgen-independent or insensitive forms are involved. Accordingly, we have evaluated, using flow cytometry, confocal microscopy and image analysis, the anti-proliferative effects of (+)-2,3,9-trimethoxypterocarpan [(+)-PTC, 1] on relevant human prostate cancer cells as well as its capacity to control mitosis within them. In particular, the studies reported herein reveal that (+)-PTC exerts anti-proliferative activity against the PC-3 cell lines by regulating cell-cycle progression with mitosis being arrested in the prophase or prometaphase. Furthermore, it emerges that treatment of the target cells with this compound results in the formation of monopolar spindles, disorganized centrosomes and extensively disrupted γ-tubulin distributions while centriole replication remains unaffected. Such effects suggest (+)-PTC should be considered as a possible therapy for androgen-insensitive/independent prostate cancer.
Collapse
Affiliation(s)
- Kaio Moraes de Farias
- Programa de Pós-Graduação em Biotecnologia - RENORBIO - Rede Nordeste de Biotecnologia, Federal University of Ceará - UFC, 60020-181, Fortaleza, CE, Brazil.,Núcleo de Pesquisa e Desenvolvimento de Medicamentos - NPDM, Federal University of Ceará - UFC, Fortaleza, CE 60430-275, Brazil
| | - Rafaela Rosa-Ribeiro
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas, Campinas, 13083-970, SP, Brazil
| | - Edmarcia E Souza
- Faculdade de Ciências Farmacêuticas, State University of Campinas, Campinas, 13083-859, SP, Brazil
| | - Jörg Kobarg
- Faculdade de Ciências Farmacêuticas, State University of Campinas, Campinas, 13083-859, SP, Brazil
| | - Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, China
| | - José de Brito Vieira Neto
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos - NPDM, Federal University of Ceará - UFC, Fortaleza, CE 60430-275, Brazil
| | - Sarah Leyenne Alves Sales
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos - NPDM, Federal University of Ceará - UFC, Fortaleza, CE 60430-275, Brazil
| | - Paulo Roberto Ribeiro Costa
- Laboratório de Química Bioorgânica (LQB), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, RJ, Brazil
| | - Rafael Cavalcante Dos Santos
- Engenharia de Processos Químicos e Bioquímicos (EPQB), Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, RJ, Brazil
| | - Francisco Vilaça Gaspar
- Laboratório de Química Bioorgânica (LQB), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, RJ, Brazil
| | - Amaro Gomes Barreto Junior
- Engenharia de Processos Químicos e Bioquímicos (EPQB), Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, RJ, Brazil
| | | | - Manoel Odorico de Moraes
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos - NPDM, Federal University of Ceará - UFC, Fortaleza, CE 60430-275, Brazil
| | - Cristiana Libardi M Furtado
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos - NPDM, Federal University of Ceará - UFC, Fortaleza, CE 60430-275, Brazil.,Experimental Biology Center - NUBEX, University of Fortaleza, UNIFOR, Fortaleza, CE 60811-905, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas, Campinas, 13083-970, SP, Brazil
| | - Claudia Pessoa
- Programa de Pós-Graduação em Biotecnologia - RENORBIO - Rede Nordeste de Biotecnologia, Federal University of Ceará - UFC, 60020-181, Fortaleza, CE, Brazil.,Núcleo de Pesquisa e Desenvolvimento de Medicamentos - NPDM, Federal University of Ceará - UFC, Fortaleza, CE 60430-275, Brazil
| |
Collapse
|
6
|
Fu C, Davy A, Holmes S, Sun S, Yadav V, Gusa A, Coelho MA, Heitman J. Dynamic genome plasticity during unisexual reproduction in the human fungal pathogen Cryptococcus deneoformans. PLoS Genet 2021; 17:e1009935. [PMID: 34843473 PMCID: PMC8670703 DOI: 10.1371/journal.pgen.1009935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/14/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022] Open
Abstract
Genome copy number variation occurs during each mitotic and meiotic cycle and it is crucial for organisms to maintain their natural ploidy. Defects in ploidy transitions can lead to chromosome instability, which is a hallmark of cancer. Ploidy in the haploid human fungal pathogen Cryptococcus neoformans is exquisitely orchestrated and ranges from haploid to polyploid during sexual development and under various environmental and host conditions. However, the mechanisms controlling these ploidy transitions are largely unknown. During C. deneoformans (formerly C. neoformans var. neoformans, serotype D) unisexual reproduction, ploidy increases prior to the onset of meiosis, can be independent from cell-cell fusion and nuclear fusion, and likely occurs through an endoreplication pathway. To elucidate the molecular mechanisms underlying this ploidy transition, we identified twenty cell cycle-regulating genes encoding cyclins, cyclin-dependent kinases (CDK), and CDK regulators. We characterized four cyclin genes and two CDK regulator genes that were differentially expressed during unisexual reproduction and contributed to diploidization. To detect ploidy transition events, we generated a ploidy reporter, called NURAT, which can detect copy number increases via double selection for nourseothricin-resistant, uracil-prototrophic cells. Utilizing this ploidy reporter, we showed that ploidy transition from haploid to diploid can be detected during the early phases of unisexual reproduction. Interestingly, selection for the NURAT reporter revealed several instances of segmental aneuploidy of multiple chromosomes, which conferred azole resistance in some isolates. These findings provide further evidence of ploidy plasticity in fungi with significant biological and public health implications. Ploidy is an intrinsic fundamental feature of all eukaryotic organisms, and ploidy variation and maintenance are critical to the organism survival and evolution. Fungi exhibit exquisite plasticity in ploidy variation in adaptation to various environmental stresses. For example, the haploid opportunistic human fungal pathogen C. deneoformans can generate diploid blastospores during unisexual reproduction and also forms polyploid titan cells during host infection; however, the mechanisms underlying these ploidy transitions are largely unknown. In this study, we elucidated the genetic regulatory circuitry governing ploidy duplication during C. deneoformans unisexual reproduction through the identification and characterization of cell cycle regulators that are differentially expressed during unisexual reproduction. We showed that four cyclin and two cyclin-dependent kinase regulator genes function in concert to orchestrate ploidy transition during unisexual reproduction. To trace and track ploidy transition events, we also generated a ploidy reporter and revealed the formation of segmental aneuploidy in addition to diploidization, illustrating the diverse mechanisms of genome plasticity in C. deneoformans.
