1
|
Chen Y, Wu Y, Tian X, Shao G, Lin Q, Sun A. Golgiphagy: a novel selective autophagy to the fore. Cell Biosci 2024; 14:130. [PMID: 39438975 PMCID: PMC11495120 DOI: 10.1186/s13578-024-01311-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
The Golgi apparatus is the central hub of the cellular endocrine pathway and plays a crucial role in processing, transporting, and sorting proteins and lipids. Simultaneously, it is a highly dynamic organelle susceptible to degradation or fragmentation under various physiological or pathological conditions, potentially contributing to the development of numerous human diseases. Autophagy serves as a vital pathway for eukaryotes to manage intracellular and extracellular stress and maintain homeostasis by targeting damaged or redundant organelles for removal. Recent research has revealed that autophagy mechanisms can specifically degrade Golgi components, known as Golgiphagy. This review summarizes recent findings on Golgiphagy while also addressing unanswered questions regarding its mechanisms and regulation, aiming to advance our understanding of the role of Golgiphagy in human disease.
Collapse
Affiliation(s)
- Yifei Chen
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yihui Wu
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xianyan Tian
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Genbao Shao
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qiong Lin
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China.
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Aiqin Sun
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China.
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
2
|
Welch LG, Muschalik N, Munro S. The FAM114A proteins are adaptors for the recycling of Golgi enzymes. J Cell Sci 2024; 137:jcs262160. [PMID: 39129673 PMCID: PMC11441981 DOI: 10.1242/jcs.262160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024] Open
Abstract
Golgi-resident enzymes remain in place while their substrates flow through from the endoplasmic reticulum to elsewhere in the cell. COPI-coated vesicles bud from the Golgi to recycle Golgi residents to earlier cisternae. Different enzymes are present in different parts of the stack, and one COPI adaptor protein, GOLPH3, acts to recruit enzymes into vesicles in part of the stack. Here, we used proximity biotinylation to identify further components of intra-Golgi vesicles and found FAM114A2, a cytosolic protein. Affinity chromatography with FAM114A2, and its paralogue FAM114A1, showed that they bind to Golgi-resident membrane proteins, with membrane-proximal basic residues in the cytoplasmic tail being sufficient for the interaction. Deletion of both proteins from U2OS cells did not cause substantial defects in Golgi function. However, a Drosophila orthologue of these proteins (CG9590/FAM114A) is also localised to the Golgi and binds directly to COPI. Drosophila mutants lacking FAM114A have defects in glycosylation of glue proteins in the salivary gland. Thus, the FAM114A proteins bind Golgi enzymes and are candidate adaptors to contribute specificity to COPI vesicle recycling in the Golgi stack.
Collapse
Affiliation(s)
- Lawrence G. Welch
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Nadine Muschalik
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
3
|
Cattin-Ortolá J, Kaufman JGG, Gillingham AK, Wagstaff JL, Peak-Chew SY, Stevens TJ, Boulanger J, Owen DJ, Munro S. Cargo selective vesicle tethering: The structural basis for binding of specific cargo proteins by the Golgi tether component TBC1D23. SCIENCE ADVANCES 2024; 10:eadl0608. [PMID: 38552021 DOI: 10.1126/sciadv.adl0608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/26/2024] [Indexed: 04/02/2024]
Abstract
The Golgi-localized golgins golgin-97 and golgin-245 capture transport vesicles arriving from endosomes via the protein TBC1D23. The amino-terminal domain of TBC1D23 binds to the golgins, and the carboxyl-terminal domain of TBC1D23 captures the vesicles, but how it recognizes specific vesicles was unclear. A search for binding partners of the carboxyl-terminal domain unexpectedly revealed direct binding to carboxypeptidase D and syntaxin-16, known cargo proteins of the captured vesicles. Binding is via a threonine-leucine-tyrosine (TLY) sequence present in both proteins next to an acidic cluster. A crystal structure reveals how this acidic TLY motif binds to TBC1D23. An acidic TLY motif is also present in the tails of other endosome-to-Golgi cargo, and these also bind TBC1D23. Structure-guided mutations in the carboxyl-terminal domain that disrupt motif binding in vitro also block vesicle capture in vivo. Thus, TBC1D23 attached to golgin-97 and golgin-245 captures vesicles by a previously undescribed mechanism: the recognition of a motif shared by cargo proteins carried by the vesicle.
Collapse
Affiliation(s)
- Jérôme Cattin-Ortolá
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jonathan G G Kaufman
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Alison K Gillingham
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jane L Wagstaff
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Sew-Yeu Peak-Chew
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Tim J Stevens
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jérôme Boulanger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David J Owen
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
4
|
Iacobescu GL, Corlatescu AD, Popa M, Iacobescu L, Cirstoiu C, Orban C. Exploring the Implications of Golgi Apparatus Dysfunction in Bone Diseases. Cureus 2024; 16:e56982. [PMID: 38665758 PMCID: PMC11045246 DOI: 10.7759/cureus.56982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The Golgi apparatus is an organelle responsible for protein processing, sorting, and transport in cells. Recent research has shed light on its possible role in the pathogenesis of various bone diseases. This review seeks to explore its significance in osteoporosis, osteogenesis imperfecta, and other bone conditions such as dysplasias. Numerous lines of evidence demonstrate that perturbations to Golgi apparatus function can disrupt post-translational protein modification, folding and trafficking functions crucial for bone formation, mineralization, and remodeling. Abnormalities related to glycosylation, protein sorting, or vesicular transport in Golgi have been associated with altered osteoblast and osteoclast function, compromised extracellular matrix composition, as well as disrupted signaling pathways involved with homeostasis of bones. Mutations or dysregulation of Golgi-associated proteins, including golgins and coat protein complex I and coat protein complex II coat components, have also been implicated in bone diseases. Such genetic alterations may disrupt Golgi structure, membrane dynamics, and protein transport, leading to bone phenotype abnormalities. Understanding the links between Golgi apparatus dysfunction and bone diseases could provide novel insights into disease pathogenesis and potential therapeutic targets. Future research should focus on unraveling specific molecular mechanisms underlying Golgi dysfunction associated with bone diseases to develop targeted interventions for restoring normal bone homeostasis while decreasing clinical manifestations associated with these issues.
Collapse
Affiliation(s)
- Georgian L Iacobescu
- Orthopaedics and Traumatology Department, University Emergency Hospital, Bucharest, ROU
- Orthopaedics and Traumatology, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
| | | | - Mihnea Popa
- Orthopaedics and Traumatology, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
- Orthopaedics and Traumatology Department, University Emergency Hospital, Bucharest, ROU
| | - Loredana Iacobescu
- Cardiology, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
- Cardiology Department, University Emergency Hospital, Bucharest, ROU
| | - Catalin Cirstoiu
- Orthopaedics and Traumatology, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
- Orthopaedics and Traumatology Department, University Emergency Hospital, Bucharest, ROU
| | - Carmen Orban
- Anaesthesiology and Critical Care, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
- Anaesthesiology and Critical Care Department, University Emergency Hospital, Bucharest, ROU
| |
Collapse
|
5
|
Abstract
Cargo delivery from one compartment to the next relies on the fusion of vesicles with different cellular organelles in a process that requires the concerted action of tethering factors. Although all tethers act to bridge vesicle membranes to mediate fusion, they form very diverse groups as they differ in composition, and in their overall architecture and size, as well as their protein interactome. However, their conserved function relies on a common design. Recent data on class C Vps complexes indicates that tethers play a significant role in membrane fusion beyond vesicle capturing. Furthermore, these studies provide additional mechanistic insights into membrane fusion events and reveal that tethers should be considered as key players of the fusion machinery. Moreover, the discovery of the novel tether FERARI complex has changed our understanding of cargo transport in the endosomal system as it has been shown to mediate 'kiss-and-run' vesicle-target membrane interactions. In this Cell Science at a Glance and the accompanying poster, we compare the structure of the coiled-coil and the multisubunit CATCHR and class C Vps tether families on the basis of their functional analogy. We discuss the mechanism of membrane fusion, and summarize how tethers capture vesicles, mediate membrane fusion at different cellular compartments and regulate cargo traffic.
Collapse
Affiliation(s)
| | - Anne Spang
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
6
|
Venable ER, Gagnon MF, Pitel BA, Palmer JM, Peterson JF, Baughn LB, Hoppman NL, Greipp PT, Ketterling RP, Patnaik MS, Kelemen K, Xu X. A TRIP11:: FLT3 gene fusion in a patient with myeloid/lymphoid neoplasm with eosinophilia and tyrosine kinase gene fusions: a case report and review of the literature. Cold Spring Harb Mol Case Stud 2023; 9:mcs.a006243. [PMID: 36627146 PMCID: PMC10111796 DOI: 10.1101/mcs.a006243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Myeloid/lymphoid neoplasms with FLT3 gene fusions have recently been included among myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase gene fusions (MLN-TK) in the World Health Organization classification and International Consensus Classification. As this entity remains remarkably rare, its scope and phenotypic features are evolving. In this report, we describe a 33-yr-old male with MLN-TK. Conventional chromosome analysis revealed a t(13;14)(q12;q32). Further analysis with mate-pair sequencing (MPseq) confirmed a TRIP11::FLT3 gene fusion. A diagnosis of MLN-TK was rendered. To the best of our knowledge, we report the third case of MLN-TK with a TRIP11::FLT3 gene fusion. In contrast to previously described cases, our case exhibited distinctly mild clinical features and disease behavior, emphasizing the diverse spectrum of MLN-TK at primary presentation and variability in disease course. MLN-TK with FLT3 gene fusions are a genetically defined entity which may be targetable with tyrosine kinase inhibitors with anti-FLT3 activity. Accordingly, from diagnostic and therapeutic viewpoints, genetic testing for FLT3 rearrangements using fluorescence in situ hybridization (FISH) or sequencing-based assays should be pursued for patients with chronic eosinophilia.
