1
|
Xu SB, Gao XK, Liang HD, Cong XX, Chen XQ, Zou WK, Tao JL, Pan ZY, Zhao J, Huang M, Bao Z, Zhou YT, Zheng LL. KPNA3 regulates histone locus body formation by modulating condensation and nuclear import of NPAT. J Cell Biol 2025; 224:e202401036. [PMID: 39621428 PMCID: PMC11613458 DOI: 10.1083/jcb.202401036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/30/2024] [Accepted: 09/11/2024] [Indexed: 12/11/2024] Open
Abstract
The histone locus body (HLB) is a membraneless organelle that determines the transcription of replication-dependent histones. However, the mechanisms underlying the appropriate formation of the HLB in the nucleus but not in the cytoplasm remain unknown. HLB formation is dependent on the scaffold protein NPAT. We identify KPNA3 as a specific importin that drives the nuclear import of NPAT by binding to the nuclear localization signal (NLS) sequence. NPAT undergoes phase separation, which is inhibited by KPNA3-mediated impairment of self-association. In this, a C-terminal self-interaction facilitator (C-SIF) motif, proximal to the NLS, binds the middle 431-1,030 sequence to mediate the self-association of NPAT. Mechanistically, the anchoring of KPNA3 to the NPAT-NLS sterically blocks C-SIF motif-dependent NPAT self-association. This leads to the suppression of aberrant NPAT condensation in the cytoplasm. Collectively, our study reveals a previously unappreciated role of KPNA3 in modulating HLB formation and delineates a steric hindrance mechanism that prevents inappropriate cytoplasmic NPAT condensation.
Collapse
Affiliation(s)
- Shui Bo Xu
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- ZJU-UoE Institute, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Xiu Kui Gao
- International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Hao Di Liang
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Xia Cong
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- ZJU-UoE Institute, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Qi Chen
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Kai Zou
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- ZJU-UoE Institute, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Li Tao
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- ZJU-UoE Institute, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhao Yuan Pan
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiao Zhao
- Department of Endocrinology, Hangzhou First People’s Hospital, Hangzhou, China
| | - Man Huang
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Zhang Bao
- Department of Respiratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Ting Zhou
- ZJU-UoE Institute, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, China
- Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Ling Zheng
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, China
- Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Geisler MS, Kemp JP, Duronio RJ. Directed stochasticity: Building biomolecular condensates in the right place. J Cell Biol 2025; 224:e202412035. [PMID: 39718563 DOI: 10.1083/jcb.202412035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
Controlling biomolecular condensate formation within the nucleus is critical for genome function. In this issue, Xu et al. (https://doi.org/10.1083/jcb.202401036) report that KPNA3 promotes histone locus body formation and expression of replication-dependent histone genes by both importing NPAT into the nucleus and preventing NPAT condensation from improperly occurring in the cytoplasm.
Collapse
Affiliation(s)
- Mark S Geisler
- Curriculum in Genetics and Molecular Biology, University of North Carolina , Chapel Hill, NC, USA
| | - James P Kemp
- Integrative Program for Biological and Genome Sciences, University of North Carolina , Chapel Hill, NC, USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina , Chapel Hill, NC, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina , Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina , Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Hodkinson LJ, Gross J, Schmidt CA, Diaz-Saldana PP, Aoki T, Rieder LE. Sequence reliance of the Drosophila context-dependent transcription factor CLAMP. Genetics 2024; 227:iyae060. [PMID: 38775472 PMCID: PMC11492491 DOI: 10.1093/genetics/iyae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/19/2024] [Indexed: 06/04/2024] Open
Abstract
Despite binding similar cis elements in multiple locations, a single transcription factor (TF) often performs context-dependent functions at different loci. How factors integrate cis sequence and genomic context is still poorly understood and has implications for off-target effects in genetic engineering. The Drosophila context-dependent TF chromatin-linked adaptor for male-specific lethal proteins (CLAMP) targets similar GA-rich cis elements on the X-chromosome and at the histone gene locus but recruits very different, locus-specific factors. We discover that CLAMP leverages information from both cis element and local sequence to perform context-specific functions. Our observations imply the importance of other cues, including protein-protein interactions and the presence of additional cofactors.
Collapse
Affiliation(s)
- Lauren J Hodkinson
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA 30322, USA
| | - Julia Gross
- Immunology and Molecular Pathogenesis Graduate Program, Emory University, Atlanta, GA 30322, USA
| | - Casey A Schmidt
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | - Tsutomo Aoki
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Leila E Rieder
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Terradas M, Schubert SA, Viana-Errasti J, Ruano D, Aiza G, Nielsen M, Marciel P, Tops CM, Parra G, Morreau H, Torrents D, van Leerdam ME, Capellá G, de Miranda NFCC, Valle L, van Wezel T. Germline NPAT inactivating variants as cause of hereditary colorectal cancer. Eur J Hum Genet 2024; 32:871-875. [PMID: 38778081 PMCID: PMC11219789 DOI: 10.1038/s41431-024-01625-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Two independent exome sequencing initiatives aimed to identify new genes involved in the predisposition to nonpolyposis colorectal cancer led to the identification of heterozygous loss-of-function variants in NPAT, a gene that encodes a cyclin E/CDK2 effector required for S phase entry and a coactivator of histone transcription, in two families with multiple members affected with colorectal cancer. Enrichment of loss-of-function and predicted deleterious NPAT variants was identified in familial/early-onset colorectal cancer patients compared to non-cancer gnomAD individuals, further supporting the association with the disease. Previous studies in Drosophila models showed that NPAT abrogation results in chromosomal instability, increase of double strand breaks, and induction of tumour formation. In line with these results, colorectal cancers with NPAT somatic variants and no DNA repair defects have significantly higher aneuploidy levels than NPAT-wildtype colorectal cancers. In conclusion, our findings suggest that constitutional inactivating NPAT variants predispose to mismatch repair-proficient nonpolyposis colorectal cancer.
Collapse
Affiliation(s)
- Mariona Terradas
- Hereditary Cancer Programme, Catalan Institute of Oncology; Oncobell Programme, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Stephanie A Schubert
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Julen Viana-Errasti
- Hereditary Cancer Programme, Catalan Institute of Oncology; Oncobell Programme, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Dina Ruano
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Gemma Aiza
- Hereditary Cancer Programme, Catalan Institute of Oncology; Oncobell Programme, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Paula Marciel
- Hereditary Cancer Programme, Catalan Institute of Oncology; Oncobell Programme, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Carli M Tops
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Genís Parra
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | - David Torrents
- Life Sciences Department, Barcelona Supercomputing Centre (BSC), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Monique E van Leerdam
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Leiden, The Netherlands
- Department of Gastrointestinal Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Gabriel Capellá
- Hereditary Cancer Programme, Catalan Institute of Oncology; Oncobell Programme, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Laura Valle
- Hereditary Cancer Programme, Catalan Institute of Oncology; Oncobell Programme, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands.