Collapse
Affiliation(s)
- Ci Fu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Aaliyah Davy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Simeon Holmes
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Asiya Gusa
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
7
|
New Promoters for Metabolic Engineering of Ashbya gossypii. J Fungi (Basel) 2021; 7:jof7110906. [PMID: 34829195 PMCID: PMC8618306 DOI: 10.3390/jof7110906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 11/22/2022] Open
Abstract
Ashbya gossypii is a filamentous fungus that is currently exploited for the industrial production of riboflavin. In addition, metabolically engineered strains of A. gossypii have also been described as valuable biocatalysts for the production of different metabolites such as folic acid, nucleosides, and biolipids. Hence, bioproduction in A. gossypii relies on the availability of well-performing gene expression systems both for endogenous and heterologous genes. In this regard, the identification of novel promoters, which are critical elements for gene expression, decisively helps to expand the A. gossypii molecular toolbox. In this work, we present an adaptation of the Dual Luciferase Reporter (DLR) Assay for promoter analysis in A. gossypii using integrative cassettes. We demonstrate the efficiency of the analysis through the identification of 10 new promoters with different features, including carbon source-regulatable abilities, that will highly improve the gene expression platforms used in A. gossypii. Three novel strong promoters (PCCW12, PSED1, and PTSA1) and seven medium/weak promoters (PHSP26, PAGL366C, PTMA10, PCWP1, PAFR038W, PPFS1, and PCDA2) are presented. The functionality of the promoters was further evaluated both for the overexpression and for the underexpression of the A. gossypii MSN2 gene, which induced significant changes in the sporulation ability of the mutant strains.
Collapse
|
8
|
Miller AK, Brown JS, Enderling H, Basanta D, Whelan CJ. The Evolutionary Ecology of Dormancy in Nature and in Cancer. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.676802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dormancy is an inactive period of an organism’s life cycle that permits it to survive through phases of unfavorable conditions in highly variable environments. Dormancy is not binary. There is a continuum of dormancy phenotypes that represent some degree of reduced metabolic activity (hypometabolism), reduced feeding, and reduced reproduction or proliferation. Similarly, normal cells and cancer cells exhibit a range of states from quiescence to long-term dormancy that permit survival in adverse environmental conditions. In contrast to organismal dormancy, which entails a reduction in metabolism, dormancy in cells (both normal and cancer) is primarily characterized by lack of cell division. “Cancer dormancy” also describes a state characterized by growth stagnation, which could arise from cells that are not necessarily hypometabolic or non-proliferative. This inconsistent terminology leads to confusion and imprecision that impedes progress in interdisciplinary research between ecologists and cancer biologists. In this paper, we draw parallels and contrasts between dormancy in cancer and other ecosystems in nature, and discuss the potential for studies in cancer to provide novel insights into the evolutionary ecology of dormancy.
Collapse
|
9
|
Zheng W, Peng Z, Peng S, Yu Z, Cao Z. Multinuclei Occurred Under Cryopreservation and Enhanced the Pathogenicity of Melampsora larici-populina. Front Microbiol 2021; 12:650902. [PMID: 34248868 PMCID: PMC8270653 DOI: 10.3389/fmicb.2021.650902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/27/2021] [Indexed: 11/23/2022] Open
Abstract
Melampsora larici-populina is a macrocyclic rust, and the haploid stage with two nuclei and the diploid of mononuclear sequentially occur annually. During the preservation of dry urediniospores at −80°C, we found that one isolate, ΔTs06, was different from the usual wild-type isolate Ts06 at −20°C because it has mixed polykaryotic urediniospores. However, the other spores, including the 0, I, III, and IV stages of a life cycle, were the same as Ts06. After five generations of successive inoculation and harvest of urediniospores from the compatible host Populus purdomii, the isolate ΔTs06 steadily maintained more than 20% multiple nucleus spores. To test the pathogenesis variation of ΔTs06, an assay of host poplars was applied to evaluate the differences between ΔTs06 and Ts06. After ΔTs06 and Ts06 inoculation, leaves of P. purdomii were used to detect the expression of small secreted proteins (SSPs) and fungal biomasses using quantitative real-time PCR (qRT-PCR) and trypan blue staining. ΔTs06 displayed stronger expression of five SSPs and had a shorter latent period, a higher density of uredinia, and higher DNA mass. A transcriptomic comparison between ΔTs06 and Ts06 revealed that 3,224 were differentially expressed genes (DEGs), 55 of which were related to reactive oxygen species metabolism, the Mitogen-activated protein kinase (MAPK) signaling pathway, and the meiosis pathway. Ten genes in the mitotic and meiotic pathways and another two genes associated with the “response to DNA damage stimulus” all had an upward expression, which were detected by qRT-PCR in ΔTs06 during cryopreservation. Gas chromatography–mass spectrometry (GC-MS) confirmed that the amounts of hexadecanoic acid and octadecadienoic acid were much more in ΔTs06 than in Ts06. In addition, using spectrophotometry, hydrogen peroxide (H2O2) was also present in greater quantities in ΔTs06 compared with those found in Ts06. Increased fatty acids metabolism could prevent damage to urediniospores in super-low temperatures, but oxidant species that involved H2O2 may destroy tube proteins of mitosis and meiosis, which could cause abnormal nuclear division and lead to multinucleation, which has a different genotype. Therefore, the multinuclear isolate is different from the wild-type isolate in terms of phenotype and genotype; this multinucleation phenomenon in urediniospores improves the pathogenesis and environmental fitness of M. larici-populina.