Collapse
Affiliation(s)
- Elise R Venable
- Division of Anatomic Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Marie-France Gagnon
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Beth A Pitel
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Jeanne M Palmer
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Phoenix, Arizona 85054, USA
| | - Jess F Peterson
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Rochester, Minnesota 55905, USA
| | - Linda B Baughn
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Rochester, Minnesota 55905, USA
| | - Nicole L Hoppman
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Patricia T Greipp
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Rochester, Minnesota 55905, USA
| | - Rhett P Ketterling
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Rochester, Minnesota 55905, USA
| | - Mrinal S Patnaik
- Division of Hematology and Oncology, Department of Medicine Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Katalin Kelemen
- Division of Hematopathology, Department of Laboratory Medicine and Pathology; Mayo Clinic, Phoenix, Arizona 85054, USA
| | - Xinjie Xu
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Rochester, Minnesota 55905, USA;
| |
Collapse
|
7
|
Park SY, Muschalik N, Chadwick J, Munro S. In vivo characterization of Drosophila golgins reveals redundancy and plasticity of vesicle capture at the Golgi apparatus. Curr Biol 2022; 32:4549-4564.e6. [PMID: 36103876 PMCID: PMC9849145 DOI: 10.1016/j.cub.2022.08.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/29/2022] [Accepted: 08/18/2022] [Indexed: 01/26/2023]
Abstract
The Golgi is the central sorting station in the secretory pathway and thus the destination of transport vesicles arriving from the endoplasmic reticulum and endosomes and from within the Golgi itself. Cell viability, therefore, requires that the Golgi accurately receives multiple classes of vesicle. One set of proteins proposed to direct vesicle arrival at the Golgi are the golgins, long coiled-coil proteins localized to specific parts of the Golgi stack. In mammalian cells, three of the golgins, TMF, golgin-84, and GMAP-210, can capture intra-Golgi transport vesicles when placed in an ectopic location. However, the individual golgins are not required for cell viability, and mouse knockout mutants only have defects in specific tissues. To further illuminate this system, we examine the Drosophila orthologs of these three intra-Golgi golgins. We show that ectopic forms can capture intra-Golgi transport vesicles, but strikingly, the cargo present in the vesicles captured by each golgin varies between tissues. Loss-of-function mutants show that the golgins are individually dispensable, although the loss of TMF recapitulates the male fertility defects observed in mice. However, the deletion of multiple golgins results in defects in glycosylation and loss of viability. Examining the vesicles captured by a particular golgin when another golgin is missing reveals that the vesicle content in one tissue changes to resemble that of a different tissue. This reveals a plasticity in Golgi organization between tissues, providing an explanation for why the Golgi is sufficiently robust to tolerate the loss of many of the individual components of its membrane traffic machinery.
Collapse
Affiliation(s)
- Sung Yun Park
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Nadine Muschalik
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jessica Chadwick
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
8
|
Tumor protein D54 binds intracellular nanovesicles via an extended amphipathic region. J Biol Chem 2022; 298:102136. [PMID: 35714773 PMCID: PMC9270247 DOI: 10.1016/j.jbc.2022.102136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022] Open
Abstract
Tumor Protein D54 (TPD54) is an abundant cytosolic protein that belongs to the TPD52 family, a family of four proteins (TPD52, 53, 54 and 55) that are overexpressed in several cancer cells. Even though the functions of these proteins remain elusive, recent investigations indicate that TPD54 binds to very small cytosolic vesicles with a diameter of ca. 30 nm, half the size of classical (e.g. COPI and COPII) transport vesicles. Here, we investigated the mechanism of intracellular nanovesicle capture by TPD54. Bioinformatical analysis suggests that TPD54 contains a small coiled-coil followed by four amphipathic helices (AH1-4), which could fold upon binding to lipid membranes. Limited proteolysis, circular dichroism (CD) spectroscopy, tryptophan fluorescence, and cysteine mutagenesis coupled to covalent binding of a membrane sensitive probe showed that binding of TPD54 to small liposomes is accompanied by large structural changes in the amphipathic helix region. Furthermore, site-directed mutagenesis indicated that AH2 and AH3 have a predominant role in TPD54 binding to membranes both in cells and using model liposomes. We found that AH3 has the physicochemical features of an Amphipathic Lipid Packing Sensor (ALPS) motif, which, in other proteins, enables membrane binding in a curvature-dependent manner. Accordingly, we observed that binding of TPD54 to liposomes is very sensitive to membrane curvature and lipid unsaturation. We conclude that TPD54 recognizes nanovesicles through a combination of ALPS-dependent and -independent mechanisms.
Collapse
|
9
|
D’Souza Z, Sumya FT, Khakurel A, Lupashin V. Getting Sugar Coating Right! The Role of the Golgi Trafficking Machinery in Glycosylation. Cells 2021; 10:cells10123275. [PMID: 34943782 PMCID: PMC8699264 DOI: 10.3390/cells10123275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022] Open
Abstract
The Golgi is the central organelle of the secretory pathway and it houses the majority of the glycosylation machinery, which includes glycosylation enzymes and sugar transporters. Correct compartmentalization of the glycosylation machinery is achieved by retrograde vesicular trafficking as the secretory cargo moves forward by cisternal maturation. The vesicular trafficking machinery which includes vesicular coats, small GTPases, tethers and SNAREs, play a major role in coordinating the Golgi trafficking thereby achieving Golgi homeostasis. Glycosylation is a template-independent process, so its fidelity heavily relies on appropriate localization of the glycosylation machinery and Golgi homeostasis. Mutations in the glycosylation enzymes, sugar transporters, Golgi ion channels and several vesicle tethering factors cause congenital disorders of glycosylation (CDG) which encompass a group of multisystem disorders with varying severities. Here, we focus on the Golgi vesicle tethering and fusion machinery, namely, multisubunit tethering complexes and SNAREs and their role in Golgi trafficking and glycosylation. This review is a comprehensive summary of all the identified CDG causing mutations of the Golgi trafficking machinery in humans.
Collapse
|
10
|
Intrinsically disordered proteins and membranes: a marriage of convenience for cell signalling? Biochem Soc Trans 2021; 48:2669-2689. [PMID: 33155649 PMCID: PMC7752083 DOI: 10.1042/bst20200467] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
The structure-function paradigm has guided investigations into the molecules involved in cellular signalling for decades. The peripheries of this paradigm, however, start to unravel when considering the co-operation between proteins and the membrane in signalling processes. Intrinsically disordered regions hold distinct advantages over folded domains in terms of their binding promiscuity, sensitivity to their particular environment and their ease of modulation through post-translational modifications. Low sequence complexity and bias towards charged residues are also favourable for the multivalent electrostatic interactions that occur at the surfaces of lipid bilayers. This review looks at the principles behind the successful marriage between protein disorder and membranes in addition to the role of this partnership in modifying and regulating signalling in cellular processes. The HVR (hypervariable region) of small GTPases is highlighted as a well-studied example of the nuanced role a short intrinsically disordered region can play in the fine-tuning of signalling pathways.