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Hodkinson LJ, Rieder LE. Cis element length variability does not confer differential transcription factor occupancy at the D. melanogaster histone locus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600460. [PMID: 38979213 PMCID: PMC11230285 DOI: 10.1101/2024.06.24.600460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Histone genes require precise regulation to maintain histone homeostasis and ensure nucleosome stoichiometry. Animal histone genes often have unique clustered genomic organization. However, there is variability of histone gene number and organization as well as differential regulation of the histone genes across species. The Drosophila melanogaster histone locus has unique organizational characteristics as it exists as a series of ∼100 highly regular, tandemly repeated arrays of the 5 replication-dependent histone genes at a single locus. Yet D. melanogaster are viable with only 12 transgenic histone gene arrays. We hypothesized that the histone genes across the locus are differentially regulated. We discovered that the GA-repeat within the H3/H4 promoter is the only variable sequence across the histone gene arrays. The H3/H4 promoter GA-repeat is targeted by CLAMP to promote histone gene expression. We also show two additional GA-binding transcription factors, GAGA Factor and Pipsqueak, target the GA-repeat. When we further examined CLAMP and GAF targeting, we determined that neither CLAMP nor GAF show bias for any GA-repeat lengths. Furthermore, we found that the distribution of GA-repeats targeted by both CLAMP and GAF do not change throughout early development. Together our results suggest that the transcription factors targeting the H3/H4 GA-repeat do not impact differential regulation of the histone genes, but indicate that future studies should interrogate additional cis elements or factors that impact histone gene regulation.
Collapse
|
6
|
O'Haren T, Aoki T, Rieder LE. Zelda is dispensable for Drosophila melanogaster histone gene regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572383. [PMID: 38187550 PMCID: PMC10769256 DOI: 10.1101/2023.12.19.572383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
To ensure that the embryo can package exponentially increasing amounts of DNA, replication-dependent histones are some of the earliest transcribed genes from the zygotic genome. However, how the histone genes are identified is not known. The pioneer factors Zelda and CLAMP collaborate at a subset of genes to regulate zygotic genome activation in Drosophila melanogaster and target early activated genes to induce transcription. CLAMP also regulates the embryonic histone genes and helps establish the histone locus body, a suite of factors that controls histone mRNA biosynthesis. The relationship between Zelda and CLAMP led us to hypothesize that Zelda helps identify histone genes for early embryonic expression. We found that Zelda targets the histone locus early during embryogenesis, prior to histone gene expression. However, depletion of zelda in the early embryo does not affect histone mRNA levels or histone locus body formation. While surprising, these results concur with other investigations into Zelda's role in the early embryo, suggesting the earliest factors responsible for specifying the zygotic histone genes remain undiscovered.
Collapse
Affiliation(s)
- Tommy O'Haren
- Emory University Department of Biology, Atlanta, GA 30322, USA
| | - Tsutomu Aoki
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540 USA
| | - Leila E Rieder
- Emory University Department of Biology, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Hodkinson LJ, Gross J, Schmidt CA, Diaz-Saldana PP, Aoki T, Rieder LE. Sequence reliance of a Drosophila context-dependent transcription factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570650. [PMID: 38106168 PMCID: PMC10723421 DOI: 10.1101/2023.12.07.570650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Despite binding similar cis elements in multiple locations, a single transcription factor often performs context-dependent functions at different loci. How factors integrate cis sequence and genomic context is still poorly understood and has implications for off-target effects in genetic engineering. The Drosophila context-dependent transcription factor CLAMP targets similar GA-rich cis elements on the X-chromosome and at the histone gene locus but recruits very different, loci-specific factors. We discover that CLAMP leverages information from both cis element and local sequence to perform context-specific functions. Our observations imply the importance of other cues, including protein-protein interactions and the presence of additional cofactors.
Collapse
Affiliation(s)
- Lauren J. Hodkinson
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA 30322 USA
| | - Julia Gross
- Immunology and Molecular Pathogenesis Graduate Program, Emory University, Atlanta, GA 30322 USA
| | | | | | - Tsutomo Aoki
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540 USA
| | - Leila E. Rieder
- Department of Biology Emory University, Atlanta, GA 30322 USA
| |
Collapse
|
8
|
Geisler MS, Kemp JP, Duronio RJ. Histone locus bodies: a paradigm for how nuclear biomolecular condensates control cell cycle regulated gene expression. Nucleus 2023; 14:2293604. [PMID: 38095604 PMCID: PMC10730174 DOI: 10.1080/19491034.2023.2293604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
Histone locus bodies (HLBs) are biomolecular condensates that assemble at replication-dependent (RD) histone genes in animal cells. These genes produce unique mRNAs that are not polyadenylated and instead end in a conserved 3' stem loop critical for coordinated production of histone proteins during S phase of the cell cycle. Several evolutionarily conserved factors necessary for synthesis of RD histone mRNAs concentrate only in the HLB. Moreover, because HLBs are present throughout the cell cycle even though RD histone genes are only expressed during S phase, changes in HLB composition during cell cycle progression drive much of the cell cycle regulation of RD histone gene expression. Thus, HLBs provide a powerful opportunity to determine the cause-and-effect relationships between nuclear body formation and cell cycle regulated gene expression. In this review, we focus on progress during the last five years that has advanced our understanding of HLB biology.
Collapse
Affiliation(s)
- Mark S. Geisler
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - James P. Kemp
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Robert J. Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Chaubal A, Waldern JM, Taylor C, Laederach A, Marzluff WF, Duronio RJ. Coordinated expression of replication-dependent histone genes from multiple loci promotes histone homeostasis in Drosophila. Mol Biol Cell 2023; 34:ar118. [PMID: 37647143 PMCID: PMC10846616 DOI: 10.1091/mbc.e22-11-0532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023] Open
Abstract
Production of large amounts of histone proteins during S phase is critical for proper chromatin formation and genome integrity. This process is achieved in part by the presence of multiple copies of replication dependent (RD) histone genes that occur in one or more clusters in metazoan genomes. In addition, RD histone gene clusters are associated with a specialized nuclear body, the histone locus body (HLB), which facilitates efficient transcription and 3' end-processing of RD histone mRNA. How all five RD histone genes within these clusters are coordinately regulated such that neither too few nor too many histones are produced, a process referred to as histone homeostasis, is not fully understood. Here, we explored the mechanisms of coordinate regulation between multiple RD histone loci in Drosophila melanogaster and Drosophila virilis. We provide evidence for functional competition between endogenous and ectopic transgenic histone arrays located at different chromosomal locations in D. melanogaster that helps maintain proper histone mRNA levels. Consistent with this model, in both species we found that individual histone gene arrays can independently assemble an HLB that results in active histone transcription. Our findings suggest a role for HLB assembly in coordinating RD histone gene expression to maintain histone homeostasis.