Collapse
Affiliation(s)
- Wei Zheng
- College of Forestry, Northwest A&F University, Yangling, China
| | - Zijia Peng
- College of Forestry, Northwest A&F University, Yangling, China
| | - Shaobing Peng
- College of Forestry, Northwest A&F University, Yangling, China
| | - Zhongdong Yu
- College of Forestry, Northwest A&F University, Yangling, China
| | - Zhimin Cao
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
10
|
Fu MS, Liporagi-Lopes LC, Dos Santos SR, Tenor JL, Perfect JR, Cuomo CA, Casadevall A. Amoeba Predation of Cryptococcus neoformans Results in Pleiotropic Changes to Traits Associated with Virulence. mBio 2021; 12:e00567-21. [PMID: 33906924 PMCID: PMC8092252 DOI: 10.1128/mbio.00567-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/30/2021] [Indexed: 11/20/2022] Open
Abstract
Amoeboid predators, such as amoebae, are proposed to select for survival traits in soil microbes such as Cryptococcus neoformans; these traits can also function in animal virulence by defeating phagocytic immune cells, such as macrophages. Consistent with this notion, incubation of various fungal species with amoebae enhanced their virulence, but the mechanisms involved are unknown. In this study, we exposed three strains of C. neoformans (1 clinical and 2 environmental) to predation by Acanthamoeba castellanii for prolonged times and then analyzed surviving colonies phenotypically and genetically. Surviving colonies comprised cells that expressed either pseudohyphal or yeast phenotypes, which demonstrated variable expression of traits associated with virulence, such as capsule size, urease production, and melanization. Phenotypic changes were associated with aneuploidy and DNA sequence mutations in some amoeba-passaged isolates, but not in others. Mutations in the gene encoding the oligopeptide transporter (CNAG_03013; OPT1) were observed among amoeba-passaged isolates from each of the three strains. Isolates derived from environmental strains gained the capacity for enhanced macrophage toxicity after amoeba selection and carried mutations on the CNAG_00570 gene encoding Pkr1 (AMP-dependent protein kinase regulator) but manifested reduced virulence in mice because they elicited more effective fungal-clearing immune responses. Our results indicate that C. neoformans survival under constant amoeba predation involves the generation of strains expressing pleiotropic phenotypic and genetic changes. Given the myriad potential predators in soils, the diversity observed among amoeba-selected strains suggests a bet-hedging strategy whereby variant diversity increases the likelihood that some will survive predation.IMPORTANCECryptococcus neoformans is a ubiquitous environmental fungus that is also a leading cause of fatal fungal infection in humans, especially among immunocompromised patients. A major question in the field is how an environmental yeast such as C. neoformans becomes a human pathogen when it has no need for an animal host in its life cycle. Previous studies showed that C. neoformans increases its pathogenicity after interacting with its environmental predator amoebae. Amoebae, like macrophages, are phagocytic cells that are considered an environmental training ground for pathogens to resist macrophages, but the mechanism by which C. neoformans changes its virulence through interactions with protozoa is unknown. Our study indicates that fungal survival in the face of amoeba predation is associated with the emergence of pleiotropic phenotypic and genomic changes that increase the chance of fungal survival, with this diversity suggesting a bet-hedging strategy to ensure that some forms survive.
Collapse
Affiliation(s)
- Man Shun Fu
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Livia C Liporagi-Lopes
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Samuel R Dos Santos
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Jennifer L Tenor
- Division of Infectious Diseases, Department of Medicine and Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - John R Perfect
- Division of Infectious Diseases, Department of Medicine and Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Gerstein AC, Sharp NP. The population genetics of ploidy change in unicellular fungi. FEMS Microbiol Rev 2021; 45:6121427. [PMID: 33503232 DOI: 10.1093/femsre/fuab006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/14/2021] [Indexed: 12/23/2022] Open
Abstract
Changes in ploidy are a significant type of genetic variation, describing the number of chromosome sets per cell. Ploidy evolves in natural populations, clinical populations, and lab experiments, particularly in fungi. Despite a long history of theoretical work on this topic, predicting how ploidy will evolve has proven difficult, as it is often unclear why one ploidy state outperforms another. Here, we review what is known about contemporary ploidy evolution in diverse fungal species through the lens of population genetics. As with typical genetic variants, ploidy evolution depends on the rate that new ploidy states arise by mutation, natural selection on alternative ploidy states, and random genetic drift. However, ploidy variation also has unique impacts on evolution, with the potential to alter chromosomal stability, the rate and patterns of point mutation, and the nature of selection on all loci in the genome. We discuss how ploidy evolution depends on these general and unique factors and highlight areas where additional experimental evidence is required to comprehensively explain the ploidy transitions observed in the field and the lab.
Collapse
Affiliation(s)
- Aleeza C Gerstein
- Dept. of Microbiology, Dept. of Statistics, University of Manitoba Canada
| | | |
Collapse
|
12
|
Mela AP, Rico-Ramírez AM, Glass NL. Syncytia in Fungi. Cells 2020; 9:cells9102255. [PMID: 33050028 PMCID: PMC7600787 DOI: 10.3390/cells9102255] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/27/2022] Open
Abstract
Filamentous fungi typically grow as interconnected multinucleate syncytia that can be microscopic to many hectares in size. Mechanistic details and rules that govern the formation and function of these multinucleate syncytia are largely unexplored, including details on syncytial morphology and the regulatory controls of cellular and molecular processes. Recent discoveries have revealed various adaptations that enable fungal syncytia to accomplish coordinated behaviors, including cell growth, nuclear division, secretion, communication, and adaptation of the hyphal network for mixing nuclear and cytoplasmic organelles. In this review, we highlight recent studies using advanced technologies to define rules that govern organizing principles of hyphal and colony differentiation, including various aspects of nuclear and mitochondrial cooperation versus competition. We place these findings into context with previous foundational literature and present still unanswered questions on mechanistic aspects, function, and morphological diversity of fungal syncytia across the fungal kingdom.
Collapse
Affiliation(s)
- Alexander P. Mela
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; (A.P.M.); (A.M.R.-R.)
| | - Adriana M. Rico-Ramírez
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; (A.P.M.); (A.M.R.-R.)
| | - N. Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; (A.P.M.); (A.M.R.-R.)
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Correspondence:
| |
Collapse
|
13
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: cellular, genomic and metabolic complexity. Biol Rev Camb Philos Soc 2020; 95:1198-1232. [PMID: 32301582 PMCID: PMC7539958 DOI: 10.1111/brv.12605] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
The question of how phenotypic and genomic complexity are inter-related and how they are shaped through evolution is a central question in biology that historically has been approached from the perspective of animals and plants. In recent years, however, fungi have emerged as a promising alternative system to address such questions. Key to their ecological success, fungi present a broad and diverse range of phenotypic traits. Fungal cells can adopt many different shapes, often within a single species, providing them with great adaptive potential. Fungal cellular organizations span from unicellular forms to complex, macroscopic multicellularity, with multiple transitions to higher or lower levels of cellular complexity occurring throughout the evolutionary history of fungi. Similarly, fungal genomes are very diverse in their architecture. Deep changes in genome organization can occur very quickly, and these phenomena are known to mediate rapid adaptations to environmental changes. Finally, the biochemical complexity of fungi is huge, particularly with regard to their secondary metabolites, chemical products that mediate many aspects of fungal biology, including ecological interactions. Herein, we explore how the interplay of these cellular, genomic and metabolic traits mediates the emergence of complex phenotypes, and how this complexity is shaped throughout the evolutionary history of Fungi.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
- Department of Experimental Sciences, Universitat Pompeu Fabra (UPF)Dr. Aiguader 88, 08003BarcelonaSpain
- ICREAPg. Lluís Companys 23, 08010BarcelonaSpain
| |
Collapse
|
14
|
Pienta KJ, Hammarlund EU, Axelrod R, Amend SR, Brown JS. Convergent Evolution, Evolving Evolvability, and the Origins of Lethal Cancer. Mol Cancer Res 2020; 18:801-810. [PMID: 32234827 PMCID: PMC7272288 DOI: 10.1158/1541-7786.mcr-19-1158] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/03/2020] [Accepted: 03/26/2020] [Indexed: 01/20/2023]
Abstract
Advances in curative treatment to remove the primary tumor have increased survival of localized cancers for most solid tumor types, yet cancers that have spread are typically incurable and account for >90% of cancer-related deaths. Metastatic disease remains incurable because, somehow, tumors evolve resistance to all known compounds, including therapies. In all of these incurable patients, de novo lethal cancer evolves capacities for both metastasis and resistance. Therefore, cancers in different patients appear to follow the same eco-evolutionary path that independently manifests in affected patients. This convergent outcome, that always includes the ability to metastasize and exhibit resistance, demands an explanation beyond the slow and steady accrual of stochastic mutations. The common denominator may be that cancer starts as a speciation event when a unicellular protist breaks away from its multicellular host and initiates a cancer clade within the patient. As the cancer cells speciate and diversify further, some evolve the capacity to evolve: evolvability. Evolvability becomes a heritable trait that influences the available variation of other phenotypes that can then be acted upon by natural selection. Evolving evolvability may be an adaptation for cancer cells. By generating and maintaining considerable heritable variation, the cancer clade can, with high certainty, serendipitously produce cells resistant to therapy and cells capable of metastasizing. Understanding that cancer cells can swiftly evolve responses to novel and varied stressors create opportunities for adaptive therapy, double-bind therapies, and extinction therapies; all involving strategic decision making that steers and anticipates the convergent coevolutionary responses of the cancers.