Collapse
|
11
|
Yamaguchi H, Meyer MD, He L, Senavirathna L, Pan S, Komatsu Y. The molecular complex of ciliary and golgin protein is crucial for skull development. Development 2021; 148:270770. [PMID: 34128978 DOI: 10.1242/dev.199559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/27/2021] [Indexed: 01/13/2023]
Abstract
Intramembranous ossification, which consists of direct conversion of mesenchymal cells to osteoblasts, is a characteristic process in skull development. One crucial role of these osteoblasts is to secrete collagen-containing bone matrix. However, it remains unclear how the dynamics of collagen trafficking is regulated during skull development. Here, we reveal the regulatory mechanisms of ciliary and golgin proteins required for intramembranous ossification. During normal skull formation, osteoblasts residing on the osteogenic front actively secreted collagen. Mass spectrometry and proteomic analysis determined endogenous binding between ciliary protein IFT20 and golgin protein GMAP210 in these osteoblasts. As seen in Ift20 mutant mice, disruption of neural crest-specific GMAP210 in mice caused osteopenia-like phenotypes due to dysfunctional collagen trafficking. Mice lacking both IFT20 and GMAP210 displayed more severe skull defects compared with either IFT20 or GMAP210 mutants. These results demonstrate that the molecular complex of IFT20 and GMAP210 is essential for the intramembranous ossification during skull development.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Matthew D Meyer
- Shared Equipment Authority, Rice University, Houston, TX 77005, USA
| | - Li He
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lakmini Senavirathna
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sheng Pan
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yoshihiro Komatsu
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Graduate Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
12
|
Upadhyai P, Radhakrishnan P, Guleria VS, Kausthubham N, Nayak SS, Superti-Furga A, Girisha KM. Biallelic deep intronic variant c.5457+81T>A in TRIP11 causes loss of function and results in achondrogenesis 1A. Hum Mutat 2021; 42:1005-1014. [PMID: 34057271 DOI: 10.1002/humu.24235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 11/09/2022]
Abstract
Biallelic loss of function variants in TRIP11 encoding for the Golgi microtubule-associated protein 210 (GMAP-210) causes the lethal chondrodysplasia achondrogenesis type 1A (ACG1A). Loss of TRIP11 activity has been shown to impair Golgi structure, vesicular transport, and results in loss of IFT20 anchorage to the Golgi that is vital for ciliary trafficking and ciliogenesis. Here, we report four fetuses, two each from two families, who were ascertained antenatally with ACG1A. Affected fetuses in both families are homozygous for the deep intronic TRIP11 variant, c.5457+81T>A, which was found in a shared region of homozygosity. This variant was found to cause aberrant transcript splicing and the retention of 77 base pairs of intron 18. The TRIP11 messenger RNA and protein levels were drastically reduced in fibroblast cells derived from one of the affected fetuses. Using immunofluorescence we also detected highly compacted Golgi apparatus in affected fibroblasts. Further, we observed a significant reduction in the frequency of ciliated cells and in the length of primary cilia in subject-derived cell lines, not reported so far in patient cells with TRIP11 null or hypomorphic variants. Our findings illustrate how pathogenic variants in intronic regions of TRIP11 can impact transcript splicing, expression, and activity, resulting in ACG1A.
Collapse
Affiliation(s)
- Priyanka Upadhyai
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Periyasamy Radhakrishnan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Vishal S Guleria
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Neethukrishna Kausthubham
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Shalini S Nayak
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
13
|
Costantini A, Valta H, Suomi AM, Mäkitie O, Taylan F. Oligogenic Inheritance of Monoallelic TRIP11, FKBP10, NEK1, TBX5, and NBAS Variants Leading to a Phenotype Similar to Odontochondrodysplasia. Front Genet 2021; 12:680838. [PMID: 34149817 PMCID: PMC8206634 DOI: 10.3389/fgene.2021.680838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022] Open
Abstract
Skeletal dysplasias are often well characterized, and only a minority of the cases remain unsolved after a thorough analysis of pathogenic variants in over 400 genes that are presently known to cause monogenic skeletal diseases. Here, we describe an 11-year-old Finnish girl, born to unrelated healthy parents, who had severe short stature and a phenotype similar to odontochondrodysplasia (ODCD), a monogenic skeletal dysplasia caused by biallelic TRIP11 variants. The family had previously lost a fetus due to severe skeletal dysplasia. Exome sequencing and bioinformatic analysis revealed an oligogenic inheritance of a heterozygous nonsense mutation in TRIP11 and four likely pathogenic missense variants in FKBP10, TBX5, NEK1, and NBAS in the index patient. Interestingly, all these genes except TBX5 are known to cause skeletal dysplasia in an autosomal recessive manner. In contrast, the fetus was found homozygous for the TRIP11 mutation, and achondrogenesis type IA diagnosis was, thus, molecularly confirmed, indicating two different skeletal dysplasia forms in the family. To the best of our knowledge, this is the first report of an oligogenic inheritance model of a skeletal dysplasia in a Finnish family. Our findings may have implications for genetic counseling and for understanding the yet unsolved cases of rare skeletal dysplasias.
Collapse
Affiliation(s)
- Alice Costantini
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Helena Valta
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anne-Maarit Suomi
- Department of Pediatrics, Seinäjoki Central Hospital, Seinäjoki, Finland
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Folkhälsan Institute of Genetics, and Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Saez JJ, Dogniaux S, Shafaq-Zadah M, Johannes L, Hivroz C, Zucchetti AE. Retrograde and Anterograde Transport of Lat-Vesicles during the Immunological Synapse Formation: Defining the Finely-Tuned Mechanism. Cells 2021; 10:cells10020359. [PMID: 33572370 PMCID: PMC7916135 DOI: 10.3390/cells10020359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
LAT is an important player of the signaling cascade induced by TCR activation. This adapter molecule is present at the plasma membrane of T lymphocytes and more abundantly in intracellular compartments. Upon T cell activation the intracellular pool of LAT is recruited to the immune synapse (IS). We previously described two pathways controlling LAT trafficking: retrograde transport from endosomes to the TGN, and anterograde traffic from the Golgi to the IS. We address the specific role of four proteins, the GTPase Rab6, the t-SNARE syntaxin-16, the v-SNARE VAMP7 and the golgin GMAP210, in each pathway. Using different methods (endocytosis and Golgi trap assays, confocal and TIRF microscopy, TCR-signalosome pull down) we show that syntaxin-16 is regulating the retrograde transport of LAT whereas VAMP7 is regulating the anterograde transport. Moreover, GMAP210 and Rab6, known to contribute to both pathways, are in our cellular context, specifically and respectively, involved in anterograde and retrograde transport of LAT. Altogether, our data describe how retrograde and anterograde pathways coordinate LAT enrichment at the IS and point to the Golgi as a central hub for the polarized recruitment of LAT to the IS. The role that this finely-tuned transport of signaling molecules plays in T-cell activation is discussed.
Collapse
Affiliation(s)
- Juan José Saez
- Institut Curie, Université PSL, U932 INSERM, Integrative Analysis of T Cell Activation Team, 26 Rue d’Ulm, 75248 Paris CEDEX 05, France; (J.J.S.); (S.D.)
| | - Stephanie Dogniaux
- Institut Curie, Université PSL, U932 INSERM, Integrative Analysis of T Cell Activation Team, 26 Rue d’Ulm, 75248 Paris CEDEX 05, France; (J.J.S.); (S.D.)
| | - Massiullah Shafaq-Zadah
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, 75005 Paris, France; (M.S.-Z.); (L.J.)
| | - Ludger Johannes
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, 75005 Paris, France; (M.S.-Z.); (L.J.)
| | - Claire Hivroz
- Institut Curie, Université PSL, U932 INSERM, Integrative Analysis of T Cell Activation Team, 26 Rue d’Ulm, 75248 Paris CEDEX 05, France; (J.J.S.); (S.D.)
- Correspondence: (C.H.); (A.E.Z.); Tel.: +33-156-246-438 (A.E.Z.)
| | - Andrés Ernesto Zucchetti
- Institut Curie, Université PSL, U932 INSERM, Integrative Analysis of T Cell Activation Team, 26 Rue d’Ulm, 75248 Paris CEDEX 05, France; (J.J.S.); (S.D.)
- Correspondence: (C.H.); (A.E.Z.); Tel.: +33-156-246-438 (A.E.Z.)
| |
Collapse
|
15
|
Liu J, Huang Y, Li T, Jiang Z, Zeng L, Hu Z. The role of the Golgi apparatus in disease (Review). Int J Mol Med 2021; 47:38. [PMID: 33537825 PMCID: PMC7891830 DOI: 10.3892/ijmm.2021.4871] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
The Golgi apparatus is known to underpin many important cellular homeostatic functions, including trafficking, sorting and modifications of proteins or lipids. These functions are dysregulated in neurodegenerative diseases, cancer, infectious diseases and cardiovascular diseases, and the number of disease-related genes associated with Golgi apparatus is on the increase. Recently, many studies have suggested that the mutations in the genes encoding Golgi resident proteins can trigger the occurrence of diseases. By summarizing the pathogenesis of these genetic diseases, it was found that most of these diseases have defects in membrane trafficking. Such defects typically result in mislocalization of proteins, impaired glycosylation of proteins, and the accumulation of undegraded proteins. In the present review, we aim to understand the patterns of mutations in the genes encoding Golgi resident proteins and decipher the interplay between Golgi resident proteins and membrane trafficking pathway in cells. Furthermore, the detection of Golgi resident protein in human serum samples has the potential to be used as a diagnostic tool for diseases, and its central role in membrane trafficking pathways provides possible targets for disease therapy. Thus, we also introduced the clinical value of Golgi apparatus in the present review.