Collapse
Affiliation(s)
- Ashlesha Chaubal
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| | - Justin M. Waldern
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Colin Taylor
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | - William F. Marzluff
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Robert J. Duronio
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
10
|
Hodkinson LJ, Smith C, Comstra HS, Ajani BA, Albanese EH, Arsalan K, Daisson AP, Forrest KB, Fox EH, Guerette MR, Khan S, Koenig MP, Lam S, Lewandowski AS, Mahoney LJ, Manai N, Miglay J, Miller BA, Milloway O, Ngo N, Ngo VD, Oey NF, Punjani TA, SiMa H, Zeng H, Schmidt CA, Rieder LE. A bioinformatics screen reveals hox and chromatin remodeling factors at the Drosophila histone locus. BMC Genom Data 2023; 24:54. [PMID: 37735352 PMCID: PMC10515271 DOI: 10.1186/s12863-023-01147-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/07/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Cells orchestrate histone biogenesis with strict temporal and quantitative control. To efficiently regulate histone biogenesis, the repetitive Drosophila melanogaster replication-dependent histone genes are arrayed and clustered at a single locus. Regulatory factors concentrate in a nuclear body known as the histone locus body (HLB), which forms around the locus. Historically, HLB factors are largely discovered by chance, and few are known to interact directly with DNA. It is therefore unclear how the histone genes are specifically targeted for unique and coordinated regulation. RESULTS To expand the list of known HLB factors, we performed a candidate-based screen by mapping 30 publicly available ChIP datasets of 27 unique factors to the Drosophila histone gene array. We identified novel transcription factor candidates, including the Drosophila Hox proteins Ultrabithorax (Ubx), Abdominal-A (Abd-A), and Abdominal-B (Abd-B), suggesting a new pathway for these factors in influencing body plan morphogenesis. Additionally, we identified six other factors that target the histone gene array: JIL-1, hormone-like receptor 78 (Hr78), the long isoform of female sterile homeotic (1) (fs(1)h) as well as the general transcription factors TBP associated factor 1 (TAF-1), Transcription Factor IIB (TFIIB), and Transcription Factor IIF (TFIIF). CONCLUSIONS Our foundational screen provides several candidates for future studies into factors that may influence histone biogenesis. Further, our study emphasizes the powerful reservoir of publicly available datasets, which can be mined as a primary screening technique.
Collapse
Affiliation(s)
- Lauren J Hodkinson
- Genetics and Molecular Biology graduate program, Emory University, Atlanta, GA, 30322, USA
| | - Connor Smith
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - H Skye Comstra
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Bukola A Ajani
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Eric H Albanese
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Kawsar Arsalan
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Alvaro Perez Daisson
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Katherine B Forrest
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Elijah H Fox
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Matthew R Guerette
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Samia Khan
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Madeleine P Koenig
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Shivani Lam
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Ava S Lewandowski
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Lauren J Mahoney
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Nasserallah Manai
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - JonCarlo Miglay
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Blake A Miller
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Olivia Milloway
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Nhi Ngo
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Vu D Ngo
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Nicole F Oey
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Tanya A Punjani
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - HaoMin SiMa
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Hollis Zeng
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Casey A Schmidt
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA.
| | - Leila E Rieder
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA.
| |
Collapse
|
11
|
Gilbonio HE, Puckett GL, Nguyen E, Rieder LE. A hybrid RNA FISH immunofluorescence protocol on Drosophila polytene chromosomes. BMC Res Notes 2023; 16:197. [PMID: 37679799 PMCID: PMC10486132 DOI: 10.1186/s13104-023-06482-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
OBJECTIVES Investigating protein-DNA interactions is imperative to understanding fundamental concepts such as cell growth, differentiation, and cell development in many systems. Sequencing techniques such as ChIP-seq can yield genome-wide DNA binding profiles of transcription factors; however this assay can be expensive, time-consuming, may not be informative for repetitive regions of the genome, and depend heavily upon antibody suitability. Combining DNA fluorescence in situ hybridization (FISH) with immunofluorescence (IF) is a quicker and inexpensive approach which has historically been used to investigate protein-DNA interactions in individual nuclei. However, these assays are sometimes incompatible due to the required denaturation step in DNA FISH that can alter protein epitopes, hindering primary antibody binding. Additionally, combining DNA FISH with IF may be challenging for less experienced trainees. Our goal was to develop an alternative technique to investigate protein-DNA interactions by combining RNA FISH with IF. RESULTS We developed a hybrid RNA FISH-IF protocol for use on Drosophila melanogaster polytene chromosome spreads in order to visualize colocalization of proteins and DNA loci. We demonstrate that this assay is sensitive enough to determine if our protein of interest, Multi sex combs (Mxc), localizes to single-copy target transgenes carrying histone genes. Overall, this study provides an alternative, accessible method for investigating protein-DNA interactions at the single gene level in Drosophila melanogaster polytene chromosomes.
Collapse
Affiliation(s)
| | - Gwyn L Puckett
- Piedmont Virginia Community College, Charlottesville, VA, USA
| | - Erica Nguyen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leila E Rieder
- Department of Biology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
12
|
Armstrong C, Passanisi VJ, Ashraf HM, Spencer SL. Cyclin E/CDK2 and feedback from soluble histone protein regulate the S phase burst of histone biosynthesis. Cell Rep 2023; 42:112768. [PMID: 37428633 PMCID: PMC10440735 DOI: 10.1016/j.celrep.2023.112768] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/17/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023] Open
Abstract
Faithful DNA replication requires that cells fine-tune their histone pool in coordination with cell-cycle progression. Replication-dependent histone biosynthesis is initiated at a low level upon cell-cycle commitment, followed by a burst at the G1/S transition, but it remains unclear how exactly the cell regulates this burst in histone biosynthesis as DNA replication begins. Here, we use single-cell time-lapse imaging to elucidate the mechanisms by which cells modulate histone production during different phases of the cell cycle. We find that CDK2-mediated phosphorylation of NPAT at the restriction point triggers histone transcription, which results in a burst of histone mRNA precisely at the G1/S phase boundary. Excess soluble histone protein further modulates histone abundance by promoting the degradation of histone mRNA for the duration of S phase. Thus, cells regulate their histone production in strict coordination with cell-cycle progression by two distinct mechanisms acting in concert.
Collapse
Affiliation(s)
- Claire Armstrong
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Victor J Passanisi
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Humza M Ashraf
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Sabrina L Spencer
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
13
|
Gilbonio HE, Puckett GL, Nguyen E, Rieder LE. A hybrid RNA FISH immunofluorescence protocol on Drosophila polytene chromosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544616. [PMID: 37398336 PMCID: PMC10312655 DOI: 10.1101/2023.06.12.544616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Objectives Investigating protein-DNA interactions is imperative to understanding fundamental concepts such as cell growth, differentiation, and cell development in many systems. Sequencing techniques such as ChIP-seq can yield genome-wide DNA binding profiles of transcription factors; however this assay can be expensive, time-consuming, may not be informative for repetitive regions of the genome, and depend heavily upon antibody suitability. Combining DNA fluorescence in situ hybridization (FISH) with immunofluorescence (IF) is a quicker and inexpensive approach which has historically been used to investigate protein-DNA interactions in individual nuclei. However, these assays are sometimes incompatible due to the required denaturation step in DNA FISH that can alter protein epitopes, hindering primary antibody binding. Additionally, combining DNA FISH with IF may be challenging for less experienced trainees. Our goal was to develop an alternative technique to investigate protein-DNA interactions by combining RNA FISH with IF. Results We developed a hybrid RNA FISH and IF protocol for use on Drosophila melanogaster polytene chromosome spreads in order to visualize colocalization of proteins and DNA loci. We demonstrate that this assay is sensitive enough to determine if our protein of interest, Multi-sex combs (Mxc), localizes to single-copy target transgenes carrying histone genes. Overall, this study provides an alternative, accessible method for investigating protein-DNA interactions at the single gene level in Drosophila melanogaster polytene chromosomes.