Collapse
Affiliation(s)
- Kenneth J Pienta
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, Maryland.
| | - Emma U Hammarlund
- Nordic Center for Earth Evolution, University of Southern Denmark, Odense, Denmark
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Robert Axelrod
- Gerald R. Ford School of Public Policy, University of Michigan, Ann Arbor, Michigan
| | - Sarah R Amend
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Joel S Brown
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
15
|
Kato T, Azegami J, Yokomori A, Dohra H, El Enshasy HA, Park EY. Genomic analysis of a riboflavin-overproducing Ashbya gossypii mutant isolated by disparity mutagenesis. BMC Genomics 2020; 21:319. [PMID: 32326906 PMCID: PMC7181572 DOI: 10.1186/s12864-020-6709-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/30/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Ashbya gossypii naturally overproduces riboflavin and has been utilized for industrial riboflavin production. To improve riboflavin production, various approaches have been developed. In this study, to investigate the change in metabolism of a riboflavin-overproducing mutant, namely, the W122032 strain (MT strain) that was isolated by disparity mutagenesis, genomic analysis was carried out. RESULTS In the genomic analysis, 33 homozygous and 1377 heterozygous mutations in the coding sequences of the genome of MT strain were detected. Among these heterozygous mutations, the proportion of mutated reads in each gene was different, ranging from 21 to 75%. These results suggest that the MT strain may contain multiple nuclei containing different mutations. We tried to isolate haploid spores from the MT strain to prove its ploidy, but this strain did not sporulate under the conditions tested. Heterozygous mutations detected in genes which are important for sporulation likely contribute to the sporulation deficiency of the MT strain. Homozygous and heterozygous mutations were found in genes encoding enzymes involved in amino acid metabolism, the TCA cycle, purine and pyrimidine nucleotide metabolism and the DNA mismatch repair system. One homozygous mutation in AgILV2 gene encoding acetohydroxyacid synthase, which is also a flavoprotein in mitochondria, was found. Gene ontology (GO) enrichment analysis showed heterozygous mutations in all 22 DNA helicase genes and genes involved in oxidation-reduction process. CONCLUSION This study suggests that oxidative stress and the aging of cells were involved in the riboflavin over-production in A. gossypii riboflavin over-producing mutant and provides new insights into riboflavin production in A. gossypii and the usefulness of disparity mutagenesis for the creation of new types of mutants for metabolic engineering.
Collapse
Affiliation(s)
- Tatsuya Kato
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Junya Azegami
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Ami Yokomori
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Hideo Dohra
- Instrumental Research Support Office, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Hesham A. El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81310 UTM, Johor Bahru, Malaysia
| | - Enoch Y. Park
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
16
|
Vossen ML, Alhosawi HM, Aney KJ, Burrack LS. CaMad2 Promotes Multiple Aspects of Genome Stability Beyond Its Direct Function in Chromosome Segregation. Genes (Basel) 2019; 10:genes10121013. [PMID: 31817479 PMCID: PMC6947305 DOI: 10.3390/genes10121013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022] Open
Abstract
Mad2 is a central component of the spindle assembly checkpoint required for accurate chromosome segregation. Additionally, in some organisms, Mad2 has roles in preventing mutations and recombination through the DNA damage response. In the fungal pathogen Candida albicans, CaMad2 has previously been shown to be required for accurate chromosome segregation, survival in high levels of hydrogen peroxide, and virulence in a mouse model of infection. In this work, we showed that CaMad2 promotes genome stability through its well-characterized role in promoting accurate chromosome segregation and through reducing smaller scale chromosome changes due to recombination and DNA damage repair. Deletion of MAD2 decreased cell growth, increased marker loss rates, increased sensitivity to microtubule-destabilizing drugs, and increased sensitivity to DNA damage inducing treatments. CaMad2-GFP localized to dots, consistent with a role in kinetochore binding, and to the nuclear periphery, consistent with an additional role in DNA damage. Furthermore, deletion of MAD2 increases growth on fluconazole, and fluconazole treatment elevates whole chromosome loss rates in the mad2∆/∆ strain, suggesting that CaMad2 may be important for preventing fluconazole resistance via aneuploidy.
Collapse
|
17
|
Wabner D, Overhageböck T, Nordmann D, Kronenberg J, Kramer F, Schmitz HP. Analysis of the protein composition of the spindle pole body during sporulation in Ashbya gossypii. PLoS One 2019; 14:e0223374. [PMID: 31581259 PMCID: PMC6776394 DOI: 10.1371/journal.pone.0223374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/19/2019] [Indexed: 11/28/2022] Open
Abstract
The spores of fungi come in a wide variety of forms and sizes, highly adapted to the route of dispersal and to survival under specific environmental conditions. The ascomycete Ashbya gossypii produces needle shaped spores with a length of 30 μm and a diameter of 1 μm. Formation of these spores relies on actin and actin regulatory proteins and is, therefore, distinct from the minor role that actin plays for spore formation in Saccharomyces cerevisiae. Using in vivo FRET-measurements of proteins labeled with fluorescent proteins, we investigate how the formin AgBnr2, a protein that promotes actin polymerization, integrates into the structure of the spindle pole body during sporulation. We also investigate the role of the A. gossypii homologs to the S. cerevisiae meiotic outer plaque proteins Spo74, Mpc54 and Ady4 for sporulation in A. gossypii. We found highest FRET of AgBnr2 with AgSpo74. Further experiments indicated that AgSpo74 is a main factor for targeting AgBnr2 to the spindle pole body. In agreement with these results, the Agspo74 deletion mutant produces no detectable spores, whereas deletion of Agmpc54 only has an effect on spore length and deletion of Agady4 has no detectable sporulation phenotype. Based on this study and in relation to previous results we suggest a model where AgBnr2 resides within an analogous structure to the meiotic outer plaque of S. cerevisiae. There it promotes formation of actin cables important for shaping the needle shaped spore structure.