Collapse
Affiliation(s)
- Jianyang Liu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yan Huang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Ting Li
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zheng Jiang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
16
|
Linders PTA, Peters E, ter Beest M, Lefeber DJ, van den Bogaart G. Sugary Logistics Gone Wrong: Membrane Trafficking and Congenital Disorders of Glycosylation. Int J Mol Sci 2020; 21:E4654. [PMID: 32629928 PMCID: PMC7369703 DOI: 10.3390/ijms21134654] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
Glycosylation is an important post-translational modification for both intracellular and secreted proteins. For glycosylation to occur, cargo must be transported after synthesis through the different compartments of the Golgi apparatus where distinct monosaccharides are sequentially bound and trimmed, resulting in increasingly complex branched glycan structures. Of utmost importance for this process is the intraorganellar environment of the Golgi. Each Golgi compartment has a distinct pH, which is maintained by the vacuolar H+-ATPase (V-ATPase). Moreover, tethering factors such as Golgins and the conserved oligomeric Golgi (COG) complex, in concert with coatomer (COPI) and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion, efficiently deliver glycosylation enzymes to the right Golgi compartment. Together, these factors maintain intra-Golgi trafficking of proteins involved in glycosylation and thereby enable proper glycosylation. However, pathogenic mutations in these factors can cause defective glycosylation and lead to diseases with a wide variety of symptoms such as liver dysfunction and skin and bone disorders. Collectively, this group of disorders is known as congenital disorders of glycosylation (CDG). Recent technological advances have enabled the robust identification of novel CDGs related to membrane trafficking components. In this review, we highlight differences and similarities between membrane trafficking-related CDGs.
Collapse
Affiliation(s)
- Peter T. A. Linders
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (P.T.A.L.); (E.P.); (M.t.B.)
| | - Ella Peters
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (P.T.A.L.); (E.P.); (M.t.B.)
| | - Martin ter Beest
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (P.T.A.L.); (E.P.); (M.t.B.)
| | - Dirk J. Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (P.T.A.L.); (E.P.); (M.t.B.)
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
17
|
Liu G, Fu T, Han Y, Hu S, Zhang X, Zheng M, Hao P, Pan L, Kang J. Probing Protein–Protein Interactions with Label-Free Mass Spectrometry Quantification in Combination with Affinity Purification by Spin-Tip Affinity Columns. Anal Chem 2020; 92:3913-3922. [DOI: 10.1021/acs.analchem.9b05355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Guizhen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Haike Road 100, Shanghai 200120, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Fu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ying Han
- School of Life Science and Technology, ShanghaiTech University, Haike Road 100, Shanghai 200120, China
| | - Shichen Hu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xuepei Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Mengmeng Zheng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, Haike Road 100, Shanghai 200120, China
| | - Lifeng Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingwu Kang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Haike Road 100, Shanghai 200120, China
| |
Collapse
|
18
|
Fakhree MAA, Blum C, Claessens MMAE. Shaping membranes with disordered proteins. Arch Biochem Biophys 2019; 677:108163. [PMID: 31672499 DOI: 10.1016/j.abb.2019.108163] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022]
Abstract
Membrane proteins control and shape membrane trafficking processes. The role of protein structure in shaping cellular membranes is well established. However, a significant fraction of membrane proteins is disordered or contains long disordered regions. It becomes more and more clear that these disordered regions contribute to the function of membrane proteins. While the fold of a structured protein is essential for its function, being disordered seems to be a crucial feature of membrane bound intrinsically disordered proteins and protein regions. Here we outline the motifs that encode function in disordered proteins and discuss how these functional motifs enable disordered proteins to modulate membrane properties. These changes in membrane properties facilitate and regulate membrane trafficking processes which are highly abundant in eukaryotes.
Collapse
Affiliation(s)
| | - Christian Blum
- Nanobiophysics Group, University of Twente, 7522, NB, Enschede, the Netherlands
| | | |
Collapse
|
19
|
Zucchetti AE, Bataille L, Carpier JM, Dogniaux S, San Roman-Jouve M, Maurin M, Stuck MW, Rios RM, Baldari CT, Pazour GJ, Hivroz C. Tethering of vesicles to the Golgi by GMAP210 controls LAT delivery to the immune synapse. Nat Commun 2019; 10:2864. [PMID: 31253807 PMCID: PMC6599081 DOI: 10.1038/s41467-019-10891-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/08/2019] [Indexed: 01/06/2023] Open
Abstract
The T cell immune synapse is a site of intense vesicular trafficking. Here we show that the golgin GMAP210, known to capture vesicles and organize membrane traffic at the Golgi, is involved in the vesicular transport of LAT to the immune synapse. Upon activation, more GMAP210 interact with LAT-containing vesicles and go together with LAT to the immune synapse. Regulating LAT recruitment and LAT-dependent signaling, GMAP210 controls T cell activation. Using a rerouting and capture assay, we show that GMAP210 captures VAMP7-decorated vesicles. Overexpressing different domains of GMAP210, we also show that GMAP210 allows their specific delivery to the immune synapse by tethering LAT-vesicles to the Golgi. Finally, in a model of ectopic expression of LAT in ciliated cells, we show that GMAP210 tethering activity controls the delivery of LAT to the cilium. Hence, our results reveal a function for the golgin GMAP210 conveying specific vesicles to the immune synapse.
Collapse
Affiliation(s)
- Andres Ernesto Zucchetti
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Laurence Bataille
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Jean-Marie Carpier
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France.,Immunobiology Department, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Stéphanie Dogniaux
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Mabel San Roman-Jouve
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Mathieu Maurin
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Michael W Stuck
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rosa M Rios
- Cell Dynamics and Signaling Department, CABIMER-CSIC/US/UPO, 41092, Seville, Spain
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Claire Hivroz
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France.
| |
Collapse
|
20
|
Lowe M. The Physiological Functions of the Golgin Vesicle Tethering Proteins. Front Cell Dev Biol 2019; 7:94. [PMID: 31316978 PMCID: PMC6611411 DOI: 10.3389/fcell.2019.00094] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/16/2019] [Indexed: 01/02/2023] Open
Abstract
The golgins comprise a family of vesicle tethering proteins that act in a selective manner to tether transport vesicles at the Golgi apparatus. Tethering is followed by membrane fusion to complete the delivery of vesicle-bound cargo to the Golgi. Different golgins are localized to different regions of the Golgi, and their ability to selectively tether transport vesicles is important for the specificity of vesicle traffic in the secretory pathway. In recent years, our mechanistic understanding of golgin-mediated tethering has greatly improved. We are also beginning to appreciate how the loss of golgin function can impact upon physiological processes through the use of animal models and the study of human disease. These approaches have revealed that loss of a golgin causes tissue-restricted phenotypes, which can vary in severity and the cell types affected. In many cases, it is possible to attribute these phenotypes to a defect in vesicular traffic, although why certain tissues are sensitive to loss of a particular golgin is still, in most cases, unclear. Here, I will summarize recent progress in our understanding of golgins, focusing on the physiological roles of these proteins, as determined from animal models and the study of disease in humans. I will describe what these in vivo analyses have taught us, as well as highlight less understood aspects, and areas for future investigations.
Collapse
Affiliation(s)
- Martin Lowe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
21
|
Gillingham AK, Munro S. Transport carrier tethering - how vesicles are captured by organelles. Curr Opin Cell Biol 2019; 59:140-146. [PMID: 31154044 DOI: 10.1016/j.ceb.2019.04.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022]
Abstract
All cells contain numerous membrane-bound organelles that carry out specific functions. These compartments do not, however, act in isolation. Some are in direct contact via membrane contact sites, while others exchange material via specific vesicles or tubular carriers laden with cargo. The term tethering in the context of this review is used to describe the primary recognition and docking of transport carriers with acceptor organelles that occurs before SNARE engagement and membrane fusion. However, it is important to note that other tethering events occur, for example, between organelles in direct contact, which do not lead to fusion.
Collapse
Affiliation(s)
- Alison K Gillingham
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
22
|
Homma Y, Kinoshita R, Kuchitsu Y, Wawro PS, Marubashi S, Oguchi ME, Ishida M, Fujita N, Fukuda M. Comprehensive knockout analysis of the Rab family GTPases in epithelial cells. J Cell Biol 2019; 218:2035-2050. [PMID: 31072826 PMCID: PMC6548125 DOI: 10.1083/jcb.201810134] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/26/2019] [Accepted: 04/12/2019] [Indexed: 12/23/2022] Open
Abstract
Rab small GTPases (∼60 genes in mammals) are the master regulators of intracellular membrane trafficking. Homma et al. establish a comprehensive collection of knockout epithelial cell lines for all the mammalian Rabs, revealing that Rab6 is required for basement membrane formation and soluble cargo secretion. The Rab family of small GTPases comprises the largest number of proteins (∼60 in mammals) among the regulators of intracellular membrane trafficking, but the precise function of many Rabs and the functional redundancy and diversity of Rabs remain largely unknown. Here, we generated a comprehensive collection of knockout (KO) MDCK cells for the entire Rab family. We knocked out closely related paralogs simultaneously (Rab subfamily knockout) to circumvent functional compensation and found that Rab1A/B and Rab5A/B/C are critical for cell survival and/or growth. In addition, we demonstrated that Rab6-KO cells lack the basement membrane, likely because of the inability to secrete extracellular matrix components. Further analysis revealed the general requirement of Rab6 for secretion of soluble cargos. Transport of transmembrane cargos to the plasma membrane was also significantly delayed in Rab6-KO cells, but the phenotype was relatively mild. Our Rab-KO collection, which shares the same background, would be a valuable resource for analyzing a variety of membrane trafficking events.