Collapse
Affiliation(s)
| | - Gwyn L. Puckett
- Piedmont Virginia Community College, Charlottesville, VA, USA
| | - Erica Nguyen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
14
|
Armstrong C, Passanisi VJ, Ashraf HM, Spencer SL. Cyclin E/CDK2 and feedback from soluble histone protein regulate the S phase burst of histone biosynthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533218. [PMID: 36993620 PMCID: PMC10055190 DOI: 10.1101/2023.03.17.533218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Faithful DNA replication requires that cells fine-tune their histone pool in coordination with cell-cycle progression. Replication-dependent histone biosynthesis is initiated at a low level upon cell-cycle commitment, followed by a burst at the G1/S transition, but it remains unclear how exactly the cell regulates this change in histone biosynthesis as DNA replication begins. Here, we use single-cell timelapse imaging to elucidate the mechanisms by which cells modulate histone production during different phases of the cell cycle. We find that CDK2-mediated phosphorylation of NPAT at the Restriction Point triggers histone transcription, which results in a burst of histone mRNA precisely at the G1/S phase boundary. Excess soluble histone protein further modulates histone abundance by promoting the degradation of histone mRNA for the duration of S phase. Thus, cells regulate their histone production in strict coordination with cell-cycle progression by two distinct mechanisms acting in concert.
Collapse
|
15
|
Hodkinson LJ, Smith C, Comstra HS, Albanese EH, Ajani BA, Arsalan K, Daisson AP, Forrest KB, Fox EH, Guerette MR, Khan S, Koenig MP, Lam S, Lewandowski AS, Mahoney LJ, Manai N, Miglay J, Miller BA, Milloway O, Ngo VD, Oey NF, Punjani TA, SiMa H, Zeng H, Schmidt CA, Rieder LE. A bioinformatics screen reveals Hox and chromatin remodeling factors at the Drosophila histone locus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.523008. [PMID: 36711759 PMCID: PMC9881919 DOI: 10.1101/2023.01.06.523008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cells orchestrate histone biogenesis with strict temporal and quantitative control. To efficiently regulate histone biogenesis, the repetitive Drosophila melanogaster replication-dependent histone genes are arrayed and clustered at a single locus. Regulatory factors concentrate in a nuclear body known as the histone locus body (HLB), which forms around the locus. Historically, HLB factors are largely discovered by chance, and few are known to interact directly with DNA. It is therefore unclear how the histone genes are specifically targeted for unique and coordinated regulation. To expand the list of known HLB factors, we performed a candidate-based screen by mapping 30 publicly available ChIP datasets and 27 factors to the Drosophila histone gene array. We identified novel transcription factor candidates, including the Drosophila Hox proteins Ultrabithorax, Abdominal-A and Abdominal-B, suggesting a new pathway for these factors in influencing body plan morphogenesis. Additionally, we identified six other transcription factors that target the histone gene array: JIL-1, Hr78, the long isoform of fs(1)h as well as the generalized transcription factors TAF-1, TFIIB, and TFIIF. Our foundational screen provides several candidates for future studies into factors that may influence histone biogenesis. Further, our study emphasizes the powerful reservoir of publicly available datasets, which can be mined as a primary screening technique.
Collapse
Affiliation(s)
- Lauren J Hodkinson
- Genetics and Molecular Biology graduate program, Emory University, Atlanta, GA 30322, USA
| | - Connor Smith
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - H Skye Comstra
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Eric H Albanese
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Bukola A Ajani
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Kawsar Arsalan
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | | | - Katherine B Forrest
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Elijah H Fox
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Matthew R Guerette
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Samia Khan
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Madeleine P Koenig
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Shivani Lam
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Ava S Lewandowski
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Lauren J Mahoney
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Nasserallah Manai
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - JonCarlo Miglay
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Blake A Miller
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Olivia Milloway
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Vu D Ngo
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Nicole F Oey
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Tanya A Punjani
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - HaoMin SiMa
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Hollis Zeng
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Casey A Schmidt
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Leila E Rieder
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| |
Collapse
|
16
|
Sang R, Wu C, Xie S, Xu X, Lou Y, Ge W, Xi Y, Yang X. Mxc, a Drosophila homolog of mental retardation-associated gene NPAT, maintains neural stem cell fate. Cell Biosci 2022; 12:78. [PMID: 35642004 PMCID: PMC9153134 DOI: 10.1186/s13578-022-00820-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/22/2022] [Indexed: 01/18/2023] Open
Abstract
Background Mental retardation is a complex neurodevelopmental disorder. NPAT, a component of the histone locus body (HLB), has been implicated as a candidate gene for mental retardation, with a mechanism yet to be elucidated. Results We identified that mxc, the Drosophila ortholog of NPAT, is required for the development of nervous system. Knockdown of mxc resulted in a massive loss of neurons and locomotion dysfunction in adult flies. In the mxc mutant or RNAi knockdown larval brains, the neuroblast (NB, also known as neural stem cell) cell fate is prematurely terminated and its proliferation potential is impeded concurrent with the blocking of the differentiation process of ganglion mother cells (GMCs). A reduction of transcription levels of histone genes was shown in mxc knockdown larval brains, accompanied by DNA double-strand breaks (DSBs). The subsidence of histone transcription levels leads to prematurely termination of NB cell fate and blockage of the GMC differentiation process. Our data also show that the increase in autophagy induced by mxc knockdown in NBs could be a defense mechanism in response to abnormal HLB assembly and premature termination of NB cell fate. Conclusions Our study demonstrate that Mxc plays a critical role in maintaining neural stem cell fate and GMC differentiation in the Drosophila larval brain. This discovery may shed light on the understanding of the pathogenesis of NPAT-related mental retardation in humans. Supplementary information The online version contains supplementary material available at 10.1186/s13578-022-00820-8.
Collapse
|
17
|
Cho CY, Kemp JP, Duronio RJ, O'Farrell PH. Coordinating transcription and replication to mitigate their conflicts in early Drosophila embryos. Cell Rep 2022; 41:111507. [PMID: 36261005 PMCID: PMC9667882 DOI: 10.1016/j.celrep.2022.111507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/30/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Collisions between transcribing RNA polymerases and DNA replication forks are disruptive. The threat of collisions is particularly acute during the rapid early embryonic cell cycles of Drosophila when S phase occupies the entirety of interphase. We hypothesize that collision-avoidance mechanisms safeguard this early transcription. Real-time imaging of endogenously tagged RNA polymerase II (RNAPII) and a reporter for nascent transcripts in unperturbed embryos shows clustering of RNAPII at around 2 min after mitotic exit, followed by progressive dispersal as associated nascent transcripts accumulate later in interphase. Abrupt inhibition of various steps in DNA replication, including origin licensing, origin firing, and polymerization, suppresses post-mitotic RNAPII clustering and transcription in nuclear cycles. We propose that replication dependency defers the onset of transcription so that RNAPII transcribes behind advancing replication forks. The resulting orderly progression can explain how early embryos circumvent transcription-replication conflicts to express essential developmental genes.