Collapse
Affiliation(s)
- Dario Wabner
- Department of Genetics, University of Osnabrück, Osnabrück, Germany
| | - Tom Overhageböck
- Department of Genetics, University of Osnabrück, Osnabrück, Germany
| | - Doris Nordmann
- Department of Genetics, University of Osnabrück, Osnabrück, Germany
| | - Julia Kronenberg
- Department of Genetics, University of Osnabrück, Osnabrück, Germany
| | - Florian Kramer
- Department of Genetics, University of Osnabrück, Osnabrück, Germany
| | - Hans-Peter Schmitz
- Department of Genetics, University of Osnabrück, Osnabrück, Germany
- * E-mail:
| |
Collapse
|
18
|
Bravo Ruiz G, Ross ZK, Holmes E, Schelenz S, Gow NAR, Lorenz A. Rapid and extensive karyotype diversification in haploid clinical Candida auris isolates. Curr Genet 2019; 65:1217-1228. [PMID: 31020384 PMCID: PMC6744574 DOI: 10.1007/s00294-019-00976-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 11/30/2022]
Abstract
Candida auris is a newly emerged pathogenic microbe, having been identified as a medically relevant fungus as recently as 2009. It is one of the most drug-resistant yeast species known to date and its emergence and population structure are unusual. Because of its recent emergence, we are largely ignorant about fundamental aspects of its general biology, life cycle, and population dynamics. Here, we report the karyotype variability of 26 C. auris strains representing the four main clades. We demonstrate that all strains are haploid and have a highly plastic karyotype containing five to seven chromosomes, which can undergo marked alterations within a short time frame when the fungus is put under genotoxic, heat, or osmotic stress. No simple correlation was found between karyotype pattern, drug resistance, and clade affiliation indicating that karyotype heterogeneity is rapidly evolving. As with other Candida species, these marked karyotype differences between isolates are likely to have an important impact on pathogenic traits of C. auris.
Collapse
Affiliation(s)
- Gustavo Bravo Ruiz
- Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Zoe K Ross
- Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- MRC Centre for Medical Mycology, University of Aberdeen, Aberdeen, UK
| | - Eilidh Holmes
- Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Silke Schelenz
- Department of Microbiology, Royal Brompton Hospital, London, UK
| | - Neil A R Gow
- Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- MRC Centre for Medical Mycology, University of Aberdeen, Aberdeen, UK
- School of Biosciences, University of Exeter, Exeter, UK
| | - Alexander Lorenz
- Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
19
|
Broughton KM, Khieu T, Nguyen N, Rosa M, Mohsin S, Quijada P, Wang BJ, Echeagaray OH, Kubli DA, Kim T, Firouzi F, Monsanto MM, Gude NA, Adamson RM, Dembitsky WP, Davis ME, Sussman MA. Cardiac interstitial tetraploid cells can escape replicative senescence in rodents but not large mammals. Commun Biol 2019; 2:205. [PMID: 31231694 PMCID: PMC6565746 DOI: 10.1038/s42003-019-0453-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/02/2019] [Indexed: 12/26/2022] Open
Abstract
Cardiomyocyte ploidy has been described but remains obscure in cardiac interstitial cells. Ploidy of c-kit+ cardiac interstitial cells was assessed using confocal, karyotypic, and flow cytometric technique. Notable differences were found between rodent (rat, mouse) c-kit+ cardiac interstitial cells possessing mononuclear tetraploid (4n) content, compared to large mammals (human, swine) with mononuclear diploid (2n) content. In-situ analysis, confirmed with fresh isolates, revealed diploid content in human c-kit+ cardiac interstitial cells and a mixture of diploid and tetraploid content in mouse. Downregulation of the p53 signaling pathway provides evidence why rodent, but not human, c-kit+ cardiac interstitial cells escape replicative senescence. Single cell transcriptional profiling reveals distinctions between diploid versus tetraploid populations in mouse c-kit+ cardiac interstitial cells, alluding to functional divergences. Collectively, these data reveal notable species-specific biological differences in c-kit+ cardiac interstitial cells, which could account for challenges in extrapolation of myocardial from preclinical studies to clinical trials.
Collapse
Affiliation(s)
- Kathleen M. Broughton
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Tiffany Khieu
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Nicky Nguyen
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Michael Rosa
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Sadia Mohsin
- Cardiovascular Research Center, Temple University, 3500 N. Broad St., Philadelphia, 19140 PA USA
| | - Pearl Quijada
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Bingyan J. Wang
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Oscar H. Echeagaray
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Dieter A. Kubli
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Taeyong Kim
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Fareheh Firouzi
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Megan M. Monsanto
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Natalie A. Gude
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Robert M. Adamson
- Division of Cardiology, Sharp Memorial Hospital, 8010 Frost St., San Diego, 92123 CA USA
| | - Walter P. Dembitsky
- Division of Cardiology, Sharp Memorial Hospital, 8010 Frost St., San Diego, 92123 CA USA
| | - Michael E. Davis
- Biomedical Engineering and Medicine, Emory University, 1760 Haygood Dr., Atlanta, 30322 GA USA
| | - Mark A. Sussman
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| |
Collapse
|
20
|
Abstract
Ploidy, the number of sets of homologous chromosomes in a cell, can alter cellular physiology, gene regulation, and the spectrum of acquired mutations. Advances in single-cell flow cytometry have greatly improved the understanding of how genome size contributes to diverse biological processes including speciation, adaptation, pathogenesis, and tumorigenesis. For example, fungal pathogens can undergo whole genome duplications during infection of the human host and during acquisition of antifungal drug resistance. Quantification of ploidy is dramatically affected by the nucleic acid staining technique and the flow cytometry analysis of single cells. Ploidy in fungi is also impacted by samples that are heterogeneous for both ploidy and morphology, and control strains with known ploidy must be included in every flow cytometry experiment. To detect ploidy changes within fungal strains, the following protocol was developed to accurately and dependably interrogate single-cell ploidy. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Robert T Todd
- Department of Medical Microbiology and Immunology, Creighton University Medical School, Omaha, Nebraska
| | - Ann L Braverman
- Department of Medical Microbiology and Immunology, Creighton University Medical School, Omaha, Nebraska
| | - Anna Selmecki
- Department of Medical Microbiology and Immunology, Creighton University Medical School, Omaha, Nebraska
| |
Collapse
|
21
|
Abstract
The ability of an organism to replicate and segregate its genome with high fidelity is vital to its survival and for the production of future generations. Errors in either of these steps (replication or segregation) can lead to a change in ploidy or chromosome number. While these drastic genome changes can be detrimental to the organism, resulting in decreased fitness, they can also provide increased fitness during periods of stress. A change in ploidy or chromosome number can fundamentally change how a cell senses and responds to its environment. Here, we discuss current ideas in fungal biology that illuminate how eukaryotic genome size variation can impact the organism at a cellular and evolutionary level. One of the most fascinating observations from the past 2 decades of research is that some fungi have evolved the ability to tolerate large genome size changes and generate vast genomic heterogeneity without undergoing canonical meiosis.