Collapse
Affiliation(s)
- Yuta Homma
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Riko Kinoshita
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Yoshihiko Kuchitsu
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Paulina S Wawro
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Soujiro Marubashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Mai E Oguchi
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Morié Ishida
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Naonobu Fujita
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| |
Collapse
|
23
|
Ding X, Jiang X, Tian R, Zhao P, Li L, Wang X, Chen S, Zhu Y, Mei M, Bao S, Liu W, Tang Z, Sun Q. RAB2 regulates the formation of autophagosome and autolysosome in mammalian cells. Autophagy 2019; 15:1774-1786. [PMID: 30957628 PMCID: PMC6735470 DOI: 10.1080/15548627.2019.1596478] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Multiple sources contribute membrane and protein machineries to construct functional macroautophagic/autophagic structures. However, the underlying molecular mechanisms remain elusive. Here, we show that RAB2 connects the Golgi network to autophagy pathway by delivering membrane and by sequentially engaging distinct autophagy machineries. In unstressed cells, RAB2 resides primarily in the Golgi apparatus, as evidenced by its interaction and colocalization with GOLGA2/GM130. Importantly, autophagy stimuli dissociate RAB2 from GOLGA2 to interact with ULK1 complex, which facilitates the recruitment of ULK1 complex to form phagophores. Intriguingly, RAB2 appears to modulate ULK1 kinase activity to propagate signals for autophagosome formation. Subsequently, RAB2 switches to interact with autophagosomal RUBCNL/PACER and STX17 to further specify the recruitment of HOPS complex for autolysosome formation. Together, our study reveals a multivalent pathway in bulk autophagy regulation, and provides mechanistic insights into how the Golgi apparatus contributes to the formation of different autophagic structures. Abbreviations: ACTB: actin beta; ATG9: autophagy related 9A; ATG14: autophagy related 14; ATG16L1: autophagy related 16 like 1; BCAP31: B cell receptor associated protein 31; BECN1: beclin 1; Ctrl: control; CQ: chloroquine; CTSD: cathepsin D; DMSO: dimethyl sulfoxide; EBSS: Earle’s balanced salt solution; EEA1: early endosome antigen 1; GDI: guanine nucleotide dissociation inhibitor; GFP: green fluorescent protein; GOLGA2: golgin A2; HOPS: homotypic fusion and protein sorting complex; IP: immunoprecipitation; KD: knockdown; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LC3: microtubule-associated protein 1 light chain 3; OE: overexpression; PtdIns3K: class III phosphatidylinositol 3-kinase; SQSTM1/p62: sequestosome 1; RAB2: RAB2A, member RAS oncogene family; RAB7: RAB7A, member RAS oncogene family; RAB11: RAB11A, member RAS oncogene family; RUBCNL/PACER: rubicon like autophagy enhancer; STX17: syntaxin 17; TBC1D14: TBC1 domain family member 14; TFRC: transferrin receptor; TGOLN2: trans-golgi network protein 2; TUBB: tubulin beta class I; ULK1: unc-51 like autophagy activating kinase 1; VPS41: VPS41, HOPS complex subunit; WB: western blot; WT: wild type; YPT1: GTP-binding protein YPT1.
Collapse
Affiliation(s)
- Xianming Ding
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - Xiao Jiang
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - Rui Tian
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - Pengwei Zhao
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - Lin Li
- Proteomics Center, National Institute of Biological Sciences , Beijing , China
| | - Xinyi Wang
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - She Chen
- Proteomics Center, National Institute of Biological Sciences , Beijing , China
| | - Yushan Zhu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University , Tianjin , China
| | - Mei Mei
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing , China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing , China
| | - Wei Liu
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - Zaiming Tang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Qiming Sun
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| |
Collapse
|
24
|
Wehrle A, Witkos TM, Unger S, Schneider J, Follit JA, Hermann J, Welting T, Fano V, Hietala M, Vatanavicharn N, Schoner K, Spranger J, Schmidts M, Zabel B, Pazour GJ, Bloch-Zupan A, Nishimura G, Superti-Furga A, Lowe M, Lausch E. Hypomorphic mutations of TRIP11 cause odontochondrodysplasia. JCI Insight 2019; 4:e124701. [PMID: 30728324 PMCID: PMC6413787 DOI: 10.1172/jci.insight.124701] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/20/2018] [Indexed: 12/24/2022] Open
Abstract
Odontochondrodysplasia (ODCD) is an unresolved genetic disorder of skeletal and dental development. Here, we show that ODCD is caused by hypomorphic TRIP11 mutations, and we identify ODCD as the nonlethal counterpart to achondrogenesis 1A (ACG1A), the known null phenotype in humans. TRIP11 encodes Golgi-associated microtubule-binding protein 210 (GMAP-210), an essential tether protein of the Golgi apparatus that physically interacts with intraflagellar transport 20 (IFT20), a component of the ciliary intraflagellar transport complex B. This association and extraskeletal disease manifestations in ODCD point to a cilium-dependent pathogenesis. However, our functional studies in patient-derived primary cells clearly support a Golgi-based disease mechanism. In spite of reduced abundance, residual GMAP variants maintain partial Golgi integrity, normal global protein secretion, and subcellular distribution of IFT20 in ODCD. These functions are lost when GMAP-210 is completely abrogated in ACG1A. However, a similar defect in chondrocyte maturation is observed in both disorders, which produces a cellular achondrogenesis phenotype of different severity, ensuing from aberrant glycan processing and impaired extracellular matrix proteoglycan secretion by the Golgi apparatus.
Collapse
Affiliation(s)
- Anika Wehrle
- Department of Pediatrics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tomasz M Witkos
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Sheila Unger
- Division of Genetic Medicine, University of Lausanne, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Judith Schneider
- Department of Pediatrics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - John A Follit
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Johannes Hermann
- Department of Pediatrics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tim Welting
- Laboratory for Experimental Orthopedics, Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Virginia Fano
- Hospital de Pediatria JP Garrahan, Buenos Aires, Argentina
| | - Marja Hietala
- Medical Biochemistry and Genetics, University of Turku, Turku, Finland
| | | | - Katharina Schoner
- Institute of Pathology, Philipps-University Marburg, Marburg, Germany
| | - Jürgen Spranger
- Department of Pediatrics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam Schmidts
- Department of Pediatrics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernhard Zabel
- Department of Pediatrics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Agnes Bloch-Zupan
- Centre de Référence des Manifestations Odontologiques des Maladies Rares, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpitaux Universitaires de Strasbourg (HUS), Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Institute of Advanced Studies, USIAS, Strasbourg, France
- HUS, Pôle de Médecine et Chirurgie Bucco-dentaires Hôpital Civil, Centre de référence des maladies rares orales et dentaires, O-Rares, Filière Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CERBM, INSERM U1258, CNRS- UMR7104, Illkirch, France
| | - Gen Nishimura
- Department of Radiology and Medical Imaging, Tokyo Metropolitan Kiyose Children's Hospital, Kiyose, Japan
| | - Andrea Superti-Furga
- Division of Genetic Medicine, University of Lausanne, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Martin Lowe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Ekkehart Lausch
- Department of Pediatrics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
Abstract
The role of the Golgi apparatus in carcinogenesis still remains unclear. A number of structural and functional cis-, medial-, and trans-Golgi proteins as well as a complexity of metabolic pathways which they mediate may indicate a central role of the Golgi apparatus in the development and progression of cancer. Pleiotropy of cellular function of the Golgi apparatus makes it a "metabolic heart" or a relay station of a cell, which combines multiple signaling pathways involved in carcinogenesis. Therefore, any damage to or structural abnormality of the Golgi apparatus, causing its fragmentation and/or biochemical dysregulation, results in an up- or downregulation of signaling pathways and may in turn promote tumor progression, as well as local nodal and distant metastases. Three alternative or parallel models of spatial and functional Golgi organization within tumor cells were proposed: (1) compacted Golgi structure, (2) normal Golgi structure with its increased activity, and (3) the Golgi fragmentation with ministacks formation. Regardless of the assumed model, the increased activity of oncogenesis initiators and promoters with inhibition of suppressor proteins results in an increased cell motility and migration, increased angiogenesis, significantly activated trafficking kinetics, proliferation, EMT induction, decreased susceptibility to apoptosis-inducing factors, and modulating immune response to tumor cell antigens. Eventually, this will lead to the increased metastatic potential of cancer cells and an increased risk of lymph node and distant metastases. This chapter provided an overview of the current state of knowledge of selected Golgi proteins, their role in cytophysiology as well as potential involvement in tumorigenesis.
Collapse
|
26
|
Abstract
The Golgi apparatus is a central sorting station in the cell. It receives newly synthesized molecules from the endoplasmic reticulum and directs them to different subcellular destinations, such as the plasma membrane or the endocytic pathway. Importantly, in the last few years, it has emerged that the maintenance of Golgi structure is connected to the proper regulation of membrane trafficking. Rab proteins are small GTPases that are considered to be the master regulators of the intracellular membrane trafficking. Several of the over 60 human Rabs are involved in the regulation of transport pathways at the Golgi as well as in the maintenance of its architecture. This chapter will summarize the different roles of Rab GTPases at the Golgi, both as regulators of membrane transport, scaffold, and tethering proteins and in preserving the structure and function of this organelle.