Collapse
Affiliation(s)
- Chun-Yi Cho
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James P Kemp
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Robert J Duronio
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patrick H O'Farrell
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
18
|
Huang SK, Whitney PH, Dutta S, Shvartsman SY, Rushlow CA. Spatial organization of transcribing loci during early genome activation in Drosophila. Curr Biol 2021; 31:5102-5110.e5. [PMID: 34614388 DOI: 10.1016/j.cub.2021.09.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/19/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
The early Drosophila embryo provides unique experimental advantages for addressing fundamental questions of gene regulation at multiple levels of organization, from individual gene loci to the entire genome. Using 1.5-h-old Drosophila embryos undergoing the first wave of genome activation,1 we detected ∼110 discrete "speckles" of RNA polymerase II (RNA Pol II) per nucleus, two of which were larger and localized to the histone locus bodies (HLBs).2,3 In the absence of the primary driver of Drosophila genome activation, the pioneer factor Zelda (Zld),1,4,5 70% fewer speckles were present; however, the HLBs tended to be larger than wild-type (WT) HLBs, indicating that RNA Pol II accumulates at the HLBs in the absence of robust early-gene transcription. We observed a uniform distribution of distances between active genes in the nuclei of both WT and zld mutant embryos, indicating that early co-regulated genes do not cluster into nuclear sub-domains. However, in instances whereby transcribing genes did come into close 3D proximity (within 400 nm), they were found to have distinct RNA Pol II speckles. In contrast to the emerging model whereby active genes are clustered to facilitate co-regulation and sharing of transcriptional resources, our data support an "individualist" model of gene control at early genome activation in Drosophila. This model is in contrast to a "collectivist" model, where active genes are spatially clustered and share transcriptional resources, motivating rigorous tests of both models in other experimental systems.
Collapse
Affiliation(s)
- Shao-Kuei Huang
- Department of Biology, New York University, New York, NY 10003, USA
| | - Peter H Whitney
- Department of Biology, New York University, New York, NY 10003, USA
| | - Sayantan Dutta
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Stanislav Y Shvartsman
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Center for Computational Biology, Flatiron Research Institute, New York, NY 10010, USA
| | | |
Collapse
|
19
|
Abstract
The current model of replication-dependent (RD) histone biosynthesis posits that RD histone gene expression is coupled to DNA replication, occurring only in S phase of the cell cycle once DNA synthesis has begun. However, several key factors in the RD histone biosynthesis pathway are up-regulated by E2F or phosphorylated by CDK2, suggesting these processes may instead begin much earlier, at the point of cell-cycle commitment. In this study, we use both fixed- and live-cell imaging of human cells to address this question, revealing a hybrid model in which RD histone biosynthesis is first initiated in G1, followed by a strong increase in histone production in S phase of the cell cycle. This suggests a mechanism by which cells that have committed to the cell cycle build up an initial small pool of RD histones to be available for the start of DNA replication, before producing most of the necessary histones required in S phase. Thus, a clear distinction exists at completion of mitosis between cells that are born with the intention of proceeding through the cell cycle and replicating their DNA and cells that have chosen to exit the cell cycle and have no immediate need for histone synthesis.
Collapse
|
20
|
Kemp JP, Yang XC, Dominski Z, Marzluff WF, Duronio RJ. Superresolution light microscopy of the Drosophila histone locus body reveals a core-shell organization associated with expression of replication-dependent histone genes. Mol Biol Cell 2021; 32:942-955. [PMID: 33788585 PMCID: PMC8108526 DOI: 10.1091/mbc.e20-10-0645] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The histone locus body (HLB) is an evolutionarily conserved nuclear body that regulates the transcription and processing of replication-dependent (RD) histone mRNAs, which are the only eukaryotic mRNAs lacking a poly-A tail. Many nuclear bodies contain distinct domains, but how internal organization is related to nuclear body function is not fully understood. Here, we demonstrate using structured illumination microscopy that Drosophila HLBs have a “core–shell” organization in which the internal core contains transcriptionally active RD histone genes. The N-terminus of Mxc, which contains a domain required for Mxc oligomerization, HLB assembly, and RD histone gene expression, is enriched in the HLB core. In contrast, the C-terminus of Mxc is enriched in the HLB outer shell as is FLASH, a component of the active U7 snRNP that cotranscriptionally cleaves RD histone pre-mRNA. Consistent with these results, we show biochemically that FLASH binds directly to the Mxc C-terminal region. In the rapid S-M nuclear cycles of syncytial blastoderm Drosophila embryos, the HLB disassembles at mitosis and reassembles the core–shell arrangement as histone gene transcription is activated immediately after mitosis. Thus, the core–shell organization is coupled to zygotic histone gene transcription, revealing a link between HLB internal organization and RD histone gene expression.
Collapse
Affiliation(s)
- James P Kemp
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Xiao-Cui Yang
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Zbigniew Dominski
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - William F Marzluff
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Robert J Duronio
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
21
|
Arva A, Kasu YAT, Duncan J, Alkhatatbeh MA, Brower CS. The Ligand of Ate1 is intrinsically disordered and participates in nucleolar phase separation regulated by Jumonji Domain Containing 6. Proc Natl Acad Sci U S A 2021; 118:e2015887118. [PMID: 33443146 PMCID: PMC7817205 DOI: 10.1073/pnas.2015887118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Ligand of Ate1 (Liat1) is a protein of unknown function that was originally discovered through its interaction with arginyl-tRNA protein transferase 1 (Ate1), a component of the Arg/N-degron pathway of protein degradation. Here, we characterized the functional domains of mouse Liat1 and found that its N-terminal half comprises an intrinsically disordered region (IDR) that facilitates its liquid-liquid phase separation (LLPS) in the nucleolus. Using bimolecular fluorescence complementation and immunocytochemistry, we found that Liat1 is targeted to the nucleolus by a low-complexity poly-K region within its IDR. We also found that the lysyl-hydroxylase activity of Jumonji Domain Containing 6 (Jmjd6) modifies Liat1, in a manner that requires the Liat1 poly-K region, and inhibits its nucleolar targeting and potential functions. In sum, this study reveals that Liat1 participates in nucleolar LLPS regulated by Jmjd6.
Collapse
Affiliation(s)
- Akshaya Arva
- Department of Biology, Texas Woman's University, Denton, TX 76204
| | | | - Jennifer Duncan
- Department of Biology, Texas Woman's University, Denton, TX 76204
| | | | | |
Collapse
|
22
|
Kurihara M, Takarada K, Inoue YH. Enhancement of leukemia-like phenotypes in Drosophila mxc mutant larvae due to activation of the RAS-MAP kinase cascade possibly via down-regulation of DE-cadherin. Genes Cells 2020; 25:757-769. [PMID: 33012036 DOI: 10.1111/gtc.12811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/10/2023]
Abstract
Loss of mxc gene function in mature hemocytes of Drosophila mxcmbn1 mutant results in malignant hyperplasia in larval hematopoietic tissues termed lymph glands (LGs) owing to over-proliferation of immature cells. This is a useful model for genetic analyses of leukemia progression. To identify other mutations that deteriorate the hyperplasia, we aimed to investigate whether hyper-activation of common signaling cascade enabled to enhance the phenotypes. Ectopic expression of the constitutively active forms of MAPK signaling factors in the mutant increased the hyperplasia and the number of circulating hemocytes, resulting in the production of LG fragments. The LG phenotype was related to the reduced DE-cadherin level in the mutants. Depletion of Drosophila MCRIP, involved in MAPK-induced silencing of cadherin gene expression, exhibited a similar enhancement of the mxcmbn1 phenotypes. Furthermore, expression of MMP1 proteinase that cleaves the extracellular matrix proteins increased in the mutant larvae harboring MAPK cascade activation. Depletion of Mmp1 and that of pnt (required for Mmp1 expression) suppressed the LG hyperplasia. Hence, we speculated that reduction in DE-cadherin level by either down-regulation of MCRIP or up-regulation of MMP1 was involved in the progression of the tumor phenotype. Our findings can contribute to understanding the mechanism underlying human leukemia progression.