Collapse
|
22
|
Wasserstrom L, Dünkler A, Walther A, Wendland J. The APSES protein Sok2 is a positive regulator of sporulation in Ashbya gossypii. Mol Microbiol 2017; 106:949-960. [PMID: 28985003 DOI: 10.1111/mmi.13859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2017] [Indexed: 01/26/2023]
Abstract
Ashbya gossypii is a homothallic, flavinogenic, filamentous ascomycete that starts overproduction of riboflavin and fragments its mycelium quantitatively into spore producing sporangia at the end of a growth phase. Mating is not required for sporulation and the standard homothallic laboratory strain is a MATa strain. Here we show that ectopic expression of Saccharomyces cerevisiae MATα2 in A. gossypii completely suppresses sporulation, inhibits riboflavin overproduction and downregulates among others AgSOK2. AgSok2 belongs to a fungal-specific group of (APSES) transcription factors. Deletion of AgSOK2 strongly reduces riboflavin production and blocks sporulation. The initiator of meiosis, AgIME1, is a transcription factor essential for sporulation. We characterized the AgIME1 promoter region required for complementation of the Agime1 mutant. Reporter assays with AgIME1 promoter fragments fused to lacZ showed that AgSok2 does not control AgIME1 transcription. However, global transcriptome analysis identified two other essential regulators of sporulation, AgIME2 and AgNDT80, as potential targets of AgSok2. Our data suggest that sporulation and riboflavin production in A. gossypii are under mating type locus and nutritional control. Sok2, a target of the cAMP/protein kinase A pathway, serves as a central positive regulator to promote sporulation. This contrasts Saccharomyces cerevisiae where Sok2 is a repressor of IME1 transcription.
Collapse
Affiliation(s)
- Lisa Wasserstrom
- Carlsberg Laboratory, Yeast & Fermentation, DK-1799 Copenhagen V, Denmark
| | - Alexander Dünkler
- Carlsberg Laboratory, Yeast & Fermentation, DK-1799 Copenhagen V, Denmark
| | - Andrea Walther
- Carlsberg Laboratory, Yeast & Fermentation, DK-1799 Copenhagen V, Denmark
| | - Jürgen Wendland
- Carlsberg Laboratory, Yeast & Fermentation, DK-1799 Copenhagen V, Denmark.,Vrije Universiteit Brussel, Department of Bioengineering Sciences Research Group of Microbiology, Functional Yeast Genomics, BE-1050 Brussels, Belgium
| |
Collapse
|
23
|
Marsit S, Leducq JB, Durand É, Marchant A, Filteau M, Landry CR. Evolutionary biology through the lens of budding yeast comparative genomics. Nat Rev Genet 2017; 18:581-598. [DOI: 10.1038/nrg.2017.49] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Dumetz F, Imamura H, Sanders M, Seblova V, Myskova J, Pescher P, Vanaerschot M, Meehan CJ, Cuypers B, De Muylder G, Späth GF, Bussotti G, Vermeesch JR, Berriman M, Cotton JA, Volf P, Dujardin JC, Domagalska MA. Modulation of Aneuploidy in Leishmania donovani during Adaptation to Different In Vitro and In Vivo Environments and Its Impact on Gene Expression. mBio 2017; 8:e00599-17. [PMID: 28536289 PMCID: PMC5442457 DOI: 10.1128/mbio.00599-17] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/01/2017] [Indexed: 12/23/2022] Open
Abstract
Aneuploidy is usually deleterious in multicellular organisms but appears to be tolerated and potentially beneficial in unicellular organisms, including pathogens. Leishmania, a major protozoan parasite, is emerging as a new model for aneuploidy, since in vitro-cultivated strains are highly aneuploid, with interstrain diversity and intrastrain mosaicism. The alternation of two life stages in different environments (extracellular promastigotes and intracellular amastigotes) offers a unique opportunity to study the impact of environment on aneuploidy and gene expression. We sequenced the whole genomes and transcriptomes of Leishmania donovani strains throughout their adaptation to in vivo conditions mimicking natural vertebrate and invertebrate host environments. The nucleotide sequences were almost unchanged within a strain, in contrast to highly variable aneuploidy. Although high in promastigotes in vitro, aneuploidy dropped significantly in hamster amastigotes, in a progressive and strain-specific manner, accompanied by the emergence of new polysomies. After a passage through a sand fly, smaller yet consistent karyotype changes were detected. Changes in chromosome copy numbers were correlated with the corresponding transcript levels, but additional aneuploidy-independent regulation of gene expression was observed. This affected stage-specific gene expression, downregulation of the entire chromosome 31, and upregulation of gene arrays on chromosomes 5 and 8. Aneuploidy changes in Leishmania are probably adaptive and exploited to modulate the dosage and expression of specific genes; they are well tolerated, but additional mechanisms may exist to regulate the transcript levels of other genes located on aneuploid chromosomes. Our model should allow studies of the impact of aneuploidy on molecular adaptations and cellular fitness.IMPORTANCE Aneuploidy is usually detrimental in multicellular organisms, but in several microorganisms, it can be tolerated and even beneficial. Leishmania-a protozoan parasite that kills more than 30,000 people each year-is emerging as a new model for aneuploidy studies, as unexpectedly high levels of aneuploidy are found in clinical isolates. Leishmania lacks classical regulation of transcription at initiation through promoters, so aneuploidy could represent a major adaptive strategy of this parasite to modulate gene dosage in response to stressful environments. For the first time, we document the dynamics of aneuploidy throughout the life cycle of the parasite, in vitro and in vivo We show its adaptive impact on transcription and its interaction with regulation. Besides offering a new model for aneuploidy studies, we show that further genomic studies should be done directly in clinical samples without parasite isolation and that adequate methods should be developed for this.