Collapse
|
27
|
Wehrle A, Witkos TM, Schneider JC, Hoppmann A, Behringer S, Köttgen A, Elting M, Spranger J, Lowe M, Lausch E. A common pathomechanism in GMAP-210- and LBR-related diseases. JCI Insight 2018; 3:121150. [PMID: 30518689 PMCID: PMC6328090 DOI: 10.1172/jci.insight.121150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022] Open
Abstract
Biallelic loss-of-function mutations in TRIP11, encoding the golgin GMAP-210, cause the lethal human chondrodysplasia achondrogenesis 1A (ACG1A). We now find that a homozygous splice-site mutation of the lamin B receptor (LBR) gene results in the same phenotype. Intrigued by the genetic heterogeneity, we compared GMAP-210- and LBR-deficient primary cells to unravel how particular mutations in LBR cause a phenocopy of ACG1A. We could exclude a regulatory interaction between LBR and GMAP-210 in patients' cells. However, we discovered a common disruption of Golgi apparatus architecture that was accompanied by decreased secretory trafficking in both cases. Deficiency of Golgi-dependent glycan processing indicated a similar downstream effect of the disease-causing mutations upon Golgi function. Unexpectedly, our results thus point to a common pathogenic mechanism in GMAP-210- and LBR-related diseases attributable to defective secretory trafficking at the Golgi apparatus.
Collapse
Affiliation(s)
- Anika Wehrle
- Department of Pediatrics, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tomasz M. Witkos
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Judith C. Schneider
- Department of Pediatrics, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anselm Hoppmann
- Department of Pediatrics, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Genetic Epidemiology, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sidney Behringer
- Department of Pediatrics, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mariet Elting
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, Netherlands
| | - Jürgen Spranger
- Department of Pediatrics, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Lowe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Ekkehart Lausch
- Department of Pediatrics, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
28
|
Abstract
GTP-ases of the Rab family (about 70 in human) are key regulators of intracellular transport and membrane trafficking in eukaryotic cells. Remarkably, almost one third associate with membranes of the Golgi complex and TGN (trans-Golgi network). Through interactions with a variety of effectors that include molecular motors, tethering complexes, scaffolding proteins and lipid kinases, they play an important role in maintaining Golgi architecture.
Collapse
Affiliation(s)
- Bruno Goud
- a Institut Curie, PSL Research University, CNRS, UMR 144, Molecular Mechanisms of Intracellular Transport , Paris , France
| | - Shijie Liu
- b Department of Physiology and Biophysics , University of Arkansas for Medical Sciences , Little Rock , USA
| | - Brian Storrie
- b Department of Physiology and Biophysics , University of Arkansas for Medical Sciences , Little Rock , USA
| |
Collapse
|
29
|
At the ends of their tethers! How coiled-coil proteins capture vesicles at the Golgi. Biochem Soc Trans 2017; 46:43-50. [PMID: 29273618 DOI: 10.1042/bst20170188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 12/20/2022]
Abstract
Cells face a complex problem: how to transfer lipids and proteins between membrane compartments in an organized, timely fashion. Indeed, many thousands of membrane and secretory proteins must traffic out of the ER to different organelles to function, while others are retrieved from the plasma membrane having fulfilled their roles [Nat. Rev. Mol. Cell Biol. (2013) 14, 382-392]. This process is highly dynamic and failure to target cargo accurately leads to catastrophic consequences for the cell, as is clear from the numerous human diseases associated with defects in membrane trafficking [Int. J. Mol. Sci. (2013) 14, 18670-18681; Traffic (2000) 1, 836-851]. How then does the cell organize this enormous transfer of material in its crowded internal environment? And how specifically do vesicles carrying proteins and lipids recognize and fuse with the correct compartment?
Collapse
|
30
|
Witkos TM, Lowe M. Recognition and tethering of transport vesicles at the Golgi apparatus. Curr Opin Cell Biol 2017; 47:16-23. [DOI: 10.1016/j.ceb.2017.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/02/2017] [Accepted: 02/08/2017] [Indexed: 12/15/2022]
|
31
|
Wong M, Gillingham AK, Munro S. The golgin coiled-coil proteins capture different types of transport carriers via distinct N-terminal motifs. BMC Biol 2017; 15:3. [PMID: 28122620 PMCID: PMC5267433 DOI: 10.1186/s12915-016-0345-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/21/2016] [Indexed: 12/13/2022] Open
Abstract
Background The internal organization of cells depends on mechanisms to ensure that transport carriers, such as vesicles, fuse only with the correct destination organelle. Several types of proteins have been proposed to confer specificity to this process, and we have recently shown that a set of coiled-coil proteins on the Golgi, called golgins, are able to capture specific classes of carriers when relocated to an ectopic location. Results Mapping of six different golgins reveals that, in each case, a short 20–50 residue region is necessary and sufficient to capture specific carriers. In all six of GMAP-210, golgin-84, TMF, golgin-97, golgin-245, and GCC88, this region is located at the extreme N-terminus of the protein. The vesicle-capturing regions of GMAP-210, golgin-84, and TMF capture intra-Golgi vesicles and share some sequence features, suggesting that they act in a related, if distinct, manner. In the case of GMAP-210, this shared feature is in addition to a previously characterized “amphipathic lipid-packing sensor” motif that can capture highly curved membranes, with the two motifs being apparently involved in capturing distinct types of vesicles. Of the three GRIP domain golgins that capture endosome-to-Golgi carriers, golgin-97 and golgin-245 share a closely related capture motif, whereas that in GCC88 is distinct, suggesting that it works by a different mechanism and raising the possibility that the three golgins capture different classes of endosome-derived carriers that share many cargos but have distinct features for recognition at the Golgi. Conclusions For six different golgins, the capture of carriers is mediated by a short region at the N-terminus of the protein. There appear to be at least four different types of motif, consistent with specific golgins capturing specific classes of carrier and implying the existence of distinct receptors present on each of these different carrier classes.
Collapse
Affiliation(s)
- Mie Wong
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Alison K Gillingham
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
32
|
Loss of the golgin GM130 causes Golgi disruption, Purkinje neuron loss, and ataxia in mice. Proc Natl Acad Sci U S A 2016; 114:346-351. [PMID: 28028212 DOI: 10.1073/pnas.1608576114] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Golgi apparatus lies at the heart of the secretory pathway where it is required for secretory trafficking and cargo modification. Disruption of Golgi architecture and function has been widely observed in neurodegenerative disease, but whether Golgi dysfunction is causal with regard to the neurodegenerative process, or is simply a manifestation of neuronal death, remains unclear. Here we report that targeted loss of the golgin GM130 leads to a profound neurological phenotype in mice. Global KO of mouse GM130 results in developmental delay, severe ataxia, and postnatal death. We further show that selective deletion of GM130 in neurons causes fragmentation and defective positioning of the Golgi apparatus, impaired secretory trafficking, and dendritic atrophy in Purkinje cells. These cellular defects manifest as reduced cerebellar size and Purkinje cell number, leading to ataxia. Purkinje cell loss and ataxia first appear during postnatal development but progressively worsen with age. Our data therefore indicate that targeted disruption of the mammalian Golgi apparatus and secretory traffic results in neuronal degeneration in vivo, supporting the view that Golgi dysfunction can play a causative role in neurodegeneration.
Collapse
|
33
|
Gahloth D, Levy C, Heaven G, Stefani F, Wunderley L, Mould P, Cliff MJ, Bella J, Fielding AJ, Woodman P, Tabernero L. Structural Basis for Selective Interaction between the ESCRT Regulator HD-PTP and UBAP1. Structure 2016; 24:2115-2126. [PMID: 27839950 PMCID: PMC5145805 DOI: 10.1016/j.str.2016.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/27/2016] [Accepted: 10/12/2016] [Indexed: 01/21/2023]
Abstract
Endosomal sorting complexes required for transport (ESCRTs) are essential for ubiquitin-dependent degradation of mitogenic receptors, a process often compromised in cancer pathologies. Sorting of ubiquinated receptors via ESCRTs is controlled by the tumor suppressor phosphatase HD-PTP. The specific interaction between HD-PTP and the ESCRT-I subunit UBAP1 is critical for degradation of growth factor receptors and integrins. Here, we present the structural characterization by X-ray crystallography and double electron-electron resonance spectroscopy of the coiled-coil domain of HD-PTP and its complex with UBAP1. The coiled-coil domain adopts an unexpected open and rigid conformation that contrasts with the closed and flexible coiled-coil domain of the related ESCRT regulator Alix. The HD-PTP:UBAP1 structure identifies the molecular determinants of the interaction and provides a molecular basis for the specific functional cooperation between HD-PTP and UBAP1. Our findings provide insights into the molecular mechanisms of regulation of ESCRT pathways that could be relevant to anticancer therapies.