Collapse
Affiliation(s)
- Masanori Kurihara
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| | - Kazuki Takarada
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| | - Yoshihiro H Inoue
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| |
Collapse
|
23
|
Bucholc K, Skrajna A, Adamska K, Yang XC, Krajewski K, Poznański J, Dadlez M, Domiński Z, Zhukov I. Structural Analysis of the SANT/Myb Domain of FLASH and YARP Proteins and Their Complex with the C-Terminal Fragment of NPAT by NMR Spectroscopy and Computer Simulations. Int J Mol Sci 2020; 21:ijms21155268. [PMID: 32722282 PMCID: PMC7432317 DOI: 10.3390/ijms21155268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022] Open
Abstract
FLICE-associated huge protein (FLASH), Yin Yang 1-Associated Protein-Related Protein (YARP) and Nuclear Protein, Ataxia-Telangiectasia Locus (NPAT) localize to discrete nuclear structures called histone locus bodies (HLBs) where they control various steps in histone gene expression. Near the C-terminus, FLASH and YARP contain a highly homologous domain that interacts with the C-terminal region of NPAT. Structural aspects of the FLASH-NPAT and YARP-NPAT complexes and their role in histone gene expression remain largely unknown. In this study, we used multidimensional NMR spectroscopy and in silico modeling to analyze the C-terminal domain in FLASH and YARP in an unbound form and in a complex with the last 31 amino acids of NPAT. Our results demonstrate that FLASH and YARP domains share the same fold of a triple α -helical bundle that resembles the DNA binding domain of Myb transcriptional factors and the SANT domain found in chromatin-modifying and remodeling complexes. The NPAT peptide contains a single α -helix that makes multiple contacts with α -helices I and III of the FLASH and YARP domains. Surprisingly, in spite of sharing a significant amino acid similarity, each domain likely binds NPAT using a unique network of interactions, yielding two distinct complexes. In silico modeling suggests that both complexes are structurally compatible with DNA binding, raising the possibility that they may function in identifying specific sequences within histone gene clusters, hence initiating the assembly of HLBs and regulating histone gene expression during cell cycle progression.
Collapse
Affiliation(s)
- Katarzyna Bucholc
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland; (K.B.); (A.S.); (K.A.); (J.P.); (M.D.)
| | - Aleksandra Skrajna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland; (K.B.); (A.S.); (K.A.); (J.P.); (M.D.)
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Kinga Adamska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland; (K.B.); (A.S.); (K.A.); (J.P.); (M.D.)
| | - Xiao-Cui Yang
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland; (K.B.); (A.S.); (K.A.); (J.P.); (M.D.)
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland; (K.B.); (A.S.); (K.A.); (J.P.); (M.D.)
| | - Zbigniew Domiński
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Correspondence: (Z.D.); (I.Z.); Tel.: +48-22-592-2038 (I.Z.)
| | - Igor Zhukov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland; (K.B.); (A.S.); (K.A.); (J.P.); (M.D.)
- NanoBioMedical Centre, Adam Mickiewicz University, ul. Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
- Correspondence: (Z.D.); (I.Z.); Tel.: +48-22-592-2038 (I.Z.)
| |
Collapse
|
24
|
Hur W, Kemp JP, Tarzia M, Deneke VE, Marzluff WF, Duronio RJ, Di Talia S. CDK-Regulated Phase Separation Seeded by Histone Genes Ensures Precise Growth and Function of Histone Locus Bodies. Dev Cell 2020; 54:379-394.e6. [PMID: 32579968 DOI: 10.1016/j.devcel.2020.06.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/17/2020] [Accepted: 05/30/2020] [Indexed: 10/24/2022]
Abstract
Many membraneless organelles form through liquid-liquid phase separation, but how their size is controlled and whether size is linked to function remain poorly understood. The histone locus body (HLB) is an evolutionarily conserved nuclear body that regulates the transcription and processing of histone mRNAs. Here, we show that Drosophila HLBs form through phase separation. During embryogenesis, the size of HLBs is controlled in a precise and dynamic manner that is dependent on the cell cycle and zygotic histone gene activation. Control of HLB growth is achieved by a mechanism integrating nascent mRNAs at the histone locus, which facilitates phase separation, and the nuclear concentration of the scaffold protein multi-sex combs (Mxc), which is controlled by the activity of cyclin-dependent kinases. Reduced Cdk2 activity results in smaller HLBs and the appearance of nascent, misprocessed histone mRNAs. Thus, our experiments identify a mechanism linking nuclear body growth and size with gene expression.
Collapse
Affiliation(s)
- Woonyung Hur
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27705, USA
| | - James P Kemp
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marco Tarzia
- LPTMC, CNRS-UMR 7600, Sorbonne Université, 4 Pl. Jussieu, 75005 Paris, France
| | - Victoria E Deneke
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27705, USA
| | - William F Marzluff
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Robert J Duronio
- Department of Biology, Department of Genetics, Integrative Program for Biological and Genome Sciences, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stefano Di Talia
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27705, USA.
| |
Collapse
|
25
|
Koreski KP, Rieder LE, McLain LM, Chaubal A, Marzluff WF, Duronio RJ. Drosophila histone locus body assembly and function involves multiple interactions. Mol Biol Cell 2020; 31:1525-1537. [PMID: 32401666 PMCID: PMC7359574 DOI: 10.1091/mbc.e20-03-0176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The histone locus body (HLB) assembles at replication-dependent (RD) histone loci and concentrates factors required for RD histone mRNA biosynthesis. The Drosophila melanogaster genome has a single locus comprised of ∼100 copies of a tandemly arrayed 5-kB repeat unit containing one copy of each of the 5 RD histone genes. To determine sequence elements required for D. melanogaster HLB formation and histone gene expression, we used transgenic gene arrays containing 12 copies of the histone repeat unit that functionally complement loss of the ∼200 endogenous RD histone genes. A 12x histone gene array in which all H3-H4 promoters were replaced with H2a-H2b promoters (12xPR) does not form an HLB or express high levels of RD histone mRNA in the presence of the endogenous histone genes. In contrast, this same transgenic array is active in HLB assembly and RD histone gene expression in the absence of the endogenous RD histone genes and rescues the lethality caused by homozygous deletion of the RD histone locus. The HLB formed in the absence of endogenous RD histone genes on the mutant 12x array contains all known factors present in the wild-type HLB including CLAMP, which normally binds to GAGA repeats in the H3-H4 promoter. These data suggest that multiple protein–protein and/or protein–DNA interactions contribute to HLB formation, and that the large number of endogenous RD histone gene copies sequester available factor(s) from attenuated transgenic arrays, thereby preventing HLB formation and gene expression on these arrays.