Collapse
Affiliation(s)
- F Dumetz
- Molecular Parasitology, Institute of Tropical Medicine, Antwerp, Belgium
| | - H Imamura
- Molecular Parasitology, Institute of Tropical Medicine, Antwerp, Belgium
| | - M Sanders
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - V Seblova
- Charles University, Prague, Czech Republic
| | - J Myskova
- Charles University, Prague, Czech Republic
| | - P Pescher
- Unité de Parasitologie Moléculaire et Signalisation, INSERM U1201, Institut Pasteur, Paris, France
| | - M Vanaerschot
- Molecular Parasitology, Institute of Tropical Medicine, Antwerp, Belgium
| | - C J Meehan
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - B Cuypers
- Molecular Parasitology, Institute of Tropical Medicine, Antwerp, Belgium
- Advanced Database Research and Modelling (ADReM), Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
| | - G De Muylder
- Molecular Parasitology, Institute of Tropical Medicine, Antwerp, Belgium
| | - G F Späth
- Unité de Parasitologie Moléculaire et Signalisation, INSERM U1201, Institut Pasteur, Paris, France
| | - G Bussotti
- Unité de Parasitologie Moléculaire et Signalisation, INSERM U1201, Institut Pasteur, Paris, France
| | - J R Vermeesch
- Molecular Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - M Berriman
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - J A Cotton
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - P Volf
- Charles University, Prague, Czech Republic
| | - J C Dujardin
- Molecular Parasitology, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - M A Domagalska
- Molecular Parasitology, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
25
|
Abstract
In this essay I would like to highlight how work in nontraditional model systems is an imperative for our society to prepare for problems we do not even know exist. I present examples of how discovery in nontraditional systems has been critical for fundamental advancement in cell biology. I also discuss how as a collective we might harvest both new questions and new solutions to old problems from the underexplored reservoir of diversity in the biosphere. With advancements in genomics, proteomics, and genome editing, it is now technically feasible for even a single research group to introduce a new model system. I aim here to inspire people to think beyond their familiar model systems and to press funding agencies to support the establishment of new model systems.
Collapse
Affiliation(s)
- Amy S Gladfelter
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755; Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
26
|
Tosato V, Sims J, West N, Colombin M, Bruschi CV. Post-translocational adaptation drives evolution through genetic selection and transcriptional shift in Saccharomyces cerevisiae. Curr Genet 2016; 63:281-292. [PMID: 27491680 DOI: 10.1007/s00294-016-0635-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
Abstract
Adaptation by natural selection might improve the fitness of an organism and its probability to survive in unfavorable environmental conditions. Decoding the genetic basis of adaptive evolution is one of the great challenges to deal with. To this purpose, Saccharomyces cerevisiae has been largely investigated because of its short division time, excellent aneuploidy tolerance and the availability of the complete sequence of its genome with a thorough genome database. In the past, we developed a system, named bridge-induced translocation, to trigger specific, non-reciprocal translocations, exploiting the endogenous recombination system of budding yeast. This technique allows users to generate a heterogeneous population of cells with different aneuploidies and increased phenotypic variation. In this work, we demonstrate that ad hoc chromosomal translocations might induce adaptation, fostering selection of thermo-tolerant yeast strains with improved phenotypic fitness. This "yeast eugenomics" correlates with a shift to enhanced expression of genes involved in stress response, heat shock as well as carbohydrate metabolism. We propose that the bridge-induced translocation is a suitable approach to generate adapted, physiologically boosted strains for biotechnological applications.
Collapse
Affiliation(s)
- Valentina Tosato
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310, Izola, Slovenia. .,Yeast Molecular Genetics, ICGEB, AREA Science Park, Padriciano, 99, 34149, Trieste, Italy.
| | - Jason Sims
- Department of Chromosome Biology, Max Perutz Laboratories, Dr. Bohr-Gasse 9, 1030, Vienna, Austria
| | - Nicole West
- Yeast Molecular Genetics, ICGEB, AREA Science Park, Padriciano, 99, 34149, Trieste, Italy.,Clinical Pathology, Maggiore Hospital, Piazza dell' Ospitale 2, 34125, Trieste, Italy
| | - Martina Colombin
- Yeast Molecular Genetics, ICGEB, AREA Science Park, Padriciano, 99, 34149, Trieste, Italy
| | - Carlo V Bruschi
- Yeast Molecular Genetics, ICGEB, AREA Science Park, Padriciano, 99, 34149, Trieste, Italy.,Genetics Division, Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| |
Collapse
|
27
|
Berman J. Ploidy plasticity: a rapid and reversible strategy for adaptation to stress. FEMS Yeast Res 2016; 16:fow020. [PMID: 26945893 DOI: 10.1093/femsyr/fow020] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2016] [Indexed: 12/22/2022] Open
Abstract
Organisms must be able to grow in a broad range of conditions found in their normal growth environment and for a species to survive, at least some cells in a population must adapt rapidly to extreme stress conditions that kill the majority of cells.Candida albicans, the most prevalent fungal pathogen of humans resides as a commensal in a broad range of niches within the human host. Growth conditions in these niches are highly variable and stresses such exposure to antifungal drugs can inhibit population growth abruptly. One of the mechanisms C. albicans uses to adapt rapidly to severe stresses is aneuploidy-a change in the total number of chromosomes such that one or more chromosomes are present in excess or are missing. Aneuploidy is quite common in wild isolates of fungi and other eukaryotic microbes. Aneuploidy can be achieved by chromosome nondisjunction during a simple mitosis, and in stress conditions it begins to appear after two mitotic divisions via a tetraploid intermediate. Aneuploidy usually resolves to euploidy (a balanced number of chromosomes), but not necessarily to diploidy. Aneuploidy of a specific chromosome can confer new phenotypes by virtue of the copy number of specific genes on that chromosome relative to the copies of other genes. Thus, it is not aneuploidy per se, but the relative copy number of specific genes that confers many tested aneuploidy-associated phenotypes. Aneuploidy almost always carries a fitness cost, as cells express most proteins encoded by genes on the aneuploid chromosome in proportion to the number of DNA copies of the gene. This is thought to be due to imbalances in the stoichiometry of different components of large complexes. Despite this, fitness is a relative function-and if stress is severe and population growth has slowed considerably, then even small growth advantages of some aneuploidies can provide a selective advantage. Thus, aneuploidy appears to provide a transient solution to severe and sudden stress conditions, and may promote the appearance of more stable solutions as well. Importantly, in many clinical and environmental isolates of different fungal species aneuploidy does not appear to have a high fitness cost, and is well-tolerated. Thus, rapid changes in ploidy may provide the opportunity for rapid adaptation to stress conditions in the environment, host niches or in response to antifungal drugs.