Collapse
Affiliation(s)
- Deepankar Gahloth
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Colin Levy
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Graham Heaven
- School of Chemistry and Photon Science Institute, University of Manchester, Manchester M13 9PT, UK
| | - Flavia Stefani
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Lydia Wunderley
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Paul Mould
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Matthew J Cliff
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jordi Bella
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Alistair J Fielding
- School of Chemistry and Photon Science Institute, University of Manchester, Manchester M13 9PT, UK
| | - Philip Woodman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| | - Lydia Tabernero
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
34
|
Abstract
Coiled‐coils are found in proteins throughout all three kingdoms of life. Coiled‐coil domains of some proteins are almost invariant in sequence and length, betraying a structural and functional role for amino acids along the entire length of the coiled‐coil. Other coiled‐coils are divergent in sequence, but conserved in length, thereby functioning as molecular spacers. In this capacity, coiled‐coil proteins influence the architecture of organelles such as centrioles and the Golgi, as well as permit the tethering of transport vesicles. Specialized coiled‐coils, such as those found in motor proteins, are capable of propagating conformational changes along their length that regulate cargo binding and motor processivity. Coiled‐coil domains have also been identified in enzymes, where they function as molecular rulers, positioning catalytic activities at fixed distances. Finally, while coiled‐coils have been extensively discussed for their potential to nucleate and scaffold large macromolecular complexes, structural evidence to substantiate this claim is relatively scarce.
Collapse
Affiliation(s)
- Linda Truebestein
- Department of Structural and Computational Biology, Max F. Perutz Laboratories (MFPL), Vienna Biocenter (VBC), Vienna, Austria
| | - Thomas A Leonard
- Department of Structural and Computational Biology, Max F. Perutz Laboratories (MFPL), Vienna Biocenter (VBC), Vienna, Austria.,Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Magdeleine M, Gautier R, Gounon P, Barelli H, Vanni S, Antonny B. A filter at the entrance of the Golgi that selects vesicles according to size and bulk lipid composition. eLife 2016; 5. [PMID: 27458799 PMCID: PMC4961469 DOI: 10.7554/elife.16988] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/12/2016] [Indexed: 12/22/2022] Open
Abstract
When small phosphatidylcholine liposomes are added to perforated cells, they bind preferentially to the Golgi suggesting an exceptional avidity of this organelle for curved membranes without stereospecific interactions. We show that the cis golgin GMAP-210 accounts for this property. First, the liposome tethering properties of the Golgi resembles that of the amphipathic lipid-packing sensor (ALPS) motif of GMAP-210: both preferred small (radius < 40 nm) liposomes made of monounsaturated but not saturated lipids. Second, reducing GMAP-210 levels or redirecting its ALPS motif to mitochondria decreased liposome capture by the Golgi. Extensive mutagenesis analysis suggests that GMAP-210 tethers authentic transport vesicles via the same mechanism whereby the ALPS motif senses lipid-packing defects at the vesicle surface through its regularly spaced hydrophobic residues. We conclude that the Golgi uses GMAP-210 as a filter to select transport vesicles according to their size and bulk lipid composition. DOI:http://dx.doi.org/10.7554/eLife.16988.001
Collapse
Affiliation(s)
- Maud Magdeleine
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| | - Romain Gautier
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| | - Pierre Gounon
- Centre Commun de Microscopie Appliquée, Université Côte d'Azur, Nice, France
| | - Hélène Barelli
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| | - Stefano Vanni
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| | - Bruno Antonny
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| |
Collapse
|
36
|
Abstract
Intracellular membrane fusion is mediated in most cases by membrane-bridging complexes of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). However, the assembly of such complexes in vitro is inefficient, and their uncatalysed disassembly is undetectably slow. Here, we focus on the cellular machinery that orchestrates assembly and disassembly of SNARE complexes, thereby regulating processes ranging from vesicle trafficking to organelle fusion to neurotransmitter release. Rapid progress is being made on many fronts, including the development of more realistic cell-free reconstitutions, the application of single-molecule biophysics, and the elucidation of X-ray and high-resolution electron microscopy structures of the SNARE assembly and disassembly machineries 'in action'.
Collapse
Affiliation(s)
- Richard W Baker
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.,Present address: Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Frederick M Hughson
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
37
|
Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development. Proc Natl Acad Sci U S A 2016; 113:E2589-97. [PMID: 27118846 DOI: 10.1073/pnas.1519458113] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The primary cilium is a cellular organelle that coordinates signaling pathways critical for cell proliferation, differentiation, survival, and homeostasis. Intraflagellar transport (IFT) plays a pivotal role in assembling primary cilia. Disruption and/or dysfunction of IFT components can cause multiple diseases, including skeletal dysplasia. However, the mechanism by which IFT regulates skeletogenesis remains elusive. Here, we show that a neural crest-specific deletion of intraflagellar transport 20 (Ift20) in mice compromises ciliogenesis and intracellular transport of collagen, which leads to osteopenia in the facial region. Whereas platelet-derived growth factor receptor alpha (PDGFRα) was present on the surface of primary cilia in wild-type osteoblasts, disruption of Ift20 down-regulated PDGFRα production, which caused suppression of PDGF-Akt signaling, resulting in decreased osteogenic proliferation and increased cell death. Although osteogenic differentiation in cranial neural crest (CNC)-derived cells occurred normally in Ift20-mutant cells, the process of mineralization was severely attenuated due to delayed secretion of type I collagen. In control osteoblasts, procollagen was easily transported from the endoplasmic reticulum (ER) to the Golgi apparatus. By contrast, despite having similar levels of collagen type 1 alpha 1 (Col1a1) expression, Ift20 mutants did not secrete procollagen because of dysfunctional ER-to-Golgi trafficking. These data suggest that in the multipotent stem cells of CNCs, IFT20 is indispensable for regulating not only ciliogenesis but also collagen intracellular trafficking. Our study introduces a unique perspective on the canonical and noncanonical functions of IFT20 in craniofacial skeletal development.
Collapse
|
38
|
Saraste J. Spatial and Functional Aspects of ER-Golgi Rabs and Tethers. Front Cell Dev Biol 2016; 4:28. [PMID: 27148530 PMCID: PMC4834429 DOI: 10.3389/fcell.2016.00028] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/23/2016] [Indexed: 12/13/2022] Open
Abstract
Two conserved Rab GTPases, Rab1 and Rab2, play important roles in biosynthetic-secretory trafficking between the endoplasmic reticulum (ER) and the Golgi apparatus in mammalian cells. Both are expressed as two isoforms that regulate anterograde transport via the intermediate compartment (IC) to the Golgi, but are also required for transport in the retrograde direction. Moreover, Rab1 has been implicated in the formation of autophagosomes. Rab1 and Rab2 have numerous effectors or partners that function in membrane tethering, but also have other roles. These include the coiled-coil proteins p115, GM130, giantin, golgin-84, and GMAP-210, as well as the multisubunit COG (conserved oligomeric Golgi) and TRAPP (transport protein particle) tethering complexes. TRAPP also acts as the GTP exchange factor (GEF) in the activation of Rab1. According to the traditional view of the IC elements as motile, transient structures, the functions of the Rabs could take place at the two ends of the ER-Golgi itinerary, i.e., at ER exit sites (ERES) and/or cis-Golgi. However, there is considerable evidence for their specific association with the IC, including its recently identified pericentrosomal domain (pcIC), where many of the effectors turn out to be present, thus being able to exert their functions at the pre-Golgi level. The IC localization of these proteins is of particular interest based on the imaging of Rab1 dynamics, indicating that the IC is a stable organelle that bidirectionally communicates with the ER and Golgi, and is functionally linked to the endosomal system via the pcIC.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center, University of Bergen Bergen, Norway
| |
Collapse
|
39
|
Cheung PYP, Pfeffer SR. Transport Vesicle Tethering at the Trans Golgi Network: Coiled Coil Proteins in Action. Front Cell Dev Biol 2016; 4:18. [PMID: 27014693 PMCID: PMC4791371 DOI: 10.3389/fcell.2016.00018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 02/29/2016] [Indexed: 12/14/2022] Open
Abstract
The Golgi complex is decorated with so-called Golgin proteins that share a common feature: a large proportion of their amino acid sequences are predicted to form coiled-coil structures. The possible presence of extensive coiled coils implies that these proteins are highly elongated molecules that can extend a significant distance from the Golgi surface. This property would help them to capture or trap inbound transport vesicles and to tether Golgi mini-stacks together. This review will summarize our current understanding of coiled coil tethers that are needed for the receipt of transport vesicles at the trans Golgi network (TGN). How do long tethering proteins actually catch vesicles? Golgi-associated, coiled coil tethers contain numerous binding sites for small GTPases, SNARE proteins, and vesicle coat proteins. How are these interactions coordinated and are any or all of them important for the tethering process? Progress toward understanding these questions and remaining, unresolved mysteries will be discussed.
Collapse
Affiliation(s)
- Pak-Yan P Cheung
- Department of Biochemistry, Stanford University School of Medicine Stanford, CA, USA
| | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine Stanford, CA, USA
| |
Collapse
|
40
|
Finding the Golgi: Golgin Coiled-Coil Proteins Show the Way. Trends Cell Biol 2016; 26:399-408. [PMID: 26972448 DOI: 10.1016/j.tcb.2016.02.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/08/2016] [Accepted: 02/10/2016] [Indexed: 01/27/2023]
Abstract
The Golgi apparatus lies at the centre of the secretory pathway. It consists of a series of flattened compartments typically organised into a stack that, in mammals, is connected to additional stacks to form a Golgi ribbon. The Golgi is responsible for the maturation and modification of proteins and lipids, and receives and exports vesicles to and from multiple destinations within the cell. This complex trafficking network requires that only the correct vesicles fuse with the correct destination membrane. Recently, a group of coiled-coil proteins called golgins were shown to not only capture incoming vesicles but to also provide specificity to the tethering step. This raises many interesting questions about how they interact with other components of membrane traffic, some of which may also contribute to specificity.