Collapse
Affiliation(s)
- Kaitlin P Koreski
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Leila E Rieder
- Department of Biology, Emory University, Atlanta, GA 30322
| | - Lyndsey M McLain
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Ashlesha Chaubal
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| | - William F Marzluff
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599.,Department of Biology, University of North Carolina, Chapel Hill, NC 27599.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599.,Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599.,Department of Biology, University of North Carolina, Chapel Hill, NC 27599.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599.,Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
26
|
Kurihara M, Komatsu K, Awane R, Inoue YH. Loss of Histone Locus Bodies in the Mature Hemocytes of Larval Lymph Gland Result in Hyperplasia of the Tissue in mxc Mutants of Drosophila. Int J Mol Sci 2020; 21:E1586. [PMID: 32111032 PMCID: PMC7084650 DOI: 10.3390/ijms21051586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/15/2020] [Accepted: 02/24/2020] [Indexed: 01/22/2023] Open
Abstract
Mutations in the multi sex combs (mxc) gene in Drosophila results in malignant hyperplasia in larval hematopoietic tissues, called lymph glands (LG). mxc encodes a component of the histone locus body (HLB) that is essential for cell cycle-dependent transcription and processing of histone mRNAs. The mammalian nuclear protein ataxia-telangiectasia (NPAT) gene, encoded by the responsible gene for ataxia telangiectasia, is a functional Mxc orthologue. However, their roles in tumorigenesis are unclear. Genetic analyses of the mxc mutants and larvae having LG-specific depletion revealed that a reduced activity of the gene resulted in the hyperplasia, which is caused by hyper-proliferation of immature LG cells. The depletion of mxc in mature hemocytes of the LG resulted in the hyperplasia. Furthermore, the inhibition of HLB formation was required for LG hyperplasia. In the mutant larvae, the total mRNA levels of the five canonical histones decreased, and abnormal forms of polyadenylated histone mRNAs, detected rarely in normal larvae, were generated. The ectopic expression of the polyadenylated mRNAs was sufficient for the reproduction of the hyperplasia. The loss of HLB function, especially 3-end processing of histone mRNAs, is critical for malignant LG hyperplasia in this leukemia model in Drosophila. We propose that mxc is involved in the activation to induce adenosine deaminase-related growth factor A (Adgf-A), which suppresses immature cell proliferation in LG.
Collapse
Affiliation(s)
| | | | | | - Yoshihiro H. Inoue
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-0962, Japan; (M.K.); (K.K.); (R.A.)
| |
Collapse
|
27
|
Tanabe K, Awane R, Shoda T, Yamazoe K, Inoue YH. Mutations in mxc Tumor-Suppressor Gene Induce Chromosome Instability in Drosophila Male Meiosis. Cell Struct Funct 2019; 44:121-135. [DOI: 10.1247/csf.19022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Karin Tanabe
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology
| | - Rie Awane
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology
| | - Tsuyoshi Shoda
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology
| | - Kanta Yamazoe
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology
| | - Yoshihiro H. Inoue
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology
| |
Collapse
|
28
|
Tsui C, Inouye C, Levy M, Lu A, Florens L, Washburn MP, Tjian R. dCas9-targeted locus-specific protein isolation method identifies histone gene regulators. Proc Natl Acad Sci U S A 2018; 115:E2734-E2741. [PMID: 29507191 PMCID: PMC5866577 DOI: 10.1073/pnas.1718844115] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic gene regulation is a complex process, often coordinated by the action of tens to hundreds of proteins. Although previous biochemical studies have identified many components of the basal machinery and various ancillary factors involved in gene regulation, numerous gene-specific regulators remain undiscovered. To comprehensively survey the proteome directing gene expression at a specific genomic locus of interest, we developed an in vitro nuclease-deficient Cas9 (dCas9)-targeted chromatin-based purification strategy, called "CLASP" (Cas9 locus-associated proteome), to identify and functionally test associated gene-regulatory factors. Our CLASP method, coupled to mass spectrometry and functional screens, can be efficiently adapted for isolating associated regulatory factors in an unbiased manner targeting multiple genomic loci across different cell types. Here, we applied our method to isolate the Drosophila melanogaster histone cluster in S2 cells to identify several factors including Vig and Vig2, two proteins that bind and regulate core histone H2A and H3 mRNA via interaction with their 3' UTRs.
Collapse
Affiliation(s)
- Chiahao Tsui
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine Center of Excellence, University of California, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| | - Carla Inouye
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine Center of Excellence, University of California, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| | - Michaella Levy
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Andrew Lu
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine Center of Excellence, University of California, Berkeley, CA 94720
| | | | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, MO 64110
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Robert Tjian
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine Center of Excellence, University of California, Berkeley, CA 94720;
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| |
Collapse
|
29
|
Marzluff WF, Koreski KP. Birth and Death of Histone mRNAs. Trends Genet 2017; 33:745-759. [PMID: 28867047 DOI: 10.1016/j.tig.2017.07.014] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 12/22/2022]
Abstract
In metazoans, histone mRNAs are not polyadenylated but end in a conserved stem-loop. Stem-loop binding protein (SLBP) binds to the stem-loop and is required for all steps in histone mRNA metabolism. The genes for the five histone proteins are linked. A histone locus body (HLB) forms at each histone gene locus. It contains factors essential for transcription and processing of histone mRNAs, and couples transcription and processing. The active form of U7 snRNP contains the HLB component FLASH (FLICE-associated huge protein), the histone cleavage complex (HCC), and a subset of polyadenylation factors including the endonuclease CPSF73. Histone mRNAs are rapidly degraded when DNA replication is inhibited by a 3' to 5' pathway that requires extensive uridylation of mRNA decay intermediates.
Collapse
Affiliation(s)
- William F Marzluff
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Kaitlin P Koreski
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
30
|
Rieder LE, Koreski KP, Boltz KA, Kuzu G, Urban JA, Bowman SK, Zeidman A, Jordan WT, Tolstorukov MY, Marzluff WF, Duronio RJ, Larschan EN. Histone locus regulation by the Drosophila dosage compensation adaptor protein CLAMP. Genes Dev 2017; 31:1494-1508. [PMID: 28838946 PMCID: PMC5588930 DOI: 10.1101/gad.300855.117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/25/2017] [Indexed: 01/13/2023]
Abstract
Rieder et al. report that conserved GA repeat cis elements within the bidirectional histone3–histone4 promoter direct histone locus body (HLB) formation in Drosophila. In addition, the CLAMP zinc finger protein binds these GA repeat motifs, increases chromatin accessibility, enhances histone gene transcription, and promotes HLB formation. The conserved histone locus body (HLB) assembles prior to zygotic gene activation early during development and concentrates factors into a nuclear domain of coordinated histone gene regulation. Although HLBs form specifically at replication-dependent histone loci, the cis and trans factors that target HLB components to histone genes remained unknown. Here we report that conserved GA repeat cis elements within the bidirectional histone3–histone4 promoter direct HLB formation in Drosophila. In addition, the CLAMP (chromatin-linked adaptor for male-specific lethal [MSL] proteins) zinc finger protein binds these GA repeat motifs, increases chromatin accessibility, enhances histone gene transcription, and promotes HLB formation. We demonstrated previously that CLAMP also promotes the formation of another domain of coordinated gene regulation: the dosage-compensated male X chromosome. Therefore, CLAMP binding to GA repeat motifs promotes the formation of two distinct domains of coordinated gene activation located at different places in the genome.