Collapse
Affiliation(s)
- Judith Berman
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| |
Collapse
|
28
|
Aguiar TQ, Silva R, Domingues L. Ashbya gossypii beyond industrial riboflavin production: A historical perspective and emerging biotechnological applications. Biotechnol Adv 2015; 33:1774-86. [DOI: 10.1016/j.biotechadv.2015.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/28/2015] [Accepted: 10/04/2015] [Indexed: 10/22/2022]
|
29
|
Abstract
UNLABELLED Cryptococcus neoformans is a major life-threatening fungal pathogen. In response to the stress of the host environment, C. neoformans produces large polyploid titan cells. Titan cell production enhances the virulence of C. neoformans, yet whether the polyploid aspect of titan cells is specifically influential remains unknown. We show that titan cells were more likely to survive and produce offspring under multiple stress conditions than typical cells and that even their normally sized daughters maintained an advantage over typical cells in continued exposure to stress. Although polyploid titan cells generated haploid daughter cell progeny upon in vitro replication under nutrient-replete conditions, titan cells treated with the antifungal drug fluconazole produced fluconazole-resistant diploid and aneuploid daughter cells. Interestingly, a single titan mother cell was capable of generating multiple types of aneuploid daughter cells. The increased survival and genomic diversity of titan cell progeny promote rapid adaptation to new or high-stress conditions. IMPORTANCE The ability to adapt to stress is a key element for survival of pathogenic microbes in the host and thus plays an important role in pathogenesis. Here we investigated the predominantly haploid human fungal pathogen Cryptococcus neoformans, which is capable of ploidy and cell size increases during infection through production of titan cells. The enlarged polyploid titan cells are then able to rapidly undergo ploidy reduction to generate progeny with reduced ploidy and/or aneuploidy. Under stressful conditions, titan cell progeny have a growth and survival advantage over typical cell progeny. Understanding how titan cells enhance the rate of cryptococcal adaptation under stress conditions may assist in the development of novel drugs aimed at blocking ploidy transitions.
Collapse
|
30
|
Zhang J, Debets AJM, Verweij PE, Melchers WJG, Zwaan BJ, Schoustra SE. Asexual sporulation facilitates adaptation: The emergence of azole resistance in Aspergillus fumigatus. Evolution 2015; 69:2573-86. [PMID: 26315993 DOI: 10.1111/evo.12763] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 07/11/2015] [Accepted: 08/03/2015] [Indexed: 12/26/2022]
Abstract
Understanding the occurrence and spread of azole resistance in Aspergillus fumigatus is crucial for public health. It has been hypothesized that asexual sporulation, which is abundant in nature, is essential for phenotypic expression of azole resistance mutations in A. fumigatus facilitating subsequent spread through natural selection. Furthermore, the disease aspergilloma is associated with asexual sporulation within the lungs of patients and the emergence of azole resistance. This study assessed the evolutionary advantage of asexual sporulation by growing the fungus under pressure of one of five different azole fungicides over seven weeks and by comparing the rate of adaptation between scenarios of culturing with and without asexual sporulation. Results unequivocally show that asexual sporulation facilitates adaptation. This can be explained by the combination of more effective selection because of the transition from a multicellular to a unicellular stage, and by increased mutation supply due to the production of spores, which involves numerous mitotic divisions. Insights from this study are essential to unravel the resistance mechanisms of sporulating pathogens to chemical compounds and disease agents in general, and for designing strategies that prevent or overcome the emerging threat of azole resistance in particular.
Collapse
Affiliation(s)
- Jianhua Zhang
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands.
| | - Alfons J M Debets
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Paul E Verweij
- Department of Medical Microbiology, Radboud University Medical Centre, 6500 HB, Nijmegen, The Netherlands
| | - Willem J G Melchers
- Department of Medical Microbiology, Radboud University Medical Centre, 6500 HB, Nijmegen, The Netherlands
| | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Sijmen E Schoustra
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| |
Collapse
|
31
|
Roberts SE, Gladfelter AS. Nuclear autonomy in multinucleate fungi. Curr Opin Microbiol 2015; 28:60-5. [PMID: 26379197 DOI: 10.1016/j.mib.2015.08.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 08/28/2015] [Accepted: 08/28/2015] [Indexed: 11/30/2022]
Abstract
Within many fungal syncytia, nuclei behave independently despite sharing a common cytoplasm. Creation of independent nuclear zones of control in one cell is paradoxical considering random protein synthesis sites, predicted rapid diffusion rates, and well-mixed cytosol. In studying the surprising fungal nuclear autonomy, new principles of cellular organization are emerging. We discuss the current understanding of nuclear autonomy, focusing on asynchronous cell cycle progression where most work has been directed. Mechanisms underlying nuclear autonomy are diverse including mRNA localization, ploidy variability, and nuclear spacing control. With the challenges fungal syncytia face due to cytoplasmic size and shape, they serve as powerful models for uncovering new subcellular organization modes, variability sources among isogenic uninucleate cells, and the evolution of multicellularity.
Collapse
Affiliation(s)
- Samantha E Roberts
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, United States
| | - Amy S Gladfelter
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, United States.
| |
Collapse
|
32
|
Gerstein AC, Berman J. Shift and adapt: the costs and benefits of karyotype variations. Curr Opin Microbiol 2015; 26:130-6. [PMID: 26321163 PMCID: PMC4577464 DOI: 10.1016/j.mib.2015.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 06/10/2015] [Accepted: 06/15/2015] [Indexed: 01/06/2023]
Abstract
Variation is the spice of life or, in the case of evolution, variation is the necessary material on which selection can act to enable adaptation. Karyotypic variation in ploidy (the number of homologous chromosome sets) and aneuploidy (imbalance in the number of chromosomes) are fundamentally different than other types of genomic variants. Karyotypic variation emerges through different molecular mechanisms than other mutational events, and unlike mutations that alter the genome at the base pair level, rapid reversion to the wild type chromosome number is often possible. Although karyotypic variation has long been noted and discussed by biologists, interest in the importance of karyotypic variants in evolutionary processes has spiked in recent years, and much remains to be discovered about how karyotypic variants are produced and subsequently selected.
Collapse
Affiliation(s)
- Aleeza C Gerstein
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel; Department of Molecular, Cellular, Developmental Biology and Genetics, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Judith Berman
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel; Department of Molecular, Cellular, Developmental Biology and Genetics, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
33
|
Abstract
Polyploid cells, which contain more than two genome copies, occur throughout nature. Beyond well-established roles in increasing cell size/metabolic output, polyploidy can also promote nonuniform genome, transcriptome, and metabolome alterations. Polyploidy also frequently confers resistance to environmental stresses not tolerated by diploid cells. Recent progress has begun to unravel how this fascinating phenomenon contributes to normal physiology and disease.
Collapse
Affiliation(s)
- Kevin P Schoenfelder
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Donald T Fox
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|