Collapse
|
41
|
Fisher P, Ungar D. Bridging the Gap between Glycosylation and Vesicle Traffic. Front Cell Dev Biol 2016; 4:15. [PMID: 27014691 PMCID: PMC4781848 DOI: 10.3389/fcell.2016.00015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/22/2016] [Indexed: 11/24/2022] Open
Abstract
Glycosylation is recognized as a vitally important posttranslational modification. The structure of glycans that decorate proteins and lipids is largely dictated by biosynthetic reactions occurring in the Golgi apparatus. This biosynthesis relies on the relative distribution of glycosyltransferases and glycosidases, which is maintained by retrograde vesicle traffic between Golgi cisternae. Tethering of vesicles at the Golgi apparatus prior to fusion is regulated by Rab GTPases, coiled-coil tethers termed golgins and the multisubunit tethering complex known as the conserved oligomeric Golgi (COG) complex. In this review we discuss the mechanisms involved in vesicle tethering at the Golgi apparatus and highlight the importance of tethering in the context of glycan biosynthesis and a set of diseases known as congenital disorders of glycosylation.
Collapse
Affiliation(s)
- Peter Fisher
- Department of Biology, University of York York, UK
| | - Daniel Ungar
- Department of Biology, University of York York, UK
| |
Collapse
|
42
|
Witkos TM, Lowe M. The Golgin Family of Coiled-Coil Tethering Proteins. Front Cell Dev Biol 2016; 3:86. [PMID: 26793708 PMCID: PMC4707255 DOI: 10.3389/fcell.2015.00086] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/14/2015] [Indexed: 01/28/2023] Open
Abstract
The golgins are a family of predominantly coiled-coil proteins that are localized to the Golgi apparatus. Golgins are present in all eukaryotes, suggesting an evolutionary conserved function. Golgins are anchored to the Golgi membrane by their carboxy terminus and are predicted to adopt an extended conformation that projects into the surrounding cytoplasm. This arrangement is ideal for the capture or tethering of nearby membranes or cytoskeletal elements. Golgin-mediated tethering is thought to be important for vesicular traffic at the Golgi apparatus, the maintenance of Golgi architecture, as well as the positioning of the Golgi apparatus within cells. In addition to acting as tethers, some golgins can also sequester various factors at the Golgi membrane, allowing for the spatiotemporal regulation of downstream cellular functions. Although it is now established that golgins are membrane and cytoskeleton tethers, the mechanisms underlying tethering remain poorly defined. Moreover, the importance of golgin-mediated tethering in a physiological context remains to be fully explored. This review will describe our current understanding of golgin function, highlighting recent progress that has been made, and goes on to discuss outstanding questions and potential avenues for future research with regard to this family of conserved Golgi-associated proteins.
Collapse
Affiliation(s)
- Tomasz M Witkos
- Faculty of Life Sciences, University of Manchester Manchester, UK
| | - Martin Lowe
- Faculty of Life Sciences, University of Manchester Manchester, UK
| |
Collapse
|
43
|
Cheung PYP, Limouse C, Mabuchi H, Pfeffer SR. Protein flexibility is required for vesicle tethering at the Golgi. eLife 2015; 4. [PMID: 26653856 PMCID: PMC4721967 DOI: 10.7554/elife.12790] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/13/2015] [Indexed: 01/27/2023] Open
Abstract
The Golgi is decorated with coiled-coil proteins that may extend long distances to help vesicles find their targets. GCC185 is a trans Golgi-associated protein that captures vesicles inbound from late endosomes. Although predicted to be relatively rigid and highly extended, we show that flexibility in a central region is required for GCC185’s ability to function in a vesicle tethering cycle. Proximity ligation experiments show that that GCC185’s N-and C-termini are within <40 nm of each other on the Golgi. In physiological buffers without fixatives, atomic force microscopy reveals that GCC185 is shorter than predicted, and its flexibility is due to a central bubble that represents local unwinding of specific sequences. Moreover, 85% of the N-termini are splayed, and the splayed N-terminus can capture transport vesicles in vitro. These unexpected features support a model in which GCC185 collapses onto the Golgi surface, perhaps by binding to Rab GTPases, to mediate vesicle tethering.
Collapse
Affiliation(s)
| | - Charles Limouse
- Department of Applied Physics, Stanford University, Stanford, United States
| | - Hideo Mabuchi
- Department of Applied Physics, Stanford University, Stanford, United States
| | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
44
|
Doucet CM, Esmery N, de Saint-Jean M, Antonny B. Membrane Curvature Sensing by Amphipathic Helices Is Modulated by the Surrounding Protein Backbone. PLoS One 2015; 10:e0137965. [PMID: 26366573 PMCID: PMC4569407 DOI: 10.1371/journal.pone.0137965] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/24/2015] [Indexed: 11/18/2022] Open
Abstract
Membrane curvature is involved in numerous biological pathways like vesicle trafficking, endocytosis or nuclear pore complex assembly. In addition to its topological role, membrane curvature is sensed by specific proteins, enabling the coordination of biological processes in space and time. Amongst membrane curvature sensors are the ALPS (Amphipathic Lipid Packing Sensors). ALPS motifs are short peptides with peculiar amphipathic properties. They are found in proteins targeted to distinct curved membranes, mostly in the early secretory pathway. For instance, the ALPS motif of the golgin GMAP210 binds trafficking vesicles, while the ALPS motif of Nup133 targets nuclear pores. It is not clear if, besides curvature sensitivity, ALPS motifs also provide target specificity, or if other domains in the surrounding protein backbone are involved. To elucidate this aspect, we studied the subcellular localization of ALPS motifs outside their natural protein context. The ALPS motifs of GMAP210 or Nup133 were grafted on artificial fluorescent probes. Importantly, ALPS motifs are held in different positions and these contrasting architectures were mimicked by the fluorescent probes. The resulting chimeras recapitulated the original proteins localization, indicating that ALPS motifs are sufficient to specifically localize proteins. Modulating the electrostatic or hydrophobic content of Nup133 ALPS motif modified its avidity for cellular membranes but did not change its organelle targeting properties. In contrast, the structure of the backbone surrounding the helix strongly influenced targeting. In particular, introducing an artificial coiled-coil between ALPS and the fluorescent protein increased membrane curvature sensitivity. This coiled-coil domain also provided membrane curvature sensitivity to the amphipathic helix of Sar1. The degree of curvature sensitivity within the coiled-coil context remains correlated to the natural curvature sensitivity of the helices. This suggests that the chemistry of ALPS motifs is a key parameter for membrane curvature sensitivity, which can be further modulated by the surrounding protein backbone.
Collapse
Affiliation(s)
- Christine M. Doucet
- IPMC, CNRS UMR 7275, 660 route de Valbonne, 06560 –Valbonne, France
- * E-mail:
| | - Nina Esmery
- IPMC, CNRS UMR 7275, 660 route de Valbonne, 06560 –Valbonne, France
| | | | - Bruno Antonny
- IPMC, CNRS UMR 7275, 660 route de Valbonne, 06560 –Valbonne, France
| |
Collapse
|
45
|
Roboti P, Sato K, Lowe M. The golgin GMAP-210 is required for efficient membrane trafficking in the early secretory pathway. J Cell Sci 2015; 128:1595-606. [PMID: 25717001 PMCID: PMC4406126 DOI: 10.1242/jcs.166710] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/16/2015] [Indexed: 11/20/2022] Open
Abstract
Golgins are coiled-coil proteins that participate in membrane-tethering events at the Golgi complex. Golgin-mediated tethering is thought to be important for vesicular trafficking and Golgi organization. However, the degree to which individual golgins contribute to these processes is poorly defined, and it has been proposed that golgins act in a largely redundant manner. Previous studies on the golgin GMAP-210 (also known as TRIP11), which is mutated in the rare skeletal disorder achondrogenesis type 1A, have yielded conflicting results regarding its involvement in trafficking. Here, we re-investigated the trafficking role of GMAP-210, and found that it is indeed required for efficient trafficking in the secretory pathway. GMAP-210 acts at both the endoplasmic reticulum (ER)-to-Golgi intermediate compartment (ERGIC) and Golgi complex during anterograde trafficking, and is also required for retrograde trafficking to the ER. Using co-depletion experiments, we also found that GMAP-210 acts in a partially redundant manner with the golgin GM130 to ensure efficient anterograde cargo delivery to the cis-Golgi. In summary, our results indicate a role for GMAP-210 in several trafficking steps at the ER–Golgi interface, some of which are partially redundant with another golgin, namely GM130 (also known as GOLGA2).
Collapse
Affiliation(s)
- Peristera Roboti
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Keisuke Sato
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Martin Lowe
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|