Collapse
Affiliation(s)
- Leila E Rieder
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Kaitlin P Koreski
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Kara A Boltz
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Guray Kuzu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Jennifer A Urban
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Sarah K Bowman
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Anna Zeidman
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - William T Jordan
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Michael Y Tolstorukov
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - William F Marzluff
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Biology, University of North Carolina at Chapel Hill, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Biology, University of North Carolina at Chapel Hill, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Erica N Larschan
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
31
|
Studies of recombinant TWA1 reveal constitutive dimerization. Biosci Rep 2017; 37:BSR20160401. [PMID: 27920276 PMCID: PMC5234100 DOI: 10.1042/bsr20160401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/25/2016] [Accepted: 12/05/2016] [Indexed: 01/06/2023] Open
Abstract
The mammalian muskelin/RanBP9/C-terminal to LisH (CTLH) complex and the Saccharomyces cerevisiae glucose-induced degradation (GID) complex are large, multi-protein complexes that each contain a RING E3 ubiquitin ligase. The yeast GID complex acts to degrade a key enzyme of gluconeogenesis, fructose 1,6-bisphosphatase, under conditions of abundant fermentable carbon sources. However, the assembly and functions of the mammalian complex remain poorly understood. A striking feature of these complexes is the presence of multiple proteins that contain contiguous lissencephaly-1 homology (LisH), CTLH and C-terminal CT11-RanBP9 (CRA) domains. TWA1/Gid8, the smallest constituent protein of these complexes, consists only of LisH, CTLH and CRA domains and is highly conserved in eukaryotes. Towards better knowledge of the role of TWA1 in these multi-protein complexes, we established a method for bacterial expression and purification of mouse TWA1 that yields tag-free, recombinant TWA1 in quantities suitable for biophysical and biochemical studies. CD spectroscopy of recombinant TWA1 indicated a predominantly α-helical protein. Gel filtration chromatography, size-exclusion chromatography (SEC) with multi-angle light scattering (SEC-MALS) and native PAGE demonstrated a propensity of untagged TWA1 to form stable dimers and, to a lesser extent, higher order oligomers. TWA1 has a single cysteine residue, Cys139, yet the dimeric form was preserved when TWA1 was purified in the presence of the reducing agent tris(2-carboxyethyl)phosphine (TCEP). These findings have implications for understanding the molecular role of TWA1 in the yeast GID complex and related multi-protein E3 ubiquitin ligases identified in other eukaryotes.
Collapse
|
32
|
Duronio RJ, Marzluff WF. Coordinating cell cycle-regulated histone gene expression through assembly and function of the Histone Locus Body. RNA Biol 2017; 14:726-738. [PMID: 28059623 DOI: 10.1080/15476286.2016.1265198] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Metazoan replication-dependent (RD) histone genes encode the only known cellular mRNAs that are not polyadenylated. These mRNAs end instead in a conserved stem-loop, which is formed by an endonucleolytic cleavage of the pre-mRNA. The genes for all 5 histone proteins are clustered in all metazoans and coordinately regulated with high levels of expression during S phase. Production of histone mRNAs occurs in a nuclear body called the Histone Locus Body (HLB), a subdomain of the nucleus defined by a concentration of factors necessary for histone gene transcription and pre-mRNA processing. These factors include the scaffolding protein NPAT, essential for histone gene transcription, and FLASH and U7 snRNP, both essential for histone pre-mRNA processing. Histone gene expression is activated by Cyclin E/Cdk2-mediated phosphorylation of NPAT at the G1-S transition. The concentration of factors within the HLB couples transcription with pre-mRNA processing, enhancing the efficiency of histone mRNA biosynthesis.
Collapse
Affiliation(s)
- Robert J Duronio
- a Department of Biology , University of North Carolina , Chapel Hill , NC , USA.,b Department of Genetics , University of North Carolina , Chapel Hill , NC , USA.,c Integrative Program for Biological and Genome Sciences , University of North Carolina , Chapel Hill , NC , USA.,d Lineberger Comprehensive Cancer Center , University of North Carolina , Chapel Hill , NC , USA
| | - William F Marzluff
- a Department of Biology , University of North Carolina , Chapel Hill , NC , USA.,c Integrative Program for Biological and Genome Sciences , University of North Carolina , Chapel Hill , NC , USA.,d Lineberger Comprehensive Cancer Center , University of North Carolina , Chapel Hill , NC , USA.,e Department of Biochemistry and Biophysics , University of North Carolina , Chapel Hill , NC , USA
| |
Collapse
|
33
|
Tatomer DC, Terzo E, Curry KP, Salzler H, Sabath I, Zapotoczny G, McKay DJ, Dominski Z, Marzluff WF, Duronio RJ. Concentrating pre-mRNA processing factors in the histone locus body facilitates efficient histone mRNA biogenesis. J Cell Biol 2016; 213:557-70. [PMID: 27241916 PMCID: PMC4896052 DOI: 10.1083/jcb.201504043] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 04/27/2016] [Indexed: 11/22/2022] Open
Abstract
The histone locus body (HLB) assembles at replication-dependent histone genes and concentrates factors required for histone messenger RNA (mRNA) biosynthesis. FLASH (Flice-associated huge protein) and U7 small nuclear RNP (snRNP) are HLB components that participate in 3' processing of the nonpolyadenylated histone mRNAs by recruiting the endonuclease CPSF-73 to histone pre-mRNA. Using transgenes to complement a FLASH mutant, we show that distinct domains of FLASH involved in U7 snRNP binding, histone pre-mRNA cleavage, and HLB localization are all required for proper FLASH function in vivo. By genetically manipulating HLB composition using mutations in FLASH, mutations in the HLB assembly factor Mxc, or depletion of the variant histone H2aV, we find that failure to concentrate FLASH and/or U7 snRNP in the HLB impairs histone pre-mRNA processing. This failure results in accumulation of small amounts of polyadenylated histone mRNA and nascent read-through transcripts at the histone locus. Thus, the HLB concentrates FLASH and U7 snRNP, promoting efficient histone mRNA biosynthesis and coupling 3' end processing with transcription termination.
Collapse
Affiliation(s)
- Deirdre C Tatomer
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Esteban Terzo
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Kaitlin P Curry
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Harmony Salzler
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Ivan Sabath
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Grzegorz Zapotoczny
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Daniel J McKay
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599 Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| | - Zbigniew Dominski
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| | - William F Marzluff
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599 Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599 Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | - Robert J Duronio
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599 Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599 Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|